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• BCS to Bose-Einstein crossover → Pairing
• Polaron crossover → Polarization

Eq. !130". Its dimensionless coupling constant
!n /2"1/3add=0.16kFa is much smaller than 1 in the regime
1/kFa!2. Since the dimers eventually approach an ideal
Bose gas, with density n /2 and mass 2M, the critical
temperature in the BEC limit is obtained by converting
the associated ideal BEC condensation temperature into
the original Fermi energy. In the homogeneous case this
gives Tc!a→0"=0.218TF, while in a trap the numerical
factor is 0.518. The fact that Tc is completely indepen-
dent of the coupling constant in the BEC limit is simple
to understand, On the BCS side, superfluidity is de-
stroyed by fermionic excitations, namely, the breakup of
pairs. The critical temperature is therefore of the same
order as the pairing gap at zero temperature, consistent
with the well-known BCS relation 2"0 /kBTc=3.52. A re-
lation of this type is characteristic for a situation in
which the transition to superfluidity is driven by the gain
in potential energy associated with pair formation. In
particular, the formation and condensation of fermion
pairs occur at the same temperature. By contrast, on the
BEC side, the superfluid transition is driven by a gain in
kinetic energy, associated with the condensation of pre-
formed pairs. The critical temperature is then on the
order of the degeneracy temperature of the gas, which is
completely unrelated to the pair binding energy.

To lowest order in kFa in this regime, the shift Eq. !11"
in the critical temperature due to the repulsive interac-
tion between dimers is positive and linear in kFa. The
critical temperature in the homogeneous case, therefore,
has a maximum as a function of the dimensionless in-
verse coupling constant v=1/kFa, as found in the earli-
est calculation of Tc along the BCS-BEC crossover by
Nozières and Schmitt-Rink !1985". A more recent calcu-
lation of the universal curve #c!v", which accounts for
fluctuations of the order parameter beyond the Gaussian
level due to interactions between noncondensed pairs,
has been given by Haussmann et al. !2007". The resulting
critical temperature exhibits a maximum around v#1,
which is rather small, however !see Fig. 28". The associ-
ated universal ratio Tc /TF=0.16 at the unitarity point v

=0 agrees well with the value 0.152!7" obtained from
precise quantum Monte Carlo calculations for the
negative-U Hubbard model at low filling by Burovski et
al. !2006". Considerably larger values 0.23 and 0.25 for
the ratio Tc /TF at unitarity have been found by Bulgac
et al. !2006" from auxiliary field quantum Monte Carlo
calculations and by Akkineni et al. !2007" from restricted
path-integral Monte Carlo methods, the latter working
directly with the continuum model. In the presence of a
trap, the critical temperature has been calculated by
Perali et al. !2004". In this case, no maximum is found as
a function of 1/kFa because the repulsive interaction be-
tween dimers on the BEC side leads to a density reduc-
tion in the trap center, which eliminates the Tc maximum
at fixed density.

The increasing separation between the pair formation
and the pair condensation temperature as v=1/kFa var-
ies between the BCS and the BEC limit implies that, in
the regime −2$v$ +2 near unitarity, there is a substan-
tial range of temperatures above Tc where preformed
pairs exist but do not form a superfluid. From recent
path-integral Monte Carlo calculations, the characteris-
tic temperature T! below which strong pair correlations
appear has been found to be of order T!#0.7TF at uni-
tarity !Akkineni et al., 2007", which is at least three times
the condensation temperature Tc at this point. It has
been shown by Randeria et al. !1992" and Trivedi and
Randeria !1995" that the existence of preformed pairs in
the regime Tc%T$T! leads to a normal state very dif-
ferent from a conventional Fermi liquid. For instance,
the spin susceptibility is strongly suppressed due to sin-
glet formation above the superfluid transition
temperature.23 This is caused by strong attractive inter-
actions near unitarity, which leads to pairs in the super-
fluid, whose size is of the same order as the interparticle
spacing. The temperature range between Tc and T! is a
regime of strong superconducting fluctuations. Such a
regime is present also in high-temperature supercon-
ductors, where it is called the Nernst region of the
pseudogap phase !Lee et al., 2006". Its characteristic
temperature T! approaches Tc in the regime of weak
coupling !see Fig. 28". Similarly, the Nernst region in
underdoped cuprates disappears where Tc vanishes. By
contrast, the temperature below which the spin suscep-
tibility is suppressed, increases at small doping !Lee et
al., 2006". Apart from the different nature of the pairing
in both cases !s- versus d-wave", the nature of the
pseudogap in the cuprates, which appears in the proxim-
ity of a Mott insulator with antiferromagnetic order, is
thus a rather complex set of phenomena, which still lack
a proper microscopic understanding !Lee et al., 2006".
For a discussion of the similarities and differences be-
tween the pseudogap phase in the BCS-BEC crossover
and that in high-Tc cuprates, see, e.g., the reviews by
Randeria !1998" and Chen et al. !2005".

23For a proposal to measure the spin susceptibility in trapped
Fermi gases, see Recati et al. !2006".
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FIG. 28. !Color online" Critical temperature of the homoge-
neous gas as a function of the coupling strength. The full line is
the result obtained by Haussmann et al. !2007" and gives Tc
=0.16TF at unitarity. The exact asymptotic results Eqs. !136"
and !11" in the BCS and BEC limits are indicated by triangles
!green" and squares !blue", respectively. The dashed line gives
the schematic evolution of T*. From Haussmann et al., 2007.

941Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008

BEC in ultracold gases

[I.Bloch J.Dalibard W.Zwerger Rev. Mod. Phys. 80, 885 (2008)]

Fermion quasi-bound state Fermion bound state
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Polaron crossover in magnanites
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Holstein Model

Hel

Adiabatic ratio: γ = ω0/D (D=half bandwidth)

e-b coupling  (antiadiabatic         ): α2 = g2/ω2
0γ > 1

e-b coupling  (adiabatic         ): λ = 2g2/ω0Dγ < 1

H = ω0

�

i

a
†
iai − t

�

<i,j>,σ

c
+
i,σcj,σ − g

�

i,σ

(a†i + ai)c
+
i,σci,σ

Hb
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Holstein Model: polarons & bipolarons

H = ω0a
†
a− g

�

σ

(a† + a)nσ

x = a+ a† P (x) =< Ψ|x >< x|Ψ >

Atomic limit t=0

lattice polarization

Density dependent displaced harmonic oscillator
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Holstein Model: polarons & bipolarons
Atomic limit t=0

P (X)

X0

n=0 free oscillator

P (X)

X1

n=1 polaron

P (X)

X2

n=2 bipolaron

H = ω0a
†
a− g

�

σ

(a† + a)nσ

E0 = 0

X0 = 0

E1 = −g2/ω0

X1 = 2g/ω0

E2 = 2E1 − 2g2/ω0

X2 = 4g/ω0
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Holstein Model: polarons & bipolarons
Atomic limit t=0

P (X)

X0

n=0 free oscillator

P (X)

X1

n=1 polaron

P (X)

X2

n=2 bipolaron

H = ω0a
†
a− g

�

σ

(a† + a)nσ

E0 = 0

X0 = 0

E1 = −g2/ω0

X1 = 2g/ω0

E2 = 2E1 − 2g2/ω0

X2 = 4g/ω0

α =
g

ω0
>

1

2
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Path integral in a nutshell

Z = tr e−βH =

�
dX < X|e−βH |X >

H =
P

2

2m
+ V (X)
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�
e−∆τH

�M
∆τ = β/M Trotter formula

H =
P

2

2m
+ V (X)

e−∆τH = e−∆τV/2e−∆τ P2

2m e−∆τV/2 + o(∆τ2) Suzuki formula

< X1|e−∆τH |X2 >= e−∆τV (X1)/2 < X1|e−∆τ P2

2m |X2 > e−∆τV (X2)/2

< X1|e−∆τ P2

2m |X2 >∝ e−m
(X1−X2)2

2∆τ = e−
m
2 ∆τ(X1−X2

∆τ )
2
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Path integral in a nutshell
H =

P
2

2m
+ V (X)

Z ∝
�

dX

�
dX1 · · ·

�
dXMe−S

X0 = X

XM+1 = X

Kinetic Potential

S =
�

i=1,M+1

∆τ

�
1

2
m

�
Xi −Xi−1

∆τ

�2

+ V (Xi)

�
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Path integral in a nutshell
H =

P
2

2m
+ V (X)

Z ∝
�

dX

�
dX1 · · ·

�
dXMe−S

X0 = X

XM+1 = X

Kinetic Potential

S =
�

i=1,M+1

∆τ

�
1

2
m

�
Xi −Xi−1

∆τ

�2

+ V (Xi)

�

lim
M→∞

lim
∆τ→0

S[X] =

� β

0
dτ

�
1

2
m

�
Ẋ(τ)

�2
+ V (X(τ))

�
Action

Z =

�
DX(τ)e−S[X] Partition function as path 

integral
X(0) = X(β)

X(0) = X(β)

Xc

X(τ)
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Holstein Model: path integral

integrating bosons out...

S[c, c,X] =
1

2

�

i

� β

0
dτ

�
1

ω2
0

Ẋi
2
(τ) +X2

i (τ)

�
−

−
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ) +

√
λ
�

i,σ

� β

0
dτXi(τ)ni,σ(τ) Sel

integrating electrons out...

• Effective fermionic action
• Electron properties

• Effective bosonic action
• Boson properties

Sb

Z =

�
ΠiDXi(τ)Πi,σDci,σ(τ)Dci,σ(τ)e

−S[c,c,X]
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Holstein Model: integrating electrons out

Polarization distribution at site k

P (X) =
1

Z

�
ΠiDXi(τ)e

−Sph[X]−Sint[X]δ(X −Xk(0))

integrating electrons out...

