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We find that the heat capacity of a strongly correlated metal presents striking changes with respect to

Landau Fermi-liquid theory. In contrast with normal metals, where the electronic specific heat is linear at

low temperature (with a T3 term as a leading correction), a dynamical mean-field study of the correlated

Hubbard model reveals a clear kink in the temperature dependence, marking a rapid change from a low-

temperature linear behavior and a second linear regime with a reduced slope. Experiments on LiV2O4

support our findings, implying that correlated materials are more resistive to cooling at low T than

expected from the intermediate temperature behavior.
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If we trace from low to high temperatures the specific
heat capacity cV ¼ @E=@T of a solid, it provides for a rich
variety of information. For a metal it increases linearly,
cV ¼ �0T, with the prefactor �0 proportional to the density
of the electronic states, i.e., �0 � NðEFÞ. This result is also
valid for correlated systems that maintain a normal metal-
lic behavior. In this case we can rely on Landau’s normal
Fermi-liquid (FL) theory [1], which describes the low-
energy excitations of correlated (interacting) electrons as
‘‘quasiparticles’’ (QP) which are adiabatically connected
to the noninteracting electrons. As a result, only a QP
renormalization factor ZFL needs to be included in com-
parison to noninteracting electrons so that cV ¼ �FLT with
�FL ¼ �0=ZFL. This description is so universally appli-
cable that special attention is paid to any deviation oc-
curring in the vicinity of special points (e.g., quantum
critical points [2], where the specific heat shows a loga-
rithmic T dependence). Turning back to the normal case,
the common understanding [3] is that the next electronic
contribution to the specific heat is cubic, �T3. This is of
the same order as the contribution from the lattice de-
grees of freedom, where the prefactor is given by the
stiffness of the lattice and the mass of its ions. This
makes the ‘‘lattice’’ prefactor much larger than the electron
contribution, so that the cubic phonon contribution is usu-
ally dominant [4]. At higher temperature, finally, the spe-
cific heat saturates with a value proportional to the number
of degrees of freedom in the system (law of Dulong and
Petit).

In this Letter we show that the above described common
understanding of the low-temperature specific heat of a
metal needs to be markedly corrected, if the movement of
the electrons is strongly correlated because of their mutual
Coulomb interaction. Our finding is based on numerical
solution of the Hubbard model using dynamical mean-field
theory (DMFT), combined with a field theory formula for
the specific heat calculation given by Abrikosov et al. [3]

and recent results for the energy-momentum dispersion
relation [5,6].
As mentioned above, the starting point of our consid-

eration is the half-filled single-band Hubbard model, the
minimal model which describes strongly correlated elec-
trons on a lattice. This model is solved numerically using
DMFT [7,8] for a semicircular DOS with bandwidth W,
and exact diagonalization (ED) [9] as impurity solver with
7 energy levels in the bath.
Figure 1 shows the total energy Etot as a function of T

and the specific heat cV obtained through numerical dif-
ferentiation for a ratio Coulomb interaction (U) to band-
width (W) of U=W ¼ 0:8 (top panels) in the temperature
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FIG. 1 (color online). Kinks in the electronic specific heat
(right) for U=W ¼ 0:8 (upper panel) and 1.0 (lower panel).
The left panels show the DMFT(ED) results for the total energy
Etot from which the specific heat has been obtained as a numeri-
cal derivative after a spline interpolation. Also shown are two
parabolic fits (see text) valid for T < T� (red solid line) and T >
T� (violet dotted line) and the DMFT(QMC) results of Ref. [12]
(green dots).
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range where cVðTÞ is monotonically increasing [10].
Thanks to the extremely dense temperature mesh, our
results clearly show a rapid but continuous change of slope
(kink) of cV at T� � 0:015W, a feature entirely unexpected
for a normal FL [3]. This kink becomes more and more
pronounced when electronic correlations are further en-
hanced by increasing the Coulomb interaction (we show in
the bottom panels of Fig. 1 the case of U=W ¼ 1), i.e.,
when moving towards the metal-to-insulator (phase) tran-
sition. At the same time, the value of T�, where the kink
appears, is reduced, displaying a clear relation with the
increasing correlations which reduce ZFL.

