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A scheme to incorporate nonlocal polarizations into the dynamical mean-field theory (DMFT) and a tailor-
made way to determine the effective interaction for DMFT are systematically investigated. Applying it to
the two-dimensional Hubbard model, we find that nonlocal polarizations induce a nontrivial filling-dependent
antiscreening effect for the effective interaction. The present scheme combined with density functional theory
offers an ab initio way to derive effective on-site interactions for the impurity problem in DMFT. We apply it to
SrVO3 and find that the antiscreening competes with the screening caused by the off-site interaction.
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I. INTRODUCTION

Understanding physical properties of strongly correlated
electron systems is one of the most challenging subjects in con-
densed matter physics.1,2 For this purpose, it is essential to cap-
ture fermionic many-body effects necessitating a proper and
accurate treatment of a large number of interacting fermions.
The large number of electronic degrees of freedom in real
materials are intractable, even with rapidly developing com-
putational power. Hence, various ingenious ways of reducing
the degrees of freedom have been developed. Aside from the
reduction to mean-field effective one-particle Hamiltonians,
as in density functional theory (DFT), including dynamical
fluctuations for the reduced and tractable degrees of freedom is
a route that has been explored extensively over the last decades.

Approaches have been proposed1–3 to partially trace out
the degrees of freedom far from the Fermi level, leaving an
effective low-energy model for a small number of bands near
the Fermi level. The resulting Hubbard-type lattice fermion
models are much simpler than the original problem containing
a huge number of bands. This reduction (downfolding) has
been successfully incorporated in the constrained random
phase approximation (cRPA)4 by the use of maximally
localized Wannier orbitals (MLWO)5 as a basis set. It should be
noted that by tracing out certain electronic degrees of freedom
the effective interactions in the lattice fermion models (e.g., the
Hubbard U , as exemplified by U cRPA derived with the cRPA)
are much reduced compared to the original bare Coulomb
interactions6–14 because of the screening by polarizations of
the eliminated degrees of freedom.

Although several efficient ways to solve the lattice fermion
models have been proposed,1 it is still too difficult to treat
realistic situations so that a further reduction is highly desired.
The widely used dynamical mean-field theory (DMFT)15,16

indeed offers a practical way of describing local correlation
effects along this line,2 where the lattice fermion models are
mapped onto quantum impurity models.

Although U cRPA is widely used as input for DMFT
calculations, the conventional cRPA treatment totally excludes
nonlocal screening processes within the target band. These are

also not contained in DMFT, which only accounts for the local
screening processes. Hence, in the present work we argue that
a better starting point is the inclusion of nonlocal screening
processes of the target band within the RPA yielding an effec-
tive on-site interaction UDMFT. Albeit tailor-made interaction
parameters for the impurity problem were employed in Ref. 17,
a systematic investigation has been missing so far.

In the present study we examine a scheme for the systematic
determination of the effective on-site interaction UDMFT for
DMFT calculations. This scheme is applied to both the
two-dimensional (2D) single-band Hubbard model and to
SrVO3 by using an ab initio description. The application
to the Hubbard model unexpectedly reveals the inequality
UDMFT > U and a nontrivial filling dependence of UDMFT with
a peak around the van Hove singularity. A filling-dependent
UDMFT is also observed in the ab initio results for SrVO3. These
are ascribed to an antiscreening effect induced by nonlocal
polarizations, namely, a test-charge electron induces an off-site
hole or electron and they again induce an on-site electron.
This nonlocal effect increases UDMFT. The present elucidation
contributes not only to the specific determination of the DMFT-
interaction parameters, but also to gain insight into the nature
of the reduced and simplified fermionic models in general.

This paper is organized as follows. In Sec. II we show
the general expression for UDMFT and the implementation
details in plane-wave basis set codes. We show the results
and the physical interpretation of UDMFT for the 2D Hubbard
model and SrVO3 in Secs. III and IV, respectively. Section V
is devoted to the conclusion. The derivation of the several
equations used in Sec. III and the convergence behavior and
the raw data of UDMFT for SrVO3 are given in the Appendices.