Z =

�
ΠiDXi(τ)e

−Sb[X]−Sint[X]

Z =

�
ΠiDXi(τ)e

−Sb[X]

�
Πi,σDci,σ(τ)Dci,σ(τ)e

−Sel[c,c,X]
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Holstein Model: classical limit

Sph[X] =
1

2

�

i

� β

0
dτ

�
1

ω2
0

Ẋi
2
(τ) +X2

i (τ)

�

ω0 → 0
Ẋ(τ) = 0

X(τ) = X(0) = X(β)

Sph(X) =
1

2

�

i

βX2
i
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Holstein Model: classical limit

Sph[X] =
1

2

�

i

� β

0
dτ

�
1

ω2
0

Ẋi
2
(τ) +X2

i (τ)

�

ω0 → 0
Ẋ(τ) = 0

X(τ) = X(0) = X(β)

Sph(X) =
1

2

�

i

βX2
i

Sint(X) = − log [tr e−βHel(X)]

• Classical anharmonic oscillators

• Electrons moving in site-dependent 
gaussian random potential

Z =

�
ΠidXie

−Sph(X)−Sint(X)
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Holstein Model: bipolaron formation (DMFT)
classical limit

Polarization distribution at impurity site 

[A.J. Millis, Mueller, Shraiman Phys. Rev. B (1996)]
[S.C.,F. de Pasquale Phys. Rev. B (1999)]

P (X) =
1

Z

�
dX0e

−Sph(X0)−Sint(X0)δ(X −X0) e−Sint(X0) ∝
�
ΠnG

−1
0 (iωn) + gX0

�2
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Holstein Model: integrating bosons out
integrating bosons out...

Seff [c, c] = −
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ) +

λ

2

�

i,σ,σ�

� β

0
dτdτ �D(τ − τ �)ni,σ(τ)ni,σ�(τ �)

D(τ) = −�TτX(τ)X(0)�

D(iωn) = − ω2
0

ω2
n + ω2

0

Z =

�
Πi,σDci,σ(τ)Dci,σ(τ)

�
ΠiDXi(τ)e

−Sph[X]−Sel[c,c,X]

Z =

�
Πi,σDci,σ(τ)Dci,σ(τ)e

−Seff [c,c]
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Holstein Model: integrating bosons out
integrating bosons out...

Seff [c, c] = −
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ) +

λ

2

�

i,σ,σ�

� β

0
dτdτ �D(τ − τ �)ni,σ(τ)ni,σ�(τ �)

D(τ) = −�TτX(τ)X(0)�

D(iωn) = − ω2
0

ω2
n + ω2

0

attractive retarded 
density-density interaction

Z =

�
Πi,σDci,σ(τ)Dci,σ(τ)

�
ΠiDXi(τ)e

−Sph[X]−Sel[c,c,X]

Z =

�
Πi,σDci,σ(τ)Dci,σ(τ)e

−Seff [c,c]
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Holstein Model: large frequency limit
integrating bosons out...

Seff [c, c] = −
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ) +

λ

2

�

i,σ,σ�

� β

0
dτdτ �D(τ − τ �)ni,σ(τ)ni,σ�(τ �)

D(τ) = −�TτX(τ)X(0)�

D(iωn) = − ω2
0

ω2
n + ω2

0

attractive retarded 
density-density interaction
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Holstein Model: large frequency limit
integrating bosons out...

Seff [c, c] = −
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ) +

λ

2

�

i,σ,σ�

� β

0
dτdτ �D(τ − τ �)ni,σ(τ)ni,σ�(τ �)

D(τ) = −�TτX(τ)X(0)�

D(iωn) = − ω2
0

ω2
n + ω2

0

attractive retarded 
density-density interaction

ω0 → ∞
attractive instantaneous 
density-density interaction

Seff [c, c] = −
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ)−

λ

2

�

i,σ,σ�

� β

0
dτni,σ(τ)ni,σ�(τ)

...negative U Hubbard model
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Negative-U Hubbard model

H = −t

�

<i,j>,σ

c
+
i,σcj,σ − U

�

i

ni,↑ni,↓

adimensional e-e coupling: 
U

D
= λ

attractive coupling: U =
2g2

ω0
(bipolaron binding energy)
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Negative-U Hubbard model: DMFT phase 
diagram at half filling

9 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
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Figure 3. Phase diagram in the U–T plane.At low temperatures, two critical lines
Uc1(T ) and Uc2(T ) individuate the coexistence region. The two lines converge at
a finite-temperature critical point. At higher temperatures, we can still define two
crossover lines. The superconducting critical temperature is also drawn as a solid
line (compare figure 4).

critical temperature, except for the two second-order endpoints at T = 0 and T = Tpairing. For
densities out of half-filling, it has been shown in [20] that the transition is of first order already
at T = 0 and it is accompanied by a small phase separation region. For n = 0.75, the T = 0
first-order transition occurs quite close to Uc2.

Analogously to the half-filling case, the finite temperature almost immediately favours the
pairing phase. Indeed, on computing the free energy following, e.g., [24], we find the pairing
phase stable for almost every point in the coexistence region. We had to use an extremely dense
mesh of points in the U direction to identify a small section where the metallic phase is stable
at finite temperature. Therefore the finite temperature first-order transition occurs extremely
close to the Uc1 line for finite temperature and rapidly moves closer to Uc2 only at really small
temperatures.

4. The superconducting phase

The above stability analysis has been restricted to normal phase solutions. Indeed, the
superconducting solution is expected to be the stable one at T = 0 for all densities and values of
the interaction U. The critical temperature Tc is obtained directly as the highest temperature for
which a non-vanishing anomalous Green’s function F(ω) exists.

