
PHYSICAL REVIEW B 85, 035102 (2012)

Cluster-size dependence in cellular dynamical mean-field theory
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We examine the cluster-size dependence of the cellular dynamical mean-field theory (CDMFT) applied to the
two-dimensional Hubbard model. Employing the continuous-time quantum Monte Carlo method as the solver for
the effective cluster model, we obtain CDMFT solutions for 4-, 8-, 12-, and 16-site clusters at a low temperature.
Comparing various periodization schemes, which are used to construct the infinite-lattice quantities from the
cluster results, we find that the cumulant periodization yields the fastest convergence for the hole-doped Mott
insulator where the most severe size dependence is expected. We also find that the convergence is much faster
around (0,0) and ( π

2 , π

2 ) than around (π,0) and (π,π ). The cumulant-periodized self-energy seems to be close
to its thermodynamic limit already for a 16-site cluster in the range of parameters studied. The 4-site results
remarkably agree well with the 16-site results, indicating that the previous studies based on the 4-site cluster
capture the essence of the physics of doped Mott insulators.
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I. INTRODUCTION

A range of anomalies observed in the normal state of
high-TC cuprates indicates a momentum-space differentiation
of the electronic structure. For instance, the pseudogap1 and
Fermi arc2,3 observed by the angle-resolved photoemission
spectroscopy suggest a gap in the single-particle excitation
spectra around antinodal points [i.e., (π,0) and its symmet-
rically related points in the Brillouin zone] while there is a
metallic spectrum around nodal points [i.e., (π

2 , π
2 ) and its

symmetrically related points]. Since undoped cuprates are
considered Mott insulators4, these findings have directed the
attention to doped Mott insulators where strong electronic
correlations may cause unprecedented metallic states. The
simplest play-ground model which describes the doped Mott
insulators is the Hubbard model in two dimensions. In
fact, various numerical calculations for the model suggest a
momentum-space differentiation of electronic properties at
small doping,5–13 similarly to the experimental results on
cuprates. Nevertheless, many fundamental questions remain
unresolved on how the metal-Mott insulator transition takes
place in two dimensions: How does the Fermi surface evolve
while approaching the Mott insulator? Is there a Fermi arc or
Fermi pocket in the underdoped region? Is the length of this
Fermi arc/pocket going to zero while approaching the Mott
insulator? Or/and is the weight of the quasiparticle excitations
fading away at the Mott transition? Is there a quantum critical
point and/or non-Fermi liquid phase in between the Fermi
liquid and the Mott insulator? Is the Luttinger sum rule fulfilled
in the whole doping range?

To address these issues, we need a method that can describe
sufficiently well the momentum dependence of the electronic
structure. We also need to treat on the same footing the
low and high energy scales, since the electronic structure is
reconstructed on a wide energy range in Mott-related phe-
nomena. Schemes which have been developed to fulfill these
requirements are, for instance, the cluster extensions of the
dynamical mean-field theory (DMFT),14 such as the cellular
DMFT (CDMFT)15 and the dynamical cluster approximation

(DCA).16 Both theories map the Hubbard model onto an
effective model consisting of an interacting small cluster and
noninteracting infinite bath. CDMFT defines the effective
model in real space while the DCA defines the effective model
in momentum space (see Fig. 1 for an illustration). In both
theories, the resolution in momentum space is limited by the
cluster size, so that a high momentum resolution requires a
large cluster, intractable with present computational resources.

The advantage of DCA is that it keeps the translational
symmetry of the original lattice. This allows one to define
cluster momenta by partitioning the Brillouin zone into several
patches [Fig. 1(b)]. The momentum dependence of the self-
energy within each patch is neglected. Then, the coarse-
grained Green’s function, which is employed in the self-
consistency loop, is defined by averaging over all momenta
within each patch (e.g., including momentum on the Fermi
surface and far away from it). Hence, in the parameter region
where the momentum-space differentiation is crucial, the
analysis with a small cluster may lose important information.
For example, a recent systematic study on the cluster-size
dependence in the DCA17 has shown that the nodal-antinodal
momentum-space differentiation is not clearly seen with the
4-site cluster patched as in the left panel in Fig. 1(b), while it
is seen with another choice of the momentum patch (and with
larger clusters).

On the other hand, CDMFT is performed by defining a
real-space finite-size cluster. It explicitly takes into account
short-range correlations within the cluster. This scheme does
not need the average over momentum, but instead, it breaks
the translational invariance, which has to be restored only at
the end by deriving lattice quantities from the cluster ones
through a periodization procedure. This latter problem has
been analyzed by some of the authors10–12 using the 2 × 2-
cluster CDMFT. The results suggest that a normal Fermi liquid,
realized at high doping, evolves by reducing doping toward a
Mott insulator through (at least) two quantum phase transitions
to non-Fermi liquid phases by topological changes of the Fermi
surface and the appearance of a surface of zeros of Green’s
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FIG. 1. (Color online) (a) Cluster geometries employed in the
present CDMFT study. For comparison, (b) shows the typical
momentum patches used in DCA for the same cluster sizes, where
the dots denote the central momenta in each patch.

function (i.e., poles of the self-energy). The non-Fermi liquid
phases have hole-pocket Fermi surfaces at low doping and
show arclike spectra at finite temperatures.

