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Doped and undoped manganites are modeled by the coupling between itinerant e, electrons and static #,,
spins, the Jahn-Teller and breathing phonon modes, and the Coulomb interaction. We provide for a careful
estimate of all parameters and solve the corresponding Hamiltonian by dynamical mean field theory. Our
results for the one-electron spectrum, the optical conductivity, the dynamic and static lattice distortion, as well
as the Curie temperature show the importance of all of the above ingredients for a realistic calculation as well
as for describing the unusual dynamical properties of manganites including the insulating parent compound and
the insulatinglike paramagnetic state of doped manganites.
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I. INTRODUCTION

Manganites have attracted intensive interest during the
last decades due to their extraordinary properties including
the colossal magnetoresistance (CMR).!-3 These materials
have the chemical composition 7;_,D,MnOs, where T is a
trivalent rare earth ion (7=La,Pr,Nd,...) and D is a divalent
alkali ion (D=Ca,Sr,...) and crystallize in a cubic perov-
skite structure with a possible distortion at low temperatures,
see Fig. 1, which albeit can be distorted at low temperatures.
Soon after CMR was discovered, various phase diagrams as
a function of temperature and magnetic field or doping con-
centration x were established;*~!2 also see the review articles
Refs. 13-16. For the parent compound LaMnO;, an
insulator-to-metal transition was found upon applying
pressure;!” and a charge/orbital-ordered phase has been re-
ported in a large number of perovskite (7,_,D,MnOs) and
layered (T,_.D,,,MnO,) manganites, depending on the ef-
fective bandwidth and the quenched disorder.'®!® The dy-
namical properties of the paramagnetic insulating are very
unusual as is reflected in a spectral function A(w) with a very
low spectral weight at the Fermi level Ej irrespectively of x,
as indicated by photoemission and x-ray absorption
experiments.”?’>® Similarly, the optical conductivity o(w)
shows a very low spectral weight up to an energy scale of
~1 eV.?*?7 Besides, the ferromagnetic metallic phase is an
atypical (bad) metal.?*

A physical understanding of these properties is difficult
due to the internal complexity resulting from the interplay

La,Sr,Ca,...

FIG. 1. (Color online) Sketch of the cubic perovskite unit cell
for manganites. The dashed lines indicate the basic MnOg
octahedron.
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between charge, spin, orbital, and lattice degrees of
freedom.”®?° A basis ingredient of a theoretical description is
the separation of the electrons within the five d orbitals into
a localized 1,, spin of length |[S|=3/2 and n=1-x itinerant ¢,
electrons, coupled to the #,, spin by Hund’s exchange. This
the basis of the so-called “double exchange3%3! which led to
the (ferromagnetic) Kondo lattice model*? and explains fer-
romagnetism in doped manganites and the charge-ordered
phase at x=0.5.3 A spin-canted state was suggested later.>*
However, this double exchange modeling disagrees with the
experiment in many aspects including the CMR. Hence, the
importance of the Jahn-Teller phonon modes and their cou-
pling to the e, electrons was stressed® and studied.’*~*
However, while it can describe insulatinglike behavior for
large electron-phonon coupling when electrons are trapped
as lattice polarons,’’ the Kondo lattice model extended by
Jahn-Teller phonons still fails to produce a large magnetore-
sistance at finite doping. Another important ingredient for the
physics of manganites is the local Coulomb interaction be-
tween the e, electrons as was pointed out in Ref. 41 and in
realisitic ab initio calculations.*>~*> Of these ab initio calcu-
lations, the combination of the local density approximation
(LDA) and dynamical mean field theory (DMFT) (Refs.
46-51) has the least tendency to overestimate the formation
of an insulating state since the DMFT electron dynamics also
avoids the cost of double occupations in the paramagnetic
metallic state. The corresponding LDA+DMT results for
manganites** show that only the combined localization effect
of Coulomb interaction and (static) Jahn-Teller distortion
makes the undoped parent compound an insulator, and leads
to a correct desription of the pressure-induced insulator-to-
metal transition.!” Similarly, for the doped compound, both
mechanisms work together in localizing the e, electrons giv-
ing rise to a proper description of the unusual dynamical
properties of doped manganites and the large CMR in a wide
range of doping.3?

In this paper, we present a detailed theoretical investiga-
tion of manganites using DMFT (Refs. 53-55) to solve a
realistic model of manganites which supplements the Kondo-
lattice model by Jahn-Teller and breathing mode phonons as
well as by the local Coulomb interaction between the e, elec-

8
trons. The paper is organized as following: Sec. II introduces
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the Hamiltonian and discusses how realistic parameters are
chosen. Section III is devoted to the undoped parent com-
pound LaMnOs; focusing in Sec. III A on how the Jahn-Teller
phonons, for a cubic lattice, give rise to a very similar spec-
trum as that of LDA+DMFT calculations which were based
on the static experimental Jahn-Teller distortion. In Sec. III B
the phase transition to such a static Jahn-Teller distortion is
studied and we find a similarly high transition temperature as
in experiment. The distorted phase is insulating but becomes
metallic upon increasing pressure. Section IV presents results
for doped manganites. We focus on doping x<<0.5 as here
electronic correlations are most relevant. In Sec. IV A a de-
tailed study of the paramagnetic insulatinglike phase is pre-
sented and differences to the insulating phase of the parent
compound are discussed. In Sec. IV B we study the phase
transition toward ferromagnetism. Section V includes the ef-
fect of the breathing mode with an estimate of the Coulomb
repulsion and the electron-phonon coupling strength in Sec.
V A and the corresponding optical conductivity in Sec. V B.
Finally, Sec. VI gives a summary of the results obtained.
First results for doped manganites similar but less detailed
than in Sec. IV A have been presented in Ref. 52; also see
the recent DMFT calculation®® using the semiclassical ap-
proximation as an impurity solver. Reference 56 shows
qualitatively similar results—as far as this can be judged
given their focus on a different doping level (x=0.3 instead
of smaller x’s in our study).

