

Introduction to WIEN2k

Peter Blaha

Institute of Materials Chemistry TU Wien

• APW (J.C.Slater 1937)

- E-dependent basis >>> Non-linear eigenvalue problem
 - Computationally very demanding
- LAPW (O.K.Andersen 1975)
 - Linearization of E-dependency Generalized eigenvalue problem
 - Full-potential (A. Freeman et al.)
 - ghostbands (problem with 2 principal QN; Ti: 3p + 4p)
- Local orbitals (D.J.Singh 1991)
 - treatment of semi-core states (avoids ghostbands)
- APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
 - E-independent APWs + local orbitals (to describe the E-dependency)
 - Efficience of APW + convenience of LAPW

Basis for

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

Extending the basis: Local orbitals (LO)

$$\Phi_{LO} = [A_{\ell m} u_{\ell}^{E_1} + B_{\ell m} \dot{u}_{\ell}^{E_1} + C_{\ell m} u_{\ell}^{E_2}]Y_{\ell m}(\hat{r})$$

- LO: contains a second u₁(E₂)
 - is confined to an atomic sphere
 - has zero value and slope at R
 - can treat two principal QN n for each azimuthal QN l (3p and 4p)
 - corresponding states are strictly orthogonal (no "ghostbands")
 - tail of semi-core states can be represented by plane waves
 - only slight increase of basis set (matrix size)

D.J.Singh, Phys.Rev. B 43 6388 (1991)

WIEN2k software package

An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

> Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

WIEN2k: ~2200 groups mailinglist: 1.500 emails/year 20 WIEN2k-workshops (Europe, USA, Japan, Singapore, Iran)

Program structure of WIEN2k

- create a structure
- init_lapw
 - step-by-step or batch initialization
 - symmetry detection (F, I, Ccentering, inversion)
 - input generation with recommended defaults
 - quality (and computing time) depends on k-mesh and R.Kmax (determines #PW)
- run_lapw
 - scf-cycle
 - optional with SO and/or LDA+U
 - different convergence criteria (energy, charge, forces)
- save_lapw tic_gga_100k_rk7_vol0
 - cp case.struct and clmsum files,
 - mv case.scf file
 - rm case.broyd* files

Structure generator

- spacegroup selection
- import cif file
- step by step initialization
 - symmetry detection
 - *automatic input generation*
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - DOS
 - Electron density
 - X-ray spectra
 - **Optics**

Idea and realization

by

/area51/pblaha/lapw/2005-june/TiC

StructGen™

You hav Save	to click "Save Structure" for changes to take effect!
Title:	C
LatticeType: FPFBCXYCYZCXZR	Spacegroups from Bilbao Cryst Server
H 1_P1 Lattice	arameters in A ·
a= α=	$\beta = 90.000000 \qquad \beta = 90.000000 \qquad \gamma = 90.000000$
Inequiv	lent Atoms: 2
Atom 1	Ti Z=22.0 RMT=2.0000 remove ator
Po: add	1: x=0.00000000 y=0.00000000 z=0.00000000 remove position
Atom 2	C Z=6.0 RMT=1.9000 remove ato
Po: add	1: x=0.50000000 y=0.50000000 z=0.50000000 remove position

- cd work; mkdir BaTiO3; cd BaTiO3
- makestruct (and type in the following information)
 - BaTiO₃: SG 99 (P 4 m m), a= 3.9926 3.9926 4.0294 Ang
 - Ba (0,0, 0.0217), Ti (0.5,0.5, 0.5363), O_1 (0.5,0.5, 0.99805), O_2 (0,0.5, 0.50663)
- cp init.struct BaTiO3.struct
- init_lapw -b (batch mode with defaults) [-sp -numk 100 -rkmax 6 -vxc 11]
- edit .machines (insert 4 lines with 1:localhost to run 4-fold k-parallel)
- run_lapw -p -fc 10 (scf-cycle with crude force convergence)
- edit BaTiO3.inm (put "MSR1a" instead of "MSR1")
- run_lapw -p -fc 1 -cc 0.001 (optimize position of all atoms + scf simultaneously)
- grep :ENE BaTiO3.scf (:FGLxxx :POSxxx) and verify E-minimum, forces are "small", change in atomic positions
- Now calculate "properties":
- x_nmr_lapw -mode in1 -focus O (and view the resulting *in1c_nmr file)
- x_nmr_lapw -p
 - tail BaTiO3.outputnmr_integ (chemical shift)
 - grep :EFG *scf0 (quadrupole splitting + asymmetry)
 - grep :ETA *scf0

accuracy and applicability of specific DFTapproximations

(development of better exchange and correlation functionals)

Hohenberg-Kohn theorem: (exact)

