woptic: Transport Properties with Wannier Functions and Adaptive k-Integration

Elias Assmann

Institute of Solid State Physics, Vienna University of Technology

Split, 2013-09-29

About this presentation

- On the menu:
 - band-structure calculation with WIEN2k (briefly)
 - maximally localized Wannier functions with wien2wannier and Wannier90
 - conductivity, thermopower with woptic
- explanations alternating with sample calculation
- ask questions It is better to uncover a little than to cover a lot
- if you want to try your own hand, come to me

S(T)&σ(ω)

Adaptive k-integratic

Practicalities

Anatomy of a calculation

Where to learn WIEN2k

PENNSTATE

WIEN2013: HANDS ON WORKSHOP ON THE WIEN2K PACKAGE Materials Simulation Center

University Park, PA August 12-16, 2013

 $S(T)\&\sigma(\omega)$

Adaptive k-integratic

Practicalities

Where to learn WIEN2k

S(T)&σ(ω)

Adaptive k-integratio

Practicalities

Anatomy of a calculation

Bloch waves

Bloch's theorem
$$\begin{split} \widehat{H} &= -\nabla^2 + V(\mathbf{r}) \quad \text{with} \quad V(\mathbf{r} + \mathbf{R}) \equiv V(\mathbf{r}) \\ \text{has solutions} \qquad \widehat{H} |\psi \, n\mathbf{k}\rangle &= \varepsilon_n(\mathbf{k}) \ |\psi \, n\mathbf{k}\rangle \\ \text{with} \quad \psi_{n\mathbf{k}}(\mathbf{r}) &= \mathbf{e}^{i\mathbf{k}\mathbf{r}} \ u_{n\mathbf{k}}(\mathbf{r}); \\ u_{n,\mathbf{k}}(\mathbf{r} + \mathbf{R}) \equiv u_{n,\mathbf{k}}(\mathbf{r}) \quad \text{and} \quad \varepsilon_n(\mathbf{k} + \mathbf{K}) \equiv \varepsilon_n(\mathbf{k}) \\ \end{split}$$
(Simultaneous eigenbasis of \widehat{H} and translation operators $\widehat{T}_{\mathbf{R}}$)

"Usual" basis for solid-state calculations

But for many applications, a localized basis is preferable

 $S(T)\&\sigma(\omega)$

Adaptive k-integration

Practicalities

Fourier transforms of the Bloch waves

from Marzari et al.

$$|w \mathbf{R} \rangle = rac{V}{(2\pi)^3} \int_{\mathbf{BZ}} \mathbf{dk} \, \mathbf{e}^{-i\mathbf{k}\mathbf{R}} \, |\psi \, \mathbf{k}
angle$$

Transform $k \leftrightarrow \mathbf{R}$; r is spectator

Properties:

"periodicity" $w_{\mathbf{R}}(\mathbf{r}) \equiv w_{\mathbf{0}}(\mathbf{r} - \mathbf{R})$

orthonormality $\langle w\,nR|\,w\,mR'\rangle=\delta_{n\,m}\delta_{RR'}$

S(T)&σ(ω)

Adaptive k-integratic

"Gauge" freedom

 $|\psi\,n\mathbf{k}\rangle$ carries arbitrary phase $\phi(\mathbf{k})$

$$\Rightarrow |w \mathbf{R}\rangle = \frac{V}{(2\pi)^3} \int_{\mathbf{BZ}} d\mathbf{k} \, \mathbf{e}^{\mathbf{i}(\mathbf{\phi}(\mathbf{k}) - \mathbf{k}\mathbf{R})} |\psi \mathbf{k}\rangle$$

stronly non-unique (shape, spread)

Idea: choose $|w k\rangle \coloneqq e^{i \varphi(k)} |\psi k\rangle$ for maximum localization of $|w R\rangle$

from Marzari et al.