A proper fit to the numerical data hence needs to consist
of two slopes (renormalization factors) �FL and �2 instead
of a single one: cV ¼ �FLT for T < T� and cV ¼ Bþ �2T
for T > T� with a rather sharp crossover in between. This
has been achieved through fitting EtotðTÞ ¼ ½Etotð0Þ þ
�FLT

2=2�fðT � T�Þ þ ðEtotðT�Þ þ BT þ �2T
2=2Þ �

½1 � fðT � T�Þ� using a Fermi-function-like change

fðxÞ ¼ 1=ð1þ e
~�xÞ for the crossover at T�. Note that this

fit (solid red line in left panels of Fig. 1) is valid in the
temperature range where cVðTÞ is monotonically in-
creasing, i.e., approximately 0< T & 2T�. To assess the
reliability of our impurity solver, we compared our results
with precise DMFT(QMC) data [12] (green dots in Fig. 1,
second row, first panel). The comparison of the total
energy shows an excellent agreement with our DMFT
(ED) calculations. Notice that a direct observation of the
kinks in DMFT(QMC) may require a much finer grid in the
temperature regime considered. In our opinion, however, a
first hint for a kink is already provided by the Taylor
expansion of cVðTÞ in Ref. [12]: The coefficients of the
higher order terms become huge, an indication that the
Taylor expansion is not appropriate as in the presence of a
kink.

To support our finite-T numerical findings, we carry out
an analytical theory for the surprising appearance of kinks
in correlated systems, which relies on the knowledge of the
T ¼ 0 Green function. The analytical approach is based on
a formula by Abrikosov, Gor’kov, and Dzyaloshinski
(AGD) for the entropy of a fermionic system at low tem-
peratures [3]. The AGD formula allows us to compute the
entropy using the low-frequency behavior of the self-
energy �ð!Þ at zero temperature; therefore, it connects
the dynamical information (frequency dependence) to the
thermal response (temperature dependence). More pre-
cisely, it relates the low-T behavior of the entropy (and
consequently of the specific heat) to the poles of the T ¼ 0
retarded Green function, which in turn follows from the
self-energy on the real axis. A correlated system is ex-
pected to show a kink for a frequency !� � W in the T ¼
0 self-energy under generic conditions [6]. Also experi-
mentally, kinks in the angular-resolved photoemission
spectrum have been observed for several strongly corre-
lated materials such as cuprates [13], vanadates [14], and
ruthenates [11,15].

For a normal metal, the AGD formula reproduces the

standard Fermi-liquid result � ¼ �0=ZFL, with ZFL ¼
½1� @�ð!¼0Þ

@! ��1. In this Letter we show that AGD formula

also works beyond this linear Fermi-liquid regime, and it
actually describes a kink in the specific heat at a tempera-
ture T�, if the proper ‘‘kinky’’ T ¼ 0 self-energy for a
correlated electron system is used.
Let us now prove this result. The specific heat can be

expressed via the entropy as cVðTÞ ¼ T dS
dT . For a metallic

system at low T, the entropy is computed according to
AGD [3] as

SðTÞ ¼ 1

2�iT

Z 1

�1
d�Nð�Þ

Z 1

�1
d!!

@fð!Þ
@!

�½logG�1
R ð�;!Þ � logG�1

A ð�;!Þ�; (1)

where Nð�Þ is the noninteracting DOS [we use a semi-

circular DOS Nð�Þ ¼ 4
�D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � �2

p
] with bandwidthW ¼

2D, fð!Þ ¼ 1
e!=Tþ1

is the Fermi-Dirac distribution function,

andGR=Að�Þ the retarded/advanced T ¼ 0Green functions,
respectively. Equation (1) has been obtained in Ref. [3] by
a low-T expansion of the self-energy. Introducing the
auxiliary dimensionless variable y ¼ !=TðkB � 1Þ, and
performing a straightforward derivative with respect to T,
the specific heat is eventually computed as

cVðTÞ ¼ T
dSðTÞ
dT

¼ T
1

2�i

Z 1

�1
d�Nð�Þ

Z 1

�1
dyy

ey

ðey þ 1Þ2

�
�
GAð�; yTÞ d

dT
G�1

A ð�; yTÞ �GRð�; yTÞ

� d

dT
G�1

R ð�; yTÞ
�
: (2)

