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A system consisting of two independently contacted quantum dots with a strong electrostatic interaction

shows an interdot Coulomb blockade when the dots are weakly tunnel coupled to their leads. How the

blockade can be overcome by correlated tunneling when tunnel coupling to the leads increases is studied

experimentally. The experimental results are compared with numerical renormalization group calculations

using predefined (measured) parameters. Combining our experimental and theoretical results we identify

transport through Kondo correlations due to the electrostatic interaction between the two dots.
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Electrical transport through a quantum dot at low tem-
perature is dominated by the electron-electron interaction,
leading to Coulomb blockade and single-electron charging
effects [1]. The spin as an internal degree of freedom
causes under certain circumstances a Kondo correlated
state to form between the quantum dot and its source and
drain leads. This way correlations overcome the Coulomb
blockade with decreasing temperature [2]. The Anderson
impurity model not only provides a simplified, yet appro-
priate description for this particular effect but, at the same
time, it is the basic model for a quantum dot system, i.e., a
single localized orbital tunnel coupled to leads [3]. Two
independently contacted quantum dots with a purely ca-
pacitive interaction can be labeled by a pseudospin index
for the two dots and can therefore be described as another
realization of the Anderson impurity model [4]. Theory
predicts that correlations should lift the Coulomb blockade
where an electrostatic degeneracy exists between states
with (N1, N2) and (N1 � 1, N2 � 1) electrons on the two
dots. Experimentally one would observe the Kondo corre-
lations under such degeneracy conditions upon enhancing
the tunnel couplings of the dots to the leads or lowering the
temperature. When the spin is also included, Kondo phys-
ics with SU(4) symmetry can be present [5]. Experimental
results on cylindrical quantum dots [6] and carbon nano-
tubes [7] have been interpreted in terms of an SU(4) spin-
orbital (or spin-pseudospin) Kondo effect. However, the
tunneling paths via the two orbitals were not separately
accessible to experiment, and therefore assumptions about
them had to be made. In contrast, the setup of separate
quantum dot systems with interdot capacitive coupling
allows one to study the (pseudo-)spin-polarized currents
and therefore the Kondo correlations in a controlled way,
provided the conductances through the two quantum dots
can be monitored independently and for different parame-
ter combinations. Several experiments have examined the
behavior of such samples at weak tunnel couplings, where
single-electron tunneling is an appropriate description [8],
showing the expected honeycomblike charge stability dia-

gram with less pronounced capacitive interdot coupling.
Two vertically stacked quantum dot systems show strong
interdot capacitive coupling, and indications of Kondo
correlations have been observed; however, the structure
lacks full control over the tunnel couplings [9].
In this Letter we use a double quantum dot system in

lateral arrangement with strong capacitive interdot inter-
action and fully tunable tunnel couplings [10]. The regions
where transport is dominated by interdot correlations are
well resolved, and we study experimentally the transition
from weak to strong tunnel coupling. The conductances
and the parameters of both quantum dots are measured
independently, so we can directly compare with numerical
renormalization group (NRG) calculations identifying
Kondo correlations.
A scanning electron microscope (SEM) image of our

sample is shown in the inset of Fig. 1. Its design concept
and its fabrication have been described elsewhere in more
detail [10]. We use a GaAs=Al0:33Ga0:67As heterostructure
with a two-dimensional electron system, located at the
heterojunction 50 nm below the surface (electron density:
3:2� 1011 cm�2, mobility: 3:0� 105 cm2 V�1 s�1 at
4.2 K). First, we define a floating metallic top gate by
electron beam lithography. In the second step, 50 nm
deep trenches are etched around this top gate in a SiCl4
plasma. The depletion regions around these trenches define
the two quantum dots. We label them ‘‘u’’ and ‘‘d’’, for
‘‘up’’ and ‘‘down’’ in Fig. 1. Each quantum dot has its own
source and drain leads, so we can independently measure

their differential conductances dIðuÞD =dVðuÞ
DS and dI

ðdÞ
D =dVðdÞ

DS

[11]. Furthermore, each of the four tunnel barriers is tun-
able by one of the adjacent gates 1 to 4. It was tested
experimentally that the bridge between the two quantum
dots carrying the top gate is entirely depleted, so no current
can flow between the dots and the coupling is purely
capacitive. The top gate is needed to reach a large interdot
capacitance leading to a large ratio between the interdot
Coulomb energy U and the intradot charging energies ECu