In order to check how robust early CDMFT results on the
2 × 2 and 2 × 1 clusters5–7,10–13,18 are against the increase of
cluster size NC, larger cluster studies have been highly desired.
A systematic study by increasing cluster size helps also to
identify the best periodization scheme which could reach the
thermodynamic limit in the fastest way.19 This would allow
us to understand to what extent small cluster calculations
(still accessible by present computational limits) capture the
right physical results, once implemented with the most suitable
periodization scheme.

In this paper, we extend CDMFT up to 16-site cluster,
employing the continuous-time quantum Monte Carlo method
(CTQMC)21 as the solver for the effective models. By
comparing the solutions for the 4-, 8-, 12-, and 16-site clusters
illustrated in Fig. 1(a), we systematically study the cluster-size
dependence of the single-particle Green’s function and the
self-energy obtained through various periodization schemes.
We find that the cumulant periodization7 gives the fastest
convergence against the cluster size for slightly doped Mott
insulators, where the size dependence becomes severest due to
the strong momentum dependence of the self-energy. We also
find that the convergence is strongly momentum dependent:
It is faster around (0,0) and (π

2 , π
2 ), where the results for 16

sites seem nearly converged, than around (π,0) and (π,π ).
Remarkably the 2 × 2 cluster results are found to agree well
with the 4 × 3 and 4 × 4 cluster results. In particular, the
location of the Fermi arc and the zero surface of Green’s
function at the Fermi level does not depend significantly on
the cluster size. This suggests that previous CDMFT results
obtained by using a 4-site cluster6,7,10–13 capture an essential
physics of the slightly doped Mott insulators.

The paper is organized as follows. In Sec. II we briefly intro-
duce the Hubbard model, CDMFT, and various periodization
schemes (in Appendix A the different periodization schemes
are discussed from a different perspective). The numerical
results obtained by CDMFT are discussed in Sec. III: We
first study the inhomogeneity and locality of various cluster
quantities (i.e., self-energy, cumulant, and Green’s function),
and then discuss the periodized quantities for various square
clusters whose edges are parallel to the lattice vectors, with a

focus on the low-energy electronic structure. The results for
tilted clusters of NC = 8 and 12 are presented in Appendix B,
where the effect of the cluster geometry is discussed. We
summarize the results in Sec. IV.

II. MODEL AND METHOD

We study the two-dimensional single-band Hubbard model
on a square lattice. The Hamiltonian reads

H =
∑
kσ

ε(k)c†kσ ckσ − μ
∑
iσ

niσ + U
∑

i

ni↑ni↓, (1)

where ckσ (c†kσ ) annihilates (creates) an electron with spin σ

and momentum k = (kx,ky), ciσ (c†iσ ) is its Fourier component
at site i, and niσ ≡ c

†
iσ ciσ . Here, U represents the onsite

Coulomb repulsion, μ the chemical potential, and

ε(k) ≡ −2t(cos kx + cos ky) − 4t ′ cos kx cos ky, (2)

where t (t ′) is the (next-)nearest-neighbor transfer integral.
We solve the model within CDMFT,15 restricting the solution
to the paramagnetic state to focus on Mott physics. We
adopt a set of parameters appropriate for hole-doped cuprates:
t ′ = −0.2t and U = 8t ,20 for which the CMDFT solution is
a Mott insulator at half filling (n = 1) for all cluster sizes we
consider. We study three values of hole doping, 1, 3, and
5% and fix the temperature to T = 0.06t . Because of the
well-known fermionic sign problem, which becomes severer
with decreasing filling and temperature, we cannot reach larger
dopings and/or lower temperatures for our largest cluster
NC = 16. In CDMFT the infinite lattice quantum problem (1)
is mapped onto an effective cluster model,

Seff = −
∫ β

0
dτ dτ ′

NC∑
i,j

∑
σ

c
†
iσ (τ )G−1

0,ij (τ − τ ′) cjσ (τ ′)

+
∫ β

0
dτ U

NC∑
i

ni↑(τ )ni↓(τ ), (3)

consisting of an NC-site cluster embedded in a bath of
noninteracting fermions, which is described by a dynamical
Weiss field matrix Ĝ0 at the inverse temperature β = 1

T
.