The DMFT critical temperature Tc for n = 0.75 as a function of U is reported in figure 4
(closed circles) and it qualitatively reproduces the limiting behaviour, with an exponential BCS-
like behaviour for small U values and a 1/U decrease at large U according to the expression
for the BE condensation temperature hard-core boson system [25]. As a result, Tc assumes its
maximum value of about 0.1D for an intermediate coupling strength Umax ! 2.1D. Interestingly,
the maximum Tc occurs almost exactly at the coupling for which the pairing transition in the
normal phase would take place in the absence of superconductivity.

New Journal of Physics 7 (2005) 7 (http://www.njp.org/)

[A. Toschi, P. Barone, M. Capone C. Castellani NJP 7, 7 (2005)]

Quasi free fermions Hard core bosons

BCS BEC

Friday, September 6, 2013



Holstein Model: large frequency limit
restoring the “boson” variables...

S[c, c,X] =
1

2

�

i

� β

0
dτ

�
1

ω2
0

Ẋi
2
(τ) +X2

i (τ)

�
−

−
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ) +

√
λ
�

i,σ

� β

0
dτXi(τ)ni,σ(τ)

“bosons” becomes Hubbard-Statonvich variables...

exp(
1

2
Â2) =

1√
2π

�
dx exp(−1

2
x2 + xÂ)

• H-S variables conjugated to density (attraction)
• H-S variables have no defined polarization

X =

�
ω0

2
(a+ a†)

< X2 >→ ∞
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Holstein Model: large frequency limit
restoring the “boson” variables...

S[c, c,X] =
1

2

�

i

� β

0
dτ

�
1

ω2
0

Ẋi
2
(τ) +X2

i (τ)

�
−

−
�

i,j,σ

� β

0
dτci,σ(τ)(∂τδi,j + ti,j)cj,σ(τ) +

√
λ
�

i,σ

� β

0
dτXi(τ)ni,σ(τ)

“bosons” becomes Hubbard-Statonvich variables...

exp(
1

2
Â2) =

1√
2π

�
dx exp(−1

2
x2 + xÂ)

• H-S variables conjugated to density (attraction)
• H-S variables have no defined polarization

Can we describe pairing by means distribution functions of 
H-S variables?
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Path integrals: end-point & centroid

Xc =
1

β

� β

0
dτX(τ)

X(0) = X(β)

X(0) = X(β)

Xc

X(τ)

endpoint

centroid:”classical” position of the quantum particle
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End-point & centroid for an harmonic oscillator

X(0) = X(β)

Xc

X(τ)

centroid distribution → thermal fluctuations

P (X) ∝ exp(− X2

ξ2(T )
)

endpoint distribution → thermal+quantum fluctuations

ξ2(T ) =
�ω0

k tanh(β�ω0/2)

centroid distribution is non-trivial for H-S variables (                 )�ω0 → ∞

P (Xc) ∝ exp(− X2
c

2ξ2c (T )
). ξ2c (T ) =

k

β
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Path integrals: end-point & centroid

Xc =
1

β

� β

0
dτX(τ)

X(0) = X(β)

X(0) = X(β)

Xc

X(τ)

endpoint

centroid

bimodality of P(X): 
polarization crossover 

bimodality of P(Xc): 
paring crossover 
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Holstein model: pairing (DMFT)

[S. C., G. Sangiovanni, and M. Capone Phys. Rev. B 73, 245114 (2006)]

location of the pairing 
crossover

centroid distribution 
bimodality

γ = 8

= λ
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Holstein model: pairing (DMFT)

[S. C., G. Sangiovanni, and M. Capone Phys. Rev. B 73, 245114 (2006)]

location of the pairing 
crossover

centroid distribution 
bimodality

γ = 8

= λ
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Holstein model: DMFT phase diagram at half-
filling

[S. C., G. Sangiovanni, and M. Capone Phys. Rev. B 73, 245114 (2006)]

Detecting pairing and polarization crossovers
in systems with retarded interactions

S.Ciuchi1,4 G.Sangiovanni2,3 and M.Capone3,4
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Introduction
We study a system in which electrons interact
through local attractive interactions. When the
strenght of the interaction U exceeds the kinetic
energy of the electrons given by the half-bandwidth
D [1] a phase of local pairs exists and have been
proposed to describe the pseudogap regime of the
cuprates. Also in the case of repulsive interac-
tion such a local order exists as a phase consist-
ing in localized magnetic moments. Retardation of
the bosonic mediator introduces a new energy scale
ω0 which defines a new temperature scale above
which the boson mediator turns into a classical
particle.[2, 3]
We study the Holstein model which describes tight-
binding electrons (c) of half bandwidth D = 1 cou-
pled to dispersionless Einstein phonons (x) of fre-
quency ω0. We use Dynamical Mean Field The-
ory (DMFT) with Quantum Monte Carlo method
as impurity solver [4] in a modified Blankenbecler-
Scalapino-Sugar [5] scheme. Within DMFT the lat-
tice problem is reduced to a local impurity problem
with action given by

S = −
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′c†σ(τ )G−1

0 (τ − τ ′)cσ(τ
′)

+
1

2

∫ β

0
dτ

(

ẋ2(τ )

ω2
0

+ x2(τ )

)

−
√

U

∫ β

0
dτx(τ ) (n(τ ) − 1) (1)

where G−1
0 (τ − τ ′) is the DMFT imaginary-

time dependent Weiss field to be determined self-
consistently and β the inverse temperature. We con-
sider the particle-hole symmetric case (with density
n = 1) in this case for ω0 → ∞ the electron-hole
transformation maps our Holstein to the positive