and ECd [12].
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At our base temperature of 25 mK, the conductances at
small source-drain voltages show a honeycomblike struc-
ture as a function of two gate voltages [10], as expected
from a simple electrostatic model [13]. Figure 1 gives the
basic definitions to be used for its description. Each pos-
sible combination (Nu,Nd) of occupation numbers is stable
inside a hexagonal area in the parameter space spanned by
the two gate voltages. At tunnel couplings �u and �d much
smaller than the thermal energy kBT, only single-electron
tunneling is possible, and only on those hexagon edges
where exactly one quantum dot changes its occupation
number (edges of type a and b). In contrast, no conduc-
tance is found on type c edges where both occupation
numbers must change simultaneously. There, the interdot
Coulomb blockade prevents single-electron tunneling.
Near the common pinch-off point of all four tunnel bar-
riers, we find U � 0:26 meV, and U=ECu � U=ECd �
1=3. These values decrease as one opens the tunnel barriers
because of increasing dot-lead capacitances [14].

As a measure of the two tunnel couplings �u and �d, we
take the full widths at half maximum of the Coulomb peaks
on the type a and type b edges, respectively. To convert
these values (measured in units of a gate voltage) into
energies, we determine the capacitive lever arm between
the gate voltage and the quantum dot’s addition energy by
finite source-drain voltage measurements as described in
[14]. The sharp conductance peaks of the weakly tunnel
coupled quantum dots are used in order to precisely evalu-
ate the energy scale, which is then transferred to the
strongly coupled system. In the experiment, the tunnel
couplings are usually large compared to kBT at the base
temperature of 25 mK, which means that temperature

broadening effects are negligible; for type a or type b
edges the conductance peaks show a line shape which is
approximately Lorentzian in most cases. The interesting
regions we will focus on in the rest of this Letter are
obviously the edges of type c. Here, we cannot start from
the simple single-electron tunneling picture because of the
interdot Coulomb blockade.
Figure 2(a) shows the differential conductance as a

function of V1;2 and V3;4, focusing on a region with small

tunnel couplings in more detail. Finite conductances can be
seen only on the type a and type b edges, so single-electron
tunneling provides a qualitatively sufficient explanation.
Figure 2(b) shows a situation in which one of the dots is
much more strongly tunnel coupled to its leads, while the
other one remains weakly coupled. A sharp conductance
peak is observed for the weakly coupled dot that follows a

FIG. 2. The conductances of quantum dots ‘‘u’’ (left) and ‘‘d’’
(right) in gray scale at 25 mK around three type c lines for
different tunnel couplings. Horizontal axes: V1;2; vertical axes:

V3;4 in steps of 2 mV. (a),(b),(d) are measured, (c),(e) are

calculated by using parameters extracted from (b),(d), respec-
tively. �u ¼ �d ¼ 25 �eV and U ¼ 260 �eV in (a); �u ¼
25 �eV, �d ¼ 110 �eV, and U ¼ 140 �eV in (b); �u ¼
32 �eV, �d ¼ 59 �eV, and U ¼ 163 �eV in (d).

FIG. 1. Scheme of charge stability in a double quantum dot
system as a function of two gate voltages, reflecting the charac-
teristic honeycomblike structure. At weak tunnel couplings,
single-electron transport is possible through one of the dots on
hexagon edges of type a and b, respectively. Correlations
between the quantum dots can lead to transport on type c edges
for enhanced tunnel couplings. Inset: SEM image with labeled
electrodes and floating top gate in the center.
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continuous curve, so the interdot Coulomb blockade is
lifted. The peak amplitude is smallest at the turning point
of the position curve, and the line shape of the conductance
peaks was checked to be Lorentzian for all line cuts along
the V1 direction (horizontal). Far from the turning point,
the curve becomes straight as a function of the gate volt-
ages, and we can then take the position of the conductance
peak maximum as a definition of the type a honeycomb
edges. A different behavior is observed for the strongly
coupled dot: The conductance plot appears to be divided
into two half planes. On each side, the conductance peaks
are simply described by a Lorentzian whose center defines
the type b honeycomb edge. A narrow, steplike transition
occurs in between. It is located at the same position where
we observe the conductance peak in the weakly coupled
dot.