II. METHODS

A. Equations to derive UDMFT

Here we derive the basic equations to evaluate UDMFT

from first-principles calculations.17 In the RPA the screened
Coulomb interaction W can be written as (1 − vχ0)−1v with
the independent-particle polarization χ0 and the bare Coulomb
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interaction v. The polarization χ0 is divided into χt
0 and χr

0 ,
where χt

0 is a polarization formed in the target subspace and χr
0

is the rest. Note that this decomposition is applicable not only
to bands (cRPA), but also to real space using localized basis
sets. For example, the “dimensional downfolding” has been
formulated to derive effective models in reduced dimensions
such as 2D or 1D models by excluding polarizations within
the target layer/chain.8 With this decomposition and within
the RPA the fully screened W can be obtained in a two-step
procedure as4

W̄ = (
1 − vχr

0

)−1
v (1)

and

W = (
1 − W̄χt

0

)−1
W̄ , (2)

where W̄ describes a screened Coulomb interaction excluding
a specified subset of excitations χt

0. These excitations are taken
into account when the effective model with the interaction W̄

is solved. Alternatively, W̄ is obtained from the fully screened
W by rewriting Eq. (2)17 as

W̄ = W
(
1 + χt

0W
)−1

. (3)

In the present scheme W̄ corresponds to UDMFT and χt
0 is a

one-center or local target polarization formed at the impurity
site.

In practice, the static independent-particle polarization
formed in the target bands (tb) is calculated using

χ tb
0 (r,r′) = 2

∑
αβ∈tb

∑
qk

fβk+q − fαk

εβk+q − εαk
ψ∗

αk(r)

×ψβk+q(r)ψ∗
βk+q(r′)ψαk(r′), (4)

where {ψαk,εαk} are one-body wave functions and their
energies with the wave vector k and the band index α. The
factor of 2 comes from the spin sum. The band summation is
performed only over the target bands in the effective model.
Since the Bloch wave functions are related to the Wannier
functions via the unitary transform as

ψαk(r) = 1√
N

∑
miR

eik·RU
†(k)
mi,αφmiR(r), (5)

the polarization can be recast as

χ tb
0 (r,r′)

= 2

N2

∑
mnop

∑
ijkl

∑
R1...R4

[ ∑
αβ∈tb

∑
qk

fβk+q − fαk

εβk+q − εαk
e−ik·(R1−R4)

× ei(k+q)·(R2−R3)
(
U

†(k)
mi,α

)∗
U

†(k+q)
nj,β

(
U

†(k+q)
ok,β

)∗
U

†(k)
pl,α

]

×φ∗
miR1

(r)φnjR2 (r)φ∗
okR3

(r′)φplR4 (r′), (6)

where m-p, i-l, R1-R4 are the orbital, primitive site, super-
lattice site indices, respectively, and N indicates the total
number of superlattice sites. With this expression, we specify
the target-band polarization formed at the impurity site (the
0th site in R = 0) as

χ
imp
0 (r,r′) =

∑
mnop

Cmnopφ∗
m00(r)φn00(r)φ∗

o00(r′)φp00(r′), (7)

with

Cmnop = 2

N2

∑
αβ∈tb

∑
qk

fβk+q − fαk

εβk+q − εαk

× (
U

†(k)
m0,α

)∗
U

†(k+q)
n0,β

(
U

†(k+q)
o0,β

)∗
U

†(k)
p0,α (8)

corresponding to the local one-center components of a polar-
ization matrix in the Wannier orbital basis. Now, by identifying
χt

0 in Eq. (3) as χ
imp
0 and W̄ as UDMFT, we write the Dyson

equation for the effective interaction as

W (r,r′) = UDMFT(r,r′) +
∫

dr′′
∫

dr′′′UDMFT(r,r′′)

×χ
imp
0 (r′′,r′′′)W (r′′′,r′). (9)

Multiplying this equation by φ∗
m00(r)φn00(r)φ∗

o00(r′)φp00(r′)
and integrating over r and r′, we have

Wμν = UDMFT
μν +

∑
μ′ν ′

UDMFT
μμ′ Cμ′ν ′Wν ′ν, (10)

where we introduce a composite index (μ,ν) = {(mn),(op)}
and the matrix element of O = {W,UDMFT} is given by

Omnop =
∫

dr
∫

dr′φ∗
m00(r)φn00(r)O(r,r′)φ∗

o00(r′)φp00(r′).

Thus, Eq. (10) is rewritten in a matrix form as

UDMFT = W(1 + CW)−1. (11)

The equation resembles the unscreening equation (3), but
it is formulated entirely in terms of “local” one-center
quantities that can be evaluated straightforwardly, allowing
for a computationally efficient treatment.

B. Implementation details of UDMFT in
plane-wave basis-set codes

Next, we describe implementation details for the ab initio
UDMFT calculations. The calculation is performed with the
norm-conserving pseudopotential and plane-wave basis set18

and the projector augmented wave method,19,20 respectively. In
the plane-wave basis-set calculation, two different cutoffs for
the plane waves are conventionally used; the low-momentum
cutoff glow

cut for the polarization function and the high-
momentum cutoff ghigh

cut for orbitals. In general, the structure
of the polarization function in real space is smooth compared
to that of the wave function, so we can employ the smaller
cutoff and it considerably reduces the computational cost. In
the UDMFT calculation in Eq. (11), however, we should be
careful about the use of the two different cutoffs.