We solve the cluster model by means of CTQMC.21 We
choose the interaction-expansion variant22–24 which is the most
suited approach to address large clusters. Recent progress25 in
the updating algorithm in the CTQMC enables us to reach
much lower temperatures than those in previous studies. The
CDMFT-CTQMC approach incorporates all the correlations
within the cluster, so that it converges to the exact solution as
NC → ∞. Here we study 4-, 8-, 12-, and 16-site clusters with
the geometries illustrated in Fig. 1(a). The increasing size of
the Green’s function matrix as well as the increasing negative
signs of the QMC samples prevents us from studying even
larger clusters.

The effective cluster model is subject to the CDMFT self-
consistency condition which relates the cluster one-particle
Green’s functions GC

ij (iωn) = − ∫
dτeiωnτ 〈Tτ ci(τ )c†j (0)〉 to

035102-2



CLUSTER-SIZE DEPENDENCE IN CELLULAR DYNAMICAL . . . PHYSICAL REVIEW B 85, 035102 (2012)

the lattice Green’s function of the original model,

ĜC(iωn) = NC

(2π )2

∫
RBZ

Ĝ(̃k,iωn)dk̃, (4)

Ĝ(̃k,iωn) = [(iωn + μ)Î − t̂ (̃k) − �̂(iωn)]−1, (5)

where �̂(iωn) = Ĝ0(iωn)−1 − ĜC(iωn)−1 (all being ma-
trices with respect to cluster sites). Here, tij (̃k) =∑

K e−i(K+k̃)·(ri−rj )ε(K+k̃) is the single-electron part of the
Hamiltonian written in the reduced Brillouin zone (RBZ) of
the cluster, k̃ is the wave vector in the RBZ, K the reciprocal
vector of the cluster, and ri the intracluster vector coordinate.

So far CDMFT has been in most cases employed for
2 × 2 (or smaller) cluster calculations. Some exceptions
are a systematic analysis with Lanczos methods for one-
dimensional clusters up to eight sites,18 a QMC analysis of
the cluster-size dependence in one and two dimensions,13 a
study about the different geometries in d = 2 in Ref. 26,
and 8- and 16-site calculations performed by some of the
authors.12 As we already mentioned, CDMFT clusters break
the translational symmetry of the lattice; they are defined with
open boundary conditions. This means that, unlike in DCA,
cluster momenta are no longer good quantum numbers. This
is not a problem as long as one stays in the basis defined by the
good quantum numbers of CDMFT, namely, the irreducible
representations of the point group of the cluster.18 However, if
one wants to compare with, say, angle-resolved photoemission
experiments, k-resolved spectral functions are needed. Several
“estimators” for lattice quantities have been proposed and in
the recent literature there has been an intensive discussion on
what is the best strategy to produce good k-resolved spectral
functions.7,10,12,13,19 There are two main issues: one would
like the cluster quantity that has to be periodized (i) to be
as localized as possible, in order to minimize the impact of
the approximation of neglecting intercluster correlations and
(ii) to be as homogeneous as possible, so that translational
invariance is (almost) fulfilled.

If criteria (i) and (ii) are both met for the cluster quantity
Q̂C(iωn), it is useful to define the corresponding lattice
quantity by the Fourier expansion,

QL(k,iωn) = 1

NC

NC∑
i,j=1

QC
ij (iωn)eik·(ri−rj ), (6)

truncated by the cluster size, since the longer-range terms
would be negligible. Here k is defined on the entire Brillouin
zone of the original lattice, and, as introduced above, ri and rj

are the real-space vectors specifying the cluster sites i and j ,
respectively.27

Two different choices for Q have been mainly proposed so
far: the cluster self-energy �̂ (Ref. 6) and the cumulant M̂ ≡
[iωn + μ − �̂]−1 (Ref. 7). In the following, we call the two
schemes � periodization and M periodization, respectively. It
is expected that in the weak-coupling regime the self-energy is
small and the cumulant is well localized so that both choices
can be appropriate. On the other hand, in the strong-coupling
regime, while the self-energy is large and nonlocal, the
cumulant is well localized so that Q = M is expected to be a

more appropriate choice.7,12 For Q = �, according to Eq. (6),
the lattice Green’s function is given by

GL(k,iωn) = [iωn + μ − ε(k) − �L(k,iωn)]−1, (7)

while, for Q = M , the lattice Green’s function is given by

GL(k,iωn) = [ML(k,iωn)−1 − ε(k)]−1, (8)

and the self-energy reads

�L(k,iωn) = iωn + μ − ML(k,iωn)−1. (9)

We can also use Green’s function in order to build
the translational-invariant object. We call this procedure G

periodization. In this case, however, we have to modify Eq. (6).
Indeed Eq. (6) with Q̂C = ĜC does not reproduce the correct
lattice dispersion, as shown in Appendix A. A prescription
for this was previously proposed in Ref. 28 and it has been
already used in CDMFT studies, in particular in Ref. 13. The
G periodization formula reads

GL(k,iωn) = 1

NC

NC∑
i,j=1

Gij (̃k,iωn) eik·(ri−rj ), (10)

where Gij (̃k,iωn) with k̃ = k modulo K is defined in Eq. (5).
In this case we obtain the lattice self-energy through

�L(k,iωn) = iωn + μ − ε(k) − GL(k,iωn)−1. (11)

In a large-frequency expansion (see Appendix A), these
three periodization schemes give the same lattice Green’s
function up to the second order. We expect, however, that
the M and G schemes are closer to each other than to the
� scheme near the Mott insulator (see again Appendix A for
details).

