Theoretical studies of oxide heterostructures

Zhicheng Zhong
Vienna University of Technology, Austria

Acknowledgements:
Prof. Paul J. Kelly;
Prof. Karsten Held
Bulk LaAlO_3 (LAO) and SrTiO_3 (STO)

- **Perovskite structure**
 - SrTiO_3 3.905Å;
 - LaAlO_3 3.789Å

- **Band insulator**
 - Sr^{2+}, Ti^{4+}, $(\text{O}^{2-})_3$ Gap: 3.2eV
 - La^{3+}, Al^{3+}, $(\text{O}^{2-})_3$ 5.6eV

- **No-magnetic**

SrTiO_3 : non-polar SrO^0, TiO_2^0 (charge neutral)
LaAlO_3: polar LaO^+, AlO_2^-
Two dimensional electron gas (2DEG) at LAO/STO

LaO\(^+\)/TiO\(_2\)\(^0\) interface:
critical thickness (\(N_{\text{LAO}} > 3\), conducting)
magnetic, superconducting, correlated,
spin-orbit coupling....

Semiconductor heterostructures
(GaAs/Al\(_x\)Ga\(_{1-x}\)As)

- Origins of the 2DEG?
 (i) polar catastrophe
 (ii) polarity induced oxygen vacancies

- Properties of the 2DEG?

Origins of 2DEG: (i) polar catastrophe

Charge transfer from surface AlO_2^- to interface TiO_2
DFT calculation of bulk LAO and STO

<table>
<thead>
<tr>
<th></th>
<th>σ (LDA)</th>
<th>σ (exp)</th>
<th>Gap (LDA)</th>
<th>Gap (exp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrTiO$_3$</td>
<td>3.866 Å</td>
<td>3.905 Å</td>
<td>1.88 eV</td>
<td>3.2 eV</td>
</tr>
<tr>
<td>LaAlO$_3$</td>
<td>3.754 Å</td>
<td>3.789 Å</td>
<td>3.62 eV</td>
<td>5.6 eV</td>
</tr>
</tbody>
</table>

Density of States of STO

DFT calculation of bulk LAO and STO

<table>
<thead>
<tr>
<th></th>
<th>σ (LDA)</th>
<th>σ (exp)</th>
<th>Gap (LDA)</th>
<th>Gap (exp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrTiO$_3$</td>
<td>3.866 Å</td>
<td>3.905 Å</td>
<td>1.88 eV</td>
<td>3.2 eV</td>
</tr>
<tr>
<td>LaAlO$_3$</td>
<td>3.754 Å</td>
<td>3.789 Å</td>
<td>3.62 eV</td>
<td>5.6 eV</td>
</tr>
</tbody>
</table>
Superlattice LAO/STO (4/4): unrelaxed

- A large internal electric field
Atomic relaxation will suppress the internal electric field
Assume:
Clean and abrupt interface
No oxygen vacancy
No surface reconstruction

Thickness dependent insulator-metal transition
Polar catastrophe seems to be reasonable
However, key evidence is missing......

The internal electric field is much smaller
DFT+ model demonstrate the internal electric field. But it is not observed in experiments.

- polar catastrophe (charge transfer)
- atomic relaxation (Ti-O buckling)
- atomic reconstruction (defects, oxygen vacancies)
Formation energy of oxygen vacancies in LAO/STO

\[\Omega^{\text{Vac}} = E^{\text{Vac}}_{\text{SC}} - E_{\text{SC}} + \mu_O(T, p_{O_2}) \]

Asymmetric behavior of \(n \)- and \(p \)-type interfaces
Formation energy of oxygen vacancies

$E_{\text{LAO}} / \text{STO} < E_{\text{STO}}, E_{\text{LAO}}$

Thickness dependent formation energies

Oxygen vacancies are spontaneously created by polarity.
Origins of the 2DEG

- Polar catastrophe

- Polarity induced oxygen vacancies

Internal electric field
How to confirm?

\[\Omega^\text{Vac} = E^\text{Vac}_{SC} - E_{SC} + \mu_O(T, p_{O_2}) \]

SrCuO\(_2\) infinite layer structure
Parent compound of cuprate high-temperature superconductors
Stoichiometric SrCuO$_2$ thin films

Planar

Chain

SrO0
TiO$_2^0$
SrO0

CuO$_2^{2-}$/CuO0

Sr$^{2+}$/SrO0

TiO$_2^0$
SrO0

SrO0

Moving electrons or Oxygen ions?
Thickness dependence of structural transition

\[\Delta E = -E_{\text{Planar}} + E_{\text{Chain}} \]
How to prove it?