The total energy of an interacting inhomogeneous electron gas in the presence of an external potential $V_{ext}(r)$ is a functional of the density ρ

$$E = \int V_{ext}(\vec{r})\rho(\vec{r})d\vec{r} + F[\rho]$$

 $\frac{\text{Kohn-Sham}: \text{ (still exact!)}}{E = T_o[\rho] + \int V_{ext} \rho(\vec{r}) d\vec{r} + \frac{1}{2} \int \frac{\rho(\vec{r}) \rho(\vec{r}')}{|\vec{r}' - \vec{r}|} d\vec{r} d\vec{r}' + E_{xc}[\rho]}$ $E_{\text{kinetic non interacting}} E_{\text{ne}} E_{\text{coulomb}} E_{\text{ee}} E_{\text{coulomb}} e_{\text{ee}}$ $E_{xc} \text{ exchange-correlation}$ $E_{xc}^{LDA} \propto \int \rho(r) \varepsilon_{xc}^{\text{hom.}}[\rho(r)] dr$ $E_{xc}^{GGA} \propto \int \rho(r) F[\rho(r), \nabla \rho(r)] dr$ $E_{xc}^{GGA} \propto \int \rho(r) F[\rho(r), \nabla \rho(r)] dr$

- Standard LDA (GGA) gives good description of most solids
- Problems:
 - accuracy : functional "adapted" for specific materials or properties
 - solids molecules; metals insulators van der Waals bonds
 - elements: trends within up down and left right in periodic table
 - geometry binding energies spectroscopy
 - "correlated" (localized) electrons: 3d transition metal oxides, 4f,5f e
 - metals instead of insulators (FeO, FeF₂, cuprates, ...)
 - nonmagnetic instead of anti-ferromagnetic (La₂CuO₄, YBa₂Cu₃O₆)
 - band gaps in semiconductors/insulators
 - gap typically underestimated by 50%
- Possible improvements (depend on case and property):
 - ground state: better GGAs, LDA+U, hybrid-DFT, OEP, RPA, DMFT, QMC
 - excited states: GW, TB-mBJ, BSE, TD-DFT

accuracy: "DFT limit"

Testing of DFT functionals:

 error of theoretical lattice parameters for 60 different simple solids (Li-Th)

	me (Å)	mae (Å)	mre (%)	mare (%)
LDA	-0.058	0.058	-1.32	1.32
SO-GGA	-0.014	0.029	-0.37	0.68
PBEsol	-0.005	0.029	-0.17	0.67
WC	0.000	0.031	-0.03	0.68
AM05	0.005	0.035	0.01	0.77
PBE	0.051	0.055	1.05	1.18

but: better GGAs for solids are worse for molecules !!

Functional	Authors	Year	indxc (case.in0)
LDA	Dirac, Slater, etc.	1930	5
GGA:			
PBE	Perdew et al	1996	13
WC	Wu, Cohen	2005	11
PBEsol	Perdew et al.	2007	19
HTBS	Haas et al.	2011	46
TB-mBJ*	Tran, Blaha	2009	28, 50
meta-GGA:			
revTPSS**	Perdew et al.	2009	29

* only a potential (E_{xc} = LDA) ** only E_{xc} (V_{xc} = PBE)

- Becke-Johnson potential (J. Chem. Phys. 124, 221101 (2006))
 - Iocal potential designed to reproduce non-local OEP potentials in atoms
- modified Becke-Johnson potential

$$v_{x,\sigma}^{\text{MBJ}}(\mathbf{r}) = c v_{x,\sigma}^{\text{BR}}(\mathbf{r}) + (3c-2) \frac{1}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2t_{\sigma}(\mathbf{r})}{\rho_{\sigma}(\mathbf{r})}}$$

$$c = \alpha + \beta \left(\frac{1}{V_{\text{cell}}} \int_{\text{cell}} \frac{|\nabla \rho(\mathbf{r}')|}{\rho(\mathbf{r}')} d^3 r' \right)^{1/2}$$

- c depends on the density properties of a material
- + gaps of "GW" quality
- + good for correlated TM-oxides
- NO energy (only V)

F. Tran P. Blaha

PRL 102, 226401 (2009)

- LDA+U DMFT (dynamical mean field theory)
 - approximate screened HF for selected "highly-correlated" electrons (3d, 4f, 5f)
 - empirical parameter U
- Hartree-Fock
 - neglects correlation, which for most solids is essential
- Hybrid functionals: mixing of DFT+ HF ("onsite", "diagonal", "full"-hybrids)

$$E_{\rm xc} = E_{\rm xc}^{\rm SL} + \alpha_{\rm x} \left(E_{\rm x}^{\rm SR-HF} - E_{\rm x}^{\rm SR-SL} \right)$$

• GW method: calculate the quasiparticle self energy Σ $\Sigma(r,r',\omega) = \frac{i}{2\pi} \int d\omega' G(r,r,\omega-\omega') W(r,r',\omega)$ available for WIEN2k M. Scheffler et al. $\varepsilon_{nk}^{QP} = \varepsilon_{nk}^{LDA} - \langle nk | \Sigma (\varepsilon_{nk}^{QP}) - V_{xc}^{LDA} | nk \rangle$