S(T)&σ(ω)

Adaptive k-integrati

"Gauge" freedom

$$\sin x + \frac{1}{3}\sin 3x + \dots + \frac{1}{9}\sin 9x$$

$$\sin x + \frac{1}{3} \sin 3x + \dots + \frac{1}{249} \sin 249x$$

 $|\psi\,n\mathbf{k}\rangle$ carries arbitrary phase $\varphi(\mathbf{k})$

$$\Rightarrow |w \mathbf{R}\rangle = \frac{V}{(2\pi)^3} \int_{\mathbf{BZ}} d\mathbf{k} \, \mathbf{e}^{\mathbf{i}(\mathbf{\phi}(\mathbf{k}) - \mathbf{k}\mathbf{R})} |\psi \mathbf{k}\rangle$$

stronly non-unique (shape, spread)

Idea: choose $|w k\rangle \coloneqq e^{i \varphi(k)} |\psi k\rangle$ for maximum localization of $|w R\rangle$

Fourier series converges faster for smoother functions:

$$f\in C^p\Rightarrow |\widetilde{f}_n|\leqslant \frac{\text{const}}{|n|^p}$$

S(T)&σ(ω)

Adaptive k-integrati

Practicalities

From bands to WF

 $|w\,k
angle={
m e}^{{
m i}\varphi({
m k})}|\psi\,k
angle$

[pictures by J. Kuneš]

Bloch and Wannier

MLWF

S(T)&σ(ω)

Adaptive k-integrati

Practicalities

Maximally localized WF

[Marzari et al., RMP (2012)]

In the multiband case, $e^{i\phi(\mathbf{k})} \rightarrow unitary matrix [U^+U = 1]$,

$$\langle w \, \mathbf{n} \mathbf{R} \rangle = \int_{BZ} d\mathbf{k} \, \mathbf{e}^{-i\mathbf{k} \mathbf{R}} \sum_{m} \mathbf{U}_{mn}^{(\mathbf{k})} |\psi \, m\mathbf{k} \rangle$$

 Bloch and Wannier
 MLWF
 S(T) & σ(ω)
 Adaptive k-integration
 Practicalities

 Maximally localized WF
 [Marzari et al., RMP (2012)]

In the multiband case, $e^{i\phi(k)} \rightarrow unitary matrix [U^+U = 1]$,

$$|w \, n R\rangle = \int_{BZ} dk \, e^{-ikR} \sum_{m} U_{mn}^{(k)} |\psi \, m k\rangle$$

Total spread $\Omega \coloneqq \sum_{n} \left(\langle r^2 \rangle_n - \langle r \rangle_n^2 \right) = \widetilde{\Omega}[U] + \Omega_I$
gauge independent
gauge independent

 Bloch and Wannier
 MLWF
 S(T) & o (w)
 Adaptive k-integration
 Practicalities

 Maximally localized WF
 [Marzari et al., RMP (2012)]

In the multiband case, $e^{i\varphi(\mathbf{k})} \longrightarrow$ unitary matrix $[U^+U = 1]$,

$$w \mathbf{n} \mathbf{R} \rangle = \int_{BZ} d\mathbf{k} \, \mathbf{e}^{-i\mathbf{k}\mathbf{R}} \sum_{m} \mathbf{U}_{mn}^{(\mathbf{k})} |\psi \, m\mathbf{k} \rangle$$

Total spread
$$\Omega \coloneqq \sum_{n} \left(\langle \mathbf{r}^2 \rangle_n - \langle \mathbf{r} \rangle_n^2 \right) = \widetilde{\Omega}[\mathbf{U}] + \Omega_{\mathrm{I}}$$
 gauge independent gauge independent

 \rightarrow MLWF procedure: minimize $\widetilde{\Omega}[U]$ (Wannier90)

- input: $M_{mn}^{(k,b)} = \langle \psi \, mk | e^{-ib(k+b)} | \, \psi \, nk \rangle$ wien2wannier
- optional input: $A_{\mathfrak{m}\mathfrak{n}}^{(\mathbf{k})} = \langle \psi \, \mathfrak{m} \mathbf{k} | \, \mathfrak{g} \, \mathfrak{n} \mathbf{k} \rangle$ \leftarrow
- output: $U_{nm}^{(k)}$, $(H_{nm}^{(R)})$

S(T)&σ(ω)

Anatomy of a calculation

S(T)&σ(ω)

Adaptive k-integration

Practicalities

From bands to WF

[pictures by J. Kuneš]

S(T)&σ(ω)

Disentanglement

from Marzari et al.