- Enlarged lattice constant along $c \sim 0.5\text{Å}$
- Out of plane orbital character, z^2

Thickness dependent

Two experimental groups (Netherlands and Italy) find it
Cuprates heterostructures should be revisited

Orbital reconstruction at LCMO/YBCO
Properties of 2DEG: Rashba spin splitting

2D electron gas

\[\varepsilon(k, \uparrow) = \varepsilon(-k, \uparrow) \quad \times \]

Time inversion symmetry \[\varepsilon(k, \uparrow) = \varepsilon(-k, \downarrow) \]

(ii) Spin orbit coupling

\[(\hbar/2m_e^2c^2)(\nabla V \times \vec{p}) \cdot \vec{s} \]

Free 2DEG:

\[\Delta_R = 2\alpha_R k \quad \alpha_R = (\hbar/4m^2c^2)dV(z)/dz \]

\[E \sim 100 \text{ Volt/mm} \quad \Delta_R \sim 10^{-8} \text{ meV} \]

\[\Delta_R \sim \text{meV} \]

\[2\alpha k \text{ at LaAlO}_3/\text{SrTiO}_3 \text{ interface} \quad (\text{Caviglia et.al.; Ben Shalom et.al.}) \]

\[2\alpha k^3 \text{ at SrTiO}_3 \text{ surface} \quad (\text{Nakamura et.al.}) \]
Band structure of bulk SrTiO$_3$

- Three degenerate t_{2g} orbitals
- Heavy carrier yz (6.8m_e), two light carriers xy and xz (0.41m_e)
Spin-orbit coupling (SOC) effects on bulk STO

Γ₈⁺

Δ₀ = 29 meV

$\Gamma_7 \rightarrow \Gamma_8$

$\frac{1}{\sqrt{6}} (\pm i \ yz \ | \uparrow, \downarrow \rangle + zx \ | \uparrow, \downarrow \rangle + 2i \ xy \ | \downarrow, \uparrow \rangle)$

Hopping $t +$ atomic SOC $\xi \vec{l} \cdot \vec{s}$
Orbital splitting at LAO/STO interfaces and STO surfaces

Energy (eV)

LAO/STO (nn) STO surface (SrO) Model

\[E \]

\[\Delta_I \sim 300 \text{ meV} \]

\[\Delta_O \sim 20 \text{ meV} \]

\[t_{2g} \]

\[\Delta_I \]

interface atomic SOC

\[yz, xz \]

\[0.72m_e \]

\[1.14m_e \]

\[0.48m_e \]
Model for Rashba spin splitting

\[H_0^i + H_\xi + H_\gamma \]

Free: \(-2t_1 \cos k_x - 2t_1 \cos k_y - t_2 - 4t_3 \cos k_x \cos k_y\)

atomic SOC:

\[\frac{\xi}{2} \begin{pmatrix}
0 & 0 & i & 0 & 0 & -1 \\
0 & 0 & 0 & -i & 1 & 0 \\
-i & 0 & 0 & 0 & 0 & i \\
0 & i & 0 & 0 & i & 0 \\
0 & 1 & 0 & -i & 0 & 0 \\
-1 & 0 & -i & 0 & 0 & 0
\end{pmatrix} \]

interface asymmetry: \(\gamma \begin{pmatrix}
0 & 0 & 2i \sin k_x \\
0 & 0 & 2i \sin k_y \\
-2i \sin k_x & -2i \sin k_y & 0
\end{pmatrix} \)

\[\gamma = \langle xy | H | yz(R) \rangle \]