(very expensive)

BSE (Bethe-Salpeter equ.): e⁻-h⁺ interactions, excitons

• 2 particle wavefunctions with screened (nolocal, but static ε) coulomb and full exchange

DOS of NiO

mBJ DOS agrees with

- XPS/BIS
- Ni-XES, O-XES
- LDA+U gives similar gap, but cannot explain XES
- PBE0: gap too large

$$E_{\rm xc} = E_{\rm xc}^{\rm SL} + \alpha_{\rm x} \left(E_{\rm x}^{\rm SR-HF} - E_{\rm x}^{\rm SR-SL} \right)$$

1/r is decomposed into a short-range and long-range component using

screened functionals improve k-mesh convergence dramatically

standard hybrid-DFT underestimates gaps for insulators optimal α found by fit to exp. as function of 1/ε₀

BSE calculations are very expensive

(code available on request, needs hundreds of cores + memory)
 R. Laskowski, P. Blaha, Phys. Rev. B, 81, 075418 (2010)

properties with WIEN2k

Properties with WIEN2k - I

- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize certain band-character)
- Density of states
 - including partial DOS with I and m- character
- Fermi surfaces h-BN/Ni(111): σ and π bands

- Electron density, potential, X-ray structure factors, spin + orbital moments
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - Bader 's atom-in-molecule analysis, BCP, atomic basins and charges ($\nabla \rho . \vec{n} = 0$)

- Hyperfine parameters (NMR, Mössbauer, PAC)
 - hyperfine fields (contact + dipolar + orbital contribution)
 - NMR chemical shifts
 - Mössbauer Isomer shifts
 - Electric field gradients

$$V_{zz} = \int \frac{\rho(r)Y_{20}}{r^3} dr$$

$$\frac{3eQV_{zz}}{2I(2I-1)h} \qquad \eta_{\rm Q} = \frac{V_{yy} - V_{xx}}{V_{zz}}$$

- AI-EFG of 16 different AI-fluorides
- before (open symbols)

 $\nu_{\rm Q}$ –

after (filled symbols) structural optimization

M.Body et al., J.Phys.Chem. A 2007, 111, 11873

Total energy and forces

- optimization of internal coordinates, (damped MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- Phonons via a direct method (based on forces from supercells)
 - Interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons

Pyrochlore structure of $Y_2Nb_2O_7$: **metallic** instead of an **insulator** strong **phonon instabilities** \rightarrow phase transition \rightarrow **insulator**

Mg-K

Spectroscopy

- XPS core levelshifts (with half-core holes, Slater's transition state)
- X-ray emission, absorption, electron-energy-loss
 - (core valence/conduction-band transitions with matrix elements and angular dep.)
 - EELS including possible non-dipol transititons (momentum transfer)
- optical properties (UV-VIS): dielectric function in IPA, JDOS including momentum matrix elements and Kramers-Kronig
- BSE for excitonic effects (both, for UV-VIS AND XAS)

- WIENNCM: non-collinear magnetism (spin-spirals to fully-relativistic) (R.Laskowski)
- BOLTZTRAP by G.Madsen: (transport, fermi velocities, Seebeck, conductivity, thermoelectrics)
- ATAT@WIEN2k (C.Draxl) : alloy theoretical automatic toolkit
- BSE (R.Laskowski) Bethe-Salpether equation for electron-hole interactions; excitons
- Berry-PI: (O. Rubel): berry-phases for electric fields, polarization, Born charges, piezoelectricity
 Intra-atomic NCM, fcc Pu
- GW (M.Scheffler):
- w2wannier (J.Kunes et al)
- interfaced with TRIQS (M. Aichhorn)

Spin density maps of fcc Pu. Calculation in FULL mode with SO. Average momenta point to

- + robust all-electron full-potential method (new effective mixer by L.Marks)
- + unbiased basisset, single convergence parameter (LDA-limit)
- + all elements of periodic table (equal expensive), metals
- + LDA, GGAs, meta-GGA, LDA+U, hybrid-DFT, spin-orbit
- + many properties and tools (supercells, structeditor, symmetry)
- + w2web (for novice users)
- ? speed + memory requirements
 - + very efficient basis for large spheres (2 bohr) (Fe: 12Ry, O: 9Ry)
 - less efficient for small spheres (1 bohr) (O: 25 Ry)
 - large cells, many atoms: scales as n³, but:

+ fast iterative diagonalization and good parallelelization (k-points and mpi-finegrain)

- full H, S matrix stored \rightarrow large memory required
- + many k-points do not require more memory
- no stress tensor

Acknowledgment

F.Tran

R.Laskowski

K.Schwarz

Thank you for your attention !