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We present an approach which is based on the one-particle irreducible (1PI) generating functional formalism
and includes electronic correlations on all length scales beyond the local correlations of dynamical mean-field
theory (DMFT). This formalism allows us to unify aspects of the dynamical vertex approximation (D�A) and the
dual fermion (DF) scheme, yielding a consistent formulation of nonlocal correlations at the one- and two-particle
level beyond DMFT within the functional integral formalism. In particular, the considered approach includes
one-particle reducible contributions from the three- and more-particle vertices in the dual fermion approach, as
well as some diagrams not included in the ladder version of D�A. To demonstrate the applicability and physical
content of the 1PI approach, we compare the diagrammatics of 1PI, DF, and D�A, as well as the numerical
results of these approaches for the half-filled Hubbard model in two dimensions.
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I. INTRODUCTION

Dynamical mean-field theory (DMFT)1,2 represents a big
step forward for our understanding of strongly correlated
electron systems. It fully includes local correlations, which
often constitute the major contribution of electronic correla-
tions. These are crucial for quasiparticle renormalization and
the physics of the Mott-Hubbard metal-insulator transition
(MIT).3 However, the arguably most fascinating phenomena
of electronic correlations, such as unconventional supercon-
ductivity or (quantum) criticality, originate from (or at least
are strongly affected by) nonlocal correlations. Hence, several
approaches have been developed using DMFT as a starting
point and including nonlocal correlations beyond. The two
main routes to this end are cluster4–7 and diagrammatic
extensions8–12 of DMFT.

The basic idea of cluster extensions is to go beyond the
single-site DMFT by extending the notion of locality to a
cluster of sites. This way, correlations on length scales of
the extension of the cluster, which hence are short ranged,
are included. In practice, two different flavors are employed,
which are essentially based on clusters in real or k space, and
are coined cellular DMFT6 and dynamical cluster approxi-
mation (DCA),4 respectively. Complementarily, two distinct
diagrammatic extensions of DMFT, based on the computation
of the local two-particle vertex13 of the Anderson impurity
model (AIM) associated to DMFT, have been proposed. Both
diagrammatic schemes aim at the inclusion of short- and long-
range nonlocal correlations, and share, to some extent, a similar
philosophy14 with the diagrammatic treatments of the Ander-
son localization built around the infinite dimensional limit.15,16

The two diagrammatic extensions of DMFT, however, differ:
the dynamical vertex approximation (D�A)9,10,17 is based
on the consideration of the fully two-particle irreducible
local vertex, while the dual fermion (DF)11,12,18 diagrams are
built from the two-particle local vertex which is one- and
two-particle reducible.

The idea behind D�A is a systematic resummation of the
most relevant Feynman diagrams beyond the DMFT ones:
While DMFT is based on the locality of the fully irreducible
one-particle vertex (i.e., the self-energy), D�A raises this
locality concept to a higher level of the diagrammatics,
requiring only the fully irreducible n-particle vertex to be
local. Fortunately, there is compelling numerical evidence that,
even in two dimensions, the fully irreducible n = 2-particle
vertex indeed is local,19 so that this vertex can be considered
as a building block of the diagram technique in the D�A
approach. The proper D�A treatment would hence correspond
to the solution of the parquet equations,20 with an input
given by the two-particle irreducible local vertex function.
While the numerical solution of the parquet equations has
been recently achieved21 for single-band two-dimensional
models, the computational effort is still considerable. Hence,
most of the D�A results obtained hitherto17,22 employed the
ladder approximation, where, taking into account the most
important channel(s) only, the assumption of locality is made
for the two-particle vertices, which are irreducible in these
channels.

The DF approach, instead, is a systematic functional-
integral expansion around DMFT. By introducing an impurity
problem at each lattice site, the lattice action is recast in
terms of decoupled impurities and a momentum-dependent
remainder, which involves the hybridization function and
the bare dispersion. Through a Hubbard-Stratonovich trans-
formation acting on this term, so-called dual fermions are
introduced. These couple only locally to the original fermionic
degrees of freedom. Hence, the latter can be integrated
out, which produces all local connected two- and more-
particle diagrams (vertices) of the impurity problem through
which the dual fermions are coupled. This is in contrast
with the D�A which uses only the irreducible part of
these vertices.23 Analogously to D�A, the inclusion and an
exact treatment of all n-particle interaction terms among
the electrons would correspond to the exact solution of the
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problem, but in practice three- and more-particle vertices
are neglected and only the lowest-order interaction terms
(i.e., the two-particle local vertex) for the dual electrons are
considered. Different diagrammatic approximations within the
DF approach, such as second-order perturbation theory,11

ladder series,12 and quite recently even parquet18 have been
considered. We note here, that the DF parquet calculations,
when performed without self-consistency, would be formally
similar to the parquet corrections to the local physics of
the Anderson localization problem considered in Ref. 15,
though in the former case the local connected two-particle
vertex is obviously much more complex than the one of
CPA.

A thorough comparison between the diagrammatics of DF
and D�A has not been done so far, although, from the above
discussion one may surmise a sort of underlying similarity
between the two diagrammatic approaches and their schemes
of implementation. To perform such a comparison, we present
in this paper a general approach for a systematic inclusion of
nonlocal corrections beyond DMFT. This scheme is also based
on a functional integral, similarly as in the DF approach, but
it is formulated in terms of the one-particle irreducible (1PI)
vertices instead of the reducible vertices of the DF approach. In
order to illustrate the content of the 1PI approach we compare
it diagrammatically and numerically with DF and D�A, also
illustrating the diagrammatic relations between the latter two
approaches. Quite remarkably, our results demonstrate that
the 1PI approach combines synergetically important features
of the DF and D�A schemes.

In Sec. II we discuss the general structure of the nonlocal
corrections to DMFT, considering contributions to the self-
energy, which are second order with respect to the bare
on-site Coulomb repulsion and the DMFT local interaction,
respectively. In Sec. III we develop a formalism based on
the transformation to the one-particle irreducible functional in
the DMFT part of the action. In Sec. IV we derive nonlocal
contributions to the local (DMFT) self-energy based on ladder
diagrams and discuss these in terms of a comparison with
the DF and D�A approaches. In Sec. V, we discuss results
for the two-dimensional Hubbard model obtained with our
method, and, finally, Sec. VI is devoted to conclusions and an
outlook.

II. SECOND-ORDER PERTURBATION THEORY

Let us briefly discuss the structure of the corrections to the
dynamical mean-field theory by means of the perturbation
theory. Specifically, we consider the Hubbard model with
hopping tij and Coulomb interaction U :

H =
∑
ijσ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓. (1)

Here, the operator ĉ
†
iσ (ĉiσ ) creates (annihilates) an electron

with spin σ at lattice site i, n̂iσ = ĉ
†
iσ ĉiσ . For the sake

of simplicity, this paper deals with the one-band Hubbard
model only, but a generalization of the 1PI approach to
more complex multiorbital models is, as a matter of course,
possible.