II. REALISTIC MODEL AND PARAMETERS

For the realistic microscopic modeling of manganites, we
employ the Hamiltonian

H=- E tl;{,vcj'—uo-qiva - 272 Si,u : Si + UE niMTni,u,l

(i) pvo i i3
P2< 92
+ 2 (U = 8,5 it i+ 2 (l +-05 )
i,00 i;a 2 2
-g > CiT,m(QuI"‘ 00T + Q3iT) 1 Civo- (1)
I, uvo
Here, CZW and c¢;,,, are the fermionic creation and annihila-

tion operators for electrons at site i within e, orbital u and
with spin o; s;, is the corresponding spin operator s;,
o+ TU -
:Ea'lazci'/.url 212 ipo,

The first line of Hamiltonian (1) forms the ferromagnetic
Kondo lattice model with a coupling J of the e, spin to the
localized t,, spin S;. For the cubic lattice, the hopping ele-
ments tzv can be, to a good approximation, restricted to
neighboring sites 7 and j in the x, y, and z directions with an
orbital matrix for the two (e,) orbitals d,2_,» and d,2_,2 in-

dexed by u (and v)

c with Pauli matrices 7.
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FIG. 2. (Color online) Vibration of the oxygen octahedra around
the manganese ion for the breathing mode Q; and the two Jahn-
Teller modes Q5 and Q5.

00
tzzto(o 1). (3)

The constant 71,=W/6=0.6 eV was estimated from LDA
which gives a bandwidth W=3.6 eV for cubic LaMnO.**
From the 2.7 eV splitting between spin-up and spin-down e,
bands in the corresponding ferromagnetic LDA calculation
on the other hand, the value of coupling to the #,, spins was
estimated 2.7]S,|=2.7 eV.

The second line of Hamiltonian (1) describes the Cou-
lomb repulsion of two e, electrons on the same lattice site i,
consisting of the intraorbital Coulomb repulsion U, the inter-
orbital repulsion U’, and the Hund’s rule energy gain J for
two parallel e, spins. The Coulomb interaction can be esti-
mated from the experimental spectrum, combining photo-
emission spectroscopy and x-ray absorption spectroscopy.?
Accounting for the crystal-field splitting between e, states
and 1, states of 1-2 eV, we obtain an average Coulomb

interaction U=3—4 eV, which is also supported by spectral

ellipsometry for LaMnO5.57 Since U’'=U-2J by symmetry,
we have the relation

U+U-2J+U-3J 5
3 =U—§J. (4)

U=

Taking a value /=0.75 eV, which is slightly smaller than the
value for the five-band model obtained by constrained LDA
(Ref. 58) and which agrees with our own estimate for 7, all
Coulomb interactions are determined. Unless noted other-
wise, we employ U’'=3.5 eV.

The third line is the Hamiltonian for the three most im-
portant phonon modes Q, (momentum P,) at site i, i.e., the
breathing mode Q; and the two Jahn-Teller modes Q, 3 as
illustrated in Fig. 2. The only free parameter of this part of
the Hamiltonian (1) are the three phonon frequencies which,
following Ref. 59, can be obtained from the Raman spectrum
for LaMnOs. The Raman spectrum gives very similar values
for the Jahn-Teller mode frequency €};7=0.07 eV and that of
the breathing mode (),,=0.08 eV so that we take a unique
value 2=0.07 eV in this paper.

Finally, the fourth line is the electron-phonon coupling
with the breathing mode coupling to the electron density and
the two Jahn-Teller modes coupling to the difference in e,
occuption. Avoiding to use too many parameters, we take, as
for the frequency, a unique coupling strength g. For the Jahn-
Teller modes it is related to the static Jahn-Teller energy
E;;=g%/2Q?, the ground-state energy if only the Jahn-Teller
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coupling and phonon energy is present. One can try to deter-
mine the Jahn-Teller coupling stength g from the lattice dis-
tortion. A distortion of 0.1 A which is consistent with some
LDA calculations*>%° leads to E,;;=0.25 eV and hence g
=0.05 eV?? for 0=0.07 eV. However, recent x-ray powder
diffraction and neutron powder-diffraction measurements
found a much larger distortion,®! which would result in un-
realistically large values for g or frequencies () at odds with
the Raman frequencies. We hence attribute these larger dis-
tortions to cooperative lattice effects and the quadratic vi-
bronic coupling to the electronic degrees of freedom. Possi-
bly also enhancement effects due to electronic correlations
play a role. As a consequency the precise value of g is an
open issue and we have hence done calculations for various
values of g. In Sec. V A, we provide for a new estimate of
the two parameters with the biggest uncertainty, i.e., U and g
on the basis of their experimental gap of undoped LaMnOj;
and the resistitvity for doped LaMnOs.