The Dyson equation (10) is written in the momentum space
with the double Fourier transform21 as

Wg1g2 = UDMFT
g1g2

+
∑
g3g4

UDMFT
g1g3

χ imp
g3g4

Wg4g2

(|gi | < glow
cut

)
,

(12)

Wg1g2 = UDMFT
g1g2

= vg1δg1g2

(
glow

cut � |gi | � ghigh
cut

)
, (13)

where g1-g4 are reciprocal wave vectors associated with the
superlattice22 and vg = 4π/|g|2 is the Fourier transform of the
bare Coulomb interaction v. In Eq. (13) we have used the fact
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that χ
imp
gg′ is vanishingly small outside glow

cut , which is assumed
to be zero.

Recognizing this aspect, we define the low- and high-
momentum contributions for Wμν , defined in Eq. (10), as

W low
μν = 1

V

∑
gg′∈low

〈φm00|eigr|φn00〉Wgg′ 〈φo00|e−ig′r′ |φp00〉,

(14)

W high
μν = 1

V

∑
g∈high

〈φm00|eigr|φn00〉vg〈φo00|e−igr′ |φp00〉. (15)

Here V is the crystal volume and Wμν = W low
μν + W

high
μν . The

sum in Eq. (12) is taken for the reciprocal vector within glow
cut ,

while the sum in Eq. (13) runs over the reciprocal vector for
glow

cut � |g| � ghigh
cut . Similarly, UDMFT

μν is written as the sum of

UDMFT−low
μν and U

DMFT−high
μν . Inserting Eq. (12) into Eq. (14)

with the double Fourier transform of χ
imp
0 , we obtain

W low
μν = UDMFT−low

μν +
∑
μ′ν ′

UDMFT−low
μμ′ Cμ′ν ′W low

ν ′ν (16)

or in the matrix form

Wlow = UDMFT−low + UDMFT−lowCWlow. (17)

Since UDMFT = UDMFT−low + UDMFT−high, after some manip-
ulations we obtain

UDMFT = Wlow(1 + CWlow)−1 + Vhigh, (18)

with Vhigh(=Whigh = UDMFT−high) being the matrix of v at high
momenta Eq. (15). In the actual calculation, this expression is
used.

As a note on the numerical calculation, we remark on
some details for calculating the polarization function in a
metallic system. The target-band polarization χ tb

0 (r,r′) in
Eq. (4) is given in the momentum space with the double Fourier
transform as

χ tb
GG′(q) = 2

∑
k

∑
αβ∈tb

fβk+q − fαk

εβk+q − εαk
〈ψαk|e−i(q+G)·r|ψβk+q〉

× 〈ψβk+q|ei(q+G′)·r′ |ψαk〉. (19)

Here G is a reciprocal lattice vector for the primitive lattice
and q is a wave vector in the first Brillouin zone. {ψαk},
{εαk}, and {fαk} are the Bloch states, their energies, and
occupancies, respectively, and the band summation runs over
the target bands only. In the calculation of χ tb

GG′(q) of the
metallic system, the k integral on the right-hand side must
be performed carefully, because the expression includes a
numerical instability due to the Lindhard part. To avoid the
instability we use the Wannier interpolation scheme;23 we
interpolate the original k-point data (of about 10 × 10 × 10)
for the eigenvalues {εαk} and interstate matrix elements
{〈ψβk+q|ei(q+G)r|ψαk〉}, to obtain the data on a denser k
grid (about 30 × 30 × 30). After such an interpolation, the
k integration is performed with the generalized tetrahedron
method24 to obtain both real and imaginary parts of χtb

GG′(q).

We also need a careful treatment of poles at εβk+q = εαk in
Eq. (19), for which we rewrite

fβk+q − fαk

εβk+q − εαk
∼ δ

(
εβk+q + εαk

2
− εF

)
. (20)

Based on the central-difference approximation of the Fermi-
Dirac function with the Fermi level εF. Switching to the δ

function in Eq. (20) is performed in the threshold |εβk+q −
εαk| < 0.06 eV and the δ function is treated with a smearing
factor of 0.03 eV. With the resulting target-band polarization
χ tb and the rest polarization χr ,10 the fully screened RPA
Coulomb interaction Wlow in Eq. (18) is calculated, where
the WGG′(q) interaction at q → 0 limit is treated following
Ref. 25. The same treatment is applied to the evaluation of
the Wannier matrix elements of Cmnop in Eq. (8).26 With all
these treatments, the present UDMFT calculation ensures the
accuracy within several percent.