The dynamical mean-field theory approximates the corre-
sponding full action by an effective local action2

SDMFT[c+,c] = −
∑

i

1

β2

∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

c+
iσ (τ )

× ζ−1(τ − τ ′)ciσ (τ ′) +
∫ β

0
dτ Uni↑(τ)ni↓(τ),

(2)

where c+
iσ (τ ) and ciσ (τ ) are Grassmann variables correspond-

ing to the Fermion operators ĉ
†
iσ and ĉiσ at imaginary time

τ , β = 1/T is the inverse temperature. The Weiss field, i.e.,
the noninteracting impurity Green’s function ζ (τ − τ ′), has to
be determined self-consistently in DMFT from the following
condition on its Fourier transform ζν∑

k

Gk = (
ζ−1
ν − �loc,ν

)−1 = G−1
loc,ν (3)

where

Gk = (iν + μ − εk − �loc,ν)−1, (4)

εk is the Fourier transform of tij , μ is the chemical potential,
and �loc,ν is the self-energy of the impurity problem [see
Eq. (2)] at the fermionic Matsubara frequency iν [i.e.,
ν = π

β
(2n + 1),n ∈ Z]. Note that we specify all imaginary

frequency arguments as subscripts (or, for the vertex functions
below, as superscripts) and that we adopt a four-vector notation
for the frequency and momentum arguments, i.e., k = (ν,k) for
a fermionic and q = (ω,q) for a bosonic Matsubara frequency
[i.e., ω = π

β
(2m),m ∈ Z]. The subscript “loc” is attached to

all quantities (Green’s functions and vertices) of the local AIM
despite the Weiss fields ζν . In practice, the local problem
in Eq. (2) is solved numerically by exact diagonalization or
quantum Monte Carlo simulations,2 yielding a self-energy
�loc,ν and Green’s function Gloc,ν until self-consistency re-
garding Eq. (3) is obtained. Since such numerical calculations
can be better performed in Matsubara frequencies, we stick
to this formalism, but a transformation to real frequencies is
possible.

DMFT takes into account local dynamical correlations but
it neglects intersite correlations, which is reflected in a wave
vector k-independent self-energy �k ≡ �loc,ν . Perturbation
theories such as self-consistent T matrix, fluctuation exchange
(FLEX), and parquet approximation24 can result in a k-
dependent �, but the most important local correlations are
not reliably reproduced when the system is not in the weak
coupling regime, i.e., if the Coulomb interaction parameter U

is comparable to or larger than the bandwidth.
To illustrate the structure of nonlocal corrections beyond

DMFT, we first analyze the perturbation theory. Since we want
to find corrections to the already calculated local (DMFT) self-
energy we use the DMFT Green’s function, given in Eq. (4), as
bare propagator for the construction of self-energy diagrams.
Let us now separate purely local and nonlocal contributions to
�k by introducing the function

G̃k ≡ Gk − Gloc,ν , (5)
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which vanishes after averaging in k space by construction:∑
k

G̃k = 0. (6)

In the second order in U we obtain for the nonlocal self-energy:

�
(2)
k = U 2

β

∑
q

Gk−qV
(2)
q = �

(2)
loc,ν + �̃

(2)
k

�
(2)
loc,ν = U 2

β

∑
ω

Gloc,ν−ωV
(2)

loc,ω (7)

�̃
(2)
k = U 2

β

∑
q

G̃k−q Ṽ
(2)
q ,

where

V (2)
q = − 1

β

∑
k′

Gk′+qGk′ = V
(2)

loc,ω + Ṽ (2)
q ,

(8)
V

(2)
loc,ω =

∑
ν ′

χ
0,ν ′ω
loc , Ṽ (2)

q =
∑
ν ′

χ̃ ν ′
q ,

and χ
0,νω
loc and χ̃ ν

q are defined as

χ
0,νω
loc = − 1

β
Gloc,νGloc,ν+ω,

(9)

χ̃ ν
q = − 1

β

∑
k

G̃kG̃k+q .

The mixed local-nonlocal terms in Eq. (7) vanish due to the
identity in Eq. (6). For the same reason Ṽ (2)

q vanishes after
averaging in k space:

∑
q

Ṽ (2)
q = − 1

β

∑
k′

{∑
q

G̃k′+q

}
G̃k′ = 0. (10)

The local part �loc,ν in Eq. (7) can be replaced by its
DMFT value, so that only nonlocal terms are calculated by
perturbation theory.

In higher orders of the perturbation theory, there is no
such clear separation of terms: mixed local-nonlocal terms
appear in �k . Considering, however, the leading nonlocal
correction to the local self-energy, these terms can be reduced
to those containing the local vertex instead of U in the second-
order result, Eq. (7), and the nonlocal part of the Green’s
functions. In particular, using the dual fermion approach11 the
corresponding correction can be expressed as

�
(2)
d,k = 1

2β

∑
ν ′,q

∑
m=c,s

Am�νν ′ω
loc,mχ̃ν ′

q �ν ′νω
loc,mGk+q, (11)

where As = 3/2; Ac = 1/2, �νν ′ω
loc,s(c) = −�νν ′ω

loc,↑↑ ± �νν ′ω
loc,↑↓ is

the local two-particle vertex, which is related to the local
susceptibility

χνν ′ω
loc,σσ ′ = 1

β2

∫ β

0
dτ1 dτ2 dτ3 e−iτ1ν eiτ2(ν+ω) e−iτ3(ν ′+ω)

× [〈Tτ ĉ
†
iσ (τ1)ĉiσ (τ2)ĉ†iσ ′(τ3)ĉiσ ′(0)〉

− 〈Tτ ĉ
†
iσ (τ1)ĉiσ (τ2)〉〈Tτ ĉ

†
iσ ′(τ3)ĉiσ ′(0)〉] (12)

FIG. 1. Second-order diagram for the DF approach in terms of
real electrons.

by

�νν ′ω
loc,σσ ′ = −χνν ′ω

loc,σσ ′ − χ
0,νω
loc δνν ′δσσ ′

χ
0,νω
loc χ

0,ν ′ω
loc

. (13)

The susceptibilities χνν ′ω
loc,σσ ′ can be obtained from the exact

diagonalization or quantum Monte Carlo solution of the
single-impurity problem. The result (11) is illustrated diagram-
matically in Fig. 1.

In the DF approach the self-energy �d,k is however an
auxiliary construct. It is related to the real self-energy �k of
the system via

�k = �DF,k = �d,k

1 + Gloc,ν�d,k

+ �loc,ν . (14)

In order to understand this equation diagrammatically, one can
expand the denominator in a geometric series. This procedure
generates, together with �d from Fig. 1, the additional diagram
depicted in Fig. 2 and chain expansions thereof. Evidently, the
lattice self-energy should not contain one-particle reducible
Feynman diagrams. Indeed, as discussed in Ref. 23, including
three- and more-particle vertices in the DF calculations actu-
ally removes these spurious contributions to the self-energy.
In our example, the diagram shown in Fig. 2 is canceled by
a corresponding contribution from the one-particle reducible
three-particle vertex (shown in red in Fig. 2).

The above-discussed difficulty is obviously not a property
of the DF approach per se but its truncation at the two-particle
vertex level while keeping, at the same time, the full denomina-
tor of Eq. (14). This is analogous to the linked cluster theorem,
as a consequence of which all vacuum-to-vacuum diagrams
cancel in the ratio of path integrals, which appears in the
calculation of correlation functions. Of course, this is no longer
true if we perform an expansion of the path integral in the
numerator only up to a certain order. Similarly, if we truncate
the DF approach at the two-particle vertex level, reducible
diagrams stemming from local one-particle reducible three-
and more-particle vertex functions are not present and, hence,
the denominator in Eq. (14) introduces such terms in the
diagrammatic expansion rather than canceling them. To avoid
these complications as well as to account systematically for
the contribution of one-particle reducible diagrams to three-
and more-particle vertices, we consider below the one-particle
irreducible formulation of the generating functional approach.
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FIG. 2. (Color online) A reducible diagram for the real self-energy �k stemming from the expansion of the denominator in Eq. (14) and
the diagram of Fig. 1 as numerator. In the DF approach, the same contribution, albeit with opposite sign, is generated from a diagram involving
the three-particle vertex, which contains the part marked in red, hence canceling this reducible contribution.