0.02eV, interface layer

\(s-p\) electrons of Au surfaces \(Lashell\ et\ al.(1996);\ Peterson\ et\ al.(2000)\)
Spin splitting

\[
\Delta R = 2\alpha_R k \\
\alpha_R = 2a\xi\gamma/\Delta_I \\
\Gamma, xy \text{ orbital: } 2\alpha_3 k^3 \\
\Gamma, yz/xz \text{ mixed orbitals: } 2\alpha_3 k^3 \\
xy-yz \text{ crossing point}
\]
Properties of 2DEG: Quantum Well states

SrTiO$_3$ surfaces

SrVO$_3$ ultrathin films

Diagram showing the energy levels and binding energy for different quantum well states as a function of the quantum number N. The states are labeled with $E_1(d_{xz/yz})$, $E_2(d_{xz/yz})$, and $E_1(d_{xy})$.
Properties of 2DEG: Quantum Well states along (110) is different

- Nearest neighbor hopping
 - $t_1 = -0.455 \text{eV}$
 - $t_2 = -0.040 \text{eV}$
Quantum Well states along (001)

- Orbital-selective quantum well states, with constant effective mass
- two light bands $xy, zx, \quad t_1$
- one heavy bands $yz, \quad t_2$

$\Gamma (0,0,0)$

$X (\pi/a,0,0)$

$M (\pi/a,\pi/a,0)$

xy, zx and yz bands are indicated in the diagrams.
Quantum Well states along (110) are different

- Effective mass: \[\frac{2t_1 t_2}{(t_1 + t_2)} \cos \left(\frac{\pi n}{N + 1} \right) \]
- Anisotropic hopping
- Quantization
- Semi-heavy band, \(2t_2 \), when \(N \gg n \)
SrTiO$_3$ (110) surface

(a) Side view of SrTiO$_3$ (110) surface with Ti, O, and Sr atoms. V$_0$ denotes a vacancy.

(b) Charge (e/Ti atom) vs. Layer index graph.

(c) Intensity (arb. units) vs. $E-E_F$ (eV) for clean and irradiated samples. $h\nu = 65$ eV, $T = 38K$.

(d) Energy level diagram showing the bandgap and states for SrTiO$_3$ and Titania.
“Semi-heavy” band is observed

\[m_{xy} = 8.25 \]
\[m_{yz} = 0.60 \]
\[m_{yz} = 4.69 \]
\[m_{xy} = 0.60 \]
Conclusion: origins and properties of the 2DEG at LaAlO$_3$/SrTiO$_3$

Origin: Polarity-induced oxygen vacancies

Properties:

- Spin-orbit coupling
- (110) is different
- Orbital polarized Mott insulator
Quantum well states in SVO thin film: Nearly Free Electron picture

$L = Na$

(N thickness of SVO; a lattice constant)

$\psi(0) = \psi(L) = 0$

$$\frac{\hbar^2 k^2}{2m^*}$$

$$\frac{\hbar^2 \pi^2 n^2}{2m^* N^2 a^2}$$
Why not NFE?

\[H_{\alpha\beta}(\vec{k}) = \sum_{\vec{R}} t_{\alpha\beta}(\vec{R}) e^{i\vec{k}\cdot\vec{R}} \]
Tight binding description of Geometric confinement

\[
\begin{pmatrix}
\varepsilon & t & 0 & 0 & 0 & 0 \\
 t & \varepsilon & t & 0 & 0 & 0 \\
 0 & t & \varepsilon & t & 0 & 0 \\
 0 & 0 & \ldots & \ldots & t & 0 \\
 0 & 0 & 0 & 0 & t & \varepsilon \\
 0 & 0 & 0 & 0 & 0 & t & \varepsilon
\end{pmatrix}
\]

\[
\frac{\hbar^2 \pi^2 n^2}{2m^* N^2 a^2} \quad \rightarrow \quad \varepsilon + 2t \cos\left(\frac{\pi n}{N+1}\right)
\]
SrVO₃ thin films: Quantum well states

