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Kinks in the periodic Anderson model
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Recently, dynamical mean-field-theory calculations have shown that kinks emerge in the real part of the
self-energy of strongly correlated metals close to the Fermi level. This gives rise to a similar behavior in the
quasiparticle dispersion relation as well as in the electronic specific heat. Since f-electron systems are even more
strongly correlated than the hitherto studied d-electron systems, we apply the dynamical mean-field approach
with the numerical renormalization group method as impurity solver to study whether there are kinks in the

periodic Anderson model.
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I. INTRODUCTION

In a general sense, kinks are an abrupt but in reality often
smooth crossover between two parameter regimes of a given
physical system. Kinks are well known to result from the
interaction between fermionic degrees of freedom and external
bosonic modes:! The coupling to collective excitations such
as phonons influences the electronic dispersion. This results
in kinks inside an energy range of the order of the Debye
frequency wp centered around the Fermi level Er. Typically,
these kinks are found at 40-70 meV.?

Due to the restriction to this rather small energy range
determined by wp, the coupling to phonons can not be the
source of the observed high-energy kinks in the dispersion at
energies >80 meV. Such high-energy kinks have been found,
among others, in c:uprates.3 In these cases, a mechanism not
depending on interactions with external bosonic degrees of
freedom has to be the microscopic origin.

It was recently discovered*> that such high-energy kinks
emerge as an intrinsic feature of strongly correlated metals
in the real part of the self-energy. The mechanism® indeed re-
quires no additional coupling to external collective excitations,
and the corresponding kinks can arise at energies as high as a
few hundred meV.

A mathematical understanding® can be gained on the
basis of the Hubbard model within dynamical mean-field
theory (DMFT).%® In the correlated metallic regime with a
characteristic three-peak spectral function, the kink energies
can be shown to be dependent only on the renormalization
strength Zg; and the noninteracting band structure.’ For
a Bethe lattice with bandwidth W = 2D, the kinks are
located at

o = Zp (V2 — 1D. (1)

The effective dispersion before and after this kink follows
directly by a renormalization of the free dispersion ¢k and is
given by

-+ Zceplex — po) for o < —wr,
ZrL(ex — Mo) for
e + Zip(ex — wo)  for

Eyx = -0l <w <oy, (2

*
w > w,.
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Here, 11 denotes the chemical potential in the noninteracting
case and Zcp is a second, weaker renormalization factor for
quasiparticle energies beyond w*.

The kinks in the real part of the self-energy were also
shown to reflect in a maximum in the susceptibility,” and to
result in corresponding kinks in the low-temperature electronic
specific heat C v(T).'° For the latter, one can estimate a kink
temperature

T* ~ L(v2 = 1)Zp.D. 3)

Unfortunately, this kink temperature is for transition metals
usually very large, i.e., of O(1000) K. At such high tempera-
tures, the specific heat is dominated by its phonon contribution,
making an analysis virtually impossible. However, there is
the important exception of LiV,Qy, the first heavy fermion
system with d electrons,!' and a kink temperature of about
10 K, confirming the theory.!® Naturally, one would hence
look at f-electron systems with a similarly low-energy scale.
However, at present it is unclear whether the electronic kinks
of Ref. 5 are to be expected at all for f-electron systems. They
do exist for the Hubbard model,> but not for a single impurity
Anderson model with a constant conduction electron density
of states.'? Hence, we ask ourselves the following: Are there
purely electronic kinks in the periodic Anderson model, the
most fundamental model for f-electron systems?

This paper addresses directly this question and shows the
emergence of kinks in the real part of the self-energy ReX(w)
of the periodic Anderson model and the resulting effective
energy-momentum dispersion Ey. The outline is as follows:
In Sec. II, we first introduce the periodic Anderson model used
for the analysis as well as the DMFT calculations themselves,
employing the numerical renormalization group (NRG) as an
impurity solver.'> In Sec. III, the results for the self-energy
Y (w), dispersion Ey, and specific heat Cy(T) are discussed.
The main results are summarized in Sec. I'V.