III. ONE-PARTICLE IRREDUCIBLE (1PI) APPROACH

For a general formulation of the nonlocal corrections to DMFT we separate the nonlocal degrees of freedom in the
generating functional formalism. To this end, we consider the generating functional

Z[η+,η] =
∫

D[c+,c] exp

{
−
∫ β

0
dτ

[∑
i,σ

(
c+
iσ (τ )

∂ciσ (τ )

∂τ
− η+

iσ (τ )ciσ (τ ) − c+
iσ (τ )ηiσ (τ )

)
+ H [c+,c]

]}
, (15)

where η+
iσ (τ ),ηiσ (τ ) are the fermionic source fields. The contribution of the local and nonlocal degrees of freedom can be split

by performing a Fourier transform in the exponent and introducing the auxiliary fields c̃+ and c̃:25

Z[η+,η] =
∫

D[̃c+ ,̃c] exp

{
β
∑
k,σ

c̃+
kσ

(
ζ−1
ν − G−1

0k

)−1
c̃kσ

}

×
∫

D[c+,c] exp

{
−SDMFT[c+,c] +

∑
k,σ

[(η+
kσ + c̃+

kσ )ckσ + c+
kσ (ηkσ + c̃kσ )]

}
, (16)

where G−1
0k = iν − εk is the noninteracting lattice Green’s function. Let us recall that the correlation (or Green’s) functions can

be obtained by functional derivatives of log Z[η+,η] with respect to η+ and η at η+ = η = 0, which allows us to neglect any
normalization factor which would appear in front of the integral on the right-hand side of Eq. (16).

Whereas up to this point the formalism is essentially the same as in the derivation of the DF approach,11,26 we now apply a
Legendre transform in order to pass to the 1PI functional in the DMFT part of the action

exp(−WDMFT[̃η+,̃η]) =
∫

D[c+,c] exp

{
−SDMFT[c+,c] +

∑
k,σ

(̃η+
kσ ckσ + c+

kσ η̃kσ )

}

= exp

{
−�DMFT[φ+,φ] +

∑
k,σ

(̃η+
kσ φkσ + φ+

kσ η̃kσ )

}
, (17)

where

φkσ = −δWDMFT[̃η+,̃η]

δη̃+
kσ

, η̃kσ = δ�DMFT[φ+,φ]

δφ+
kσ

, (18)

η̃kσ = ηkσ + c̃kσ , and similarly [but with reversed sign in Eq. (18)] for the conjugated fields. Therefore, Eq. (16) becomes

Z[η+,η] =
∫

D[̃c+,̃c] exp

{
β
∑
k,σ

c̃+
kσ

(
ζ−1
ν − G−1

0k

)−1
c̃kσ +

∑
k,σ

[(η+
kσ + c̃+

kσ )φkσ + φ+
k,σ (ηkσ + c̃kσ )] − �DMFT[φ+,φ]

}
. (19)
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The fields φ+ and φ in this representation are functionals of the fields η̃+ and η̃ defined via the relations in Eq. (18). For the
following consideration it is convenient to change the variables of integration from c̃+ ,̃c to φ+,φ. This yields

Z[η+,η] =
∫

D[φ+,φ] exp

{
β
∑
k,σ

(
δ�DMFT[φ+,φ]

δφkσ

+ η+
kσ

)[
ζ−1
ν − G−1

0k

]−1
(

− δ�DMFT[φ+,φ]

δφ+
kσ

+ ηkσ

)

−
∑
k,σ

(
δ�DMFT[φ+,φ]

δφkσ

φkσ − φ+
kσ

δ�DMFT[φ+,φ]

δφ+
kσ

)
− �DMFT[φ+,φ]

}
J [φ+,φ], (20)

where J−1[φ+,φ] = det δ2�DMFT/(δφ+δφ) is the determinant of the Jacobian of the corresponding transformation, see Appendix
for more details.

We proceed now by expanding the functional �DMFT[φ+,φ] into a series with respect to the source fields φ+ and φ. In
the DF approach such an expansion is performed for the functional WDMFT[η+,η], which generates connected but in general
one-particle reducible vertex functions as the coefficients of this expansion. Expanding �DMFT instead, one obtains the (local)
one-particle irreducible vertex functions amputated by the outer legs. Neglecting the constant zeroth-order contribution, the
resulting expansion up to fourth order, i.e., up to the level of the two-particle vertex function, reads

�DMFT[φ+,φ] = − 1

β

∑
k,σ

G−1
loc,νφ

+
kσ φkσ + 1

2β3

∑
kk′q

∑
σσ ′

�̃νν ′ω
loc,σσ ′ (φ+

kσ φk+q,σ )(φ+
k′+q,σ ′φk′σ ′), (21)

where �̃νν ′ω
loc,σσ ′ = (1 − 1

2δσσ ′)�νν ′ω
loc,σσ ′ .

In the next step, we use the (approximate) DMFT functional �DMFT from Eq. (21) for evaluating Eq. (20), i.e., we have to
calculate the derivatives of the functional �DMFT with respect to the fields φ+ and φ. While the formal derivation is given in
Appendix, let us here discuss the most important features of the calculation. The exponent in Eq. (20) contains a term proportional
to (δφ�DMFT)(δφ+�DMFT) (where δφ denotes the functional derivative with respect to the field φ). Inserting now the two-particle
part of �DMFT into this expression clearly leads to a term which is proportional to (�loc)2(φ+φ)3. Such a contribution stems from
the local reducible three- (and more)-particle vertices, and is hence absent in the DF approach if we neglect these vertices. At
the same time, such contributions stemming from reducible (local) diagrams are fully taken into account in the 1PI approach
when expanding �DMFT up to the two-particle level. The above mentioned three-particle contribution can be decoupled by
another Hubbard-Stratonovich transformation introducing new fields ψ+ and ψ . The corresponding calculations are carried out
in Appendix and yield

Z[η+,η] =
∫

D[φ+,φ]D[ψ+,ψ] exp

{∑
k,σ

η+
kσ (ψkσ + φkσ ) + (ψ+

kσ + φ+
kσ )ηkσ

+ 1

β

∑
k,σ

G−1
k (φ+

kσ φkσ + ψ+
kσ φkσ + φ+

kσψkσ ) + (G−1
k − G−1

loc,ν)ψ+
kσψkσ

− 1

β3

∑
kk′q

∑
σσ ′

�̃νν ′ω
loc,σσ ′[(ψ+

kσ φk+q,σ )(φ+
k′+q,σ ′φk′σ ′)

+ (φ+
kσ φk+q,σ )(φ+

k′+q,σ ′ψk′σ ′) + 1

2
(φ+

kσ φk+q,σ )(φ+
k′+q,σ ′φk′σ ′)]

}
J [φ+,φ], (22)

where Gk is defined by Eq. (4) and accounts for the local
self-energy. Equation (22) expresses the partition function
through the one-particle irreducible local vertex �νν ′ω

loc,σσ ′ and
the local self-energy, and represents one of the central results
of the present paper. The first line of Eq. (22) includes the
source fields, the second line contains the quadratic (bare)
terms in fermionic fields, and the last two lines correspond
to the interaction between fermionic degrees of freedom. The
nonlocal Green’s functions of the lattice model is defined as
Gkσ = − 1

β
〈〈ckσ |c+

kσ 〉〉. It can be calculated through derivatives
of Eq. (22) with respect to the source fields η+, η:

Gkσ = 1

β

δ2 ln Z

δη+
kσ δηkσ

∣∣∣∣
η+=η=0

= − 1

β
[〈〈φkσ |φ+

kσ 〉〉 + 〈〈φkσ |ψ+
kσ 〉〉 + 〈〈ψkσ |φ+

kσ 〉〉

+ 〈〈ψkσ |ψ+
kσ 〉〉 ]. (23)

That is, Gkσ can be written as the sum of four distinct
propagators, which can be combined in a more compact form
− 1

β

∑
a,b=1,2〈〈�a

kσ |�+,b
kσ 〉〉, where we have introduced a spinor

�kσ =
(

φkσ

ψkσ

)
. (24)

In order to treat the interaction in Eq. (22), we consider
first the bare part in the action, which is quadratic in
Grassmann variables. The corresponding 1PI bare propagators
are obtained by setting �loc = 0 in Eq. (22) and yield

Gk = − 1

β
〈〈�k|�+

k 〉〉0 =
(

G−1
k G−1

k

G−1
k G−1

k − G−1
loc,ν

)−1

=
(

Gk − Gloc,ν Gloc,ν

Gloc,ν −Gloc,ν

)
. (25)
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FIG. 3. (a) Elements of the diagram technique in the 1PI
approach. (b) Diagrams that are generated by the elements in (a)
but excluded (canceled) by the corresponding counterterms in the
(inverse) determinant J [φ+,φ] of the Jacobian (see Appendix).

