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Conserved quantities of SU(2)-invariant interactions for correlated fermions and the advantages
for quantum Monte Carlo simulations
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In the context of realistic calculations for strongly correlated materials with d or f electrons the efficient
computation of multi-orbital models is of paramount importance. Here we introduce a set of invariants for the
SU (2)-symmetric Kanamori Hamiltonian, which allows us to massively speed up the calculation of the fermionic
trace in hybridization-expansion continuous-time quantum Monte Carlo algorithms. We show that by exploiting
this set of good quantum numbers the study of the orbital-selective Mott transition in systems with up to seven
correlated orbitals becomes feasible.
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The calculation of the electronic properties of materials
with d and f electrons requires highly efficient numerical
algorithms capable of treating systems of many interacting
fermions. Dynamical mean field theory (DMFT) and its cluster
as well as diagrammatic extensions have proven very success-
ful in predicting one- and two-particle dynamical quantities.1–3

Moreover, the combination with density functional theory
makes it possible to predict a great number of material-specific
effects.4–6 These theories drastically reduce the complexity of
the original lattice problem by mapping it onto an appropriate
Anderson model (containing either one single impurity or a
small cluster of them). This however still constitutes a highly
nontrivial many-body problem, in particular when the impurity
site contains more than one orbital, and therefore is the
bottleneck of these methods. Improvements in the numerical
efficiency of the algorithms for solving the impurity model,
like the one we discuss here, are of great importance, since
they make unexplored regions of the model phase diagrams
accessible and the study of new materials possible.

Recently, continuous-time quantum Monte Carlo (CT-
QMC) algorithms have been introduced.7–10 They represent
a breakthrough in the development of efficient “impurity
solvers” for strongly correlated electron systems. Already from
the early stages it was clear that multi-orbital models for d

and f electron systems with SU (2)-symmetric “Kanamori”
kind of interactions [see Eq. (1) below] are very well
suited to be studied with CT-QMC, in particular with the
hybridization-expansion (CT-HYB).8 In CT-HYB one splits
the full Hamiltonian of the Anderson impurity problem into
an interacting part involving the isolated impurity only (Hloc),
a part for the noninteracting bath only, and a hybridization
between the impurity and the bath. The bath part is analytically
integrated out and the Monte Carlo simulation consists of
sampling a fermionic trace in which the imaginary-time
evolution between 0 and β =1/T is governed by Hloc and
at random imaginary-time positions creation and annihilation
operators for fermions on the impurity site are inserted and
removed.

The standard implementation of CT-HYB is formulated
in the eigenbasis of Hloc and the trace is evaluated via a
number of matrix-matrix multiplications, which is tractable
for systems with up to three orbitals. Läuchli and Werner11 put
forward a very elegant solution for simulations with more

orbitals based on the Lanczos algorithm. In this so-called
Krylov implementation the trace is calculated using Lanczos
and fast sparse-matrix/vector operations. Independently of the
implementation used, it is clear that the more one reduces
the size of the blocks of Hloc exploiting its good quantum
numbers, the faster the calculations go.9 Therefore, for the
efficiency of the whole computational scheme, it is crucial to
identify as many good quantum numbers as possible and to
make sure that they can be efficiently treated by the code. In
the present paper we introduce what we call the “PS” vector, a
set of conserved quantities for the SU (2)-symmetric Kanamori
Hamiltonian which is very simple to implement and that leads
to a tremendous reduction of the size of the blocks. By using it
we gain a huge speed-up for calculations with more than three
orbitals. We exploit this speed-up to study the orbital selective
Mott transition with SU (2)-symmetric interaction in systems
with up to seven orbitals.

