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With an increasing complexity of nanoscopic systems and the modeling thereof, new theoretical tools

are needed for a reliable calculation of complex systems with strong electronic correlations. To this end,

we propose a new approach based on the recently introduced dynamical vertex approximation. We

demonstrate its reliability already on the one-particle vertex (i.e., dynamical mean field theory) level by

comparison with the exact solution. Modeling a quantum point contact with 110 atoms, we show that the

contact becomes insulating already before entering the tunneling regime due to a local Mott-Hubbard

transition occurring on the atoms which form the point contact.
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Introduction.—In recent years, we have seen tremendous
experimental progress in the direction of man-made nano-
structures. For example, with the wizardry of modern
semiconductor technology quantum effects in quantum
dots could be revealed [1–7]; in the area of molecular
electronics transport through single molecules can now
be studied [8–10]; and for magnetic storage technology
nanoclusters of transition metals on surfaces become rele-
vant [11]. In all three examples electronic correlations play
a decisive role since the restriction to nanostructures brings
the electrons close to each other so that their mutual
Coulomb interaction becomes large (compared to their
kinetic energy or tunneling rates). As a matter of fact,
electronic correlations are not only genuine to nanostruc-
tures, but they also make them fascinating, both from the
basic research point of view, with new physics occurring,
and from the point of applications since strong correlations
result in spectacular physical properties. An example is the
Kondo physics which overcomes the Coulomb blockade
and which has been observed in the conductance of quan-
tum dots [2–5,7] as well as for small clusters and individual
adatoms [12–15].

The theoretical modeling of strong correlations in nano-
structures attached to some environment (bath) such as the
source and drain electrode in case of the quantum dot or the
surface for the transition metal cluster is hitherto based on
generalizations of the Anderson impurity model (AIM)
[5,7,16–18]. However, if one is not only dealing with a
single or two ‘‘sites’’ (say the number of quantum dots), the
numerical effort to solve the corresponding AIM becomes
prohibitively expensive. More precisely, the effort grows
exponentially with the number of sites for an exact [19,20]
or numerical renormalization group [18] treatment. This
restricts these methods to Oð2Þ sites coupled to a bath.
Related dynamical matrix renormalization group ap-
proaches [21] might allow for slightly larger systems but
ultimately suffer from the same nonpolynomial problem,
except for truly one-dimensional geometries. Potentially
more efficient quantum Monte Carlo (QMC) methods [22]

on the other hand exhibit a growing sign problem with
increasing system size, restricting such methods to Oð10Þ
sites. Hence a good theory for correlated nanosystems with
even a few coupled nano-objects is presently missing. Such
a theory is, however, mandatory since future technological
applications will require the engineering of complex net-
works of such nano-objects—be it for a quantum computer
or for a von Neuman computer based on such small struc-
tures so that quantum effects are no longer negligible.
On the other side, dynamical mean field theory (DMFT)

[23–26] along with its cluster [22] and diagrammatic ex-
tensions such as the dynamical vertex approximation
(D�A) [27] and the dual fermion approach [28] has been
applied to strongly correlated electron systems with great
success: on the model level, among others, the Mott-
Hubbard transition [24,25], magnetism [29], and kinks in
strongly correlated systems [30–32] could be better under-
stood or have even been discovered. Merging DMFT with
density functional theory in the local density approxima-
tion (LDA) [33–36] turned out to be a breakthrough for the
calculation of actual materials with strong correlations. By
construction, these DMFT calculations are done in the
thermodynamic limit, i.e., for a macroscopically large
system.
There has been one attempt by Florens [37] to establish a

nanoscopic version of DMFT. The idea behind Florens’s
nano-DMFT approach is the limit of a large number of
neighbors with a central site in the middle, surrounded by
many neighbors which in turn are coupled to many neigh-
bors, etc. In such a geometry (e.g., of a Cayley-type tree),
one gets a recursive method where the inner sites depend
on their outer neighbors but not vice versa. Experimentally,
however, such a geometry with more and more neighbors is
hardly realizable, and the approach has been scarcely used
in practice [38].
Here, we hence take another route based on the D�A

concept of the locality of the fully irreducible n particle
vertex �. While the calculations in this first paper will be
for n ¼ 1, i.e., on a DMFT-like level, we call the approach
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nano-D�A in the following—also to distinguish it from the
aforementioned nano-DMFT. Below, we introduce the ap-
proach, validate its range of applicability against the exact
numerical solution for system sizes where this is still
possible, and demonstrate its potential by hands of calcu-
lations for a quantum point contact with 110 sites.