For the following results, Hamiltonian (1) is solved
using DMFT (Refs. 53-55) with Hirsch-Fye®? quantum
Monte Carlo (QMC) simulations supplemented by the
Blankenbecler-Scalapino-Sugar algorithm® for Holstein
phonons. To this end, the inverse temperature S is discretized
into L time slices ,=(I-1)A7, (I=1,...,L+1) of size A7
=0.25 eV~! and the 1, spin is assumed to be classical. Let
us briefly discuss some aspects of the phonon fields since
these are less commonly simulated in DMFT. The phonon
field can be described by a classical field ¢; with boundary
condition ¢, ,,=¢,.93 In the effective action, the kinetic and
potential energy of the phonons [third line in Eq. (1)] hence
become

Are -4\
K<{¢,}>=§E{(W) +02¢%]. (5)
I=1 T

We employ local updates for one time slice / and global
updates for all time slices, both having the form ¢, = ¢+ (x
—1/2)8¢ with a random number x €[0,1) and a properly
chosen amplitude S¢ different for local and global updates.
For low temperatures 7 and large electron-phonon couplings
g, the probability to go through the QMC sampling from a
region with large lattice distortion (occupied with one e,
electron) to a region with small lattice distortion without e,
electron becomes very low. This is quite similar to the Hub-
bard model where for large U and small 7, the transition
between configurations with predominately spin-up and spin-
down becomes very rare. Fortunately, the physics in both
situations is rather simple and a proper averaging between
spin-up and spin-down, respectively, small and large lattice
distortion is easily possible. In the latter (manganites) case,
the probability P=x for unoccupied, undistorted sites is
physical meaningful and also obtained by an extrapolation
from higher temperatures.

From the DMFT one-electron spectral function the optical
conductivity is calculated from the simple bubble diagram
given by two Green’s functions multiplied by two group ve-
locities (derivates of the dispersion relation). For the mag-
netic transition temperature T, the two particle Green’s func-
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FIG. 3. Local spectral density in the paramagnetic phase of
LaMnO; calculated for g=0.05 eV¥% U'=3.5 ¢V, and B
=30 eV~L. All other parameters are fixed as discussed in Sec. II.
The breathing mode phonon will only be included later in Sec. V.

tion and from that the inverse susceptibility crossing zero at
T, were calculated.

II1. INSULATING PARENT COMPOUND
A. Paramagnetic phase

We start our study with the undoped parent compound
LaMnO;, which for a static Jahn-Teller distortion was stud-
ied in Ref. 44 using LDA+DMFT. Figure 3 shows the spin-
and orbital-averaged spectral density Alw)=
—ﬁE 10IG*’(w) in the paramagnetic phase with the Green
functions G*(w) obtained for real frequencies w by the
maximum entropy method.®* It shows a three preak structure
very similar to the previous LDA+DMFT results** even
though no static Jahn-Teller distortion is present. The reason
for this is that the lattice dynamics leads to a similar (aver-
aged) lattice distortion as in the static case, see Fig. 4. At a
given time shot (or for a given QMC configuration), the two

0.14
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T
|
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FIG. 4. Probability distribution (in arbitrary unit) of the lattice
distortion for the Jahn-Teller coupling g=0.05 eV>?2, Coulomb re-
pulsion U’=3.5 eV and inverse temperature 8=16 eV~
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e, levels are Jahn-Teller split with the precise decomposition
of the lower (and higher) lying orbital depending on the sign
and admixture of the O, and Q5 Jahn-Teller modes. The first
peak around —1.3 eV corresponds to electronic states occu-
pying the lower of the two e, levels and the second one
around +1.3 eV to adding an electron in the higher lying
orbital. The third peak around +4.5 eV corresponds to exci-
tations to states with antiparallel 7,, spin, whereas the first
two peaks have parallel 1,, spin. In Fig. 3, there is still some
spectral weight in the gap which may stem from the phonon
sideband.®> The energy gap can hence only be obtained ap-
proximately. It is comparable to the experimental gap of
about 1 eV.2%?7 The consistency between the previous LDA
+DMEFT and the present DMFT model calculations supports
our realistic microscopic model in Eq. (1) for describing the
electronic behavior of LaMnO; and demonstrates once again
that the insulating ground state in LaMnO; at ambient con-
ditions results from the combination of the Coulomb interac-
tion and the Jahn-Teller coupling in addition to the Hund’s
coupling between the e, and ,, spins.

Figure 4 plots the probability distribution P(Q) with Q
:\J’Q§+Q§ for a given lattice distortion in the range [Q,Q
+dQ]. Note that the lattice distortion are converted into units
of A by multiplying a factor of #/\M, where M is the mass
of oxygen atom and that for a finite A7 the two modes are
not exactly symmetric.

We see that P(Q) has one broad peak located at around

f dQQP(Q)
0=———=0.167 A, (6)

JdQP(Q)

which corresponds roughly to Q*=g/0?>~0.15 A obtained
for a single-site model. As we have discussed, the discrep-
ancy from the neutron experiment®' is probably due to the
higher order quadratic vibronic coupling and the cooperative
effect between the adjacent MnOg Octahedra that share a
common oxygen atom.%® A recent LDA+U calculation has
taken into account these effects and produced the correct
experimental results.*’ Cluster extensions are required for
further realistic DMFT calculations.