In the case of a FL, where just one renormalization factor
ZFL is present for the low-frequency behavior of the self-
energy, the standard FL formula [cVðTÞ ¼ �0=ZFLT] is
easily recovered. The same Eq. (2), however, yields com-
pletely different results for strongly correlated metals:
When the interactions are strong enough, the spectral
function displays a typical ‘‘three-feature’’ structure (the
QP peak, and the two Hubbard subbands), which survives
to moderate doping. In this situation two distinct renor-
malization factors can be identified in the low-frequency
regime with a kink in the real part of �ð!Þ in between [6].
Specifically, Ref. [6] shows that while the lowest frequen-
cies follow the FL behavior Re�ð!Þ ¼ ð1� 1=ZFLÞ!
there is a rapid (but continuous) change of slope (kink) in

Re�ð!Þ at frequency !� � W [e.g., !� ’ ð ffiffiffi
2

p �
1ÞZFLW=2 in the case of the semicircular DOS]. For larger
frequency, Re�ð!Þ ¼ �bþ ð1� 1=ZCPÞ! with a re-
duced slope ZCP > ZFL (typically by about a factor 2),
see the inset of Fig. 2 and Ref. [6]. The constant b ¼
ð1=ZFL � 1=ZCPÞ!� ensures the continuity of �ð!Þ.
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As a consequence of this self-energy kink, the Green
functions and their temperature derivatives appear-
ing in Eq. (2) have to be written separately for the
two regimes, namely GR ¼ ðyT=ZFL � �þ i0þÞ�1 and
d
dT G

�1
R ð�; yTÞ ¼ y=ZFL for !<!�, while for frequencies

larger than !� one has GR ¼ ðyT=ZCP � �þ bþ i0þÞ�1

and d
dT G

�1
R ð�; yTÞ ¼ y=ZCP with ZCP >ZFL. The parame-

ters have been extracted from fitting �ð!Þ of Ref. [16] (the
use of the numerical renormalization group as an impurity
solver allowing for very accurate low-frequency results). In
the inset of Fig. 2 we show �ð!Þ and the fit (blue dashed
line). We recall in passing that it is ZCP which controls the
width of the ‘‘quasiparticle’’ peak in the interacting DOS,
while ZFL characterizes only the asymptotic properties in
the limit ! ! 0 (or T ! 0) [6].

The evaluation of Eq. (2) is performed by splitting
explicitly the integral over y in the two regions:

cVðTÞ ¼ T

�
1

ZFL

Z
jyj<!�

T

N

�
yT

ZFL

�

þ 1

ZCP

Z
jyj>!�

T

N

�
yT

ZCP

þ b

��
dy

y2ey

ðey þ 1Þ2 : (3)

This equation is the final result of our analytical calcula-
tion. It allows us to compute, through a simple integral, the
specific heat from the noninteracting density of states
NðEÞ, the two renormalization factors ZFL and ZCP, and
the kink frequency !�. Using the parameters extracted
from Ref. [16] we obtain the solid line shown in Fig. 2. It
is easy to verify that the standard Fermi-liquid behavior is
recovered from Eq. (3) in the limit of large !� (i.e., when
only one low-frequency scale is present). In the opposite
limit !� ! 0 a standard Fermi-liquid behavior is also

recovered, though with a different renormalization factor
� ¼ �0=ZCP. More interesting is the intermediate situation
we are considering here, when!� lies in the low-frequency
range. In this case, the specific heat behavior shows a kink
at a temperature T� / !� (with a proportionality factor of
about 1=5 for the case of the semicircular DOS): As one
can see in Fig. 2 the standard FL behavior cVðTÞ ¼ �0

ZFL
T is

recovered only for T < T�, while at T ¼ T� a sharp change
of slope is observed. For T > T�, the specific heat is still
essentially linear, but with a completely different slope
(determined by the value of ZCP and the coefficient b).
Eventually, the AGD formula loses its validity at higher T,
where the maximum of cV is reached (see again [10]).
We emphasize that the AGD formula reproduces the

finite low-T DMFT(ED) solution not only qualitatively
but also at a quantitative level. This allows us to precisely
relate the value of T� with !� and, hence, with the char-

acteristic parameters of the system [e.g., the estimate T� �
1=10ð ffiffiffi

2
p � 1ÞZFLW works well for the case of a semi-

circular DOS]. The agreement with the AGD formula is
particularly remarkable if we notice that, strictly speaking,
the AGD formula is only applicable to the linear-T regime,
since it does not include all additional terms leading to the
aforementioned T3 contribution. However, this term is
small at low temperatures. Hence, if the correlation is
strong enough, it can push the kink in the very small T
regime, where the AGD formula is expected to work. This
explains why our analytical calculation is able to reproduce
our numerical results to a very good accuracy in Fig. 2. Let
us emphasize that it was not at all clear a priori whether an
AGD-like calculation was possible beyond the regime of
Landau’s QP, i.e., after the kink in the energy-momentum
dispersion which indicates the basic excitations are no
longer Landau QP.
The theoretical evidence of a low-temperature kink in