II. MODEL AND METHODS

The focus of this work lies on systems of strongly correlated
f electrons. These are confined to very narrow orbitals and
interact with a local Coulomb repulsion U. Together with
noninteracting conduction electrons, these are the ingredients
of the periodic Anderson model (PAM) (see Fig. 1). The
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FIG. 1. (Color online) Depiction of the PAM. The interacting
f level (e£,U) of each site couples via the hybridization V to the
conduction band ¢. Direct hopping between different f levels is not
possible.

corresponding Hamiltonian reads as

Hpam = Z‘("k al-:aaka + Sf Z fi:fia
ko io
+ D Ve @l fio + i)+ U Y L fio i fis
ko i
- Z(ftjf_f;a + ai-;aio)‘ (4)
io

Here, the operators a,a™ represent a noninteracting con-
duction band with dispersion gx that can be thought of as a
combination of s, p, and d bands, whereas the operators f, f+
stand for the localized f electrons with constant noninteracting
energy &¢. Each site of this model consists of a conduction
band site as well as an f orbital, which are hybridized with
each each other by strength Vi. A detailed study of the PAM
with DMFT(NRG) can be found, e.g., in Ref. 14. For the rest
of this paper, the chemical potential w is set to zero for the
sake of simplicity.

As for the noninteracting case, the Hamiltonian (4) can be
more conveniently written as a 2 x 2 orbital matrix for each
k point (in terms of conduction and f-electron orbital). Due
to the interaction U, the f level is modified by a self-energy
¥ (w), which is momentum independent within DMFT. The
corresponding one-particle Green’s functions reads as

o (o—e=3@) Ve \T
Gy(®) = (0 — % — Hy) _< " w_gk) .
%)

For the calculations carried out in this work, an energy ¢, =
le >\ &k is considered in Eq. (4),'* which can be interpreted
as the center of mass of the conduction band and acts as
an energy shift of the conduction electrons. Additionally,
for computational reasons, the momentum dependency of the
hybridization is neglected for the rest of this work Vi — V.
This leads to the following expressions for the local Green’s

functions:
d3k 1
Gutw = | @n) L) — e’ ©
G @) = ! v Gow). (7)
) = e T @ e~ s@r
. %
with ¢(w) = w — m (8)

Equation (7) will serve as a self-consistency relation for the
DMEFT calculations in this work.
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A. DMFT self-consistency cycle

The complex many-body problem is approximated by the
DMFT self-consistency cycle.® For the PAM implementation,
we need to solve the integral in Eq. (6). For the Bethe lattice
with semielliptical density of states NBth¢(g) = #«/rz — &2,
the integral can be calculated analytically, yielding

2 12
C@ (o), )
2 ¢ (w)
For the simple-cubic lattice, integral (6) can be rewritten in
the form!’

1
G(w) = —=P(2), (10)
{(w)
with the abbreviation z(w) = —% (W = 12¢ is the band-

width). Here, the function P(z) is equivalent to a product of
two hypergeometric functions of the type , F1(1/2,1/2;1;k2),
namely,
1-— 2)Cl

v 3 11 11
P)=~—F (== k2 ) 2F [ == ;&2 ).
(2) —x 21(22 +>21<22 )
(11

The abbreviations k4, x;, and x, are defined by

1 1 1
G-laloin-teowvih

7274

11, 1 1
= +-22—=/1-22/1- =2, 13
X 2+6Z 5 Z 9z (13)

X1

Xy = (14)

X1 — 1

Unfortunately, to treat the PAM with DMFT(NRG) involves
overcoming numerical difficulties'>'* which affect the stabil-
ity of the calculations (the NRG step in particular) as well
as the convergence behavior of the DMFT loop. Specifically,
to arrive at fixed and stable solutions of the PAM for the
considered parameter regime, it was necessary to introduce a
small imaginary shift of the real frequencies'® w — w + i,
which takes care of possible delta peaks in the Green’s function
(7) or hybridization function, and to make use of Broyden’s
method of convergence stabilization.!”!'® The logarithmic
NRG discretization has been taken to be A = 2 with checks
for A = 1.8,1.9,2.0 yielding very similar results.

III. RESULTS

It is known that due to the hybridization of conduction
and f electrons, the PAM at half-filling (¢; = —U/2 and
e. = 0) represents a Kondo insulator in the paramagnetic
phase studied throughout this paper.'* However, searching
for kinks, a metallic configuration is necessary, and one with
a well-defined three-peak spectral function desirable. These
requirements can be achieved by breaking the particle-hole
symmetry in such a way that the energy level of the conduction
electrons is increased while the f level is held symmetric'>!'*
[see Fig. 2 (upper panel)].