B. Structural transition

Experimentally a structural first-order phase transition is
observed at Tpp=740 K with an abrupt volume
contraction.%! The lattice is nearly cubic above T, but has a
strongly distorted orthorhombic structure due to the static
Jahn-Teller distortion below T,(. The structural transition is
accompanied by an orbital order-disorder transition. The
low-temperature phase shows a staggered ordering of the
ds2_2 and dsp_2 orbitals in the a-b plane which repeats
itself along the ¢ direction.

With a slight modification of the single-impurity DMFT
(QMC) algorithm, we can study a hypothetical antiferromag-
netic orbital ordering on an AB lattice and draw some con-
clusions about the structural transition in LaMnOs. To study
the alternating orbital ordering, the cubic lattice is separated
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FIG. 5. (Color online) Local spectral density for the alternating
orbital ordering calculated by DMFT (QMC) with the two different
colors indicating the two inequivalent orbitals on a given site. The
parameters are U’ =3.5 eV, T=0.05 eV, and g=0.05 eV¥2.

into two sublattices A and B with opposite behavior of the
two e, orbitals: 37, (w)=35,(w). Due to the symmetry, we
only need to take care of a single lattice site of either type in
DMFT.

Figure 5 shows the local spectral densities of two e, or-
bitals for U'=3.5 eV, T=0.05 eV, and g=0.05 eV3/£ At
this temperature, the orbital symmetry is strongly broken:
One orbital is occupied with almost one electron while the
other orbital is only slightly occupied. Figure 5 also indicates
the contributions from different spin and orbital components.
A direct consequence of the orbital order is, due to the Jahn-
Teller coupling, a corresponding lattice distortion. Averaged
over the two orbital, the spectrum is actually very similar to
that of Fig. 3 with the two peaks at —1 and 2 eV stemming
from the spin states parallel to the local #,, spins. These two
peaks are split by a combination of Jahn-Teller coupling and
Coulomb interaction.

Figure 6 plots the orbital polarization P=|%(n}, —nj,)|,
i.e., the difference of orbital occupations nfw, as a function of
bandwidth and temperature. For W=3.6 eV, we find a finite
orbital polarization below 7=725 K, in agreement with the
experimental result of the structural transition temperature
Tpo=740 K. If we fix the temperature 7=0.05 eV and
vary the bandwidth as under pressure, the orbital polarization
is almost a constant for the bandwidth W<4.8 eV and then
decreases with increasing bandwidth until it is reduced to
zero at W=6.0 eV. This behavior reflects the nature of the
bandwidth-control metal-insulator transition in LaMnOs.
Here, W=4.8 eV corresponds to the critical bandwidth
where the split minority and majority e, bands start to over-
lap; and LaMnO; becomes metallic. Hence, for a larger
bandwidth, the orbital polarization decreases rapidly with in-
creasing bandwidth.

The bandwidth W=6.0 eV marks a second transition
where the orbital polarization and the Jahn-Teller distortion
are completely suppressed. Although different from Ref. 17,
we can still identify three distinct regimes at low tempera-
ture: (i) an insulating phase with orbital ordering and static
Jahn-Teller distortion below W=4.8 eV (or P;;;=32 GPa);
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FIG. 6. (Color online) Orbital polarization vs. temperature at
fixed W=3.6 eV (squares) and vs bandwidth at fixed 7=0.05 eV
(circles). The Jahn-Teller coupling is g=0.05 eV>? and the interor-
bital Coulomb repulsion U’'=3.5 eV.

(ii) an intermediate metallic phase with orbital ordering and
static Jahn-Teller distortion below W=~6 eV; and (iii) a me-
tallic phase with orbital symmetry and dynamic Jahn-Teller
distortion above W=6 eV.

Hence, the Hamiltonian (1) cannot only explain the onset
of orbital ordering at relatively high temperatures but also its
disappearance under pressure, leading to an insulator-to-
metal transition as in experiment. Hitherto, LDA+DFMT
calculations** needed to start with the experimentally ob-
served changes of the lattice parameters without taking into
account the microscopic origin of these, i.e., the Jahn-Teller
phonon modes. Let us also note that the symmetry breaking
leads to a rigid shift of the two e, bands against each other so
that a band-gap insulator emerges in this situation of a static
Jahn-Teller distortion. This is in striking contrast to the
doped case discussed in the next section, where the dynamics
of the Jahn-Teller modes result in an unusual “bad” insulator.

IV. DOPED MANAGANITES
A. Paramagnetic insulating state

Let us now turn to the doped manganites with their ex-
traordinary properties such as the colossal magnetoresis-
tance. For simplicity, we first neglect the breathing phonon
mode. We start by plotting the probability distribution of the
lattice distortion for n=0.8 (x=0.2) at different temperatures
and couplings in Fig. 7. The Coulomb interaction is fixed to
U'=3.5 eV throughout Sec. IV. In contrast to the single-
peak distribution obtained for the undoped case in Fig. 4, we
find two peaks in the distribution function at large Jahn-
Teller couplings for doped systems. The large peak located at
about g/Q? corresponds to the large lattice distortion due to
the Jahn-Teller coupling (and corresponds to the single peak
without doping) while the small peak stems from the quan-
tum and thermal fluctuation of the MnQOg octahedra which
due to the doping are not occupied with an electron (and
hence not strongly split by the electron-phonon coupling g).
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FIG. 7. (Color online) Probability distribution of the lattice dis-
tortion at n=0.8 e, electrons per site (i.e., doping x=0.2) for (a) g
=0.10 eV¥? and B=8 and 16 eV~!, and (b) B=16 eV~! and g
=0.05, 0.10, and 0.15 eV?¥2. (Note that in contrast to Fig. 1 of Ref.
52, the distortion due to both Jahn-Teller modes Q=\a"Q§+ Q% is
shown.)