U Hubbard model, therefore all of our findings, for
large ω0, can be applied as well for the repulsive
Hubbard model.
Endpoint & Centroid Distributions
We characterize the crossover associated to the po-
larization and pairing of the bosonic field by looking
at the coupling at which respectively the probability
distributions of the endpoint

P (X) = 〈δ(X − x(0))〉 , (2)

and the distribution the center of mass Xc (“cen-

troid”) of the bosonic path x(τ ) in imaginary time

P (Xc) =

〈

δ(Xc −
1

β

∫ β

0
x(τ )dτ )

〉

(3)

becomes bimodal. Bimodality of the lattice dis-
placement distribution P (X) is immediately re-
lated to the existence of local polarization [7] of the
bosonic field.

Bimodal behaviour of P (Xc) can be instead associ-
ated to increasing local density susceptibility. The
cumulants of the centroid distributions are related
to local density responses [8]. For example the vari-
ance of the centroid distribution is related to the
local isothermal density response kloc

T = ∂ < ni >
/∂µi via

< X2
c >= (1 + Ukloc

T )/β. (4)

In the β → ∞ (T → 0) limit, to have a finite cen-
troid variance we must have two δ peaks in P (Xc)
as can be analitically verified in the atomic limit
(D = 0). A finite T = 0 variance of Xc implies a
divergence of the local density response which is a
marker of the pairing transition (it is the attractive
counterpart of the divergent local spin susceptibility
of the repulsive Hubbard model at the Mott transi-
tion). In the Holstein model the divergence of kloc

T

implies also a softening of the phonon which is one
of the markers of the bipolaronic Metal Insulator
Transition (MIT).[9, 10, 11]
DMFT-QMC results
In fig. 1 we shown the crossover temperature re-
spectively for polarization a) and pairing b). In fig.
2 we show the local density response kloc

T obtained
from eq. 4.

 0.01

 0.1

 1

 10

T

0.1
1.0 8.0

a)

 1

 0.1

 0.01
 1  10

T

U

0.1
1.0 8.0

b)

Figure 1: a) Tpol and b) Tpair as a function of
coupling for ω0 = 0.1, 1.0, 8.0. The dashed line
in panel a) is the analytical ω0 = 0 result from
[7].

While pairing and polarization crossover P (Xc)
tend to coincide in the adiabatic regime (ω0 = 0.1)
they are clearly different in the anti-adiabatic regime
(ω0 = 1, 8). Actually for temperatures smaller than
ω0, the polarization crossover moves to larger cou-
plings as ω0 is increased, while the pairing crossover
is only slightly shifted to larger couplings with in-
creasing ω0 (see also arrows in fig. 2).
The same behaviour has been found looking at the

pairing MIT versus the polaron crossover in the half-
filled Holstein model at T = 0.[2] However the exact
value at which the T = 0 MIT occurs is not that of
bimodality of P (Xc) which is rather a precursor.
A re-entrant behaviour is seen in polarization and
(even more clearly) in the pairing crossover tem-
perature. Interestingly this phenomenon has been
also reported for the Mott transition in the repul-
sive model,[12] and associated to spin entropy of the
insulator (here the charge entropy of the pair insu-
lator).

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

k T
/k

T(
U

=0
)

U

ω0=4.0
ω0=2.0
ω0=1.0
ω0=0.0

RPA

Figure 2: Local density response kloc
T obtained

from eq. 4 at β = 4. Arrows marks the crossover
points obtained from bimodality of P (Xc). Ran-
dom Phase Approximation for kT is also shown.

Conclusions
To conclude we have developed a criterion to local-
ize, in the parameters space, a finite temperature
Metal-Insulator crossover, which in our case is due
to pairing. The criterion presented here can be use-
ful also in the positive U Hubbard case within the
Statonovich Hubbard decoupling scheme to locate
the finite temperature crossover toward the local
moment phase.
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The “classical” FDT for centroids
Fluctuations-Response

Static response

Classical limit (            )

χi,j =
δ

δhj
< m̂i >

����
h=0

χi,j =

� β

0
dτ [< m̂i(τ)m̂j(0) > − < m̂i(τ) >< m̂j(0) >]h=0

χi,j = β [< m̂i m̂j > − < m̂i >< m̂j >]h=0

H = H
� −

�

i

him̂i

Static external field     coupled locally with an operatorhi m̂i

β → 0
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The “classical” FDT for centroids
Fluctuations-Response

H = H
� −

�

i

him̂i

Static external field     coupled locally with an operatorhi m̂i

S�[X] = S0 +
1

2

�

i

�
dτX2

i (τ)−
√
U
�

i

�
dτXi(τ)mi(τ)

Quadratic interaction...