The effect of the conduction band shift ¢, on the real part
of the self-energy is illustrated in the bottom panel of Fig. 2.
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FIG. 2. (Color online) Upper panel: local f-electron spectral
functions of the PAM on a simple cubic lattice for ¢, = —0.5,
U=1, V>*=0.1, W = 2, and different values of . = 0.1,0.3,0.5
(green/light gray, red/dark gray, black). Lower panel: corresponding
real part of the self-energy. Insets: zoom in around the Fermi level at
o = 0. The kinks are indicated by arrows for the case &, = 0.5.

For w < 0, the overall behavior of the self-energy is the same
as one would expect for a strongly correlated metal. The real
part shows a basically linear behavior for small energies and
eventually reaches its maximum. After that, it falls off rapidly
and ultimately converges to a constant.

For w > 0, on the other hand, X(w) experiences the
consequences of the hybridization. The hybridization gap,
which moves to higher frequencies for increasing &, is
reflected in the imaginary part of the self-energy as a second
minimum of |ImX(w)| (besides w = 0; not shown). In the
Kramers-Kronig related ReX(w), it shows up as an inflection
point in Fig. 2.

Compared to these coarse features, kinks are fine structures
which have been overlooked in the Hubbard model prior to
Refs. 4 and 5, and in the periodic Anderson model up to this
point. A closer inspection of the self-energy shows a kink for
o < 0 close to the Fermi energy (see the inset of Fig. 2),
particularly well visible for &, = 0.5. Upon increasing the
bandwidth W and hence decreasing the density of states of
the conduction electrons at the Fermi level, the width of the
central Abrikosov-Suhl resonance is reduced, as is the kink
energy (cf. W = 4 in Fig. 3).

For w > 0, the inflection point (hybridization gap) makes
the identification of a kink more complicated. The most clear
separation of kink (at w ~ 0.004) and inflection point (at w ~
0.01) is arguably obtained for W = 4 in Fig. 3. But, also for
W = 6 two distinct features are discernible for o > 0.

Keeping the bandwidth fixed and modifying instead the
hybridization strength, we show in Fig. 4 the real part of the
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FIG. 3. (Color online) Upper panel: local f-electron spectral
function for U = —-2¢, =1, & =0.5, V2 =0.1, and different
bandwidths W = 2,4,6 (black, red/dark gray, green/light gray) for
a simple cubic lattice. Lower panel: corresponding real part of the
self-energy. Insets: larger frequency window. The kinks are indicated
by arrows for the case W = 2.

self-energy for the Bethe lattice. A kink for w > 0 is well
visible, in particular for a smaller hybridization V (see right
inset of Fig. 4). In the left inset of Fig. 4, we plot the kink
frequency of the upper panel versus the inverse hybridization
strength 1/V? on a logarithmic scale. This reveals that the
kink frequency shows the same exponential dependence on
1/V? as the Kondo temperature. Let us note that, due to the
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FIG. 4. (Color online) Real part of the self-energy for the Bethe
lattice with U = —2¢y =1, . = 0.5, W = 2, and various V. Right
inset: magnification around the Fermi energy. Left inset: frequency
of the kink vs inverse hybridization strength.
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Dispersion Ey
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FIG. 5. (Color online) (a) Overall spectral density [A s(k,w) + A.(k,®)] on a logarithmic scale for a simple cubic lattice with U = —2¢; =
2,e. =05, V?=0.2, and W = 3.5. (b) Magnification around the Fermi energy. The curves along the maxima of (a) and (b) represent the
dispersion Ey. In (c), this dispersion (solid red curve) is compared to the noninteracting one multiplied with renormalization factors Zcp = 0.202
(green dotted) and Zg, = 0.0689 (blue dotted) extracted from a fit of the corresponding self-energy. The dotted curves fit the DMFT(NRG)
result very well, hence indicating kinks in the dispersion of the PAM.

very small quasiparticle weight Zg;, < 1 of the PAM, also the
kinks are at very low energies.