For the following theoretical discussion, we describe the
two dots with an Anderson impurity model which has a
single, spin-degenerate quantum level in each dot:

Ĥ ¼ X
i2fu;dg

ð"i � n̂i þ ECi � n̂i"n̂i#Þ þU � n̂un̂d

þ X
Ri;k;�

"k � ĉyRi;k;�ĉRi;k;�

þ X
Ri;k;�

ðtRi � âyi;�ĉRi;k;� þ H:c:Þ: (1)

Here, âyi;� (âi;�) create (annihilate) an electron with spin

� 2 f#; "g in dot i 2 fu; dg; n̂i;� ¼ âyi;�âi;� and n̂i ¼ n̂i;" þ
n̂i;# are the corresponding number operators; "u and "d
denote the addition energies of the dots relatively to the
source Fermi level, which shift linearly with applied gate

voltages; ĉyRi;k;� is the creation operator for an electron in

lead R 2 fS;Dg of system i 2 fu; dg with wave number k,
spin � and energy "k. Finally, tRi denotes the correspond-
ing spin-independent tunnel matrix element, which trans-
lates into a tunnel rate �i ¼ 2��ðt2Si þ t2DiÞ where � is the

density of states in the leads.
To get a simple physical picture, we neglect, in a first

approximation, charge fluctuations in the (much) more
weakly coupled dot, setting �u ¼ 0. Since no spin-Kondo
effect was observed in the adjacent Coulomb blockade
valleys, and the intradot charging energies are the largest
parameters in the system (ECu � ECd � 0:6 meV in
Figs. 2(b), 2(d), 3(b), and 3(c) obtained from measure-
ments of the Coulomb blockade diamonds), we further
neglect double occupation of the individual dots and drop
the ECi terms and the spin indices in Eq. (1). The descrip-
tion of the double-dot ground state then reduces to a
resonant tunneling Hamiltonian for the strongly coupled
quantum dot, predicting a Lorentzian spectral density of
width �d on this dot [15]. However, the resonant state now
has two possible addition energies, "d and "d þU, de-
pending on the (fixed) occupation number Nu 2 f0; 1g of
the weakly tunnel coupled dot. Like in the electrostatic
model [13], we assume that the system takes the state of
minimal electrostatic energy E of the Hamiltonian "u �
n̂u þ "d � n̂d þU � n̂un̂d. Replacing n̂d by its (mean-field)
expectation value obtained by integrating over the
Lorentzian-broadened level, we get

EðNuÞ ¼ "uNu þ ð"d þUNuÞ
�
1

2
� 1

�
arctan

"d þUNu

�d=2

�
:

(2)

Conductance through the weakly coupled dot is now pos-
sible for EðNu ¼ 1Þ ¼ Eð0Þ, even if charge fluctuations
(�u) are very small. This yields a relation between "d
and "u, which we express after substituting "i by "0i �
U=2 as

"0u ¼ "0d þU=2

�
arctan

"0d þU=2

�d=2
� "0d �U=2

�

� arctan
"0d �U=2

�d=2
: (3)

Note the point symmetry around "0d ¼ "0u ¼ 0. Only the

FIG. 3. (a) Crosses give the positions of conductance maxima
in the upper dot, extracted from Fig. 2(b) (axes in mV). Solid
line: prediction of Eq. (3), dashed line: honeycomb edges. (b),
(c) Measured conductances of upper and lower dot around
another type c line at 25 mK (axes like in Fig. 2). The measured
parameters are �u ¼ 31 �eV, �d ¼ 86 �eV, U ¼ 120 �eV.
(d) NRG spectral densities Að!Þ of both dots at the middle of
the dashed line in (b), showing the development of a Kondo
resonance in both dots with decreasing temperature (A in
�eV�1, ! in �eV). Gray: upper dot, black: lower dot. Solid:
T ¼ 25 mK, dashed: T ¼ 144 mK. (e) Measured peak conduc-
tances (in e2=h) for two line cuts of (b) as a function of
temperature (in mK). Boxes: crossing the a line at fixed V1;2,

circles: crossing the c line at fixed V1;2 as shown in (b). The solid

lines give the respective NRG calculation results.
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ratios "0i=U and �d=U enter, which can be measured to
within a few per cent. The two quantities "0i=U are linear
functions of the gate voltages entirely determined by ca-
pacitance ratios, i.e., the slopes of the honeycomb edges.
Evaluating Fig. 2(b), we get the transformation relation

