Oxide Heterostructures for Solar Cells Elias Assmann

Institute of Solid State Physics, Vienna University of Technology WIEN2013@PSU, Aug 14

- LaVO₃|SrTiO₃ proposed as photovoltaic absorber.
 Phys. Rev. Lett. 110, 078701 (2013)
 - 1 large intrinsic electric field
 - 2 conducting interface(s)
 - 3 direct gap of 1.1 eV
 - 4 flexible multijunction design
- Outlook: dynamical mean-field theory for correlated heterostructures

Oxide Heterostructures for Solar Cells Elias Assmann

Institute of Solid State Physics, Vienna University of Technology WIEN2013@PSU, Aug 14

- LaVO₃|SrTiO₃ proposed as photovoltaic absorber.
 Phys. Rev. Lett. 110, 078701 (2013)
 - 1 large intrinsic electric field
 - 2 conducting interface(s)
 - 3 direct gap of 1.1 eV
 - 4 flexible multijunction design
- Outlook: dynamical mean-field theory for correlated heterostructures

Prototype Heterostructure: LaAlO₃|SrTiO₃

- cubic perovskites [room temp]
- wide-gap band insulators

p-type (AIO₂)⁻|SrO insulating

n-type

- (LaO)⁺|TiO₂
- conducting: insulator + insulator = metal
- interesting features, e.g., two-dimensional electron gas, superconducting

Formal valences:

- ▶ Sr²⁺Ti⁴⁺O₃⁶⁻
 - neutral SrO, TiO₂ layers
- ► La³⁺Al³⁺O₃⁶⁻

- ► alternatingly charged (LaO)⁺, (AlO₂)⁻ layers
- → Plate capacitor model: large internal electric field (~ $\frac{1}{\epsilon}$ 47 V/unit cell), potential gradient
- ⇒ "polarization catastrophe"

Formal valences:

- ▶ Sr²⁺Ti⁴⁺O₃⁶⁻
 - neutral SrO, TiO₂ layers
- ► La³⁺Al³⁺O₃⁶⁻

- alternatingly charged (LaO)⁺, (AlO₂)⁻ layers
- ⇒ "polarization catastrophe"

Formal valences:

- ▶ Sr²⁺Ti⁴⁺O₃⁶⁻
 - neutral SrO, TiO₂ layers
- ► La³⁺Al³⁺O₃⁶⁻

- ► alternatingly charged (LaO)⁺, (AlO₂)⁻ layers
- ⇒ "polarization catastrophe"

Avoiding the polarization catastrophe

- Electronic reconstruction
 - electron doped n-interface, hole doped p-interface
 - experimental support: critical thickness
 - problem: why is the p-interface insulating?
- Oxygen vacancies
 - O²⁻ vacancy contributes 2 holes
- Ionic reconstruction
 - structural relaxation in DFT

Avoiding the polarization catastrophe

- Electronic reconstruction
 - electron doped n-interface, hole doped p-interface
 - experimental support: critical thickness
 - problem: why is the p-interface insulating?
- Oxygen vacancies
 - O²⁻ vacancy contributes 2 holes
- Ionic reconstruction
 - structural relaxation in DFT

Bulk SrTiO₃ and LaVO₃

SrTiO₃

- (almost) cubic Perovskite
- TiO₆ octahedra
- d⁰ band insulator

LaVO₃

- distorted Perovskite (VO₆ octahedra)
- d² Mott insulator
- band gap: 1.1 eV
- AF-C spin, AF-G orbital order

LaVO₃|SrTiO₃

Computational method: GGA + $U_V = 3 \text{ eV}$, $U_{Ti} = 9.8 \text{ eV}$

- spin order: AF-C
- orbital order: AF-G (d_{xz} | d_{yz})
- multi-layer vs. thin-film

- layer-resolved density of states: band shift = potential gradient
- ► ~ 0.3 eV/u.c. = 0.08 eV/Å
- core-level energy E_{1s}(z)

- layer-resolved density of states: band shift = potential gradient
- ~ 0.3 eV/u.c. = 0.08 eV/Å
- core-level energy E_{1s}(z)

&

2: Conducting interface(s)

- layer-resolved density of states: band shift = potential gradient
- ► ~ 0.3 eV/u.c. = 0.08 eV/Å
- core-level energy E_{1s}(z)
- DFT: n- and p-interface conducting
- both interfaces occur by periodic boundary conditions

3: Strong absorption across solar spectrum

band gap 1.1 eV is in the optimal range for efficiency

- Shockley-Queisser limit
- optical absorption of LaVO₃ compares favorably to e.g. GaAs, CdTe

- heterostructures grown by pulsed laser deposition (PLD)
- ⇒ layer-by-layer band gap grading
 - e.g., for a tandem cell, combine LaVO₃ and LaFeO₃ (gap: 2.2 eV)
- gradient, conducting interfaces persist