III. APPLICATION TO THE HUBBARD MODEL

We first apply this scheme to the derivation of UDMFT for the
2D single-band Hubbard model. This is helpful to get insight
into the behavior of UDMFT with respect to changes of the
electron filling.27 The Hubbard Hamiltonian reads

H = −t
∑
〈ij〉σ

c
†
iσ cjσ − t ′

∑
〈〈ij〉〉σ

c
†
iσ cjσ

−μ
∑
iσ

niσ + U
∑

i

ni↑ni↓,

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin

σ at site i and niσ ≡ c
†
iσ ciσ . t (t ′) is a transfer integral to

the (next-) nearest neighbor sites in the 〈i,j 〉 (〈〈i,j 〉〉) sums.
U (=8t) and μ represent the on-site Coulomb repulsion
and chemical potential, respectively. Taking into account
the contributions from the charge susceptibility only (hence
being in accordance with ab initio methods), the unscreening
equation corresponding to Eq. (11) becomes

UDMFT = U

2
+ W̃

1 − AW̃
. (21)

See Appendix A for the derivation. Here W̃ is a diagonal
element of a real-space N × N matrix W̃ = (1 − Ũχ0)−1Ũ,
Ũ a diagonal matrix with elements Ũ = U/2, and −A (with
A > 0) the diagonal element of the real-space polarization
matrix χ ′

0 with elements (χ ′
0)ij = χ0(Ri − Rj ). The latter is

obtained by the Fourier transform of the reciprocal-space static
polarization function

χ0(q) = 2

N

∑
k

fk+q − fk

ξk+q − ξk
, (22)

with ξk = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky − μ and fk
being the eigenvalue and the Fermi distribution function,
respectively.

Figure 1(a) shows the filling dependence of UDMFT/t with
various t ′. Contrary to a naive expectation, UDMFT is larger
than U . Furthermore, the filling dependence of UDMFT is not
monotonic and depends on t ′. For t ′ = 0, UDMFT has a strong
peak at half filling where the van Hove singularity resides at
the Fermi energy. With increasing t ′, the peak shifts to higher
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FIG. 1. (Color online) Filling dependence of UDMFT calculated
(a) with Eq. (21) and (b) with the approximation [Eq. (23)] for t ′ = 0
(red), 0.1t (green), 0.2t (blue), and 0.3t (purple). The arrows indicate
the fillings at which the van Hove singularity resides at the chemical
potential.

filling with reduced peak height, and another rapid increase
emerges at further higher filling.

These filling and t ′ dependencies of UDMFT are well
understood by the second-order approximation in {Bn}:

UDMFT ∼ U +
N−1∑
n=1

(ŨBn)2 Ũ

1 + ŨA
, (23)

where Bn ≡ (χ ′
0)i,i+n is the nonlocal contribution to the

polarization. As for the derivation of this equation, see
Appendix A. Since the second term on the right-hand side is
always positive, the inequality UDMFT > U holds. Figure 1(b)
shows the results of UDMFT calculated with Eq. (23) for various
fillings and t ′. We see in Fig. 1(b) that Eq. (23) well reproduces
the overall trend in Fig. 1(a).

The inequality UDMFT > U reveals antiscreening induced
by nonlocal polarizations {Bn}. This antiscreening is intu-
itively understood as follows: Suppose that a test charge
electron is put on the impurity site. The nonlocal polarizations
in the second-order process induce a repulsive and local
interaction with the electrons at other sites as the intermediate
states. Then, after the second-order process, the induced
charges effectively find an enhanced interaction, which is not
taken into account in DMFT. Since Ũ

1+ŨA
in Eq. (23) varies

smoothly with filling,29 the nonlocal polarizations {Bn} indeed
dominate the peculiar filling dependence of UDMFT.

We note that while the local polarization is mostly deter-
mined by the DOS, the nonlocal polarizations are strongly
affected by the structure of the Fermi surface, which induces
the Friedel oscillations around the impurity site. Especially,
when the nesting is present, the nonlocal polarizations {Bn}
are significantly enhanced, increasing the value of UDMFT.
Thus the filling dependence of UDMFT is not necessarily
determined by the position of the van Hove singularity, but
more significantly by the shape of the Fermi surface.

In real materials, off-site Coulomb interactions may play a
role. To see this effect, we have studied UDMFT for a model with
the off-site interaction 1/εr with varying ε. We find that the
overall filling dependence of UDMFT is basically the same as
that of the Hubbard model while decreasing ε (i.e., increasing
off-site interaction) causes an appreciable reduction of UDMFT

(not shown). The long-range Coulomb interactions connect
the on-site polarizations at different sites and thus bring about
the screening to the impurity-site interaction. Note that this

screening works from the zeroth order in {Bn}; the approxi-
mated UDMFT without the contributions from {Bn} indeed be-
comes smaller than U and has only a weak filling dependence.