While at a large coupling strength g = 0.1, the two peaks are
well separated, they merge into a single structure at weak
coupling such as for g=0.05 eV*? in Fig. 4.

The connection to the electronic spectrum is shown in
Fig. 8. For clarity, we separate the spectrum into two parts
originated from the large and small lattice distortions, re-
spectively. For the large lattice distortion, the corresponding
spectral density locates well below or far above the Fermi
energy. The low-energy part can be identified as localized e,
electrons or more precisely the transition from this state to
states without e, electron. The high-energy part stems from
the states which are pushed up by the Hund’s rule coupling,
the Jahn-Teller splitting, and the Coulomb repulsion. For the
small lattice distortion, most of the spectral density locates
slightly above the Fermi energy. They stem from the “undis-
torted” unoccupied states which are also called “midgap
states” in the literature.?6-3

The formation of lattice polarons provides for the basic
physics of doped manganites. The electron spectral density
can be seen as a combination of polaron states well below
the Fermi energy and the midgap states above the Fermi
energy. As shown in Fig. 8, this results in the strong suppres-
sion of the spectral weight at the Fermi energy and gives rise
to a large energy gap for g=0.15 eV>? and a pseudogap for
smaller Jahn-Teller couplings.

Let us discuss the role of the on-site Coulomb interaction
in the formation of the pseudo gap and hence the insulating-
like paramagnetic state of manganites. Figure 9 compares the
spectral densities for g=0.10 eV¥? with and without the
Coulomb interaction; Fig. 8 the corresponding probability
distribution of the lattice distortion. For U=5 eV (U’
=3.5 eV), some spectral weight is pushed away from the
Fermi energy to higher energies and the pseudogap is
strongly enhanced by the Coulomb interaction. Also the lat-
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FIG. 8. (Color online) Probability distribution of the lattice dis-
tortion and the corresponding electron spectral densities for the
Jahn-Teller coupling g=0.10 eV¥? (left panel) and 0.15 (right
panel) at inverse temperature 8=16 eV~! and n=0.8 e, electrons
per site. The electron spectral densities (lower two panels) are sepa-
rated into two parts with large and small lattice distortions. The
lattice distortion below which the spectral contribution is counted as
small distortion (red/dark gray line in the lower panels) and above
which as large distortion (green/light gray line) is marked by an
arrow in the two respective upper panels. The phonon distribution at
£=0.10 eV¥? without the Coulomb interaction is also shown for
comparison.

tice distortion shows a more pronounced separation of the
two peaks which indicates the enhancement of the polaron
formation by the Coulomb interaction. This confirms the im-
portant role of the Coulomb interaction.

Let us now consider the gradual switching on of the Jahn-
Teller couplings g at fixed 8=16 eV~ and n=0.8 shown in
Fig. 10. Without Jahn-Teller coupling, the spectrum has a
broad quasiparticle peak at the Fermi energy and the system
is metallic. With increasing g, the quasiparticle peak is

02 T T T T T

0.15—

-4 -2 0 2 10 12

®EV)

FIG. 9. (Color online) Paramagnetic electronic spectral density
at n=0.8, B=16 eV~!, and g=0.10 eV>? comparing U=0 eV and
U=5 eV (U'=3.5 eV).
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FIG. 10. (Color online) Electron spectral density in the para-
magnetic phase for different couplings g=0, 0.05, 0.10, and
0.15 eV*2. The parameters are =16 eV~! and n=0.8. The quasi-
particle peak is suppressed at large g, giving the pseudogap behav-
ior for intermediate coupling and a large energy gap for strong
coupling.

gradually suppressed and the spectral weight at the Fermi
energy is reduced, leaving a dip in the spectrum for interme-
diate coupling and an energy gap for strong coupling. The
low- (high-) energy Hubbard band also shifts toward lower
(higher) energies. An additional peak shows up at
=1-2 eV, ascribed to the midgap states with small dynamic
lattice distortion.

Turning to the doping dependence at fixed =16 eV~!
and g=0.10 eV¥? in Fig. 11, we see that the system is a
good insulator with a large energy gap of about 2.3 eV with-
out doping. This is larger than the experimental gap of 1 eV
and hence suggests that a smaller Jahn-Teller coupling such
as g=0.05 eV*? used in Sec. I1I is more realistic. But for the
qualitative discussion here, we continue with g=0.1 eV*?
since for this larger Jahn-Teller coupling the different fea-
tures of the spectrum can be better identified. A small doping
x=0.1 introduces some midgap states just above the Fermi

| - n=1.0

0.25— — n=0 9 —
I — n=0.8| ]
021 .. |—n=0.5|
§O.15* ‘
< |

0.1—

005~

FIG. 11. (Color online) Paramagnetic spectral density for differ-
ent electron occupations n=1.0, 0.9, 0.8, 0.5, and 0.3 at B
=16 eV~ and g=0.10 eV*2.
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FIG. 12. (Color online) Optical conductivity in the paramagnetic