Summary: Solar Cells

- 1 large intrinsic electric field
- 2 conducting interface(s)
- LaVO₃: direct gap 1.1 eV
- 4 combine oxides for multijunction cell
- experimental realization in progress (R. Claessen & J. Pflaum, Würzburg)
- EA, P. Blaha, R. Laskowski, K. Held, S. Okamoto, and G. Sangiovanni, PRL 110, 078701 (2013)
- synopsis in APS Physics
- popular-level coverage in various media

Dynamical mean field theory (DMFT) in 1 slide

lattice problem

impurity problem

- 1 interacting site in a "bath" of non-interacting electrons
- ▶ non-local correlations neglected: $\Sigma(k, \omega) \mapsto \Sigma_{imp}(\omega)$
- self-consistency: $G_{imp} = G_{loc}$

[Georges et al., RMP (1996); Kotliar & Vollhardt, Phys. Today (2004)]

- N_{neq} nonequivalent correlated atoms
 N_d d-Bands per atom
 N := N_{at} · N_d dimensional space
- Local Green function (big N × N matrix)

$$G(\omega) = \sum_{k} \frac{1}{(\omega + \mu) - H^{\mathsf{DFT}}(k) - \Sigma(\omega)}$$

• Weiss field (small $N_d \times N_d$ -matrix for each atom *i*)

$$\mathcal{G}_{i}^{-1}(\omega) = \left[\left. G(\omega) \right|_{\text{loc}}^{\text{atom } i} \right]^{-1} + \Sigma_{i}(\omega)$$

impurity solver: self-energy matrix with N_{neq} independent entries

CT-QMC code w2dynamics, Parragh et al. PRB (2012)

- N_{neq} nonequivalent correlated atoms
 N_d d-Bands per atom
 N := N_{at} · N_d dimensional space
- Local Green function (big N × N matrix)

$$G(\omega) = \sum_{k} \frac{1}{(\omega + \mu) - H^{\mathsf{DFT}}(k) - \Sigma(\omega)}$$

• Weiss field (small $N_d \times N_d$ -matrix for each atom *i*)

$$\mathcal{G}_{i}^{-1}(\omega) = \left[G(\omega) \Big|_{\text{loc}}^{\text{atom } i} \right]^{-1} + \Sigma_{i}(\omega)$$

impurity solver: self-energy matrix with N_{neq} independent entries

CT-QMC code w2dynamics, Parragh et al. PRB (2012)

- N_{neq} nonequivalent correlated atoms
 N_d d-Bands per atom
 N := N_{at} · N_d dimensional space
- Local Green function (big N × N matrix)

$$G(\omega) = \sum_{k} \frac{1}{(\omega + \mu) - H^{\mathsf{DFT}}(k) - \Sigma(\omega)}$$

• Weiss field (small $N_d \times N_d$ -matrix for each atom *i*)

$$\mathcal{G}_{i}^{-1}(\omega) = \left[G(\omega) \Big|_{\text{loc}}^{\text{atom } i} \right]^{-1} + \Sigma_{i}(\omega)$$

impurity solver: self-energy matrix with N_{neg} independent entries

CT-QMC code w2dynamics, Parragh et al. PRB (2012)

Low-Energy Model for LDA+DMFT

Maximally-Localized Wannier Functions

$$w_{mR} = \frac{V}{(2\pi)^3} \int_{BZ} dk e^{-ik \cdot R} \sum_{n} U_{nm}(k) \psi_{nk}$$

unitary U(k) minimize spread $\langle \Delta r^2 \rangle$.

wannier90: Mostofi et al., CPC (2008)
Wien2Wannier: Kuneš et al., CPC (2010)
woptic: Wissgott et al., PRB (2012)

- DMFT for inequivalent atoms
 - independent $\Sigma_i(\omega)$ coupled in $G(\omega)$
- ---- paramagnetic insulator
 - construct minimal model (MLWF)
 - Wien2Wannier, wannier90
 - optical properties (d-d transitions dominate!)

► woptic

- structural optimization with DMFT
 - charge self consistency

Big Thanks to ...

Peter Blaha TU Vienna

Karsten Held TU Vienna

Robert Laskowski TU Vienna

Satoshi Okamoto Oak Ridge National Lab

Giorgio Sangiovanni Uni Würzburg Experiment (Würzburg):

- Ralph Claessen
- Jens Pflaum

Big Thanks to ...

Peter Blaha TU Vienna

Karsten Held TU Vienna

Robert Laskowski TU Vienna

Satoshi Okamoto Oak Ridge National Lab

Giorgio Sangiovanni Uni Würzburg Experiment (Würzburg):

- Ralph Claessen
- Jens Pflaum

Thank you for listening

Elias Assmann (TU Vienna)

M-O-*M* bond angle (M = V, Ti)

Lattice distortion in the heterostructure:

LaVO₃ absorption: Details

Heterostructure DOS for different sizes

Critical thickness: 4 layers LaVO₃