Method.—As pointed out in the introduction, we are
interested in a nanoscopic system consisting of nano-
objects (sites) i which are hybridized via tij, interacting

by a Coulomb repulsion Ui and coupled by Vi�k to some
noninteracting environment, see Fig. 1. The Hamiltonian
hence reads

H ¼ X

ij�

tijc
y
i�cj� þX

i

Uic
y
i"ci"c

y
i#ci# þ

X

i�k�

Vi�kc
y
i�l�k�

þ H:c:þ X

�k�

��kl
y
�k�l�k�; (1)

where cyi� (ci�) and ly�k" (l�k") denote the creation (annihi-

lation) operators for an electron with spin � on site i and in
lead � state k with energy ��k, respectively. While we
consider a single band situation in the following,
Hamiltonian (1) can easily be generalized to include orbital
realism, leading to an additional orbital index in the second

quantization operators and orbital matrices in the Green
functions and self-energies below.
As an exact solution of Hamiltonian (1) is possible at

most for Oð10Þ interacting sites, we here propose an ap-
proximate D�A solution. To this end, we first need to
calculate the fully irreducible n-particle vertex on every
site i with the interacting Green function Giið!Þ and
Coulomb interaction Ui as an input, see Fig. 2. In practice,
this is done by numerically calculating the corresponding
n-particle vertex of an associated AIM. Note that the effort
for this computationally most expensive step only grows
linearly with the number of sites and is easily paralleliz-
able. From the n-particle vertex in turn, we recalculate the
Green function and proceed with the first step until con-
vergence. In the case n ¼ 1, the one-particle fully irreduc-
ible vertex is simply the self-energy�ð!Þ which is directly
related to Giið!Þ through the Dyson equation given in
Fig. 2 in matrix notation for the site indices ij. For n ¼
2, one needs instead to use the parquet equations to go from
the irreducible vertex to the reducible one and the exact
equation of motion to get the self-energy before proceed-
ing with the Dyson equation, similarly as discussed in
Ref. [27] for an infinite system.
Let us note that the approach becomes exact in several

limits: (i) U ! 0, (ii) V ! 1, (iii) number of connections
to neighbor sites Z ! 1, and, if each site couples to its
own lead (iv) t ! 0. While the exact QMC simulation is
impossible for large clusters due to the so-called sign
problem, our method is sign problem free. For n ¼ 2 the
approach also takes into account the Cooperon diagrams so
that weak localization physics is explicitly included, as are
spin fluctuations.
Validation vs exact result.—As a first test case and to

validate the approach for n ¼ 1 against the numerically
exact solution, we consider the six-site benzene geometry
of Fig. 1 (upper panel) with a constant density of states � in
the contacts from �D to D around the Fermi level (D ¼
2t, t ¼ 1 sets our unit of energy in the following); and a
site-diagonal hybridization Vi�k ¼ V�i�. Two topologies
are considered: (i) hopping tij restricted to the two nearest

FIG. 1 (color). Abstract scheme of the nanosystems investi-
gated: benzene geometry (top) and quantum point contact with
110 atoms (bottom). The individual nano-objects (blue sites) are
connected by tunneling channels with amplitude t. These am-
plitudes might be rather complex and dependent on the distance
as exemplified by the t0 and t00 tunneling channels. The whole
nano system is connected via some additional tunneling channels
V to the environment sketched schematically in red and orange
and assumed to be noninteracting. Possible experimental real-
izations are coupled quantum dots or molecules connected to
source and drain electrodes or a cluster of Fe atoms with the
environment being a surface instead of the indicated geometry.
Electronic correlations are particularly strong because of the
nanostructuring.

FIG. 2. Nano-D�A algorithm consisting of two self-
consistency steps: (1) from the local Green function Gii and
Coulomb interaction Ui the n-particle fully irreducible vertex
�irr
ii has to be calculated; (2) from �irr

ii a new Green functionGii is
determined through the Dyson and parquet equation, respec-
tively.
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neighbors in the hexagon (NN t) and (ii) an equal hopping
to all sites (all t). Both D�A and the exact solution are
calculated by means of QMC simulations [41] for U ¼ 5t,
temperature T ¼ 0:05t.