phase at average occupancy n=0.8 and inverse temperature S=38,
16, and 30 eVl

energy and changes the large energy gap into a pseudogap at
the Fermi energy. If the doping is large enough, the midgap
states can dominate at the Fermi energy so that the
pseudogap is completely filled at n=0.3. However, due to the
strong phonon and spin scattering, the quasiparticle peak is
still damped (broadened); i.e., the lifetime of the quasiparti-
cles is very short. This physical situation can give rise to an
insulatinglike increase in the resistivity with decreasing tem-
perature see Fig. 18 below, also see the following discussion
of the T dependence of the optical conductivity in the next
paragraph and Fig. 12. But as the spectrum, Fig. 11, clearly
shows, the state is entirely different from the normal
(gapped) insulator we find for the undoped parent compound
(n=1).

Since the temperature dependence of the spectrum was
already discussed in Ref. 52, we restrict ourselves here to the
optical conductivity in Fig. 12. The low energy optical con-
ductivity is suppressed as a result of the pseudogap in the
spectral density. With decreasing temperature, the optical
spectrum is more suppressed since there are less thermal ex-
citations and the two peak lattice distortion becomes more
pronounced (Fig. 7) as does the pseudogap.’> Hence, the
resistivity is enhanced at low temperature, giving rise to the
insulating behavior in the paramagnetic phase, see Ref. 52
for the T dependence of the resistivity.

The two peaks of the optical spectrum stem from the two
peaks in the electronic spectrum above their Fermi energy.
An excitation of an electron into the unoccupied, undistorted
states just above the Fermi energy gives rise to the midgap
states around 1.5 eV. Transitions to the distorted states far
above the Fermi energy with two e, electrons are at the ori-
gin of the peak around 6 eV.

B. Ferromagnetic phase transition

The low-temperature ferromagnetic phase is a bad metal
which due to the strong spin and phonon scattering has qua-
siparticles with very short lifetimes and no true Drude
peak.”? Here, we will concentrate on the ferromagnetic phase
transition which can be either driven by applying a magnetic

PHYSICAL REVIEW B 82, 195109 (2010)

1200

1000 —

200 — -

| | | | | | |
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
doping, x

FIG. 13. (Color online) Curie temperature as a function of dop-
ing x=1-n for g=0.10 eV>2.

field or by decreasing the temperature. Figure 13 shows the
doping dependence of the Curie temperature for the Jahn-
Teller coupling g=0.10 eV*¥2. Compared to the experimen-
tal results, the theoretical predictions of T, have a similar
shape with a maximum at intermediate doping but overall the
values of T, are about two to three times larger in magnitude.
Close to the undoped parent compound (x=0, n=1), the
Curie temperature is suppressed since the Coulomb interac-
tion hinders the movement of the electrons so that the double
exchange is no longer effective; instead antiferromagnetism
prevails.*!

The magnitude of the Cure temperature depends strongly
on the strength of the Jahn-Teller coupling and the hopping
integral of the e, electrons. Figure 14 plots its coupling de-
pendence at n=0.8, which are similar to the previous
results.?>%3 The Curie temperature decreases rapidly with in-
creasing coupling. For strong Jahn-Teller coupling, a slight
increase of g from 0.10 to 0.12 (or the dimensionless cou-
pling \ from 2.0 to 2.2) reduces 7, by a factor of 2 so that
¢=0.12 eV¥? (or N=2.2) gives the correct experimental
value.

The Curie temperature may also be affected by many fac-
tors which are not included in our low-energy Hamiltonian.

3000

2000

1000 |~

500 —

FIG. 14. (Color online) Curie temperature as a function of the
dimensionless coupling A=g/Q\1, at n=0.8.
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FIG. 15. (Color online) Probability distribution of the breathing
(Q;) and Jahn-Teller (Q) modes for the model Hamiltonian (1). The
parameters are n=0.8 and B8=16 eV~!, U=5 eV, U'=3.5 eV, J
=0.75 eV, g=0.08 eV32, and Q=0.07 eV for all three modes.

These include the quantum fluctuation of Mn #,, spins and
the antiferromagnetic superexchange coupling between
Mn t,, spins. Both tend to weaken the ferromagnetic order
and suppress the Curie temperature. The antiferromagnetic
superexchange coupling has been estimated to be the order
of 200 K (Refs. 16 and 67) which, if taken into account,
would greatly reduce the theoretical value of the Curie tem-
perature. Also the mean field character of the DMFT ap-
proximation tends to overestimate the Curie temperature.

In the literature, the Curie temperature has been calcu-
lated with different methods such as DMFT,*-37# conven-
tional mean field theory,®® QMC simulations,%® and the
many-body coherent potential approximation.®> Some of the
results seem to be in better agreement with experiments.
However, we should note that these results are all based on
the details of the models and approaches and are very sensi-
tive to the values of the parameters which, unfortunately, are
not always reliable and, as a matter of fact, vary considerably
in the literature. A complete analysis of the problem is still
required.

