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Electrons in periodic potential

Bloch theorem

Bloch waves are not necessarily the best basis for further
developments, e.g. perturbative treatment of the interaction.



Localized and orthonormal orbitals

•  Useful basis for treatment of local perturbations
(impurities, defects, on-site interaction)

•  Obey canonical commutation relations

•  Explicit translational symmetry

•Compromise between localization in space and
‘localization’ in the energy domain (minimal basis)

•  Analytic tool - chemist’s view



Orthogonal atomic orbitals
Bloch sum (Fourier series)

normalization

Fourier coefficient



Wannier functions
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WF of single isolated band

Gauge freedom

Fourier coefficient

Fourier series



WF of isolated composite band

Gauge freedom

Fourier coefficient

Fourier series



WF properties

Explicit periodicity

Orthogonality

Uniqueness of Wannier center



Convergence of Fourier coefficients



Convergence of Fourier coefficients



Exponential localization of WFs

ψk can be made locally analytic - k .p expansion:

 Can we make ψk analytic?

This is a non-trivial topological
question.

Can it be done globally?

11D Brillouin zone

ψk+iχ analytic



Brief excursion to topology

(Berry) connection

(Berry) curvature

gauge dependent

gauge invariant

Exponentially localized WF exist if all Chern numbers 
associated with Bαβ(k) are zero.



Construction of WFs

 Localization of WF reflects the variation of uk(r) through BZ.

 Projection technique - aligns the phase of Bloch waves on a given site

 random phase                            aligned phase

•  always works in 1D
•  in 2D and 3D there are

system where finite
projection everywhere in BZ
is not possible (QHE)



Construction of WFs

 Maximum localization method - minimizes 2nd moment of WF

•  Formulated in basis independent way

• Input:

• Additional input:

• Output:   U(k) unitary transformation between the Bloch and WF basis

Technical difficulty - to find a discrete approximation of                          in terms
                                   of



Examples - large vs  small energy window

V-d eg 

V-d t2g

O-p

 V-centered
xy orbital

 SrVO3



Examples - symmetries and tight-binding
representation

How to make use of weakly broken symmetries ?

•  We want to treat symmetry breaking term as perturbation
and need to identify it and quantify

•  TB Hamiltonian has higher symmetry than underlying the
crystal structure

Ising ferromagnet                      anti-ferromagnet

Change meaning of 
up and down on even sites



Examples - symmetries and tight-binding
representation

 LaOFeAs - construction of model with 1 f.u. per u.c

Hoppings have higher translational symmetry
than the crystal structure in proper basis!

Information about the crystal symmetry
 is ‘hidden’ in the shape of WFs



Examples - spin-orbital coupling
 Sr2IrO4 (hypothetical symmetrized structure)
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We want to construct J=1/2-like WFs out of t2g band.



Examples - spin-orbital coupling
 Sr2IrO4 (hypothetical symmetrized structure)

JK et al., Comput. Phys. Commun. 2010



Disentanglement

NWF < Nbands

Projection method:  Maximize overlap with a given subspace
                                 at each k-point

WFs are not unitary images of Bloch waves but an optimized
projections.

MALOC method:  Find the smoothest NWF-dimensional
                               connection in a given Nbands-dimensional
                               subspace



WFs and effective models

Converge LDA, get  ψk and εk 

Compute WFs for chosen Hilbert subspace 

Construct h(k) in WF basis Compute Uαβγδ  in WF basis 

Solve model (compute correlation functions), e.g. with DMFT 

Construct transition amplitudes (matrix elements) in WF basis 

Compute observables 



WFs and effective models

Converge LDA, get  ψk and εk 

Compute WFs for chosen Hilbert subspace 

Construct h(k) in WF basis Compute Uαβγδ  in WF basis 

Solve model (compute correlation functions), e.g. with DMFT 

Construct transition amplitudes (matrix elements) in WF basis 

Compute observables 

By choosing WFs we specify which interactions are treated
explicitly and for which (static) mean-field decoupling is used.



Crystal field parameters:  R in YAlO3

6

4

2

6420

15 crystal field parameters:

Nd, Tb, Er

Experiment: optical transitions between mutliplet states
Theory: exact diagonalization for 4f shell in crystal field (CF)

How to get the CF parameters?