IV. APPLICATION TO SrVO3

A. Calculation conditions

We next present ab initio results of UDMFT for SrVO3. This
material is a d1 metal and one of the most benchmarked
systems within LDA + DMFT (local density approxima-
tion plus DMFT).30 If not otherwise noted, the density-
functional theory calculations for SrVO3 were performed with
Tokyo Ab initio Program Package,18 which is based on the
pseudopotential plus plane-wave framework. The exchange-
correlation functional is calculated within the generalized-
gradient approximation with Perdew-Burke-Ernzerhof (PBE)
parametrization,31 and the Troullier-Martins norm-conserving
pseudopotentials32 in the Kleinman-Bylander representation33

is adopted. The cutoff energies for wave functions and
polarization functions are set to 49 and 25 Ry, respectively, and
we employ 11 × 11 × 11 k points. The Brillouin-zone integrals
are evaluated using the generalized tetrahedron method24 after
interpolation to a 33 × 33 × 33 k mesh.

Where noted, additional calculations were performed using
the Vienna Ab initio Simulation Package (VASP),34 using pro-
jector augmented waves and the local density approximation.
The plane wave cutoff energies for the orbitals and response
functions were set to 414 eV (30 Ry) and 250 eV (18 Ry),
respectively. Extrapolation to a high energy cutoff (500 eV)
was performed using Eq. (18). In VASP, no intermediate
extrapolation to a denser k-point grid was performed. Instead,
in Eq. (19), the Fermi occupancy function f (ε) was replaced
by a Methfessel Paxton smearing function with σ = 0.135 and,
consistent with metallic screening, W00(q → 0) was set to 0.

B. Results and discussions

Figure 2 shows our calculated band structure of SrVO3 (a)
and the density of states for the t2g bands (b). The arrows in
Fig. 2(b) indicate the Fermi levels for the fillings n = 1.0 to
5.0 with the interval 0.5. We see that the van Hove singularity
nearly corresponds to the Fermi level at the filling n = 4.0.
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FIG. 2. (Color online) (a) Calculated electronic band structure
of SrVO3. The interpolated band dispersions for the t2g bands
are depicted as blue dashed lines, which cross the Fermi level.
(b) Calculated density of states for the t2g bands. Black arrows indicate
the Fermi level for the filling n = 1.0–5.0 from left to right for the
values shown in Table V.
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TABLE I. On-site bare (v), cRPA (UcRPA), present-scheme
(UDMFT), and full-RPA (W) interaction parameters calculated for
SrVO3. The unit of energy is eV. The method was implemented
in two codes, Tokyo Ab initio Program Package18 (left values) and
the Vienna Ab initio Simulation Package34 (right ones), which yield
almost identical values for UcRPA. Otherwise, the latter values are
generally 5%–10% larger than those of the former, since the exact
shape of the orbitals is used in VASP.

v UcRPA UDMFT W

U 15.0, 16.0 3.39, 3.36 3.33, 3.46 0.97, 1.12
U ′ 13.7, 14.8 2.34, 2.35 2.27, 2.47 0.25, 0.30
J 0.59, 0.55 0.47, 0.49 0.47, 0.47 0.33, 0.39

On the basis of the DFT band structure, we define the target
bands by the low-energy t2g bands as was done in Ref. 6. We
construct three MLWOs per V site from the t2g Bloch states and
calculate UDMFT for these three orbitals. The convergence with
respect to the number of k points and the cutoff momentum
for the polarization function is studied in Appendix B.

Table I compares the values of the on-site intra- and
interorbital Coulomb repulsions (U and U ′) and Hund’s rule
coupling (J ) for the bare (v), cRPA (UcRPA),10 UDMFT, and
full-RPA (W) interactions. The bare Coulomb interactions
(∼15 eV) are largely screened by the high-energy bands to
give U cRPA ∼ 3 eV. In the present case of SrVO3, UDMFT turns
out to have a value similar to U cRPA.

The situation changes drastically, however, when we in-
crease the filling n within the rigid-band approximation. The
left and right panels in Fig. 3 plot U and U ′, respectively,
against the filling n. For comparison, we also show the results
without the nonlocal polarizations involving the impurity site,
that is, the interaction parameters calculated without the local
one-center and “wing” components of the polarization matrix
in the Wannier basis (“no-wing” method).36 The result is
denoted as Uno-wing. We see that the filling dependence of U ′
is similar to that of U , except for a constant shift.