<table>
<thead>
<tr>
<th></th>
<th>yz</th>
<th>xy</th>
<th>yz along z</th>
<th>yz along y</th>
<th>xy along y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st V</td>
<td>0.508</td>
<td>0.436</td>
<td>0</td>
<td>-0.224</td>
<td>-0.260</td>
</tr>
<tr>
<td>2nd V</td>
<td>0.599</td>
<td>0.594</td>
<td>-0.242</td>
<td>-0.262</td>
<td>-0.259</td>
</tr>
<tr>
<td>3rd V</td>
<td>0.584</td>
<td>0.583</td>
<td>-0.255</td>
<td>-0.258</td>
<td>-0.259</td>
</tr>
</tbody>
</table>
SrVO$_3$ thin films: correlation \rightarrow Z

- Quantum confinement in perovskite oxide heterostructures:
 - Tight binding instead of a nearly free electron picture

- Correlation effect: DFT+ Dynamical Mean Field Theory (DMFT)
Insulating state in SVO thin films ($N=2$) grown on STO substrate

- yz orbital is narrowed, but the energy of xy is lower.
- Competition: bandwidth \sim orbital splitting
- Surface(Second) layer, strong(weak) orbital polarization.
The lower Hubbard band of the surface layer: enhanced, shifted, and orbital polarized.
$\Delta_R = 2\alpha_R k$

$\alpha_R = 0.76 \times 10^{-2} \text{eVÅ} \quad \Delta_I = 0.4 \text{eV}$

$6.0 \times 10^{-2} \text{eVÅ} \quad \Delta_I = 0.0 \text{eV}$

$1 - 5 \times 10^{-2} \text{eVÅ} \quad \Delta_I = 0.0 \text{eV}$ (exp)

$\Delta_R = 2\alpha_3 k^3$

$\alpha_3 = 4 \text{eVÅ}^3$

$1 - 2 \text{eVÅ}^3 \quad \Delta_I = 0.0 \text{eV}$ (exp)

Anisotropic spin splitting \rightarrow AMR (exp)
Comparison: semiconductor and oxide heterostructures

GaAs/Al$_x$Ga$_{1-x}$As \rightarrow 10nm 2DEG \rightarrow 1nm

LAO/STO

- single orbital Rashba
- nearly free electron

- fitting parameter or kp method
- multi-orbital
- magnetic, superconducting, correlated, and spin-orbit coupling

First principle tight-binding

Spin splitting at LAO/STO interfaces and STO surfaces

Asymmetric structure

Energy (eV)

- X/2 Γ X/2

0.25X 0.35X 0.4X 0.5X

--- without SOC

spin up Spin splitting ~10meV at xy-yz crossing region?
spin down
DFT studies of Bulk properties of ACuO$_2$ (A=Ca, Sr, Ba)

<table>
<thead>
<tr>
<th></th>
<th>a_{LDA}</th>
<th>c_{LDA}</th>
<th>a_{GGA}</th>
<th>c_{GGA}</th>
<th>a_{exp}</th>
<th>c_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrTiO$_3$</td>
<td>3.87</td>
<td>3.87</td>
<td>3.95</td>
<td>3.95</td>
<td>3.905</td>
<td>3.905</td>
</tr>
<tr>
<td>CaCuO$_2$</td>
<td>3.77</td>
<td>3.08</td>
<td>3.87</td>
<td>3.20</td>
<td>3.853a</td>
<td>3.177a</td>
</tr>
<tr>
<td>SrCuO$_2$</td>
<td>3.84</td>
<td>3.38</td>
<td>3.95</td>
<td>3.47</td>
<td>3.926b</td>
<td>3.432b</td>
</tr>
<tr>
<td>BaCuO$_2$</td>
<td>3.92</td>
<td>3.68</td>
<td>4.03</td>
<td>3.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Lattice constant c is 10% smaller than a;
- dx^2-y^2 orbital

DOS (states/eV)