Let us again stress that the bare functions Gk and
Gloc,ν include all local self-interaction effects via the local
self-energy �loc,ν , which is already considered in the DMFT
part of the action [see Eqs. (16) and (17)]. The prop-
agator − 1

β
〈〈φk|φ+

k 〉〉0 ≡ G̃k = Gk − Gloc,ν [as defined in
Eq. (5)] corresponds to the remaining nonlocal fluctuations
and obeys

∑
k G̃k = 0. The propagators − 1

β
〈〈φk|ψ+

k 〉〉0 =
− 1

β
〈〈ψk|φ+

k 〉〉0 = 1
β
〈〈ψk|ψ+

k 〉〉0 = Gloc,ν describe the (bare)
local quasiparticles, coupled to the nonlocal degrees of
freedom via the interaction in the third line in Eq. (22). The
corresponding elements of the diagram technique are shown in
Fig. 3(a). The interaction term consists of two parts, which are
depicted diagrammatically. The first diagram corresponds to
the contribution �loc(φ+φ)(φ+φ) in the fourth line of Eq. (22).
This vertex can be either coupled to both local (〈〈φ|ψ+〉〉 or
〈〈ψ |φ+〉〉) and nonlocal propagators (〈〈φ|φ+〉〉) or to nonlocal
propagators only. In contrast, the other mentioned contribution
to the interaction �loc(ψ+φ)(φ+φ) + c.c. [third row of Eq. (22)
and second diagram in Fig. 3(a)] is connected to at least one
local propagator. Finally, the determinant J [φ+,φ] provides
for the subtraction of diagrams which are already accounted
for in �loc and �loc, in particular the bubbles with one (i.e.,
tadpole terms) and two local Green’s functions, which should
be excluded from the diagram technique, see Fig. 3(b) and
Appendix for details.

Let us finally comment on the the analytic properties of
our approach: From the diagrammatic elements of the 1PI
method in Fig. 3 one can infer that the situation is completely
equivalent to the DF case. For the DF approach, the analyticity
of the self-energy has been proven in Ref. 27. For a complete
proof, it is however necessary to show that the corresponding
statement holds for the Green’s function as well, which remains
an open problem. We note that, in practice, no causality
violations have been observed in DF and hence we also do
not expect violations in our practical calculations.

FIG. 4. (Color online) Third-order (in terms of the local vertex
�νν′ω

loc,σσ ′ ) self-energy diagram in the 1PI scheme, and ladder extension
thereof (indicated by the dashed lines).

IV. LADDER APPROXIMATION IN THE 1PI APPROACH

Aiming at a practical application of the 1PI scheme
derived in Sec. III, we will now explicitly consider lad-
der diagrams for Eq. (22), see Fig. 4. As we mentioned
in the Introduction, the restriction to ladder diagrams is,
de facto, the typical approximation scheme adopted in the
other diagrammatic extensions of DMFT. Hence, it represents
the natural framework for testing the validity of the 1PI scheme
and for comparing its diagrammatic and physical content
against that of DF and D�A.

As for the explicit derivation of the corresponding 1PI
expressions for the ladder diagrams, we start from the analysis
of all possible bubble diagrams, which can be constructed from
the diagrammatic elements for the 1PI approach discussed in
the previous section (see Fig. 3). Considering all possible
bubbles (Fig. 5), we observe that the bubble [Fig. 5(a)]
with two local Green’s functions should not appear in our
1PI corrections to the local self-energy, since it is already
included in �loc [the contribution of Fig. 5(a) is canceled by
the corresponding counterterms contained in the determinant
J [φ+,φ] of the Jacobian, shown by the second diagram of
Fig. 3(b)]. On the other hand, bubble diagrams with a single
local Green’s function, as depicted in Fig. 5(b) and 5(c)
vanish due to the fact that G̃k , summed over k, yields zero.
Hence, the ladder part of the diagram for the self-energy can
be solely composed of bubbles with two nonlocal Green’s
functions G̃k [see Fig. 5(d)], which makes the considered
approach similar to that in Ref. 14 with the restriction to the
ladder diagrams only. Therefore, the ladder part has to be
constructed solely from �loc(φ+φ)(φ+φ) vertices, except for
the leftmost and rightmost vertex, which can be either of the

FIG. 5. Bubble diagrams for the 1PI approach which can be
constructed from the diagrammatic elements shown in Fig. 3. Only
the diagram (d) contributes to the perturbation series.
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FIG. 6. The four components of the matrix � depicted for diagrams of third order in �loc.

type �loc(ψ+φ + φ+ψ)(φ+φ), connected by one local Green’s
function Gloc, or of the type �loc(φ+φ)(φ+φ), connected by the
Green’s function G̃k . Hence, as it is illustrated in Fig. 6 for the
case of third-order (in �loc) diagrams, the self-energy matrix
in the spinor representation,

� =
(

�φφ �φψ

�ψφ �ψψ

)
, (26)

has only two distinct components:

�φφ,k = �φψ,k = �ψφ,k = �1,k + �2,k,
(27)

�ψψ,k = �1,k,

with �1,k and �2,k being defined in the following way:

�1,k = 1

β

∑
ν ′ν ′′q

∑
m=c,s

Am�νν ′ω
loc,m

[
δν ′ν ′′ − χ̃ ν ′

q �ν ′ν ′′ω
loc,m

]−1
ν ′ν ′′

× χ̃ ν ′′
q [Gk+q − Gloc,ν+ω]�ν ′′νω

loc,m − �
(2)
1,k, (28)

contains the G̃k Green’s functions only and

�2,k = 1

β

∑
ν ′ν ′′q

∑
m=c,s

Am�νν ′ω
loc,m

[
δν ′ν ′′ − χ̃ ν ′

q �ν ′ν ′′ω
loc,m

]−1
ν ′ν ′′

× χ̃ ν ′′
q Gloc,ν+ω�ν ′′νω

m,loc, (29)

in turn contains the very same ladder but differs by a Green’s
function Gloc in place of G̃k . The contribution �

(2)
1,k = �

(2)
d,k ,

which is the same as the DF second-order diagram in Eq. (11),
has to be subtracted in Eq. (28) to avoid a double counting of
the second-order diagram (in �loc) in the ladder series. Note
that the matrix inversions in Eqs. (28) and (29) are performed
with respect to the fermionic Matsubara frequencies ν ′ and ν ′′
for each value of q (i.e., for fixed ω and q).

According to Eqs. (25), (26), and (27), the Dyson equation
in the spinor formalism reads as

G−1
k = G−1

k − �k

=
(

G−1
k − �1,k − �2,k G−1

k − �1,k − �2,k

G−1
k − �1,k − �2,k G−1

k − G−1
loc,ν − �1,k

)
. (30)

Inverting (30) and performing the summation of the compo-
nents of the obtained matrix [see Eq. (23)] we obtain the simple
result

�1PI,k = �loc,ν + �1,k + �2,k. (31)

Expanding the result Eq. (31) to leading order in G̃ = G −
Gloc, �2 yields zero, while �1 allows us to derive Eq. (11).