As the filling n increases from 1, UDMFT increases more
rapidly than U cRPA. This suggests that the nonlocal antiscreen-
ing effect increases more rapidly than the screening. Around
n = 2, UDMFT turns to decrease, crossing U cRPA at n ∼ 3.5.
Finally around the filling end n ∼ 5, UDMFT again increases,
as seen in the Hubbard model. We see U no-wing < UDMFT at
all fillings. This is consistent with the model analysis: The
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FIG. 3. (Color online) Filling dependence of intraorbital (left) and
interorbital (right) screened Coulomb repulsion of SrVO3 evaluated
within full RPA, cRPA, present scheme (UDMFT), and no-wing
methods, which are calculated with TAPP.18

nonlocal contributions induce antiscreening and lead to the
increase of the on-site interaction. U no-wing is also smaller than
U cRPA and only weakly depends on the filling, consistently
with the model analysis where the off-site Coulomb inter-
action induces screening weakly dependent on filling. These
comparisons clearly show that the nonlocal polarization is the
main source of the exotic filling dependence of UDMFT.

It becomes now clear that the similar values of UDMFT

and U cRPA for SrVO3 is just a consequence of an accidental
cancellation of the antiscreening by the nonlocal polarizations
with the screening by the long-range interaction. In addition,
U cRPA ∼ UDMFT ∼ U no-wing for SrVO3 is partly ascribed to
the small filling of the d1 system where the polarization and
screening are not large.

In the previous DMFT studies for the ab initio model,
rather large values of U compared to U cRPA have been needed
to reproduce the experimental results (e.g., the insulating
behavior of LaTiO3

37). Similarly, for the 2D Hubbard model,
the Mott transition takes place at a substantially larger U in
the single-site DMFT than in its cluster extension.38 These
aspects are ascribed to the intersite correlation effects ignored
in the single-site DMFT with original U cRPA or U .39 The
present scheme with UDMFT at least partially takes account
of the off-site effects and will improve the results of DMFT.
The vertex corrections ignored in the RPA form have been
estimated to be small for the conventional cRPA.1 For the
present case, this estimate is left for future studies.

V. CONCLUSION

We have examined a scheme to evaluate the effective
on-site interaction UDMFT for DMFT. Through the analysis
based on the Hubbard model, we have found unexpectedly an
antiscreening effect induced by nonlocal polarizations, which
competes with the screening effects caused by the off-site
Coulomb interaction in real materials. The antiscreening
causes a nontrivial filling dependence of UDMFT and increases
the effective interaction. Combining the present method with
DFT, we have indeed shown that UDMFT for SrVO3 exhibits
nontrivial filling dependence if the chemical potential is varied.
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APPENDIX A: DERIVATION OF EQS. (21) AND (23)

An RPA fully screened interaction W may be expressed as

W = ε−1U, ε = 1 − Uχ0. (A1)

Here X = [W,U,χ0,ε] are 2N × 2N matrices decomposed
into their spin channels according to

X =
(

X↑↑ X↑↓

X↓↑ X↓↓

)
. (A2)
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With this decomposition, U and χ0 are written as

U =
(

0 U

U 0

)
and χ0 =

(
1
2χ0 0

0 1
2χ0

)
, (A3)

respectively, where U is a diagonal matrix with elements U and
χ0 is a real-space polarization matrix. In the Hubbard model,
only the on-site components W = [W↑↓]ii are relevant, which
are given by

W = [ε−1
↑↑ U↑↓ + ε−1

↑↓ U↓↓ ]ii

= [ε−1
↑↑ U]ii . (A4)

According to Eqs. (5.9) and (5.10) in Ref. 25, the inverse
dielectric matrix in the ↑↑ spin channel is [1 − ( 1

2 Uχ0)2]−1 so
that we obtain

W = {[
1 − (

1
2 Uχ0

)2]−1
U

}
ii
. (A5)

This equation is also written as

W = [
U + 1

2 U(χC − χS)U
]
ii
, (A6)

with χC (χS) being the charge (spin) susceptibility given by
χC = (1 − 1

2χ0U)−1 1
2χ0 [χS = (1 + 1

2χ0U)−1 1
2χ0]. In line

with ab initio methods, which only take charge fluctuations
into account, we consider the term related to χC only; the
resulting expression for W is

W = [
U + 1

2 UχCU
]
ii

= [
U + 1

2 U
(
1 − 1

2χ0U
)−1 1

2χ0U
]
ii

= [U + Ũ(1 − χ0Ũ)−1χ0Ũ]ii
= {Ũ + [1 + Ũχ0 + (Ũχ0)2 + · · ·]Ũ}ii
= [Ũ + (1 − Ũχ0)−1Ũ]ii
= Ũ + W̃ , (A7)

where Ũ = U/2 and W̃ = [(1 − Ũχ0)−1Ũ]ii .
We now decompose the total polarization χ0 into the two

parts,

χ t
0 =

(−A 0

0 0

)
and χ ′

0 =
(

0 BT

B χ ′′
0

)
, (A8)

where B = (B1,B2, . . . ,BN−1)T and χ ′′
0 is an (N − 1) × (N −

1) matrix. Then, replacing χ0 with χ ′
0 in Eqs. (A1)–(A7) we

obtain

UDMFT = Ũ + ŨDMFT, (A9)

TABLE II. Convergence behavior of UcRPA, UDMFT, and W to the
sampling k points of SrVO3 for the Tokyo Ab initio Program Package.
The cutoff energy for polarization function is 25 Ry.