...linearized by H-S transformation

“classical” fluctuations-response for centroids

χi,j =
1

U
[β(< Xc,iXc,j > − < Xc,i >< Xc,j >)− δi,j ]

H
� = H0 −

U

2

�

i

m̂
2
i
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The “classical” FDT for centroids
“classical” fluctuations-response for centroids

χi,j =
1

U
[β(< Xc,iXc,j > − < Xc,i >< Xc,j >)− δi,j ]

Half-filled negative-U Hubbard model (DMFT) (             )

Centroid distribution across MIT

χc
i,i �

k

1− U/Uc2

χc
i,i � β

U < Uc2

U > Uc2

< ∆X2
c > � U

β

k

1− U/Uc2

< ∆X2
c > � U

β → ∞

P (Xc)

Xc

U < Uc2 P (Xc)

Xc

U > Uc2

U

[(*) A. Georges et al. Rev. Mod. Phys. 68, 13–125 (1996)]

(*)
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Outline
 Introduction

 Polarization crossover
• Holstein model, polarization, bipolarons
• The classical limit of the Holstein model, polarization crossover

 Pairing crossover
• The negative U limit of the Holstein model 
• The “centroid” variable
• Pairing in the Holstein and attractive Hubbard model
• FDT for centroids

 Negative & positive U
• Spin & pseudospin
• Divergent precursors of the Mott transition
• Generalized centroid distributions
• Positive U AFQMC & centroid distributions

 Conclusions
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Negative vs positive U at half-filling

ρi,z = ni,↑ + ni,↓ − 1

Negative U Positive U

H = H0 −
U

2

�

i

(ni,↑ + ni,↓ − 1)2 H = H0 −
U

2

�

i

(ni,↑ − ni,↓)
2

mi,z = ni,↑ − ni,↓

ρ = (c†↑, c↓) σ

�
c↑
c†↓

�
m = (c†↑, c

†
↓) σ

�
c↑
c↓

�
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Negative vs positive U at half-filling

ρi,z = ni,↑ + ni,↓ − 1

Negative U Positive U

• H-S variable conjugated to spin 

• Bimodality of spin centroid 
distribution → local moments

• Centroid variance → local spin 
susceptibility

H = H0 −
U

2

�

i

(ni,↑ + ni,↓ − 1)2 H = H0 −
U

2

�

i

(ni,↑ − ni,↓)
2

• H-S variable conjugated to 
pseudo-spin 

• Bimodality of charge centroid 
distribution → local pairs

• Centroid variance → local 
charge susceptibility

mi,z = ni,↑ − ni,↓

ρ = (c†↑, c↓) σ

�
c↑
c†↓

�
m = (c†↑, c

†
↓) σ

�
c↑
c↓

�
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Negative vs positive U at half-filling

ρi,z = ni,↑ + ni,↓ − 1

Negative U Positive U

H = H0 −
U

2

�

i

(ni,↑ + ni,↓ − 1)2 H = H0 −
U

2

�

i

(ni,↑ − ni,↓)
2

mi,z = ni,↑ − ni,↓

ρ = (c†↑, c↓) σ

�
c↑
c†↓

�
m = (c†↑, c

†
↓) σ

�
c↑
c↓

�

Use the bimodality of charge centroid distribution in the Holstein model at 
large frequency to guess the position of the Fermi liquid / local moments 
crossover in the positive U Hubbard model (DMFT)

Compare the position of this crossover with that of precursor of the Mott 
transition (DMFT)
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Divergent precursor of the Mott transition

[T. Schäfer, G. Rohringer,O. Gunnarsson, S. C., G. Sangiovanni, 
and A. Toschi PRL 110, 246405 (2013)]

[χ(ω)]n,m =

�
dτ1dτ2dτ3e

−iνnτ1e(νn+ω)τ2e−i(νm+ω)τ3×

×
�
Tτ c

†(τ1)c(τ2)c
†(τ3)c(0)

�
−

�
Tτ c

†(τ1)c(τ2)
� �

Tτ c
†(τ3)c(0)

�

χ = χ0 − χ0Γχ

Γ = χ−1 − χ−1
0

local charge susceptibility matrix  (DMFT)

= -

irreducible (p-h) vertex

Bethe-Salpeter equation

ω + νn ω + νm

νmνn
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Divergent precursor of the Mott transition

[χ(ω)]n,m =

�
dτ1dτ2dτ3e

−iνnτ1e(νn+ω)τ2e−i(νm+ω)τ3×

×
�
Tτ c

†(τ1)c(τ2)c
†(τ3)c(0)

�
−

�
Tτ c

†(τ1)c(τ2)
� �

Tτ c
†(τ3)c(0)

�

χ = χ0 − χ0Γχ

Γ = χ−1 − χ−1
0

local charge susceptibility matrix  (DMFT)

= -

irreducible (p-h) vertex

Bethe-Salpeter equation

ω + νn ω + νm

νmνn

charge
p-p
spin

χc = χ↑↑ + χ↑↓

χs = χ↑↑ − χ↑↓

χpp

ω + νn ω + νm

νmνn
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Divergent precursor of the Mott transition
charge:Γ diverges at ω=νn=νm=0 at Tp-h(U)

p-p:Γ diverges at ω=νn=νm=0 at Tp-p(U)

spin:Γ regular

Divergence of     imply beaking of Kadanoff-Baym perturbation theoryΓ

δΦ[G]

δG(1, 2)
= Σ(1, 2)

δ2Φ[G]