A. Dispersion relation

After finding kinks in the real part of the PAM self-energy,
let us now investigate if they have a similar influence on the
effective dispersion relation Ex as for the Hubbard model.
Here, E is defined as the maximum of the k-resolved spectrum
A(k,w) with respect to k, as in angular-resolved photoemission
experiments. Since the PAM is an effective two-band model,
it has two such dispersion relations for f and ¢ (conduction)
electrons. In Figs. 5(a) and 5(b), the overall spectral density
Ar(k,w) + A.(Kk,w) is plotted. The dispersion extracted from
these spectral functions is depicted in Fig. 5(c) (red curve). At
first glance, no kink feature is discernible.

On the other hand, the kink in the real part of the self-energy
should directly reflect in a kink of the dispersion relation,
whereas the imaginary part smears out the maxima. This can
be demonstrated by employing a linear fit to the real part of the
self-energy in Fig. 6. Taking into account the frequency range
o € [—0.05,0.05], we obtain a Fermi liquid renormalization
factor Zgr, = 0.0689 for the slope around the Fermi level, and
two renormalization factors ZgP =0.202 and Z, = 0.312
for the slopes after the kink at @* ~ —0.005 and »? = 0.005,
respectively [cf. Eq. (2)]. These renormalization factors are
related to the corresponding self-energy slopes d ReX /dw as
Z=(—-9ReX/dw)"".

From the Fermi liquid renormalization Zg;, and from Z,,
the two dashed dispersion relations in Fig. 5(c) are derived.
These describe the NRG dispersion relations accurately
around the Fermi level and for more negative frequencies. In-
between there is a crossover from one curve to the other. This
reflects the self-energy kink, which due to the already strong
curvature of the noninteracting (or renormalized) dispersion
does not, however, show up as an abrupt change of slope.

B. Specific heat

The kinks in the self-energy can also be expected to
reflect as a change of the linear behavior of the specific heat.
As in Ref. 10, we have employed the relation!® between
low-temperature entropy and spectral function, yielding the

following conduction and f-electron contribution to the
specific heat at temperature 7':

00 2,y Ar(yT)
_ ye sy
Cy(T) =2T /_OO dy(ey TP [Ac.(yT)—F 707)
+ %ReG f(yT)Imz(yT)} , 5)

o
(M)
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o
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FIG. 6. (Color online) Upper panel: real part of the self-energy
for the parameters U = —2¢, =2, ¢ = 0.5, V2=02,and W =
3.5, together with a piecewise linear fit (green dashed line). Middle
panel: corresponding imaginary part of the self-energy. Lower panel:
corresponding local spectral function.
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FIG. 7. (Color online) Specific heat of a Bethe-lattice PAM with
U= —2¢;=1,¢ =0.5,V?= 0.1 and various bandwidths.

where Z(yT) = (1 — dRex )~! is the renormalization

do |w=yT
factor for the f electrons, anli thye summation over the two spin
directions is accounted explicitly by the prefactor 2. The last
term (second line) in Eq. (15) also accounts for the imaginary
part of the self-energy and is beyond Ref. 10.

Figure 7 shows the specific heat for the Bethe lattice
and different bandwidths (and density of states) of the
conduction electrons calculated according to Eq. (15). At low
temperatures, there is a linear increase of the specific heat as is
to be expected for a Fermi liquid. The next dominant feature is
a minimum found, e.g., at 7 & 0.0006 for W = 3. The origin
of this minimum is the hybridization gap, which leads to a
reduced number of states in the corresponding energy interval.
These two dominant features hide a more delicate kink feature
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which according to Eq. (15) should be present [note Z(yT)
strongly depends on temperature], but is not discernible.

IV. CONCLUSION

We have identified kinks in the real part of the self-energy
of the periodic Anderson model, the arguably simplest model
for f-electrons systems. The hybridization gap leads to an
additional feature, in our case at w > 0, making the clear
identification of the kink more difficult than for the Hubbard
model. The kink frequency follows the same exponential
dependence on the hybridization strength as the Kondo
temperature. In contrast to the Hubbard model, the kink is
difficult to detect visibly in the energy-momentum dispersion
since the noninteracting energy-momentum dispersion has a
strong curvature around the kink energy. Similarly, also in
the specific heat, the fingerprint of the self-energy kink is
less obvious because a stronger feature, associated with the
hybridization gap, is superimposed.

Note added in proof. Recently, we became aware of a related
work by M. Greger et al.,”” analyzing the kinks in the two-band
Hubbard model.
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