The SU (2)-symmetric Kanamori Hamiltonian that is
widely used for multi-orbital calculations reads12

Hloc =
∑

a

Una,↑na,↓ +
∑

a>b,σ

[U ′na,σ nb,−σ

+ (U ′ − J )na,σ nb,σ ] −
∑

a �=b

J (d†
a,↓d

†
b,↑db,↓da,↑

+ d
†
b,↑d

†
b,↓da,↑da,↓ + H.c.). (1)

The index a runs over the Norb orbitals of the impurity, na,σ =
d
†
a,σ da,σ is the number operator counting electrons on orbital

a with spin σ . The first term describes the repulsion U for
two electrons with opposite spin on the same orbital. In the
second line of Eq. (1) one finds the Coulomb interaction U ′ for
two electrons with opposite spin on two different orbitals and
U ′ − J , when the spins of the two electrons are aligned. The
choice U ′ = U−2J , coming from an exact relation between
the parameters for the case of an isolated atom in a cubic
crystal field, is also typically used for realistic calculations.

For our purposes, it is convenient to work in the occupation
number basis. For Norb =5, a vector in this basis can be
symbolically denoted as follows:

| ↑ ↑↓ ↓ . (2)
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For reasons that will be clear very soon, we color code
singly occupied orbitals in blue and empty or doubly occupied
orbitals in red. The “density-density” terms that appear in
the first two lines of Eq. (1) are diagonal in this basis.
On the contrary, the two terms contained in the last line
of Eq. (1) generate off-diagonal matrix elements. They are
called spin-flip and pair-hopping, respectively, and are needed
to preserve the SU (2) spin symmetry: The former flips the
spins of two singly occupied orbitals while the latter transfers
a pair of electrons from a doubly occupied to an empty
orbital.

In the case of many orbitals the size of the basis is rather
big (e.g., for five orbitals Hloc is a 1024×1024 matrix) but, as
we already mentioned, we can reduce Hloc to a block diagonal
form by using its good quantum numbers. The most obvious
conserved quantities of Hloc are the total number of electrons
N and the z component of the total spin Sz. In fact, Hloc does
not connect states with different N and does not change Sz

either, since the spin-flip and the pair-hopping terms preserve
the z component of the total spin. Also the total spin �S2

commutes with Hloc, an obvious consequence of the SU (2)
symmetry. Yet, �S2 turns out not to be practical to implement
and therefore is typically not used. The reason for that is
the same as for another good quantum number that is not
exploited in CT-HYB codes: the “seniority number”. This was
introduced by G. Racah13 and counts the number of doubly
occupied orbitals in each state. It is easy to see that this is
another conserved quantity of Hloc. However, using N , Sz, and
the seniority number as quantum labels leads to ambiguities
in the definition of the creation and annihilation operators.
This can be understood by considering that both |↑ ,↓ ,0〉 and
|↑ ,0,↓〉 belong to the same block but d

†
2,↑ connects them to

|↑ ,↑↓ ,0〉 and |↑ ,↑ ,↓〉, which have different values of the
seniority number. �S2 leads to a very similar problem.

Hence, N and Sz are the two quantum numbers typically
used in CT-HYB codes. With this choice, the largest block for,
for example, Norb =5 is 100×100 and this is still rather big.
The crucial observation that we make here is the following: The
Kanamori Hloc connects only those states in the occupation
number basis that have exactly the same singly occupied
orbitals.

| ↑ ↑↓ ↓

| ↑ ↓

| ↓ ↑

pair-hopping

spin-flip

(3)

Looking at the sketch in Eq. (3) it is clear that neither the spin-
flip nor the pair-hopping process can turn a singly occupied
orbital into an empty or a doubly occupied one. This means that
the pattern of the singly occupied orbitals (in other words the
list of singly occupied orbitals regardless the spin orientation)
is conserved by the Kanamori Hloc. Therefore, even though
Hloc has processes among different orbitals, for each orbital a
projector onto single occupations of this orbital (PS) commutes
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initial/final state for the trace:
lowest multiplet of Hloc
2 lowest mult.
3 lowest mult.
4 lowest mult.