δG(3, 4)δG(1, 2)
= Γ(1, 2, 3, 4)
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Divergent precursor of the Mott transition

questions is positive [24]. By repeating the analysis of
Fig. 1 for different temperatures, we could identify the
loci ( ~T, ~U, red dots in Fig. 2) in the phase-diagram, where
the low-frequency divergence of !!!0

c occurs. This defines a

curve ~TðUÞ with a quite peculiar shape, where the follow-
ing three regions can be distinguished: (I) at very high T,
the behavior is almost perfectly linear ~T / ~U; (II) in the
low T limit the curve strongly bends, extrapolating for T !
0 at ~Uð0Þ # 1:5 $ UMIT # 3; (III) at intermediate T the
curve interpolates between these two regimes, with a
‘‘reentrance’’ clearly affected by the presence of the MIT
at larger U (blue line in Fig. 2). We note that by increasing
U much further than the ~TðUÞ curve, one eventually
observes a divergence also of the local Bethe-Salpeter in
the particle-particle channel (orange points in Fig. 2),
while for all values of T, U considered, no similar diver-
gence is found in the spin channel.
Interpretation of the results.—In contrast to the case of

the main diagonal structures of the vertex functions, the
interpretation of the low-frequency divergences of !!!0

c is
not directly related to the MIT. However, even if at low T
the divergences take place in the metallic region of the
phase diagram, the reentrance shape of the ~TðUÞ curve is
indeed remarkably affected by the position of the MIT. The
most natural interpretation is, hence, that the shaded area in
the phase diagram defines the region where the precursor
effects of the MIT physics preclude the perturbative
description and become a crucial ingredient in determining
the properties of the system. This interpretation is evi-
dently supported by the fact that the signs of the two-
particle vertex functions are correctly predicted in
perturbation theory only up to the left-hand side of the
~TðUÞ curve. More generally, the ~TðUÞ curve can be
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FIG. 2 (color online). Instability lines of the irreducible verti-
ces in the charge (!c red circles) and in the particle-particle
channels (!pp orange diamonds) reported in the DMFT phase
diagram of the half-filled Hubbard model (the data of the MIT,
blue solid line, are taken from Ref. [13,14]). The red dashed line
indicates the corresponding instability condition ( ~T ¼
ð

ffiffiffi
3

p
=2"Þ ~U) estimated from the atomic limit. Inset: zoom on

the low-T region, where also different estimations (dashed
light blue [13], dashed blue [14]) of the crossover region are
indicated [30].
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FIG. 1 (color online). Upper row: Evolution of the frequency-dependent two-particle vertex function, irreducible in the charge
channel, (!!!0

c ) for increasing U. Note that the lowest-order contribution U has been always subtracted so that !c ¼ U corresponds to
the white color in all plots. The data have been obtained by DMFTat zero external frequency (! ¼ 0) and fixed temperature (T ¼ 0:1);
lower row: linear snapshot of the same !c along the path marked by the dashed line in the first panel of the upper row, i.e., as a function
of ! ¼ ð"=#Þð2nþ 1Þ for n0 ¼ 0 (!0 ¼ ð"=#Þ), compared to second-order perturbation theory (PT) results. In the legends/insets the
closest-to-zero eigenvalue ($) of %!!0

c =%!!0
0 is reported for each U.
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week ending
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[T. Schäfer, G. Rohringer,O. Gunnarsson, S. C., G. Sangiovanni, 
and A. Toschi PRL 110, 246405 (2013)]

[N.!Blumer, Ph.D!thesis, Augsburg, (2003)]
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Divergent precursor of the Mott transition

questions is positive [24]. By repeating the analysis of
Fig. 1 for different temperatures, we could identify the
loci ( ~T, ~U, red dots in Fig. 2) in the phase-diagram, where
the low-frequency divergence of !!!0

c occurs. This defines a

curve ~TðUÞ with a quite peculiar shape, where the follow-
ing three regions can be distinguished: (I) at very high T,
the behavior is almost perfectly linear ~T / ~U; (II) in the
low T limit the curve strongly bends, extrapolating for T !
0 at ~Uð0Þ # 1:5 $ UMIT # 3; (III) at intermediate T the
curve interpolates between these two regimes, with a
‘‘reentrance’’ clearly affected by the presence of the MIT
at larger U (blue line in Fig. 2). We note that by increasing
U much further than the ~TðUÞ curve, one eventually
observes a divergence also of the local Bethe-Salpeter in
the particle-particle channel (orange points in Fig. 2),
while for all values of T, U considered, no similar diver-
gence is found in the spin channel.
Interpretation of the results.—In contrast to the case of

the main diagonal structures of the vertex functions, the
interpretation of the low-frequency divergences of !!!0

c is
not directly related to the MIT. However, even if at low T
the divergences take place in the metallic region of the
phase diagram, the reentrance shape of the ~TðUÞ curve is
indeed remarkably affected by the position of the MIT. The
most natural interpretation is, hence, that the shaded area in
the phase diagram defines the region where the precursor
effects of the MIT physics preclude the perturbative
description and become a crucial ingredient in determining
the properties of the system. This interpretation is evi-
dently supported by the fact that the signs of the two-
particle vertex functions are correctly predicted in
perturbation theory only up to the left-hand side of the
~TðUÞ curve. More generally, the ~TðUÞ curve can be
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FIG. 2 (color online). Instability lines of the irreducible verti-
ces in the charge (!c red circles) and in the particle-particle
channels (!pp orange diamonds) reported in the DMFT phase
diagram of the half-filled Hubbard model (the data of the MIT,
blue solid line, are taken from Ref. [13,14]). The red dashed line
indicates the corresponding instability condition ( ~T ¼
ð