5 d-like WF, 2 interstitial s-like WF

- What to do when #bands > #WF?
- Ansatz: Select "optimally smooth" subspace
 - $\rightsquigarrow~$ rectangular matrix $V_k~(\text{\#bands}(k) \times \text{\#wF})$

$$! \ \Omega_{\rm I} = \Omega_{\rm I}[V]$$

• minimize $\Omega_{I}[V]$

 $\boldsymbol{\Omega} = \widetilde{\boldsymbol{\Omega}}[\boldsymbol{U}] + \boldsymbol{\Omega}_{\mathrm{I}}[\boldsymbol{V}]$

S(T)&σ(ω)

Adaptive k-integration

Practicalities

From bands to WF

[pictures by J. Kuneš]

S(T)&σ(ω)

Anatomy of a calculation

 $S(T)\&\sigma(\omega)$

Adaptive k-integratio

Practicalities

Choice of Wannier subspace

0-р

V-centered xy orbital

	n n n n		
1.111.11.		ומעע	

S(T)&σ(ω)

Applications of MLWF

- analysis of chemical bonding
- electric polarization and orbital magnetization
 BerryPI
- Wannier interpolation $\mathcal{K} \to \mathcal{G}$

$$\mathsf{H}(\mathbf{k})|_{\mathfrak{K}} \xrightarrow{\mathcal{F}} \mathsf{H}(\mathbf{R})|_{\mathcal{K}^{-1}} \xrightarrow{\mathcal{F}^{-1}} \mathsf{H}(\mathbf{k})|_{\mathsf{g}}$$

- Wannier functions as basis functions
 - tight-binding model $H(\mathbf{k}) = U^+(\mathbf{k}) \varepsilon(\mathbf{k}) U(\mathbf{k})$
 - → realistic dynamical mean-field theory (DMFT)

- BoltzTrap
 - semi-classical (Boltzmann)
 - band velocities $\partial \epsilon(k) / \partial k$ instead of momentum matrix elements $\langle \psi | \nabla | \psi \rangle$
- BoltzWann
 - similar, with Wannier functions
- woptic
 - quantum-mechanical linear response (Kubo)
 - adaptive BZ integration
 - inclusion of local self-energy $\Sigma(\omega)$
 - more information:
 - ▶ WIEN2k.at \rightarrow reg. users \rightarrow unsupported \rightarrow wien2wannier
 - woptic preprint
 - Wissgott et al., PRB (2012)

Calculating optical conductivity and thermopower

Very schematically:

- linear response (Kubo formula): $\widehat{H} = \widehat{H}_0 + \lambda(t)\widehat{B}$

$$\rightsquigarrow \langle \widehat{A} \rangle (t) = \langle \widehat{A} \rangle_{0} - \frac{i}{\hbar} \int_{-\infty}^{t} dt' \lambda(t') \left\langle \left[A(t), B(t') \right] \right\rangle_{0} + \cdots$$

• σ , S: current operators ~ $\widehat{\Psi}^+ \nabla \widehat{\Psi} - (\nabla \widehat{\Psi}^+) \widehat{\Psi}$

 $\rightsquigarrow~$ momentum matrix elements $\left<\psi\left|\nabla\right|\psi\right>$

Calculating optical conductivity and thermopower

Very schematically:

- linear response (Kubo formula): $\widehat{H} = \widehat{H}_0 + \lambda(t)\widehat{B}$

$$\rightsquigarrow \langle \widehat{A} \rangle(t) = \langle \widehat{A} \rangle_{0} - \frac{i}{\hbar} \int_{-\infty}^{t} dt' \lambda(t') \langle [A(t), B(t')] \rangle_{0} + \cdots$$

- σ , S: current operators ~ $\widehat{\Psi}^+ \nabla \widehat{\Psi} (\nabla \widehat{\Psi}^+) \widehat{\Psi}$
- $\rightsquigarrow~$ momentum matrix elements $\left<\psi\left|\nabla\right|\psi\right>$