A difference between the three periodization schemes
becomes prominent only at low energy. Hence, in the next
section, we focus on low-energy behaviors. We first compare
the locality and inhomogeneity of the cluster quantities QC,
which determine the accuracy of the periodization (6). Even
though Eq. (10) in the G periodization is not a truncated Fourier
transformation, the cluster Green’s function (4) is still relevant
because it gives the average of Green’s function (5) over RBZ.
Therefore, we examine the locality and homogeneity of MC,
�C, and GC in the next section.

We will show that, in the parameter region of lightly
hole-doped cuprates, the cumulant is at the same time well
localized and fairly homogeneous over the cluster so that it
certainly represents the best choice as an “estimator” of lattice
quantities. Compared to DCA the advantage is that k-resolved
quantities are not smeared out because the averages within each
momentum patch of the Brillouin zone employed in DCA are
not taken in CDMFT. The disadvantage is that the periodization
is not unique and it involves an artificial average of cluster
quantities with the same lattice vector.

In the next section we will present results for different
cluster sizes and geometries. The 2 × 2 cluster is a bit
special since, by symmetry, all sites are equivalent so that
the quantities are already homogeneous over the cluster and
the concept of “cluster momenta” is still meaningful. Another
way to see this is that, since the cluster is entirely made of
“surface sites,” it fulfills periodic boundary conditions. For
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convenience’s sake, in the following sections, we abbreviate
ML, �L, and GL with M , �, and G, respectively.

III. RESULT AND DISCUSSION

A. Inhomogeneity of cluster quantities

We start with the inhomogeneity in the cluster quantities. As
we noted in the previous section, the inhomogeneity is present
because the CDMFT violates the translational symmetry of
the original lattice. In the 4 × 4 cluster, for example, the
cluster sites, numbered in the right-most panel in Fig. 1(a), are
categorized into three different symmetry groups: {1,4,13,16},
{6,7,10,11}, and {2,3,5,8,9,12,14,15}. We pick up one site
from each group and plot in Figs. 2(a)–2(c) the absolute
value of the local cluster quantities, MC

ii , �C
ii , and GC

ii , against
the Matsubara frequency for a hole-doped (n = 0.95) Mott
insulator. The cluster quantities indeed depend on the group:
While the dependence is small at high energy, it is more
pronounced at low energy.

An important finding in Fig. 2 is that the inhomogeneity
occurs differently among MC, �C, and GC. To quantify it, we
define a normalized deviation of the cluster quantities at each
real-space vector r by

vQ(r) ≡ 1

|Q̄C(r)|

√√√√ 1

Nr

∑
i,j∈C;ri−rj =r

[
QC

ij − Q̄C(r)
]2

, (12)

where the average Q̄C is defined by

Q̄C(r) ≡ 1

Nr

∑
i,j∈C;ri−rj =r

QC
ij , (13)

and Nr is the number of pairs (i,j ) satisfying the conditions
i,j ∈ C and ri − rj = r. Plotting the local (r = 0) component
for each of MC, �C, and GC in Fig. 2(d), we find that the
normalized deviation is the smallest in MC, in particular, in the
wide range of the relevant low-frequency region. This means
that the cumulant is most homogeneous within the cluster.

Figures 3(a)–3(c) and 4(a)–4(c) plot the nearest-neighbor
and next-nearest neighbor components, respectively. These are
the main sources of momentum dependence in the periodized
quantities. We again see the inhomogeneity occurring in
different ways in MC, �C, and GC, and that the corresponding
normalized deviations, shown in Figs. 3(d) and 4(d), are the
smallest in MC at low energy. Note that a relatively large
fluctuation in the normalized deviations at high energy is due
to the small absolute values of the cluster quantities.

The above results indicate that the inhomogeneity plays the
weakest role for the M periodization scheme in the hole-doped
Mott insulator.