N Sz N Sz PS

Norb max/mean max/mean

1 1/1.00 1/1.00

2 4/1.78 2/1.14

3 9/4.00 3/1.45

4 36/10.24 6/2.00

5 100/28.44 10/2.90

6 400/83.59 20/4.41

7 1225/256.00 35/6.92

FIG. 1. (Color online) Table: Maximum and mean block sizes of
the Kanamori Hamiltonian using the total number of electrons in the
system N , the total spin momentum in z direction Sz (second column),
and additionally PS (third column) as good quantum numbers for
various Norb. Figure: Ratio of CT-HYB runtime (speed-up) we obtain
for an equal amount of Monte Carlo steps with and without PS. Three
independent measurement of the runtime were done for each point;
the average is plotted and the spread of the results is of the order of the
symbols. We first consider the lowest-lying multiplet of Hloc as outer
state for the trace (good approximation at very low temperatures) and
then include progressively more and more of the lowest multiplets.
For Norb =7, the lowest four multiplets cover an energy range of about
4.5 eV (i.e., a range of order U ).

with Hloc. This defines a vector of operators and corresponding
quantum numbers

PS = {(na,↑ − na,↓)2} for a = 1, . . . ,Norb. (4)

Indeed, (na,↑ − na,↓)2 yields 0 if the orbital a is either
empty or doubly occupied and 1 if the orbital a is singly
occupied, proving the projective property. The resulting vector
of quantum numbers (for which we employ the same symbol
PS) is a binary sequence encoding the information about
the pattern of singly occupied orbitals. The number (not
the pattern) of the singly occupied orbitals has already been
previously exploited as a good quantum number of Anderson
impurity Hamiltonians in Refs. 14 and 15.

Labeling blocks of Hloc with the set of quantum numbers
(N , Sz, PS) leads to a tremendous reduction of the block
size, as shown in the table of Fig. 1, as well as the size of
the d and d† matrices. Indeed, any creation and annihilation
operator will always connect two blocks in which all quantum
numbers differ and all the states within the block behave in the
same way in this respect.

The most natural implementation of PS defined by Eq. (4)
is to introduce a single label defined, for example, in a binary
manner as

∑
a 2a(na,↑ − na,↓)2. In our code, this information

is used to generate Hloc in a block diagonal structure. Already
at this stage we can see the improvement gained by using PS
compared to only N and Sz as conserved quantities. In Fig. 1 we
show the maximum and the mean block sizes. The advantage
of PS becomes striking for a system with many orbitals: We
obtain block sizes that are in average two orders of magnitude
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smaller for Norb =7. We therefore expect a moderate speed-up
already for four orbitals, which should dramatically increase
with seven. More generally, the number of blocks increases
exponentially with the number of orbitals, and the size of the
blocks decreases correspondingly.

To demonstrate how much the use of PS speeds up actual
calculations, we performed single-shot simulations on an
Anderson impurity model. This consists of Norb semicircular
bands of half bandwidth D=2 eV. The interaction parameters
of the Kanamori Hamiltonian were set to intermediate strength
values, namely U =D and J = 0.25U . The inverse tempera-
ture β was set to 100 eV−1 and the chemical potential was set to
the half-filling condition μHF = (Norb − 1

2 )U − (Norb − 1) 5
2J .

With this model system we performed calculations for Norb

varying from 1–7 with and without the use of PS for
otherwise identical parameters as single core jobs on an AMD
machine.

As an additional parameter we varied the number of outer
eigenstates of Hloc over which the fermionic trace is computed.
This is a very convenient and clean way of introducing a trunca-
tion parameter in the Krylov algorithm. It can be understood as
follows: At T =0 one can restrict the computation of the trace
to the lowest-lying multiplet only. For finite T the calculation
is instead exact only upon performing the outer sum over all
states of Hloc, but we observe—similarly to Ref. 11—that the
calculation converges rapidly upon including more and more
of the lowest-lying multiplets of Hloc.

In Fig. 1 we show the ratio of the QMC runtime with and
without PS. This demonstrates that, as expected, the advantage
of using PS is huge for calculations with large number
of orbitals. In the figure, the average of three independent
timings for each value of Norb is plotted. If we look at the
curves in which the initial and final states for the trace are
not restricted to the lowest-lying multiplet (i.e., the typical
situation for calculations at room temperature) we obtain a
performance gain of one order of magnitude for five and
a remarkable gain of two orders of magnitude for seven
orbitals. This makes self-consistent DMFT calculations for
such systems very accessible. It also enables us to check the
convergence of DMFT calculations for multi-orbital systems
with respect to the number of multiplets as outer states for
the trace, which was previously not always possible since
the simulation was too costly. In addition, this allows us to
explore parameter regions that were formerly prohibitively
expensive.