Calculating optical conductivity and thermopower

Very schematically:

- linear response (Kubo formula): $\widehat{H} = \widehat{H}_0 + \lambda(t)\widehat{B}$

$$\rightsquigarrow \langle \widehat{A} \rangle(t) = \langle \widehat{A} \rangle_{0} - \frac{i}{\hbar} \int_{-\infty}^{t} dt' \lambda(t') \langle [A(t), B(t')] \rangle_{0} + \cdots$$

- σ , S: current operators ~ $\widehat{\Psi}^+ \nabla \widehat{\Psi} (\nabla \widehat{\Psi}^+) \widehat{\Psi}$
- \rightsquigarrow momentum matrix elements $\left< \psi \left|
 abla \right| \psi \right>$

Bloch and Wannier		Adaptive k-integration	

Adaptive k-integration

Al optical conductivity $\sigma({\bf k},\omega)$

Al optical conductivity $\sigma(\mathbf{k}, \omega)$

S(T)&σ(ω

Adaptive k-integration

Tetrahedral mesh management

- tetrahedron T has integration error estimate ε_{T}
- refine T if $\epsilon_T \ge \Theta \max_{T'} \epsilon_{T'}$
 - "harshness" $\Theta \in [0, 1]$
- enforce "regularity"
 - at most one "hanging node"
 - for stable convergence
- enforce "shape stability"
 - no heavily-distorted octahedra
 - avoid large integration errors

Tetrahedral mesh management

- tetrahedron T has integration error estimate ε_{T}
- refine T if $\varepsilon_T \ge \Theta \max_{T'} \varepsilon_{T'}$
 - "harshness" $\Theta \in [0, 1]$
- enforce "regularity"
 - at most one "hanging node"
 - for stable convergence
- enforce "shape stability"
 - no heavily-distorted octahedra
 - avoid large integration errors

S(T)&σ(ω)

Adaptive k-integration

Tetrahedral mesh management

- tetrahedron T has integration error estimate ε_{T}
- refine T if $\varepsilon_T \ge \Theta \max_{T'} \varepsilon_{T'}$
 - "harshness" $\Theta \in [0, 1]$
- enforce "regularity"
 - at most one "hanging node"
 - for stable convergence
- enforce "shape stability"
 - no heavily-distorted octahedra
 - avoid large integration errors

"Kuhn triangulation"

• in evaluation of χ s:

 \rightsquigarrow tr $\left\{ v(k) | A(k) | v(k) | A(k) \right\}$

- problem with $w-w (v_{wx}A_{xy}v_{yz}A_{zw})$ and $w-\psi (v_{wi}A_{ii}v_{ix}A_{xw})$ terms
- (planned) solution: interpolate $v(\mathbf{k})$

S(T)&σ(ω)

Adaptive k-integratio

Practicalities

Anatomy of a calculation

		Adaptive k-integration	Practicalities
Limitations			

- Kohn-Sham eigenstates interpreted as excited states \rightsquigarrow "scissors" operator: $\varepsilon_{cond}(\mathbf{k}) \leftarrow \varepsilon_{cond}^{LDA}(\mathbf{k}) + \Delta$
- careful with doping
 - rigid-band treatment
- disentanglement not implemented
- random-phase problem
 - for optical conductivity
 - when using self-energy
- not-so-mature code

 $S(T)\&\sigma(\omega)$

Some results for Na_xCoO_2

S(T)&σ(ω)

Adaptive k-integratio

Practicalities

Big Thanks to ...

The code authors

Philipp Wissgott TU Vienna

Jan Kuneš Institute of Physics, Prague

As well as

Karsten Held

Peter Blaha

Alessandro Toschi

S(T)&σ(ω)

Adaptive k-integratio

Practicalities

Big Thanks to ...

The code authors

Philipp Wissgott TU Vienna

Jan Kuneš Institute of Physics, Prague

As well as

Karsten Held

Peter Blaha

Alessandro Toschi

And to my audience for your patience!