B. Locality of cluster quantities

We next discuss how the cluster quantities decay with
the real-space distance. Figures 5(a)–5(c) plot the average
quantities, M̄C, �̄C, and ḠC, defined in Eq. (13) at various

ωn
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FIG. 2. (Color online) Absolute values of local components of (a) the cluster cumulant (Q = M), (b) self-energy (Q = �), and (c) Green’s
function (Q = G) against the Matsubara frequency for NC = 16 and n = 0.95. The index i denotes the cluster sites numbered in the right-most
panel of Fig. 1(a). The errorbars are below the symbol size, except for those at the lowest Matsubara frequency. (d) Comparison of the
normalized deviations defined in Eq. (12), which shows that the cumulant expansion is the most homogeneous.
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FIG. 3. (Color online) Same as Fig. 2 but for the nearest-neighbor components.

r against the Matsubara frequency. We see that (0,0), (1,0),
and (1,1) components, which are within the 2 × 2 cluster, are
much larger than the other components for all kinds of cluster
quantities. In particular in M̄C and ḠC, even the (1,1) com-

ponent, the smallest one in the 2 × 2 cluster, is always more
than two times larger than the longer-range components. This
implies that the longer-range terms play a less important role
in the periodization procedure, above all within the M scheme.
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FIG. 4. (Color online) Same as Fig. 2 but for the next-nearest-neighbor components.
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FIG. 5. (Color online) Averaged cluster quantities Q̄C for NC = 16 and n = 0.95 plotted against the Matsubara frequency. (a) The cluster
cumulant, (b) self-energy, and (c) Green’s function. (d) ln |Q̄C| at the lowest Matsubara frequency ω0 plotted against the Euclidean distance |r|.

In general, Green’s function at a finite temperature should
decay exponentially with |r| at long distances, and cross over
to a power-law decay at short distances in a metallic state. To
explore the decay, we plot in Fig. 5(d) ln |Q̄C| at the lowest
Matsubara frequency ω0 against the Euclidean distance |r|.
Although the data points fluctuate depending on direction, the
decay seems to approximately follow an exponential decay at
large distances and to cross over to a more moderate slope
at short distances. This behavior suggests that we are looking
at the thermodynamic behavior already by the 4 × 4 cluster at
the present temperature.

When the temperature is reduced below 0.06t , the power-
law decay expected to continue at longer distances in metals
is, of course, not properly captured by the 4 × 4 cluster.
Since the energy resolution is set by the lowest Matsubara
frequency πT ∼ 0.2t , the result suggests that the 4 × 4 cluster
well describes the thermodynamic behavior within this energy
resolution (or at T � 0.06t). For instance, since the real
and imaginary parts of Green’s function have the denom-
inator ∼1/[(πT )2 + (vFk)2], the correlation length of the
exponential decay in distance is ξ ∼ vF/πT , where vF is the
renormalized Fermi velocity. In the underdoped region, the
renormalization factor is suppressed and vF may easily be
of the order of 0.1, which is consistent with the behavior in
Fig. 5(d). Because of the proximity to the Mott insulator, the
correlation length (or coherence length) of Green’s function
is suppressed comparable to the lattice constant even at fairly
low temperatures like 0.06t . Nevertheless, the characteristics
such as the pseudogap, momentum differentiations and the
Fermi arc formation are well developed in this temperature
range.

C. Momentum dependence of periodized quantities

We now turn to the quantities periodized through Eqs. (6)
and (10) (i.e., the physical observables in the full momentum
space). While in the limit of large cluster size all the periodiza-
tion schemes should give the same result, it depends on the
schemes how fast the results converge to the thermodynamic
limit with increasing cluster size. Since the tractable cluster
size is rather small at low temperatures, it is important to find
out the most efficient periodization scheme in the relevant
parameter region. In this section we compare the self-energies
calculated by various periodization schemes for the 2 × 2,
4 × 3, and 4 × 4 clusters, focusing on the slightly hole-doped
region. We present the results for tilted clusters of NC = 8
and 12 in Appendix B. Since Figs. 5(a)–5(c) indicate that
the momentum dependence becomes most significant at low
energy, we focus on the self-energies at the lowest Matsubara
frequency ω0 = πT .

Figure 6 compares the M , �, and G periodizations at
n = 0.95. We first notice that all the results show a common
feature that Im� is small around (0,0) and large around (π,0)
and (π,π ). Looking at the convergence against the cluster
size, we notice that the M-periodized self-energy fluctuates
much less than the �- and G-periodized ones. This indicates a
smaller size effect in the M periodization, consistently with the
results discussed in Secs. III A and III B. Roughly speaking,
the fluctuation is large around (π,0) and (π,π ) while small
around (0,0) and (π

2 , π
2 ), reflecting the momentum-dependent

amplitude of the self-energy. It is interesting that for the M

periodization 4 × 3 and 4 × 4 cluster results agree well, in
particular, around (0,0) and (π

2 , π
2 ), indicating the self-energy

is nearly converged there. It is also worthwhile noting that
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FIG. 6. (Color online) Self-energies at the lowest Matsubara frequency, obtained by the M , �, and G periodizations for various square
clusters at n = 0.95.

the 2 × 2 cluster result with the M periodization already
reproduces well the overall structure of the 4 × 3 and 4 × 4
cluster results.

The bottom panels in Fig. 6 compare the 4 × 3 and 4 × 4
cluster results with the M , �, and G periodizations. We see
a nice agreement around (0,0) and (π

2 , π
2 ), especially between

the M and G schemes. The agreement between the different
periodization schemes corroborates our expectation for the
convergence.

