

INSTITUT FÜR FESTKÖRPERPHYSIK

Institute of Solid State Physics

Wiedner Hauptstraße 8-10/138, 1040 Wien, AUSTRIA – T: +43-1-5880113801 / F: +43-1-5880113899 – E: sekretariat@ifp.tuwien.ac.at

EINLADUNG zum IFP-SEMINAR

Thema: Realizing bulk magnetoelectritiy in the hexagonal manganites

and ferrites

Vortragender: Hena Das

School of Applied and Engineering Physics, Cornell University

Ithaca, NY, USA

Host: Karsten Held

Termin: Mittwoch, 17 Juli 2013, 16 Uhr

Ort: Institut für Festkörperphysik, TU Wien

Wiedner Hauptstraße 8-10, 1040 Wien Seminarraum 138B, 7. OG (rote Leitfarbe)

Förderer: ERC-StG-306447 AbinitioDGA

Improper ferroelectricity (trimerization) in the hexagonal manganites RMnO₃ leads to a network of coupled structural and magnetic vortices that induce domain wall magnetoelectricity and magnetization (M) neither of which, however, occurs in the bulk. Here we combined First-principles calculations, group-theoretic techniques, and microscopic spin models to show how the trimerization not only induces a polarization (P) but also a bulk M and bulk magnetoelectric (ME) effect.

This results in the existence of a bulk linear ME vortex structure or a bulk ME coupling such that if P reverses so does M. To measure the predicted ME vortex, we suggest RMnO₃ under large magnetic field. We suggest a family of materials, the hexagonal RFeO₃ ferrites, also display the predicted phenomena in their ground state.