From Eq. (31) one can see, that the 1PI approach yields no
spurious denominator for the lattice self-energy. Note that in
the dual fermion approach,11 with the usual restriction to the
two-particle local vertex, only the contribution �1 [with the
corresponding denominator, given in the Eq. (14)] appears,
while �2 corresponds to the contributions stemming from
the three-particle local (one-particle reducible) vertex, see the
discussion in Ref. 23.

At the same time, both contributions appear on the same
ground in the 1PI approach already at the two-particle vertex
level. As it is shown below, in Sec. V, the contribution �2,k

yields however an enhanced asymptotics of the self-energy at
large frequencies ν. Therefore, at least the high-energy part
of �2,k has to be compensated by the nonladder diagrams. In
this respect, the situation in the 1PI approach is similar to the
ladder approximation within the D�A approximation, where
λ corrections are needed to obtain the correct asymptotics of
the self-energy.

115112-7



G. ROHRINGER et al. PHYSICAL REVIEW B 88, 115112 (2013)

FIG. 7. (Color online) Third-order (in terms of the local vertex �νν′ω
loc,σσ ′ ) diagrams for 1PI (a), DF (b), and its corresponding D�A counterpart

(c). The contribution of (a part of) the one-particle reducible three-particle vertex is marked in red in the 1PI and D�A diagrams.

A. Comparison to the ladder D�A

To compare the result (31) to the ladder D�A, let us
represent the reducible local vertex via the irreducible one
in a certain particle-hole channel

�νν ′ω
ir,s(c) = [(

�νν ′ω
loc,s(c)

)−1
νν ′ + χ

0,νω
loc δνν

′
]−1

. (32)

We now introduce the vertex

�νν ′ω
q,s(c) = [(

�νν ′ω
ir,s(c)

)−1 − χν
qδνν

′
]−1

,
(33)

χν
q = − 1

β

∑
k

GkGk+q = χ
0,νω
loc + χ̃ ν

q ,

where the inversion is performed with respect to the fermionic
Matsubara frequencies ν and ν ′. This way, after some algebraic
manipulations we obtain

�1,k = 1

β

∑
ν ′q

∑
m=c,s

Am�νν ′ω
q,m χν ′

q (Gk+q − Gloc,ν+ω)�ν ′νω
ir,m

−�
(2)
1,k, (34)

�2,k = 1

β

∑
ν ′q

∑
m=c,s

Am

(
�νν ′ω

q,m χν ′
q − �νν ′ω

loc,mχ
0,ν ′ω
loc

)
×Gloc,ν+ω�ν ′νω

ir,m . (35)

In total this yields

�1PI,k = �loc,ν + 1

β

∑
ν ′q

∑
m=c,s

Am

(
�νν ′ω

q,m χν ′
q − �νν ′ω

loc,mχ
0,ν ′ω
loc

)
×�ν ′νω

ir,m Gk+q − �
(2)
1,k. (36)

This result can be compared to the nonlocal self-energy in
D�A as obtained previously in Ref. 9,

�D�A,k = 1

2
Un + U

β

∑
ν ′q

χν ′
q

(
As�

νν ′ω
q,s − Ac�

νν ′ω
q,c

+ 1

2
�νν ′ω

loc,c − 1

2
�νν ′ω

loc,s

)
Gk+q . (37)

From the comparison of the above expression to the 1PI
ladder self-energy, Eq. (36), we can recognize an important
difference: the bare interaction U in Eq. (37) is replaced by
the local particle-hole irreducible vertex �ir in Eq. (36), which
is discussed diagrammatically in the next subsection.

B. Differences in the 1PI, DF and D�A diagrammatics

The different diagrammatic content of the ladder 1PI, ladder
DF, and ladder D�A approaches is readily individuated by a
direct inspection of the corresponding diagrams. We will start
by considering a typical third-order diagram of the 1PI ladder
series, shown in Fig. 7(a). Comparing to the corresponding
diagram of the DF approach [Fig. 7(b)], it is evident that the
latter does not include the term where the fermionic line at
the bottom [bold red line in Fig. 7(a)] corresponds to a local
Green’s function. This is due to the fact that in the dual fermion
space the propagation occurs via purely nonlocal Green’s
functions G − Gloc. Hence, when only the two-particle local
vertex is considered as interaction among the dual fermions,
there is no way to generate local Green’s functions in the
DF ladder diagrams. The difference between the diagrams of
Fig. 7(a) and Fig. 7(b) corresponds to the contribution of the
three-particle vertex in the DF approach [red part in Fig. 7(a)].

As in 1PI and in contrast to DF, also the corresponding
D�A diagram [Fig. 7(c)] contains the full Green’s function
G = Gloc + (G − Gloc), which also yields mixed terms with
G − Gloc propagators in the ladder part of the diagram and one
local Gloc outside the ladder (bottom of the diagram). Again,
as for the 1PI diagram, the part of Fig. 7(c) colored in red
corresponds to the contribution of the three-particle vertex in
the DF approach.

At the same time, one should emphasize that the D�A
ladder diagrams, as those depicted in Fig. 7(c), evidently
represent only a subset of the 1PI ladder diagrams. This can be
easily understood from a comparison of Fig. 7(a) and Fig. 7(c):
In the 1PI approach all vertices appearing in the diagrams are
the dynamical ones (�loc), while in D�A one of the vertex
functions is replaced by its lowest-order counterpart, i.e., the
bare interaction U . On the other hand, the 1PI ladder diagrams
themselves are in turn just a subset of the more general set of
diagrams generated by employing the parquet equations for
the D�A instead of the ladder approximation.

What does the formal difference between 1PI and D�A
mean physically? As it is illustrated in Fig. 8, the extra dia-
grams of 1PI correspond to considering nonlocal corrections
to the irreducible vertex in the selected channel [Eq. (32)],
while in ladder D�A calculations perfect locality of this
vertex is assumed. Obviously the assumption of locality of
the irreducible spin- and charge-vertex does not hold for
the full D�A where nonlocal corrections to these vertices
are generated via the self-consistent solution of the parquet
equations. Hence, while, in general, the inclusion of a larger
number of diagrams does not guarantee an improvement of
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FIG. 8. (Color online) Expressing a 1PI diagram in terms of D�A where there is only a bare U at the left-hand side of the diagram: We
start from the specific 1PI diagram (a) and consider the specific contribution to the leftmost vertex shown in (b), so that (a) becomes (c). D�A,
on the other hand, requires a bare U on the leftmost side [see Fig. 7(c)]. Hence, the entire red box has to be interpreted as a D�A generated
reducible vertex. The red box can be deformed to (d). The yellow box in diagram (d) clearly contains nonlocal contributions to the vertex
irreducible in the longitudinal channel. To generate these in the D�A the full parquet treatment would be necessary.

a given approximation, in our case the additional nonlocal
corrections for the irreducible (spin and charge) vertices are
physically justifiable through the comparison with the full
(parquet) D�A approach.