Figure 7 presents the M-periodized self-energy at n = 0.97
and 0.99. The agreement between the 4 × 3 and 4 × 4 cluster
results is still nice around (0,0) and (π

2 , π
2 ) even at these small

dopings. Also the 2 × 2 cluster result looks well reproducing
these larger-cluster results.

Figure 8(a) is the momentum map of the M-periodized
Green’s functions at τ = β

2 for the employed cluster sizes at
n = 0.95. The quantity gives an estimate of the low-energy
spectral weight because

−βG(k,τ = β/2) = β

2

∫ ∞

−∞

A(k,ω)

cosh(βω/2)
dω (14)

is approximately a spectral weight averaged over an energy
width ∼T around ω = 0. Hence the momentum map indicates
the shape of the Fermi surface. The results show the Fermi arc

035102-7



SHIRO SAKAI et al. PHYSICAL REVIEW B 85, 035102 (2012)

R
e 
Σ(

k,
i ω

0)

-1

0

1

2

3

4

5

6

7

Im
 Σ

(k
,i ω

0)

-6

-5

-4

-3

-2

-1

0

(π,π)(0,0) (π,0) (0,0)
Im

 Σ
(k

,i ω
0)

k

-15

-10

-5

0

-5

0

5

 10

R
e 
Σ(

k,
i ω

0)

(π,π)(π,0)(0,0)
k

(0,0)

n=0.97

Nc=  4
      12
      16

n=0.97

n=0.99 n=0.99
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structure, found previously in 2 × 2 CDMFT studies,5–7,10–12

for all the cluster sizes. Remarkably the location of the arc
does not change significantly with the cluster size. This is in
agreement with the fast convergence of the self-energy around
the nodal point seen in Fig. 6. Although we have not detected
any indication of the Fermi pocket at this temperature (T =
0.06t), it is still consistent with the pocket structure at T = 0,
as discussed in Refs. 11 and 12.

Figures 8(b)–8(d) are the momentum maps of the imaginary
part of the M-periodized self-energy at n = 0.95, 0.97, and
0.99. For all the cluster sizes and dopings Im� shows a

FIG. 8. (Color online) (a) Momentum maps of −βG(k,
β

2 ) ob-
tained through the M periodization for the chosen cluster sizes at
n = 0.95. (b) and (c) Those of Im�(k,iω0) at n = 0.95, 0.97, and
0.99. Here the results with NC = 8 are also presented for comparison.

strong intensity around the cut along (π
2 ,π ) − (π,π

2 ). The large
|Im�| indicates the presence of a zero surface of Green’s
function at T = 0. The indicated location of the zero surface
for the 2 × 2 cluster is consistent with that previously found
by 2 × 2 CDMFT + ED studies,7,11 while it deviates from the
one assumed in Ref. 29. It is remarkable that the location of
the zero surface does not change significantly with the cluster
size. It seems hardly moved with reducing doping from 5%
to 1% as well. This is quite unexpected from the viewpoint
of the extended Luttinger sum rule30 which argues that the
sum of the volume enclosed by the Fermi surface and by the
zero surface is equal to the electron filling. If this rule holds,
such a volume should be much smaller than the one indicated
in Fig. 8 because the volume should approach to half of the
full Brillouin zone as the filling approaches to the half filling.
Figure 8 indicates an anomalous metallic phase characterized
by the simultaneous presence of both zero and Fermi surfaces.
This phase is separated by a quantum phase transition from
the Fermi liquid,11 which we find at high doping and which
appears, within our numerical precision, to fully respect the
Luttinger sum rule.

There have been intensive debates on the applicability of the
Luttinger sum rule in strongly correlated region.31,32 Although
the present results strongly suggest that the sum rule is violated
in the underdoped region, the cluster-size dependence of �

remaining around (π,0) and (π,π ) makes difficult to make
definitive statements. Future studies on larger clusters are
highly desired to settle this issue.

The present study indicates that many of the characteristic
features of the doped Mott insulators summarized as the
momentum differentiation and identified in the pseudogap and
Fermi arc formation are well captured even at the temperature
scale of 0.06t or above. In this range of temperature, the
appropriate M periodization scheme allows the convergence

035102-8



CLUSTER-SIZE DEPENDENCE IN CELLULAR DYNAMICAL . . . PHYSICAL REVIEW B 85, 035102 (2012)

to the thermodynamic limit at a relatively small cluster size.
If one wishes to see the growth of the electron coherence with
higher energy resolution close to the Fermi level, one needs
to go to lower temperatures together with the corresponding
larger cluster size. Increasing the resolution in the momentum
space simultaneously at lower temperatures beyond the present
study is a challenge left for future studies.