U=7.5 eV
J=1.0 eV
Oxide Interfaces—An Opportunity for Electronics

J. Mannhart* and D. G. Schlom*

<table>
<thead>
<tr>
<th></th>
<th>GaAs - AlxGa${1-x}$As</th>
<th>LaAlO$_3$ - SrTiO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier density n (without gate field)</td>
<td>several 10^{10} - several 10^{11}/cm2</td>
<td>several 10^{13}/cm2</td>
</tr>
<tr>
<td>Sheet resistance $\rho (H=0)$</td>
<td>order of 10-100 Ω/\square (low T, samples with high-μ)</td>
<td>~ 200 Ω/\square (4.2 K) ~ 20 kΩ/\square (300 K)</td>
</tr>
<tr>
<td>Thickness d</td>
<td>order of 10 nm</td>
<td>~ 10 nm (4.2 K) ≤ 4 nm, possibly 0.4 nm (300 K)</td>
</tr>
<tr>
<td>Equivalent volume carrier concentration</td>
<td>order of 10^{17}/cm3</td>
<td>order of 10^{20}/cm3</td>
</tr>
<tr>
<td>Typical thicknesses of the host layers in heterojunctions (e.g., cap layers)</td>
<td>tens of nanometer</td>
<td>≥ 1.6 nm LaAlO$_3$ (4 unit cells)</td>
</tr>
<tr>
<td>Hall mobility μ</td>
<td>$\geq 10^7$ cm2/Vs (4.2 K)</td>
<td>≤ 1000 cm2/Vs (4.2 K) ≤ 10 cm2/Vs (300 K)</td>
</tr>
<tr>
<td>Effective mass m of carriers at interface</td>
<td>$m_e \sim 0.07 \ m_e$</td>
<td>$m_e \sim 3 \ m_e$</td>
</tr>
<tr>
<td>Mean scattering time τ, mean free path</td>
<td>100 psec, order of 100 μm</td>
<td>psec, tens of nm (4.2 K)</td>
</tr>
<tr>
<td>v_F</td>
<td>$\sim 3 \times 10^7$ cm/s</td>
<td>several 10^6 cm/s</td>
</tr>
<tr>
<td>Magnetic flux density inducing quantum Hall filling factor $\nu = 1$</td>
<td>order of 10 T</td>
<td>order of 1000 T</td>
</tr>
<tr>
<td>Energy dependence of density of states $N(E)$</td>
<td>step function of 2-DEG (ideal case)</td>
<td>complex function reflecting the $N(E)$-dependence of the Ti-, La-, and O-ions</td>
</tr>
<tr>
<td>GaAs - Al\textsubscript{x}Ga\textsubscript{1-x}As</td>
<td>LaAlO\textsubscript{3} - SrTiO\textsubscript{3}</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>• two-dimensional electron gas (2-DEG);</td>
<td>• two-dimensional electronic liquid (2-DEL);</td>
<td></td>
</tr>
<tr>
<td>• quantum well induced by band bending;</td>
<td>• metal-insulator transition at a few 10^{12} /cm2;</td>
<td></td>
</tr>
<tr>
<td>• 2D-subbands of nominally free electrons</td>
<td>• quantum well structure as shown in Fig. 4;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2D-subbands composed of ionic orbital states</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with local character (e.g., Ti 3d, La 5d, O 2p);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2D-superconducting ground state;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• strong spin-orbit coupling.</td>
<td></td>
</tr>
</tbody>
</table>
\[H_{yz}(k_z, k_M) = -4t_1 - 2t_2 + 2t_1 \cos(k_z a) - 2(t_1^2 + t_2^2 + 2t_1 t_2 \cos(k_M \sqrt{2} a))^{1/2} \cos\left(\frac{\pi n}{N + 1}\right) \]

\[H_{xy}(k_z, k_M) = -4t_1 - 2t_2 + 2t_2 \cos(k_z a) - 2(t_1^2 + t_2^2 + 2t_1 t_2 \cos(k_M \sqrt{2} a))^{1/2} \cos\left(\frac{\pi n}{N + 1}\right) \]