In order to demonstrate the differences between 1PI and
D�A also analytically in the most transparent way, we
can expand the D�A ladder expression for the self-energy
[Eq. (37)] by representing χν ′

q as a sum of local and nonlocal

parts, χ
0,ν ′ω
loc + χ̃ ν ′

q . Expanding to first order in χ̃ ν ′
q , we obtain

�
(2)
D�A,k = �loc,ν + 1

β

∑
ν ′ν ′′q

[
As�

νν ′′ω
loc,s χ̃ ν ′′

q

(
�

ν ′′ν ′ω
loc,s − U

2
δν ′ν ′′

)

+Ac�
νν ′′ω
loc,c χ̃ ν ′′

q

(
�

ν ′′ν ′ω
loc,c + U

2
δν ′ν ′′

)]
G̃k+q, (38)

where

�
νν ′ω
loc,s(c) = ±U

[
δνν ′ − �νν ′ω

ir,s(c)χ
ν
0ω,loc

]−1

= ±U
∑
ν ′′

�νν ′′ω
loc,s(c),

[
�ω

ir,s(c)

]−1
ν ′′ν ′ . (39)

Expanding the corresponding expression for the 1PI self-
energy in Eq. (36) in a similar manner, one obtains �

(2)
1PI,k =

�loc,ν + �
(2)
d,k . Comparing this result to the corresponding D�A

one [Eq. (38)] one observes two differences: (i) The factor
1/2 in Eq. (11), which avoids double counting of diagrams is
replaced by an explicit subtraction of double counting terms
±U/2 in Eq. (38) for the D�A. The reason for this is the

asymmetric form of the D�A self-energy correction compared
to the 1PI one (bare U in D�A vs the full vertex on in 1PI
on the left-hand side of the self-energy diagrams, see Fig. 7).
(ii) The second, more important, difference between the two

expressions is that �
νν ′ω
loc,s(c) in Eq. (38) is replaced by �νν ′ω

loc,s(c)

in �
(2)
1PI. Hence, the difference between �

νν ′ω
loc,s(c) and �νν ′ω

loc,s(c)
marks a particular set of nonlocal corrections to the self-energy,
naturally generated in the 1PI ladder diagrams, but neglected
in the ladder expansions of the D�A.

The interpretation of the ladder 1PI expression derived
in this section can be summarized as follows: in the ladder
approximation, the 1PI diagrams include terms not present in
D�A and DF. In the latter approaches, these are generated by
going beyond the ladder approximation to D�A and beyond
the two-particle vertex in DF, respectively. The numerical
effort of performing a ladder 1PI calculation is much smaller
compared to the full (parquet-based) D�A, or to the DF
with the three-particle vertex. In a sense the 1PI approach
better utilizes the information contained in the single-particle
Green’s function and two-particle vertex.

V. NUMERICAL RESULTS

In this section, we present numerical results for nonlocal
corrections to the self-energy of the two-dimensional Hubbard
model obtained by means of the ladder 1PI formalism and
compare them with the corresponding DF and D�A results.
We consider the relevant case of the Hubbard model on a
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FIG. 9. (Color online) Nonlocal corrections ��r(k,iωn) = �r(k,iωn) − �loc(iωn) (r = 1PI [Eq. (31)] and DF [Eq. (14)], respectively)
to the DMFT (local) self-energy for the d = 2 Hubbard model on a square-lattice at half filling for two different values of U , two different
k points on the Fermi surface [i.e., k = ( π

2 , π

2 ), nodal point, and k = (π,0), antinodal point], and temperatures slightly above the corresponding
TN of DMFT. For the 1PI results the single contributions �1 [Eq. (28)] and �2 [Eq. (29)] are also shown separately. Note, all self energies are
purely imaginary; this imaginary part is shown.

(two-dimensional) square lattice with nearest-neighbor hop-
ping t at half-filling, where the effect of nonlocal correlations
beyond DMFT is expected to be particularly strong. Note
that in the following all energy scales, such as the Hubbard
interaction parameter U and the temperature T = 1/β, will
be given in units of the half bandwidth W/2 = 4t = 1.
Furthermore, one should bear in mind that for the half-filled
Hubbard model the self-energy evaluated for k points at the
Fermi surface is purely imaginary as a function of Matsubara
frequencies (besides the constant Hartree contribution Un

2 ).
Hence, in order to keep the notation as simple as possible, �

refers to the imaginary part of the self-energy, i.e., � =̂ Im�,
in the sections below.

Before presenting our numerical results in the next two
subsections, let us stress that the only possibility to perform
a one-by-one comparison between the diagrammatic methods
stands for the (non-self-consistent) one-shot calculations. As
discussed in Sec. IV, only in this case the exact relations
between the three different approaches and their diagrammatic
content can be identified. Hence, this analysis is performed
first. The obtained results do not necessarily represent the final,
physical results of the three methods. In a separate subsection,
we therefore look at the trends emerging when going beyond
the one-shot calculations. We note that because of the different
ways the self-consistency is implemented (inner and outer
self-consistency loop in DF,28 Moriyaesque λ correction29

in D�A and 1PI), as well as the different possible levels of
approximation (ladder or parquet diagrams) an identification
of equivalent levels of approximation as in the one-shot case is
not possible. Also for keeping the comparison among different

methods as precise as possible, we present our numerical
results on the Matsubara frequency axis only, avoiding the
additional, and to some extent uncontrolled, effects of an
analytic continuation.

A. One-shot calculations

In this subsection, we will focus on non-self-consistent one-
shot calculations for nonlocal corrections to the (local) DMFT
self-energy: this approach represents an expansion around
DMFT, where the auxiliary local AIM [Eq. (2)] is not changed
with respect to DMFT and the DMFT Green’s functions
[Eq. (4)] are not renormalized by a feedback of the nonlocal
self-energy. As one can understand from the discussion in the
previous sections, examining (non-self-consistent) one-shot
calculations corresponds to considering well-defined sets of
diagrams for the lattice electrons. This way we are able to
individuate the general trends obtained by the three approaches
(1PI, DF, and D�A) emerging purely from their different
diagrammatic content.

For the sake of conciseness, we will mainly discuss the
numerical results obtained with ladder calculations, since they
are most frequently adopted in previous papers,12,17,22,30 and
the inclusion of ladder diagrams proved to be essential to
correctly describe crucial features of the two- and three-
dimensional physics. Examples are the pseudogap12 in d = 2
or the critical exponents in d = 3 dimensions.22

In Fig. 9 we present our results for one-shot calcula-
tions of the nonlocal corrections to the DMFT self-energy,
��r(k,iωn) = �r(k,iωn) − �loc(iωn) for r = 1PI [Eq. (31)]
and DF [Eq. (14)], respectively, on the Matsubara frequency
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FIG. 10. (Color online) Self-energies (imaginary part) obtained with one-shot calculations for the 1PI approach vs DF, D�A, and DMFT
self-energies for the same parameters as in Fig. 9.

axis. For the 1PI approach we also show its two contributions
�1 [Eq. (28)] and �2 [Eq. (29)] separately. Note, that
since no self-consistent adaption of the underlying local
model is performed, the local self-energy coincides with the
DMFT one, i.e., �loc(iωn) = �DMFT

loc (iωn). Data for weak
(U = 1.0) and intermediate-to-strong coupling (U = 2.0) and
for two different k points on the Fermi surface are presented.
The temperature has been chosen to be slightly above the
onset of the antiferromagnetic ordering (Néel temperature,
T DMFT

N ) obtained in DMFT, aiming to maximize the effect
of nonlocal correlations. One can see that, quite generally, the
nonlocal corrections in the considered approaches increase the
imaginary part of the self-energy, making its low-frequency
dependence less metallic. Comparing the relative magnitudes
of the nonlocal corrections shown in Fig. 9, the contribution
of �1 of the 1PI approach appears always rather small even
though the U and T values have been selected very close
to the antiferromagnetic instability of DMFT. The reason for
this behavior is that in �1 one has to perform k summations
over terms containing G − Gloc, which yields small results
since in a one-shot calculation,

∑
k Gk − Gloc = 0 because of

the DMFT self consistency [Eq. (3)]. Let us also note that
in one-shot calculations, the �1 part of the 1PI correction
[Eq. (28)] almost exactly coincides with the DF correction
�DF − �DMFT, albeit without the denominator in Eq. (14). For
the data presented here, the effect of the denominator is found
to be rather small. On the contrary, in �2 a mixing of local
and nonlocal contributions occurs, because one single Green’s
function Gloc enters instead of G − Gloc [see Eq. (29)]. Hence
this term becomes significantly larger than �1.