IV. SUMMARY AND CONCLUSION

We have extended the cellular DMFT to clusters larger than
the conventionally used 2 × 2 one, and systematically studied
the cluster-size dependence of various quantities. While the
CDMFT sacrifices the translational symmetry of the original
lattice, it can provide through a periodization a fine structure
in the momentum space. This is an interesting information,
complementary to DCA results, where the self-energy is
assumed to be flat in each momentum patch.33 Our strategy is
to find and use an efficient quantity for the periodization, to be
able to extract the thermodynamic behavior from a relatively
small cluster calculation.

In order to achieve this task, we have explored how
homogeneous and local the various cluster quantities are. Fo-
cusing on the parameter region of hole-doped Mott insulators,
we have found that the cluster cumulant is the most local
and homogeneous quantity, favorable for the periodization.
The comparison of the self-energies obtained by various
periodization schemes shows that the fastest convergence
against cluster size is obtained by the periodization of the
cumulant M . The convergence depends on momentum: While
it seems converged already at the 4 × 4 cluster around (0,0) and
(π

2 , π
2 ), a distinct size dependence still remains around (π,0)

and (π,π ). We have also found that the 2 × 2 cluster with the M

periodization remarkably well reproduces the overall structure

of the self-energy obtained with the 4 × 3 and 4 × 4 clusters.
The Fermi arc structure and the location of the low-energy
zero surface, calculated through the M periodization, seem
only weakly dependent on the cluster size, corroborating the
picture of the Mott physics obtained by previous CDMFT
studies. This result would imply a violation of the extended
Luttinger theorem at small doping.
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APPENDIX A: HIGH-FREQUENCY EXPANSION AND
RELATION BETWEEN M, �, AND G PERIODIZATIONS

We first give a simple argument why the correct implemen-
tation of the G periodization scheme is given by Eq. (10) rather
than by Eq. (6) with Q̂C = ĜC.

The two Green’s functions Ĝ(̃k,z) and ĜC(z) defined in
Eqs. (5) and (4), respectively, can be expanded for large values
of z = iωn + μ:

Ĝ(̃k,z) = (zÎ − t̂ (̃k) − �̂C(z))−1 = 1

z
Î + 1

z2
(t̂ (̃k) + �̂C(z)) + · · · , (A1)

ĜC(z) = NC

(2π )2

∫
RBZ

dk̃Ĝ(̃k,z) = NC

(2π )2

∫
RBZ

dk̃(zÎ − t̂ (̃k) − �̂C(z))−1 = 1

z
Î + 1

z2

(
NC

(2π )2

∫
RBZ

dk̃t̂ (̃k) + �̂C(z)

)
+ · · · .

(A2)

Let us note that, for the present analysis of the different periodization schemes, the explicit 1/z expansion of �̂C(z) is not
necessary.

Written in this form, it is simple to see what happens if one periodizes Ĝ(̃k,z) and ĜC(z), that is, if one applies Eqs. (10)
and (6):

GL(k,z)|fromĜ(̃k,z) = 1

NC

∑
i,j∈C

eik·(ri−rj )Gij (̃k,z) = 1

z
+ 1

z2

1

NC

∑
i,j∈C

eik·(ri−rj )(tij (̃k) + �C
ij (z)) + · · · , (A3)

and

GL(k,z)|fromĜC (z) = 1

NC

∑
i,j∈C

eik·(ri−rj )GC
ij (z) = 1

z
+ 1

z2

1

NC

∑
i,j∈C

eik·(ri−rj )

(
NC

(2π )2

∫
RBZ

dk̃ tij (̃k) + �C
ij (z)

)
+ · · · . (A4)

Using the definition given just below Eq. (5), we can re-express the term involving t̂ (̃k) in Eq. (A3) as

1

NC

∑
i,j∈C

eik·(ri−rj )tij (̃k) = 1

NC

∑
i,j∈C

eik·(ri−rj )
∑

K

e−i(k̃+K)·(ri−rj )ε(k̃ + K) = ε(k), (A5)

035102-9



SHIRO SAKAI et al. PHYSICAL REVIEW B 85, 035102 (2012)

and that in Eq. (A4) as

1

NC

∑
i,j∈C

eik·(ri−rj ) NC

(2π )2

∫
RBZ

dk̃ tij (̃k) = 1

NC

∑
i,j∈C

eik·(ri−rj )tC
ij �= ε(k), (A6)

where t̂C denotes the hopping matrix restricted to the cluster. The left-hand side of Eq. (A6) is different from the full lattice
dispersion ε(k) that one would like to be reproduced in the lattice Green’s function at the second order in the 1/z expansion. Such
a simple argument thus shows that the periodization of the cluster Green’s function matrix [i.e., Eq. (A4)] is not an appropriate
periodization scheme.