UcRPA UDMFT W

U U ′ J U U ′ J U U ′ J

5 × 5 × 5 3.40 2.34 0.47 3.48 2.41 0.41 0.93 0.23 0.33
6 × 6 × 6 3.50 2.45 0.47 3.44 2.37 0.47 0.98 0.25 0.33
7 × 7 × 7 3.42 2.37 0.47 3.37 2.30 0.47 0.97 0.25 0.33
8 × 8 × 8 3.32 2.27 0.47 3.26 2.20 0.48 0.96 0.24 0.33
9 × 9 × 9 3.27 2.22 0.47 3.22 2.16 0.48 0.97 0.25 0.33
10 × 10 × 10 3.44 2.38 0.47 3.39 2.33 0.47 0.98 0.25 0.33
11 × 11 × 11 3.39 2.34 0.47 3.33 2.27 0.47 0.97 0.25 0.33

TABLE III. Convergence behavior of UcRPA, UDMFT, and W to
the sampling k points of SrVO3 for the Vienna Ab initio Simulation
Package.

UcRPA UDMFT W

U U ′ J U U ′ J U U ′ J

3 × 3 × 3 3.45 2.43 0.50 6.38 5.38 0.48 1.02 0.23 0.38
4 × 4 × 4 3.31 2.30 0.49 5.25 4.26 0.47 1.00 0.22 0.38
5 × 5 × 5 3.31 2.30 0.49 3.94 2.95 0.47 1.07 0.26 0.39
6 × 6 × 6 3.35 2.34 0.49 3.50 2.51 0.47 1.11 0.29 0.39
7 × 7 × 7 3.38 2.36 0.49 3.51 2.53 0.47 1.17 0.34 0.40
8 × 8 × 8 3.36 2.35 0.49 3.46 2.47 0.47 1.12 0.30 0.39
9 × 9 × 9 – – – 3.42 2.43 0.47 1.10 0.29 0.39
10 × 10 × 10 – – – 3.42 2.43 0.47 1.11 0.30 0.39
11 × 11 × 11 – – – 3.48 2.49 0.47 1.14 0.31 0.39

with

ŨDMFT = [(1 − Ũχ ′
0)−1Ũ]11. (A10)

The above derivation of UDMFT is based on the screening
approach of Eq. (1). On the other hand, ŨDMFT can also be
obtained in the unscreening approach of Eq. (3) as

ŨDMFT = [
W̃

(
1 + χ t

0W̃
)−1]

11 = W̃

1 − AW̃
. (A11)

Equations (A9) and (A11) give Eq. (21) in the main text.
Again using Eqs. (5.9) and (5.10) in Ref. 25, Eq. (A10) is
further recast into

ŨDMFT = 1

1 − Ũ 2BT(1 − Ũχ ′′
0)−1B

Ũ . (A12)

Hence, up to the second order in {Bn}, we obtain

UDMFT ∼ Ũ +
(

1 + Ũ 2BTB

1 + ŨA

)
Ũ , (A13)

which is equivalent to Eq. (23).

APPENDIX B: CONVERGENCE BEHAVIOR AND
THE RAW DATA OF UDMFT FOR SrVO3

We show in Tables II and III the convergence behavior of
UDMFT calculated for SrVO3 against the sampling k points
using the Tokyo Ab initio Program Package.18 The table lists

TABLE IV. Convergence behavior of UcRPA, UDMFT, and W to the
cutoff energy for polarization function glow

cut for the Tokyo Ab initio
Program Package. The sampling k points are fixed at 7 × 7 × 7 and,
in the interpolation of the polarization calculation, the 21 × 21 × 21
k grid is employed.

UcRPA UDMFT W

U U ′ J U U ′ J U U ′ J

10 Ry 3.48 2.37 0.51 3.38 2.28 0.51 1.22 0.26 0.45
15 Ry 3.48 2.39 0.49 3.39 2.30 0.49 1.13 0.27 0.39
20 Ry 3.44 2.38 0.48 3.37 2.30 0.48 1.04 0.26 0.36
25 Ry 3.42 2.37 0.47 3.37 2.30 0.47 0.97 0.25 0.33
30 Ry 3.41 2.36 0.47 3.37 2.30 0.47 0.94 0.24 0.32
35 Ry 3.40 2.36 0.47 3.37 2.30 0.47 0.91 0.24 0.31
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TABLE V. Our calculated UcRPA, UDMFT, and W at fillings n = 1.0–5.0 (Tokyo Ab initio Program Package). These data are used in Fig. 3
in the main text. The Uno-wing data are also listed. For the definition of Uno-wing, see the main text.