However, as it was already mentioned in Sec. IV, the
contribution �2 displays an enhanced high-frequency asymp-

totics, while �1 decays faster than 1
iωn

and preserves the
exact asymptotic behavior of the self-energy when added to
the local self-energy of DMFT. The reason for this is again
that �1 is constructed from G − Gloc only, which decays
as 1

(iωn)2 . �2 has an explicit 1
iωn

contribution from the Gloc

term, which leads to a (spurious) correction of the already
exact 1

iωn
behavior of the DMFT self-energy. We note here

that the enhanced asymptotic of �2 and, hence, of the 1PI
approach, is exactly the same as in D�A31 as one can observe
in Fig. 10. Similarly to the D�A case, the enhanced asymptotic
is corrected either by treating the full parquet set of diagrams,
or enforcing the condition

∑
q χ (q) = χAIM at the ladder level

via Moriyaesque λ-corrections,17 see the results in the next
subsection.

In Fig. 10 we plot the self-energy obtained from one-shot
ladder calculations for 1PI, DF and D�A in comparison to
DMFT. For 1PI and D�A, nonlocal corrections are large as
expected from the proximity to the DMFT Néel temperature.
In the weak-coupling regime (i.e., for U = 1.0), one further
observes that the 1PI correction is smaller than the corre-
sponding D�A correction. The reason for this is that the
U appearing in the D�A equation (37) is replaced by the
irreducible vertex in the 1PI formula. At small values of the
interaction parameter U , the (irreducible) vertex is smaller9,32

than the bare interaction due to metallic screening. Therefore,
nonlocal corrections obtained within the 1PI formalism tend
to be smaller than the one obtained in D�A.

The situation is completely reversed in the intermediate-to-
strong coupling regime (U = 2.0). Here, the local (irreducible)
vertex is strongly enhanced9,32,33 compared to the bare Hub-
bard interaction U , due to the formation of the local moment
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FIG. 11. (Color online) Nonlocal corrections ��r(k,iωn) = �r(k,iωn) − �loc(iωn) (r = 1PI, DF, and D�A, respectively) as in Fig. 9, but
for calculations including Moriyaesque λ corrections (1PI and D�A) or self-consistency (DF). Besides the ladder 1PI results we also include
the results from the second-order diagram �

(2)
1PI(k,iωn) = �

(2)
d (k,iωn) given in Eq. (11).

in the proximity of the Mott phase. Hence, the 1PI self-energy
correction is larger than that obtained in D�A.

In the present implementation of 1PI and D�A the calcu-
lation of the Neel-temperature TN by means of a λ correction

is purely based on the asymptotic behavior of the (nonlocal)
self-energy. This is the same in both approaches and, hence,
one would get the same transition temperatures. However,
an improved scheme of λ corrections or a self-consistent

FIG. 12. (Color online) Self-energies obtained with the 1PI approach including λ-corrections vs self-consistent DF, λ corrected D�A, and
DMFT self-energies for the same parameters as in Fig. 11.
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treatment of these theories is expected to yield different TN’s. In
Ref. 22 TN was found smaller in D�A than the one estimated in
DCA34 or in lattice quantum Monte Carlo35 at weak coupling,
indicating a possible overestimation of the nonlocal correlation
effects. As it was argued in Ref. 22, nonlocal corrections to
the charge- and particle-particle irreducible channels, which
can be rigorously included only by performing the D�A at the
parquet level, might be responsible for this. Hence, the 1PI
approach, which partly takes such corrections into account
(see Fig. 8), is rather promising to improve the agreement
between the diagrammatic and the cluster estimations of TN

in the Hubbard model, even in the (self-consistent) ladder
approximation. This may also hold true in the strong-coupling
regime, where TN was slightly larger in ladder D�A than in
the cluster methods.

As for the comparison with the DF self-energy one can see
that it is smaller than the corresponding 1PI and D�A ones.
The reason for this is the same as discussed for the contribution
�1 to the 1PI self-energy. However, one should consider, that
the different ways of self-consistency for 1PI, DF and D�A
can change this situation dramatically.

B. Self-consistency and Moriyaesque λ corrections

The analysis of the one-shot results has shown the existence
of a well-defined hierarchy in the relative magnitude of the
nonlocal corrections. It is however expected that the overall
size of the nonlocal corrections will be strongly modified by the
inner and outer self-consistency loops in DF12 on the one hand
and the inclusion of the Moriyaesque λ corrections in D�A17

and 1PI36 on the other. These effects are briefly analyzed in
this subsection.

The results of the self-consistent DF, D�A, and 1PI
approaches are presented in Fig. 11. Comparing them to Fig. 9,
one observes that the inclusion of the λ corrections in D�A
and 1PI (which reduces the value of TN from the overestimated
DMFT value ) leads to a significant reduction of the nonlocal
corrections to the self-energy (note the different scales in
the two figures). This has been observed previously for
D�A.17,22 Hence, the λ-corrected results become much more
similar to those obtained in self-consistent DF calculations. In
particular, at strong coupling, 1PI and DF agree rather well.
The previously mentioned hierarchy in the relative magnitude
of the nonlocal corrections to DMFT of 1PI and D�A results is
fully preserved by the Moriyaesque λ corrections (see Fig. 11):
At weak coupling (U = 1.0) the 1PI corrections remain
smaller than the D�A ones due to the metallic screening of the
irreducible vertex, while for stronger couplings (U = 2.0) the
enhancement of the same vertex due to the vicinity of the MIT
leads to larger corrections for the 1PI approach with respect
to the D�A. Note that the small value of the nonlocal part
of the self-energy in the 1PI approach at U = 1.0 (especially
in the nodal direction) may result from a simplified way of
considering self-consistent effects through the λ correction.
Since this correction is determined solely from the asymptotic
behavior of the self-energy at large frequencies, it may yield
an overestimation of the effect of nonladder diagrams in the
1PI approach in the low-frequency region.

In Fig. 12 we present the corresponding results for the
self-energies. For U = 1.0 one can see, that at the consid-

ered temperature one observes metallic behavior in all the
approaches, except for the DF data in the (π,0) direction. We
have verified, however, that even for this relatively small value
of U the nonlocal 1PI corrections, though smaller than the
D�A and DF ones, eventually overcome the metallic behavior
of the DMFT self-energy at sufficiently small temperatures,
consistent with the results of Ref. 38. We emphasize that, for
U = 1.0, cluster extensions of DMFT would predict, instead,
a low-temperature metallic phase.39 This confirms the neces-
sity of including long-range antiferromagnetic fluctuations
beyond DMFT in order to capture correctly the interplay
of the Mott-Hubbard transition and antiferromagnetism (at
T = 0), whose nature gradually changes from Slater to
Heisenberg.40,41

VI. CONCLUSIONS

In this paper, we have developed a one-particle irreducible
(1PI) approach for including nonlocal spatial correlations
on top of the local correlations of dynamical mean-field
theory. We have compared it with the existing state-of-the-art
diagrammatic extensions of DMFT, namely dual fermion (DF)
and dynamical vertex approximation (D�A).

The starting point of the 1PI approach is the generating
functional formalism in the functional integral representation.
Similar to the DF theory, we decouple local and nonlocal
degrees of freedom by means of a Hubbard-Stratonovich
transformation and integrate out the local degrees of freedom.
However, instead of expanding the logarithm of the local
generating functional in the source fields, which would lead
to local one-particle reducible two- and more-particle vertex
functions, we pass on to the 1PI local functional by means
of a Legendre transform. For the sake of conciseness, we
have considered in this work the two typical approximations
for the diagrammatic methods: (i) the restriction to the local
two-particle vertices and (ii) the ladder approximation for the
self-energy. With these assumptions, we could show how the
ladder self-energy diagrams generated by the 1PI approach
also include contributions from local one-particle reducible
three-particle vertices, which, in the DF approach, can only be
generated when explicitly computing the local three-particle
vertex. Hence, when adopting the usual approximations,
the 1PI approach contains a larger set of diagrams than
DF.