To demonstrate the practical advantages of using PS we
apply our implementation of the CT-HYB to a three-, five-,
and seven-orbital model system, as the one sketched in
the bottom left corner of Fig. 2. This model is ideal for
studying the interaction-driven orbital selective Mott transition
(OSMT), as shown in Ref. 16. It differs from the more
commonly used model with bands of different widths, since
it consists of one central orbital associated to a symmetric
band and one, two, or three orbitals shifted up in energy
by �=0.7D, where D is half the bandwidth, and an equal
number of orbitals shifted to lower energies by the same �.
All calculations were performed with the interaction (1), at
half filling, with J =0.25U and βD=100. The DMFT self-
consistency was reached considering only the lowest-lying
multiplet as outer states in the trace. The stability of the
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FIG. 2. (Color online) Spectral weight at the Fermi level A(0)
for the model sketched in the inset with one symmetric band (blue)
and the remaining ones symmetrically shifted above and below by
�=0.7D. This model as been solved for Norb =3 in Ref. 16. We
clearly observe an orbital selective region, with the central band Mott
insulating (zero spectral weight) and the shifted bands still metallic
(nonzero spectral weight) in a finite U interval up to Norb =7.

solution versus the inclusion of more multiplets was afterwards
checked.

Hitherto, model studies of the orbital selective Mott
transition with DMFT have focused almost exclusively on
Norb � 3. Here we want to test the robustness of the OSMT
against the number of orbitals. For that we compare the cases
of Norb =3, 5, and 7. The only two calculations with five
orbitals we are aware of are the ones of Refs. 17 and 11.
Both were done for somewhat different models than the one
considered here but, more importantly, the former was carried
out with a simplified slave-spin mean-field solver while the
latter addressed the filling-driven OSMT only.

Our findings are summarized by the data shown in Fig. 2.
For Norb =3 we reproduce the transition values reported in
Ref. 16 and we find the existence of a similar, though somewhat
smaller, orbital selective region for Norb =5 and 7. We can
therefore conclude that in a model with SU (2)-invariant
interaction characterized by one symmetric band and four
or six other ones symmetrically shifted in energy, an orbital
selective region exists in which the central band gets insulating
[its spectral weight at the Fermi level A(0) vanishes], while
the shifted bands stay metallic [finite A(0)].

In Fig. 2 one can see that the critical U dividing the metallic
and the orbital selective regions decreases with Norb. This
is a consequence of the effect of the sizable value for the
Hund coupling J used. For J =0 we would have observed
the opposite because more orbitals lead to a larger mobility
and therefore a larger critical value for the transition to the
insulating state. This delocalizing effect is counteracted by the
presence of a large Hund coupling, which strongly suppresses
orbital fluctuations increasing the insulating region. This is in
agreement with what was reported in Refs. 16, 18, and 19.

In conclusion, we propose invariants for SU (2)-symmetric
Kanamori Hamiltonians (i.e., the single occupation of each
orbital). We introduce a related quantum label leading to very
small blocks of the matrices. This results in a speed-up of
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CT-HYB quantum Monte Carlo calculations of up to two
orders of magnitude and allows us to study much more
comfortably models with a large number of orbitals (as we
have done in Ref. 20). As an example we have considered
the interaction-driven orbital selective Mott transition at half
filling and found that it persists up to seven orbitals. In addition
to the class of problems for which PS is useful, there are cases
in which more complete schematization of the full Coulomb
repulsion are needed. In particular the richer multiplet structure
of Slater-type parametrizations of the Coulomb interaction
can play a role in some realistic DMFT calculations with
five or more orbitals. In order to flexibly study such very

complex Hamiltonians with CT-HYB, good quantum numbers
as effective as PS would be immensely helpful.
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