Theory of Spin-Orbit Coupling (SOC) at LaAlO₃/SrTiO₃ interfaces and SrTiO₃ surfaces

Zhicheng Zhong Vienna University of Technology, Austria

Two dimensional electron gas (2DEG) at LaAIO₃/SrTiO₃

Bulk SrTiO₃(STO) ; LaAlO₃(LAO)

Perovskite structure, no magnetic, band insulator

LAO/STO interface

Conducting, magnetic, superconducting, correlated, <u>spin-orbit coupling</u>....

A. Ohtomo and H. Y. Hwang Nature(2004)

Properties of 2DEG: Rashba spin splitting

(i)Space inversion symmetry $\varepsilon(\vec{k},\uparrow) = \varepsilon(-\vec{k},\uparrow)$ Time inversion symmetry $\varepsilon(\vec{k},\uparrow) = \varepsilon(-\vec{k},\downarrow)$ (ii)Spin orbit coupling $(\hbar/2m_e^2c^2)(\nabla V \times \vec{p}) \cdot \vec{s}$

2D electron gas

free 2DEG: $\Delta_R = 2\alpha_R k$ $\alpha_R = (\hbar/4m^2c^2) dV(z)/dz$ $E \sim 100 \text{ Volt/mm}$ $\Delta_R \sim 10^{-8} \text{ meV}$ $\Delta_R \sim \text{meV}$ $2\alpha k$ at LaAlO₃/SrTiO₃ interface (*Caviglia et.al.; Ben Shalom et.al.*) $2\alpha k^3$ at SrTiO₃ surface (*Nakamura et.al.*)

Band structure of bulk SrTiO₃

 TiO_6 crystal field splits Ti d orbitals

Bulk STO

three degenerate t_{2g} orbitals
 heavy carrier yz (6.8m_e), two light carriers xy and xz (0.41m_e)

Spin-orbit coupling (SOC) effects on bulk STO

Wien2k -->Wien2Wannier -->Wannier90

Orbital splitting at LAO/STO interfaces and STO surfaces

Model for Rashba spin splitting

$$H_{0}^{i} + H_{\xi} + H_{\gamma}$$
Free: $-2t_{1}cosk_{x} - 2t_{1}cosk_{y} - t_{2} - 4t_{3}cosk_{x}cosk_{y}$
atomic SOC:
$$\begin{cases} \xi \\ 2 \\ \begin{pmatrix} 0 & 0 & i & 0 & 0 & -1 \\ 0 & 0 & 0 & -i & 1 & 0 \\ -i & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -i & 0 & 0 \\ -1 & 0 & -i & 0 & 0 & 0 \\ \end{pmatrix}$$
interface asymmetry: $\gamma \begin{pmatrix} 0 & 0 & 2i \sin k_{x} \\ 0 & 0 & 2i \sin k_{y} \\ -2i \sin k_{x} & -2i \sin k_{y} & 0 \end{pmatrix}$

$$\gamma = \langle xy|H|yz(R)\rangle$$
0.02eV, interface layer
$$yz - \gamma xy - \gamma yz$$

s-p electrons of Au surfaces Lashell et al.(1996); Peterson et al.(2000)

Spin splitting

▶ Γ, xy orbital: Δ_R=2α_Rk α_R = 2aξγ/Δ_I
▶ Γ, yz/xz mixed orbitals: 2α₃k³
▶ xy-yz crossing point

spin splitting

 Δ

$$a_{R} = 2\alpha_{R}k$$

$$\alpha_{R} = 0.76 \times 10^{-2} \text{eV} \text{\AA} \quad \Delta_{I} = 0.4 \text{eV}$$

$$6.0 \times 10^{-2} \text{eV} \text{\AA} \quad \Delta_{I} = 0.0 \text{eV}$$

$$1-5 \times 10^{-2} \text{eV} \text{\AA} \text{ (exp)}$$

$$\Delta_{R} = 2\alpha_{3}k^{3}$$

$$\alpha_{3} = 4eVÅ^{3}$$

1-2eVÅ^{3} (exp)

Anisotropic spin splitting->AMR (exp)?

Comparison: semiconductor and oxide heterostructures

single orbital Rashba nearly free electron multi-orbital magnetic, superconducting, correlated, and spin-orbit coupling first principle tight-binding

fitting parameter or kp method

Book "Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems" by Winkler (2003) J. Mannhart and D. G. Schlom, Science (2010).

Conclusion: orbital and spin splittings

Zhicheng Zhong, Anna Toth, and Karsten Held PRB 87 161102(R) (2013)

Spin splitting at LAO/STO interfaces and STO surfaces

Asymmetric structure

----- without SOC

—— spin up
—— spin down

Spin splitting ~10meV at *xy-yz* crossing region?

Oxide Interfaces—An Opportunity for Electronics

J. Mannhart* and D. G. Schlom*

	GaAs - Al _x Ga _{1-x} As	LaAlO3 - SrTiO3
Carrier density <i>n</i> (without gate field)	several 1010 - several 1011/cm2	several 1013 /cm2
Sheet resistance ρ (<i>H</i> =0)	order of 10-100 Ω/\Box (low <i>T</i> , samples with high- μ)	~ 200 Ω/□ (4.2 K) ~ 20 kΩ/□ (300 K)
Thickness d	order of 10 nm	~ 10 nm (4.2 K) ≲ 4 nm, possibly 0.4 nm (300 K)
Equivalent volume carrier concentration	order of 10 ¹⁷ /cm ³	order of 10 ²⁰ /cm ³
Typical thicknesses of the host layers in heterojunctions (<i>e.g.</i> , cap layers)	tens of nanometer	≥ 1.6 nm LaAlO ₃ (4 unit cells)
Hall mobility μ	≥ 10 ⁷ cm ² /Vs (4.2 K)	≤ 1000 cm²/Vs (4.2 K) ≤ 10 cm²/Vs (300 K)
Effective mass m of carriers at interface	m _e ~ 0.07 m _o	m _e ~ 3 m _o
Mean scattering time $ au$, mean free path	100 psec, order of 100 μm	psec, tens of nm (4.2 K)
VF	~ 3×10 ⁷ cm/s	several 10 ⁶ cm/s
Magnetic flux density inducing quantum Hall filling factor $v = 1$	order of 10 T	order of 1000 T
Energy dependence of density of states N(E)	step function of 2-DEG (ideal case)	complex function reflecting the <i>N</i> (<i>E</i>)-dependence of the Ti-, La-, and O-ions

GaAs - Al _x Ga _{1-x} As	LaAlO₃ - SrTiO₃
 two-dimensional electron gas (2-DEG); quantum well induced by band bending; 2D-subbands of nominally free electrons 	 two-dimensional electronic liquid (2-DEL); metal-insulator transition at a few 10¹² /cm²; quantum well structure as shown in Fig. 4; 2D-subbands composed of ionic orbital states with local character (<i>e.g.</i>, Ti 3<i>d</i>, La 5<i>d</i>, O 2<i>p</i>); 2D-superconducting ground state; strong spin-orbit coupling.