ffiffiffi
3

p
=2"Þ ~U) estimated from the atomic limit. Inset: zoom on

the low-T region, where also different estimations (dashed
light blue [13], dashed blue [14]) of the crossover region are
indicated [30].
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FIG. 1 (color online). Upper row: Evolution of the frequency-dependent two-particle vertex function, irreducible in the charge
channel, (!!!0

c ) for increasing U. Note that the lowest-order contribution U has been always subtracted so that !c ¼ U corresponds to
the white color in all plots. The data have been obtained by DMFTat zero external frequency (! ¼ 0) and fixed temperature (T ¼ 0:1);
lower row: linear snapshot of the same !c along the path marked by the dashed line in the first panel of the upper row, i.e., as a function
of ! ¼ ð"=#Þð2nþ 1Þ for n0 ¼ 0 (!0 ¼ ð"=#Þ), compared to second-order perturbation theory (PT) results. In the legends/insets the
closest-to-zero eigenvalue ($) of %!!0

c =%!!0
0 is reported for each U.

PRL 110, 246405 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
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p-p

p-h

Ucdyn
[M.Eckstein, M.Kollar,P.Werner PRL 103, 056403 (2009)]

[R. Zitzler, Ph.D. thesis, Augsburg, (2004); R. Bulla PRL 83, 136 (1999)]
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Vertex divergence and centroid bimodality

spin centroid

p-h vertex

p-p vertex

MIT (Uc2)

[T. Schäfer, G. Rohringer,O. Gunnarsson, S. C., G. Sangiovanni, 
and A. Toschi PRL 110, 246405 (2013)]
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→

integrate over equivalent directions n

generalized centroid distributions 

μ=0 μ=0.1 μ=0.5

[F. de Pasquale S.C. Physica B 284, 1573 (2000)]

Generalized centroid distributions

U>Uc

Xρz

Xρx

T/D=0.01
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†
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Centroid distribution from auxiliary field QMC

e−∆τH = e−∆τH0/2e−∆τV e−∆τH0/2 + o(∆τ2)

QMC for ground state

|Ψ0 >= lim
β→∞

e−β(H−ET )|ΨT >= lim
M→∞

Πi=1,Me−∆τ(H−ET )|ΨT >

Friday, September 6, 2013



Centroid distribution from auxiliary field QMC

e−∆τH = e−∆τH0/2e−∆τV e−∆τH0/2 + o(∆τ2)

V = −A2

exp(
1

2
Â2) =

1√
2π

�
dx exp(−1

2
x2 + xÂ)

QMC for ground state

Auxiliary fields (H-S transformation)

• Distribution of centroids is a byproduct of QMC scheme
• Easy access to response by use of FDT for centroids

|Ψ0 >= lim
β→∞

e−β(H−ET )|ΨT >= lim
M→∞

Πi=1,Me−∆τ(H−ET )|ΨT >
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Centroid distribution from auxiliary field QMC

e−∆τH = e−∆τH0/2e−∆τV e−∆τH0/2 + o(∆τ2)

V = −A2

exp(
1

2
Â2) =

1√
2π

�
dx exp(−1

2
x2 + xÂ)

QMC for ground state

Auxiliary fields (H-S transformation)

• Distribution of centroids is a byproduct of QMC scheme
• Easy access to response by use of FDT for centroids

[Hao Shi and Shiwei Zhang arXiv:1307.2147 (2013)]

Charge H-S decoupling can improve stat. errors w.r.t. discrete spin Hirsh-Fye 
decoupling in the positive U Hubbard model

|Ψ0 >= lim
β→∞

e−β(H−ET )|ΨT >= lim
M→∞

Πi=1,Me−∆τ(H−ET )|ΨT >

xc =
1

M
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Outline
 Introduction

 Polarization crossover
• Holstein model, polarization, bipolarons
• The classical limit of the Holstein model, polarization crossover

 Pairing crossover
• The negative U limit of the Holstein model 
• The “centroid” variable
• Pairing in the Holstein and attractive Hubbard model
• FDT for centroids

 Negative & positive U
• Spin & pseudospin
• Divergent precursors of the Mott transition
• Generalized centroid distributions
• Positive U AFQMC & centroid distributions

 Conclusions
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Conclusions

❖ Analysis of bosonic path statistics can provide a method to determine the local polarization 
crossover in the normal state for a polaronic system as well as the pairing crossover once 
centroids of the bosonic paths are considered.  

❖ Using the same method it is possible to locate the spin crossover from Fermi Liquid to Local 
Spin in the normal phase of the positive U Hubbard models.

❖ A general relation holds between centroid moments and generalized N-particle 
susceptibilities. In particular a “classical” relation holds between the variance of the centroid 
and the susceptibility of the conjugated variable. 

❖ Centroid distributions are byproduct of Auxiliary Field QMC. 

❖ Divergence of the irreducible local vertex (p-p,p-h) is a precursor of the Mott transition at 
zero temperature  but occurs well inside the local spin region at high temperature.

Is there a qualitative difference between the intermediate U low temperature regime T<0.1D 
and the high temperature regime T>0.1D? 

Test the relation between vertex anomaly and non-equilibrium properties in the Falicov-Kimball 
model (CPA)
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