UcRPA UDMFT Uno-wing W

U U ′ J U U ′ J U U ′ J U U ′ J

n = 1.0 3.39 2.34 0.47 3.33 2.27 0.47 3.30 2.24 0.47 0.97 0.25 0.33
n = 1.5 3.47 2.41 0.47 4.01 2.93 0.48 3.36 2.29 0.48 0.80 0.16 0.29
n = 2.0 3.65 2.59 0.46 4.74 3.63 0.47 3.41 2.34 0.47 0.68 0.11 0.26
n = 2.5 3.72 2.65 0.46 4.58 3.48 0.47 3.23 2.16 0.47 0.59 0.07 0.24
n = 3.0 3.83 2.75 0.45 4.33 3.23 0.46 3.14 2.07 0.46 0.53 0.06 0.22
n = 3.5 3.89 2.81 0.45 3.85 2.76 0.45 3.01 1.96 0.45 0.49 0.04 0.20
n = 4.0 3.93 2.85 0.44 3.39 2.32 0.44 3.02 1.96 0.44 0.47 0.04 0.20
n = 4.5 3.98 2.90 0.44 3.05 2.00 0.43 2.94 1.90 0.43 0.50 0.05 0.20
n = 5.0 4.06 2.97 0.43 3.58 2.50 0.43 2.75 1.71 0.42 0.62 0.08 0.24

the values for the on-site intra- and interorbital Coulomb
repulsions (U and U ′) and Hund’s rule coupling (J ). The usual
constrained random-phase-approximation (cRPA) (UcRPA)10

and full-RPA (W) results are also shown for comparison.
We see that the results are almost converged at 6 × 6 × 6
or 7 × 7 × 7 k-point samplings. Despite a less sophisticated
interpolation procedure the results using the Vienna Ab initio
Simulation Package (VASP)34 show a very similar convergence
behavior. Again the error is reduced to few percent at

7 × 7 × 7 k points, although a sizable scattering prevails in
both codes. Table IV shows the convergence behavior against
the cutoff momentum glow

cut for the polarization function. We
see that the convergence is attained around glow

cut ∼ 25 Ry.
Finally, Table V lists the interaction parameters calculated
at the fillings n = 1.0–5.0, which are used for the plot in
Fig. 3 in the main text. In this table we add the no-wing
data (Uno-wing). For the definition of Uno-wing, see the main
text.
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1+ŨA
is nearly equal to the fully screened

Coulomb interaction, which is a smooth function of filling.
30K. Held, Adv. Phys. 56, 829 (2007).
31J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
32N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
33L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

(1982).
34G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
35M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
36We specify the “wing” or two-center components of the polarization

matrix in the Wannier basis as {CmRnR,o0p0} or {Cm0n0,oRpR} with
R = 0, where site indices are dropped because the unit cell of

SrVO3 contains only one V site. In the analysis on the Hubbard
model, this corresponds to B and BT in Eq. (A8) in Appendix A.

37E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein,
A. Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403
(2004).

38Y. Z. Zhang and M. Imada, Phys. Rev. B 76, 045108 (2007).
39Recently a band renormalization due to the dynamical Coulomb

interaction has been discussed.40–42 It is interesting to calculate and
examine the dynamical effective on-site interaction UDMFT(ω) in
this respect.

40P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A. J. Millis, and
S. Biermann, Nat. Phys. 8, 331 (2012).

41M. Casula, A. Rubtsov, and S. Biermann, Phys. Rev. B 85, 035115
(2012).

42L. Huang and Y. Wang, arXiv:1205.6965.

085117-8

http://dx.doi.org/10.1088/0953-8984/17/48/010
http://arXiv.org/abs/arXiv:1205.5553
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevLett.48.1425
http://dx.doi.org/10.1103/PhysRevLett.48.1425
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.40.3616
http://dx.doi.org/10.1103/PhysRevLett.92.176403
http://dx.doi.org/10.1103/PhysRevLett.92.176403
http://dx.doi.org/10.1103/PhysRevB.76.045108
http://dx.doi.org/10.1038/nphys2250
http://dx.doi.org/10.1103/PhysRevB.85.035115
http://dx.doi.org/10.1103/PhysRevB.85.035115
http://arXiv.org/abs/arXiv:1205.6965