V. BREATHING MODE

In this section we include a third electron-phonon cou-
pling, the breathing mode which couples to the electron den-
sity, see Sec. II. Figure 15 shows the probability distribution
of both the breathing and Jahn-Teller phonon fields at
=16 eV7!, n=0.8, g=0.08 eV¥%, U=5 eV, J=0.75 eV,
and U'=3.5 eV, and a phonon frequency 2=0.07 eV for all
three modes. Except for the Jahn-Teller distortion Q being
positive by definition, the distribution function of the breath-
ing phonon is similar to that of the Jahn-Teller distortion and
also has two peaks located at about g/Q? and 0. These two
peaks are related to the polaron states and the midgap states
discussed before. The only difference is the way in which the
phonon modes are coupled to the e, electrons: the breathing
mode is coupled to the electron density, while the Jahn-Teller
modes are coupled to the orbital polarization (with respect to
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FIG. 16. (Color online) Electron spectral density for U’
=3.5 eV, n=0.8, and B=16 eV~'. The coupling constant is taken
as g=0.08 eV*? for calculations with all three phonon modes and
¢=0.08, 0.10 eV¥? for calculations with only the Jahn-Teller
modes. The phonon frequencies are taken as (1=0.07 eV for all
three modes.

a certain basis). Due to the Hund’s coupling and the strong
Coulomb interaction, double occupations are forbidden.
Hence, the difference is not reflected in the distribution func-
tion.

Since the breathing mode only couples to the electron
density, it lowers the localization energy of the polaron states
but leaves the midgap states unchanged. The e, electrons are
thus more localized due to the inclusion of the breathing
mode and the system becomes more insulating.

Figure 16 compares the spectral densities at 8=16 eV~!
and n=0.8 with and without the breathing phonon. As ex-
pected, we see the density of states at the Fermi energy to be
strongly suppressed by the existence of the breathing mode,
demonstrating how the breathing mode supports the tenden-
cies toward localization of the e, electrons.

A. Determing U and g

Let us now try to estimate from our results including the
breathing mode the two parameters with the hitherto largest
uncertaity, i.e., the on-site Coulomb interaction U and the
electron-phonon coupling g. All other parameters are fixed as
discussed in Sec. II. To this end, we fit the two parameters to
two experimental values, i.e., the experimental gap of un-
doped LaMnO; which is 1 eV and the resitivity for x
=17.5% Sr doping which is 0.035  cm. The calculations
are done for 8=30 eV~

The inset (a) of Fig. 17 plots the energy gap for different
Coulomb interactions U and Jahn-Teller couplings g calcu-
lated by DMFT (QMC) for the model Hamiltonian (1). As
expected, the energy gap depends strongly on both param-
eters.

The inset (b) of Fig. 17 shows the DMFT (QMC) results
of the resistivity for different U and g at n=0.825 (x
=0.175) and 8=30 eV~'. As has been analyzed before, the
Coulomb interaction also affects the resistivity of the system
since it enhances the electron localization. This is now
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FIG. 17. (Color online) Two sets of parameters which fit the
experimental energy gap in LaMnOj; and the resistivity in
Lag 25S10.17sMn0O3. Their intersection gives a single set (U,g)
which is expected to describe quantitatively both doped and un-
doped manganites. The insets show the DMFT (QMC) results as a
function of the Coulomb interaction U and the Jahn-Teller coupling
g for: (a) the energy gap at n=1 and (b) the resistivity at n=0.825.
Both are calculated at =30 eV~!. The experimental results are
indicated by the dotted line with the 1 eV energy gap in LaMnO;
and the resistivity of about 0.035 Q cm for Lagg,5Srg175sMnO3
(Refs. 4 and 5).

proved explicitly in the figure. The resistivity increases with
increasing U, albeit it depends more sensitive on g than on
U.

By comparing with the experimental data (dotted lines in
the two insets), the two experiments provide for two different
sets of U and g parameters which we plot in the main panel
of Fig. 17. Only the intersection at U=3.3 eV and g
=0.077 eV?¥? agrees with both experiments. These param-
eters determined by us agree with the crude estimates of Sec.
II. We hence expect this parameter set, summarized in Table
I, to be the proper set for the model Hamiltonian (1), describ-
ing both doped and undoped manganites.

As an additional test, suggested to us and carried out a
posteriori, we study the change of the resistivity with tem-
perature and that from the paramagnetic to the ferromagnetic
phase in Fig. 18. Both changes basically agree with experi-
ment, i.e., at the experimental Curie temperature a similar
jump in resistivity when going from the paramagnetic to the
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FIG. 18. (Color online) Resistivity of Lagg,sSt7sMnO; as a
function of temperature comparing LDA+DMFT with three experi-
mental figures from Refs. 4 and 12, respectively. All parameters
have been determined a priori and are summarized in Table I (n
=0.825). Within the experimental ambiguity, our theoretical results
agree both in the insulatinglike increase in the paramagnetic (PM)
resistivity with decreasing temperature and the colossal drop in re-
sistivity upon entering the ferromagnetic (FM) phase.

ferromagnetic phase is found.%® Indeed the largest source of
ambiguity appears to be the experimental uncertainty of a
factor 2-3 in the resistivity. There are several potential ori-
gins of the rather different experimental resistivities: (i) the
exact doping level x is difficult to control; (ii) the samples
might have irregular shapes; and (iii) scattering at grain
boundary. Fortunately this experimental uncertainty only
translates into rather tiny uncertainties in the determined
Coulomb and Jahn-Teller interactions: 6U~0.2 eV and Ag
~0.002 eV32,

This shows that both Coulomb interaction and electron-
phonon coupling need to be included, in agreement
with#4452.36 but in contrast to earlier theoretical calculations
based on the electron-phonon coupling alone.>37-3% Without
Coulomb interaction, a sizeable change in resistivity when
going from the paramagnetic to the ferromagnetic phase
could indeed only be described at quarter filling (n=1)
whereas in experiment and in our calculations, see, e.g., Fig.
18, the CMR is found in a large doping range.