Conversely one can easily show that at the second order
in the 1/z expansion the M- and �-periodized Green’s
functions yield the same result as Eq. (A3), and in particular
they reproduce the right band dispersion. The G-, M-, and
�-periodization schemes differ instead already at the third
order in 1/z. In the G periodization the third-order term in the
1/z expansion reads

1

z3

1

NC

∑
i,j∈C

eik·(ri−rj )[(t̂ (̃k) + �̂C)2]ij , (A7)

while in the M periodization it is

1

z3

⎡
⎣ε2(k) + 1

NC

∑
i,j∈C

eik·(ri−rj )
{
2ε(k)�̂C

ij + [(�̂C)2]ij
}⎤⎦ ,

(A8)

and in the � periodization it is

1

z3

⎡
⎣ε(k) + 1

NC

∑
i,j∈C

eik·(ri−rj )�̂C
ij

⎤
⎦

2

. (A9)

We notice that the M and G periodizations share the same term
proportional to (�̂C)2 (while M and � periodizations share the
term εk�k). Therefore, in a strongly correlated regime where
the self-energy is large compared to the bare dispersion, we
may expect that the M and G schemes produce a similar GL,
while the �-periodized Green’s function should deviate from
it. This is indeed observed in our CDMFT solution for doped
Mott insulators, where the self-energy is large (see bottom
panel in Fig. 6).

These considerations can be also clarified by expanding
the G-periodized Green’s function [Eq. (10)] with respect to
the cumulant (if the self-energy is large compared to the bare
hopping terms, M̂C t̂ is small):

Ĝ(̃k,iωn) = [Î − M̂C(iωn)t̂ (̃k)]−1M̂C(iωn)

= M̂C(iωn) + M̂C(iωn)t̂ (̃k)M̂C(iωn) + · · · .
(A10)

Hence, GL(k,iωn)|fromĜ(̃k,iωn) ≡ ML(k,iωn) at the first order.
On the other hand, in the M periodization, the lattice

Green’s function is given by Eq. (8), so that

GL(k,iωn)|fromM̂C(iωn)

= ML(k,iωn)

1 − ML(k,iωn)ε(k)

= ML(k,iωn) + ML(k,iωn)ε(k)ML(k,iωn) + · · · . (A11)

Thus GL(k,iωn)|fromĜ(̃k,iωn) ≡ GL(k,iωn)|fromM̂C(iωn) at the
first order in M̂C t̂ , and we expect that the M and G

periodizations produce similar results close to the insulating
state, even at energy scales lower than the range of validity of
the 1/z expansion. We stress that the lattice Green’s function
obtained with the � periodization gives a result a priori very
different. This is because the periodization of �̂C(iωn) =
iωn + μ − M̂C(iωn)−1 corresponds to the periodization of
M̂C(iωn)−1, which gives a lattice cumulant very different from
the one obtained with the direct periodization of the cluster
cumulant M̂C(iωn).

APPENDIX B: EFFECT OF CLUSTER GEOMETRY

In general we still have several options in the cluster
shape even when the cluster size is fixed. The cluster shape
significantly affects the inhomogeneity of cluster quantities
since each cluster site is differently connected to the other
cluster sites and/or bath sites. For example, “surface” sites
on the boundary of the cluster behave differently from the
inner sites. Since nonlocal correlations will be more accurately
incorporated in the inner-site self-energy34 than in the surface-
site one, a strategy to choose the cluster shape is to minimize
the effect of the surface sites.

This was already demonstrated in Figs. 2 and 3. When
comparing the results at the corner site 1 and at the other
surface site 2, the former deviates more from those at the inner
site 6 than the latter. This reflects the fact that site 1 has only
two nearest neighbors in the cluster, while site 2 has three
neighbors.

Here we compare the two different 12-site clusters shown
in Fig. 1(a). An important difference is that the NC = 12′
cluster has two tip sites coupling to only one nearest neighbor
while the 4 × 3 cluster has no such sites. The cluster cumulants
associated with these tip sites indeed show a peculiar behavior
largely deviated from the inner ones (not shown).

-1

0

1

2

3

4

5

6
Nc= 8
      12’
      12

(π,π) (0,0)(0,0) (π,0)
k

M periodization

R
e 

Σ(
k,

i ω
0)

-4

-3

-2

-1

0

Im
 Σ

(k
,i ω

0)

(π,π) (0,0)(0,0) (π,0)
k

FIG. 9. (Color online) Self-energies obtained by M periodization
at n = 0.95 for tilted clusters of NC = 8 and 12. For comparison the
result for the 4 × 3 cluster is also plotted.
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The difference is reflected in the M-periodized self-energy
plotted in Fig. 9, where we see a large deviation around (π,0)
and (π,π ) while a fairly nice agreement around (0,0) and
(π

2 , π
2 ). We see that the NC = 12′ result is rather closer to the

NC = 8 one, which also has two tip sites.

The result indicates that we should avoid clusters containing
a tip site, in order to obtain fast convergence to the thermody-
namic limit. A simple prescription for this is to take a square
cluster whose edges are parallel to the lattice vectors, as we
have done so far.
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