V1 � Vð0Þ
1

V3 � Vð0Þ
3

 !�
mV ¼ �1:62ð0Þ 1:74ð3Þ

1:26ð0Þ �3:19ð8Þ
� �

"0u=U
"0d=U

� �
:

(4)

The prediction of Eqs. (3) and (4) is plotted in Fig. 3(a).

(Vð0Þ
1 , Vð0Þ

3 ) describes the turning point of the position curve

for the conductance peak in the gate voltage plane. It
should be at the center of the type c line, which is con-
structed by extrapolating the positions of the (single-
electron-like) a and b lines into the regions of interaction.

In Fig. 3(a) we see that the turning point (Vð0Þ
1 , Vð0Þ

3 ) is

slightly offset by 0:05 meV in V1 (horizontally) and by
0:13 meV in V3 (vertically). This deviation indicates that
the assumption of a Lorentzian spectral density for the
strongly tunnel coupled dot simply being shifted by re-
charging the weakly coupled dot is not strictly fulfilled.
Such an offset could be caused, for example, by an asym-
metric spectral density and/or energy dependent tunnel
barriers. However, apart from this small offset, the calcu-
lated curve reproduces the position shift of the conduc-
tance peak with good accuracy.

Predicting the value of the peak conductance is a much
more difficult task, as the Kondo effect is not included in
Eqs. (3) and (4). Experimentally, we observe that the peak
conductance varies along the position curve, reaching a
minimum at the turning point. With increasing tempera-
ture, conductance decreases on all parts of the curve,
notably at the turning point [Fig. 3(e)], so it is essential
to calculate at finite temperature. To this end, we per-
formed NRG calculations [16] for Hamiltonian (1) with
experimentally predetermined parameters and taking into
account a reduction of the tunnel couplings �u, �d by a
factor of 2 because many-body effects lead to an additional
broadening of the side bands of the Anderson impurity
model [17]. The NRG results for the region around the
ðNu;NdÞ ¼ ð0; 1Þ=ð1; 0Þ boundary in Figs. 2(c) and 2(e)
agree well with experiment, including a reduced conduc-
tance around the turning points. Near the turning points of
Figs. 2(e) and 3(b), a sharp Kondo resonance develops at
the Fermi level in the NRG spectra, see Fig. 3(d). Hence,
for tunnel couplings �u, �d both tuned to intermediate
values, we can trace back the conductance along the type
c line to (orbital, i.e., pseudospin) Kondo tunnel processes,
which also reflect in the characteristic temperature depen-
dence in Fig. 3(e). We also note two deviations if we
restrain ourselves from adjusting the parameters: For the
upper dot, the theoretical curve is somewhat smoother in
the region of the type c line; for the lower dot the con-
ductance peak height is lower since many-body effects lead
to a transfer of spectral weight so that the behavior is more

complicated than the simple shift of the Lorentzian-
broadened peak assumed when determining the tunnel
rate. Both deviations could be reduced if the tunnel rate
to the lower dot was reduced. Also effects beyond our
calculation, in particular, decoherence and the importance
of more than one level in the lower dot, would lead to an
adjustment in the same direction.
In conclusion, having full control over tunnel couplings

and gate voltages of two laterally arranged quantum dots,
we were able to determine all parameters of the underlying
two-dot Anderson impurity model and to measure the
conductance through both dots separately. Our experimen-
tal and theoretical analysis unambiguously shows that the
interdot Kondo effect leads to conductance through both
dots in the region of the type c line if tunnel couplings are
roughly symmetrical and sufficiently strong.
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