B. Optical conductivity

The optical conductivity with the breathing mode in-
cluded for the determined set of parameters is presented in

TABLE I. Parameters estimated for doped and undopd manganites. W=06¢,: bandwidth; U: intraorbital

Coulomb interaction; J: e,

-e, Hund’s exchange; J: e,-t,, Hund’s coupling; {): phonon frequency; and g:

Jahn-Teller coupling. The bandwidth is obtained from the LDA calculations for the cubic structure (Ref. 44),
the Hund’s coupling is calculated by the constrained LDA for the ferromagnetic phase, and the phonon
frequency is estimated from the Raman spectroscopy (Ref. 59). Only the Coulomb interaction U and the
Jahn-Teller coupling g are estimated from the DMFT (QMC) calculations for the model Hamiltonian (1) by
fitting the experimental data of the energy gap in LaMnOj; and the resistivity in Lag g»5S1 175MnO3, see Fig.

17.
w U 2718 J Q g
(eV) (eV) (eV) (eV) (eV) (eV3?)
3.6 3.3 2.7 0.75 0.07 0.077
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FIG. 19. (Color online) Optical conductivity at doping x=0, 0.1,
and 0.175 in the PM phase and at x=0.3 in the FM phase. The
parameters are taken as is in Table I and the inverse temperature is
B=30 eV~!. The inset shows the effective carrier concentration cal-
culated from the integrated optical conductivity.

Fig. 19. The inset is the effective carrier concentration
N,f(w) calculated from the integral of the optical conductiv-
ity which can be compared directly to the experimental re-
sults of Ref. 27. We see a continuous crossover from the
undoped to the doped system and a good agreement in the
general behavior of the optical conductivity with experiment.
However, the experimental magnitude of the optical peaks
are two to three times larger than the theoretical one.? This
gives rise to an unexpected large experimental N,;{(w) even
below 4 eV, in contrast to the theoretical predictions pre-
sented in the inset of Fig. 19. This suggests that, besides the
e, states also oxygen p and Mn 1,, states which we did not
account for in the theoretical calculation contribute to the
experimental optical conductivity. Another possible explana-
tion is the insufficiency of the group velocity as a substitute
for the more appropriate dipole matrix elements.

VI. CONCLUSION

We have used DMFT to study the physics of manganites
by hands of a realistic microscopic model which takes into
account both the electron-electron and electron-phonon inter-
actions, together with the Hund’s rule coupling between the
e, conduction electrons and the #,, spins. In the undoped
system, the model produces similar results as the previous
LDA+DMEFT calculations and, most surprisingly, it also pre-
dicts the correct structural transition temperature from dy-
namic to static Jahn-Teller distortion. In the doped phase, the

e, electrons are trapped by the large lattice distortion and

PHYSICAL REVIEW B 82, 195109 (2010)

form a lattice polarons. This process is strongly supported by
the Coulomb interaction. Our results provide for an explana-
tion of the insulatinglike paramagnetic state over a wide
range of doping. The CMR is a result of a transition toward
a ferromagnetic (bad) metallic state at a Curie temperature
which shifts by applying an external magnetic field. The dy-
namical properties are determined by the polaron states and
midgap states which stem from the undistorted unoccupied
states slightly above the Fermi energy. The combination of
both gives rise to the pseudogap behavior observed in doped
manganites. The inclusion of the breathing mode further fa-
vors the tendencies toward polaron formation. Our results
show that the realistic microscopic model can be applied to
both doped and undoped manganites and can therefore be
taken as the starting point toward a complete understanding
of the physics of manganites. For future studies we provide
for a realistic set of model parameters in Table L.

Let us finally discuss the most important terms neglected
and the limitations of the calculations. The most important
terms not taken into account in our study, also see, Ref. 56,
are: (i) a cooperative Jahn-Teller term coupling Jahn-Teller
phonons on adjacent sites which will further support the ten-
dencies toward structural phase transition, which we dis-
cussed in Sec. Il B. (ii) The (antiferromagnetic) superex-
change coupling between the #,, spins which will reduce the
critical (ferromagnetic) transition temperature calculated in
Sec. IV B but will, as the cooperative Jahn-Teller term, oth-
erwise hardly affect the results within DMFT, in particular
not in the paramagnetic phase.

For a three-dimensional system as the manganites DMFT
(which we solve numerically exactly by QMC) is reliable in
the paramagnetic phase since nonlocal correlations become
important only in the immediate vicinity of a phase
transition.”®”! The critical temperatures for these phase tran-
sitions on the other hand are quite substantially overesti-
mated by ~30%. Together with the expected effects of the
aforementioned neglected terms in the Hamiltonian, we can
hence conclude that the biggest limitations of our calcula-
tions concern the phase transitions toward long-range orbital
or magnetic ordering. This can be improved upon by extend-
ing the Hamiltonian and by going beyond DMFT, e.g., by
cluster’® or diagrammatic extensions.”>”3
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