the electronic specific heat of strongly correlated systems
poses the question of its experimental observation, which
was—so far—still lacking. The main problem is obviously
the phonon contribution cV � T3 which—because of its
large prefactor—usually overshadows the much smaller
electronic contribution to the specific heat, already at
temperatures of few 10 K. This restricts the choice to
materials which show the kink at a very low T�. That
means in turn compounds with a strong renormalization
(ZFL � 1), i.e., heavy Fermion systems. Given our starting
point, the Hubbard model, the ideal material is LiV2O4, the
first d-electron system where heavy Fermion behavior was
found [17]. Indeed, recent LDAþ DMFT calculations
[18], which take into account the realistic three-d-band
structure of LiV2O4, have demonstrated that an effective
description in terms of the single-band Hubbard model
(very close to half-filling) is particularly appropriate for
this compound.
In Fig. 3, we show that our theory nicely describes the

experimental results for LiV2O4. We compare the data of
Ref. [19] (displayed in a magnified low-T range with
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FIG. 2 (color online). Analytical theory describing kinks in the
specific heat (red solid line) on the basis of the AGD formula
(see text). The blue dashed line in the inset was fitted to the (red)
numerical renormalization group data of Ref. [16]; note that the
deviation at larger frequencies ! does not significantly affect the
specific heat in the plotted temperature range. The agreement of
the analytical calculation with our numerical results (black
crosses) is excellent.
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respect to the original publication) with our analytical
formula, fitting the free parameters to the experimental
data. Indeed, a kink is clearly visible, as at the curve
rapidly changes its slope at a temperature T� of 5–6 K.
The three fitting parameters (ZFL ¼ 0:054, ZCP ¼ 0:092,
!� ¼ 0:0035W with W ¼ 600 meV for LiV2O4) assume
very reasonable values. This clearly confirms the strong-
correlation origin of the kink in the specific heat of this
material.

We notice there are also kinks in the specific heat of
f-electron heavy Fermions such as YbRh2Si2 [20] or
YbCu5�xAlx [21]. However, these materials are close to a
quantum critical point, at which additional physical pro-
cesses become important. In some systems also long range
magnetic order leads to additional structures in the specific
heat. Hence, at present, it is less clear how far these kinks
are connected to our theory. Another material with strongly
correlated Fermions showing similar kinks in the specific
heat is 3He (Refs. [22,23]) for which, however, the appli-
cation of a lattice model such as the Hubbard model
represents certainly quite a crude approximation.

In conclusion, we have demonstrated numerically, ana-
lytically, and experimentally that the textbook knowledge
of the electronic specific heat at low temperatures needs to
be modified for strongly correlated electrons. In the prox-
imity of the Mott transition the leading correction to the
linear Fermi-liquid temperature behavior is a quite rapid
change of slope, i.e., a kink, which takes place well before
(at smaller T) the standard T3 behavior becomes relevant.
Let us emphasize the reported kink is a generic feature of
strongly correlated electron systems, in very contrast to
existing theories for kinks stemming from the coupling to
(potentially present) bosonic degrees of freedom. Since the
slope of the specific heat is reduced after the kink, the
behavior of cV=T is just opposite to what one would expect
from the standard theory; i.e., cV=T is decreasing with

increasing temperature instead of the expected increase
due to the cubic term. Hence, if one extrapolates from
the behavior at intermediate temperatures (i.e., after the
kink) without taking into account the kink, a much lower
specific heat at low temperatures is obtained with respect to
the actual result. In other words, a material with strongly
correlated electrons can be unexpectedly resistant against
cooling at low temperatures. Moreover, depending on the
temperature range considered in the experiments, only one
of the two regimes of linear behavior of cVðTÞ may be
accessible. This can easily lead to remarkable inconsisten-
cies in the analysis of the experimental data for strongly
correlated materials.
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FIG. 3 (color online). Kink in the low-temperature specific
heat of LiV2O4 (open blue circles) visible at T� � 5–6 K, and
well reproduced by our analytical theory (red solid line).
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