Crystal field parameters:  R in YAlO3

4f weakly coupled to the crystal environment - hybridization treated
perturbatively

Extracting CF parameters

adjustable by orbital dependent shift

old way using WFs
• converge Wien2k with 4f in core
• get band structure with 4f in valence and

shifted Op orbitals
• construct WFs from 4f window
• expand



Crystal field parameters:  R in YAlO3

Theory vs experiment: CF splittings of various multiplets

Nd:YAlO3 Er:YAlO3

experiment: Duan et al., PRB 2007
Donlan&Santiago, J. Chem. Phys. 1972

theory:          Novák et al., PRB 2013
                      Novák et al., arXiv:1306.5948



Summary

•  There is an close relationship between k-smoothness of
Bloch waves and localization of Wannier functions.

•  Existence of exponentially localized WFs is a topological
property of a given (composite) band.

•Larger energy window => more localized WFs.

•  For typical applications in LDA+DMFT (i.e. large energy
windows) the projection and MALOC methods give
similar WFs.



Construction of WFs using w2w and wannier90
1) complete wien2k scf calculation
2) prepare a uniform k-mesh
         prepare case.ksym with 1 sym. operation

x kgen -so    -> case.klist
3) prepare case.w2win and w2w.def

choose bands
choose initial projections
write_w2win case
write_w2wdef case

4) prepare case.win
chose band and orbitals
add the list of k-points
write_win case

5) prepare the list of k-connections case.nnkp
wannier90.x -pp case

6) prepare ψnk on a uniform k-mesh
x lapw1 -> case.vector

7) run w2w w2w.def -> case.mmn, case.amn, case.eig
8) run wannier90.x case -> case.wout, case_band.dat, case_hr.dat

9) wplot case
10) convert_Hamiltonian case

init_w2w



Construction of WFs using w2w and wannier90
case.w2win:
BOTH
  21  23     # min band Nmin, max band Nmax
  3  3       # LJMAX max in exp(ibr) expansion, #Wannier functions
2         #d-xy orbital
 2 2 -2   0.00000000   0.70710677   # index of atom, L, M, coefficient (complex)
 2 2  2   0.00000000  -0.70710677   # index of atom, L, M, coefficient (complex)
2         #d-yz orbital
 2 2 -1   0.00000000   0.70710677   # index of atom, L, M, coefficient (complex)
 2 2  1   0.00000000   0.70710677   # index of atom, L, M, coefficient (complex)
2         #d-xz orbital
 2 2 -1   0.70710677   0.00000000   # index of atom, L, M, coefficient (complex)
 2 2  1  -0.70710677   0.00000000   # index of atom, L, M, coefficient (complex)

Y22-Y2-2

Y21+Y2-1

Y21-Y2-1



Construction of WFs using w2w and wannier90
case.nnkp:
…
begin kpoints
   125
    0.00000000    0.00000000    0.00000000
    0.00000000    0.00000000    0.20000000
    0.00000000    0.00000000    0.40000000

….
end kpoints

begin projections
end projections

begin nnkpts
   6
     1     2      0   0   0
     1     6      0   0   0
     1    26      0   0   0
     1     5      0   0  -1
     1    21      0  -1   0
     1   101     -1   0   0
     2     1      0   0   0
     ….



Construction of WFs using w2w and wannier90
case.win:
 iprint = 3
 num_bands       =   3
 num_wann        =   3
 num_iter        = 1000
 num_print_cycles =100
…

 begin kpoint_path
  R  0.50  0.5   0.5  GAM  0.    0.    0.
 GAM  0.00  0.00  0.00   X  0.50  0.00  0.00
  X  0.50  0.00  0.00   M  0.50  0.50  0.00
  M  0.50  0.50  0.00 GAM  0.00  0.00  0.00
 end kpoint_path
…

 bands_plot = .true.
!restart = plot
 hr_plot = .true.
 …
 mp_grid :            5           5           5
 begin kpoints
  0.000000000  0.000000000  0.000000000
  0.000000000  0.000000000  0.200000003
  …



Disentanglement

3d

3s
 Cu