Figure 3 shows the calculated local spectral function in

an interval 2T around the Fermi level (set to zero) Að0Þ ¼R
d!Að!Þ=½e!=2T þ e�!=2T�. The results clearly show that

nano-D�A is reliable both for a hybridization V * t and if
enough neighbors (in our case 5 in the all t topology) are
involved in the hopping processes. There are some devia-
tions for the NN t case if V & t since in this situation
nonlocal correlations such as those involved in forming a
two-site singlet are relevant. If the hopping is to all neigh-
bors though, no deviations could be identified all the way
down to the last calculable point V ¼ 0:8t. Below V ¼
0:8t, the sign problem becomes too severe [average sign
Oð10�3Þ], and only the nano-D�A solution is possible—in
a situation very favorable for nano-D�A because of the
many neighbors. Also other approaches such as exact
diagonalization are not possible since together with a
modeling of the leads there are too many sites. Note that
another indication for the small correction is the off-
diagonal exact self-energy, which is smaller than 10�2t
for V > t and nearest-neighbor hopping as well as for all V
and hopping to all neighbors.

In the inset to Fig. 3, we present the conductance G
through the benzenelike nanostructure (upper panel of
Fig. 1), from one side of the molecule to the opposite
side, calculated along the lines of Ref. [42], i.e., without
vertex corrections. As the local spectral function, the con-
ductance again shows the reliability of the calculation al-
ready at the n ¼ 1 level, with discernible deviations from

the exact solution only for a low number of neighbors (i.e.,
two NN only) and small hybridization to the leads V. The
results can be understood as follows: at small V, we have a
conductance through two tunneling lead-benzene contacts,
leading to an increase of G� V4 (i.e., squared tunneling
rate � ¼ �V2�). In the large V region on the other hand, a
Kondo resonance between the individual sites of the mole-
cule and the respective lead forms, which suppresses the
competing intermolecule hopping and hence the transport
through it. If hopping between all sites is allowed (all t),
this effect is less pronounced since there is a direct hopping
channel between the opposite sites to which the voltage has
been applied. Experimentally, transport through a benzene
ring coupled to two Pt leads has been measured recently
[43]. For our geometry similarly large conductances of
Oð0:1Þe2=h were observed.
Quantum point contact (QPC).—To demonstrate the

suitability of the approach for more complex nanosystems,
let us now consider a QPC. Experimentally it can be
realized, e.g., through a mechanically controllable break
junction of a conducting wire, see, e.g., Refs. [44,45] and,
with a molecule in between, Ref. [46]. The assumed ge-
ometry is based on a body-centered cubic basic structure
narrowed to a double-cone-like junctions as shown in
Fig. 1 (lower panel). For the moment we assume a single
band which might be realizable in more complex wires
such as cuprate and cobaltate wires, but realistic calcula-
tions, e.g., in the spirit of LDAþ DMFT [33–36], are
certainly possible. The parameters are U ¼ 4t, t ¼ �1,
t0 ¼ �0:4, V ¼ 0:4, and T ¼ 0:05t. Each calculation takes
about 10 h with a mild parallelization on 25 Nehalem Intel
processor cores (X5550, 2.66 GHz), showing that much
bigger calculations or calculations with orbital realism are
possible. When slowly breaking up the junction the hy-
bridization (tunneling) tQPC between the two atoms form-
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FIG. 3 (color online). On-site spectral function Að0Þ vs hybrid-
ization V, comparing nano-D�A (lines) with the exact QMC
solution (symbols) for two different geometries: hopping to two
nearest neighbors only and hopping to all neighbors. Inset:
Conductance between two opposite leads of the benzene ring,
i.e., between the dark red leads of Fig. 1, for both topologies of
neighborhood. Together with the low off-site-diagonal self-
energy, the results show that nano-D�A is reliable if either the
hybridization strength is sufficiently strong or if the hopping is to
sufficiently many neighbors.
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FIG. 4 (color online). Conductance G across the quantum
point contact (QPC) of lower panel of Fig. 1 vs hybridization
tQCP between the two atoms of the QPC. G becomes almost zero

for jtQCPj & 0:5t. Inset: Spectral function layer by layer across

the quantum point contact for two tQCP’s below and above the

conductance increase, revealing a local Mott-Hubbard transition
in the two atoms forming the QPC.
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ing the point contact will change most strongly and is
hence varied.

Surprisingly, we observe a dramatic reduction of the
conductance for jtQPCj & 0:5t in Fig. 4. Breaking up the

junction triggers a local Mott-Hubbard ‘‘transition’’ (more
precisely a crossover) of the two atoms forming the quan-
tum point contact, see Fig. 4 inset. Therefore the conduc-
tance drop with increasing distance between the two atoms
is faster than the exponential decay of tQCP with distance.

Our findings might explain similar experimental observa-
tions [47] in transition-metal point contacts with partially
filled d shells, where the electrons are actually similarly
strongly correlated as in our calculation. This effect could
not have been revealed with hitherto employed methods
[45] such as LDA, Landauer formalism, or Coulomb
blockade calculations.
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