Let us also stress that the 1PI approach prevents the
generation of spurious reducible diagrams present in the
DF self-energy when restricting oneself to the two-particle
vertices.23 In this respect, the 1PI approach can be fur-
ther used for a consistent formulation of the renormal-
ization of the DF approach, restricted to the two-particle
level (e.g., within the functional renormalization-group
analysis).42

As for the comparison with the D�A, we note that its
derivation is purely based on diagrammatic considerations
rather than on a path-integral formulation. However, when
comparing the diagrams defining the ladder approximation of
D�A with the corresponding ones from the 1PI approach,
it turns out that they have a similar structure. We observe
that—as for the DF approach—the 1PI method allows us to
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treat diagrams which are neglected in the ladder D�A analysis,
but are present in its parquet generalizations.

Beyond a detailed analysis of the diagrammatics of the 1PI,
DF, and D�A, we have also compared the numerical results
of the three approaches. For non-self-consistent calculations
DF yields substantially weaker corrections to DMFT than
D�A and 1PI. Self-consistent results, which in the case of
1PI and D�A are mimicked by a Moriyaesque λ correction,
are more similar. Here, we observe the general trend that 1PI
yields somewhat stronger corrections to the DMFT self-energy
than D�A at intermediate-to-strong coupling, yielding results,
which are close to those in the DF approach. At weak
coupling we find the nonlocal corrections to the self-energy
in the 1PI approach to be smaller, than those in the D�A
and DF approaches. We trace this back to the additional
Feynman diagrams of 1PI which, in comparison to D�A,
substitute a bare interaction U by a local vertex. At weak
coupling, this local vertex is smaller than U because of metallic
screening processes. At strong coupling it is larger, because
of the formation of a local moment associated to strong spin
fluctuations at the MIT.

In summary, the 1PI approach unifies features of the DF
and D�A approaches. Restricting ourselves to (i) a truncation
of the approaches at the two-particle local vertex level and
(ii) ladder diagrams generated from these, the 1PI allows for
a treatment of the nonlocal self-energy effects, accounting for
the nonladder scattering processes.
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APPENDIX: 1PI TRANSFORMATIONS OF THE
GENERATING FUNCTIONAL

1. Calculation of J[φ+,φ]

In order to pass to the 1PI functional, we change variables of
integration c̃+ ,̃c to the Legendre transformed quantities φ+,φ

[see Eq. (18) and the definition of η̃ below]:

c̃+
kσ = −δ�DMFT

δφkσ

− η+
kσ c̃kσ = δ�DMFT

δφ+
kσ

− ηkσ . (A1)

Considering that the source fields η+ and η do not depend
on c̃+ and c̃, the corresponding matrix M[φ+,φ] of this

transformation can be written as

d

(
c̃+
kσ

c̃kσ

)
=
⎛⎝− δ2�DMFT

δφ+
k′σ ′ δφkσ

− δ2�DMFT
δφk′σ ′ δφkσ

δ2�DMFT

δφ+
k′σ ′ δφ+

kσ

δ2�DMFT

δφk′σ ′ δφ+
kσ

⎞⎠
︸ ︷︷ ︸

M[φ+,φ]

d

(
φ+

k′σ ′

φk′σ ′

)
. (A2)

The calculation of the first (which will be needed later) and the
second functional derivatives of the functional �DMFT[φ+,φ]
with respect to the fields φ+ and φ can be performed
straightforwardly using the explicit expression for �DMFT

given in Eq. (21). The results are

δ�DMFT[φ+,φ]

δφkσ

= 1

β
G−1

loc,νφ
+
kσ − 1

β3

∑
k1q

∑
σ1

�̃
ν1νω
loc,σσ1

×φ+
k+q,σ φ+

k1σ1
φk1+q,σ1 , (A3)

δ�DMFT[φ+,φ]

δφ+
kσ

= − 1

β
G−1

loc,νφkσ + 1

β3

∑
k1q

∑
σ1

�̃
νν1ω
loc,σσ1

φk+q,σ

×φ+
k1+q,σ1

φk1σ1 , (A4)

for the first derivatives and

δ2�DMFT

δφk′σ ′δφ+
kσ

= − 1

β
G−1

loc,νδkk′δσσ ′

− 1

β3

∑
q

�̃νν ′ω
loc,σσ ′φ

+
k′+q,σ ′φk+q,σ

+ δσσ ′

β3

∑
q,σ1

�̃
ν,ν+ω,ν ′−ν
loc,σσ1

φ+
k′+q,σ1

φk+q,σ1

δ2�DMFT

δφ+
k′σ ′δφ

+
kσ

= − 1

β3

∑
q

�̃
ν,ν ′−ω,ω
loc,σσ ′ φk+q,σ φk′−q,σ ′

δ2�DMFT

δφk′σ ′δφkσ

= 1

β3

∑
q

�̃
ν ′−ω,νω
loc,σσ ′ φ+

k′−q,σ ′φ
+
k+q,σ

δ2�DMFT

δφ+
k′σ ′δφkσ

= 1

β
G−1

loc,νδkk′δσσ ′

+ 1

β3

∑
q

�̃νν ′ω
loc,σσ ′φ

+
k+q,σ φk′+q,σ ′

− δσσ ′

β3

∑
q,σ1

�̃
ν+ω,ν,ν ′−ν
loc,σσ1

φ+
k+q,σ1

φk′+q,σ1 . (A5)

for the second functional derivatives. �̃νν ′ω
loc,σσ ′ is defined below

Eq. (21).
Next, we single out the factor [βGloc,ν]−1 from the Jacobian

M[φ+,φ] = [βGloc,ν]−1M̃[φ+,φ] and omit it since it depends
neither on the source fields η+ and η nor on the integration
variables φ+ and φ and, hence, does not contribute to
the derivatives of log Z with respect to the source fields
(see the discussion in Sec. III). Furthermore, we represent
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M̃[φ+,φ] = 1 + M̃[φ+,φ] where

M̃[φ+,φ] = − 1

β2
Gloc,ν

∑
q

⎛⎜⎜⎜⎜⎝
�̃νν ′ω

loc,σσ ′φ
+
k+q,σ φk′+q,σ ′+ −�̃

ν,ν ′−ω,ω
loc,σσ ′ φ+

k+q,σ φ+
k′−q,σ ′−δσσ ′

∑
σ1

�̃
ν,ν+ω,ν ′−ν
loc,σσ1

φ+
k+q,σ1

φk′+q,σ1

�̃νν ′ω
loc,σσ ′φ

+
k′+q,σ ′φk+q,σ+

�̃
ν,ν ′−ω,ω
loc,σσ ′ φk+q,σ φk′−q,σ ′ −δσσ ′

∑
σ1

�̃
ν,ν+ω,ν ′−ν
loc,σσ1

φ+
k′+q,σ1

φk+q,σ1

⎞⎟⎟⎟⎟⎠ . (A6)

The inverse (note that we are dealing with Grassmann integrals)37 of J [φ+,φ] is now given by

J−1[φ+,φ] = det M̃[φ+,φ]. (A7)

Here, det denotes the determinant with respect to the k and σ indices. In order to include J in the effective action, we transfer
it to the exponent by taking its logarithm and make use of the general identity log det A = Tr log A. Hence, we finally arrive at

log J [φ+,φ] = −Tr log M̃[φ+,φ] = −Tr log(1 + M̃[φ+,φ]). (A8)

where Tr denotes the trace with respect to the k and σ indices. Performing a Taylor expansion of the logarithm in the last term,
we obtain an expansion of the Jacobian in φ+, φ fields.

In the first (quadratic) order in fermionic fields we obtain the term with the structure Gloc�locφ
+φ. Hence, it corresponds

to the first diagram in Fig. 3(b) and cancels the corresponding ones which are generated by the perturbation expansion of the
1PI functional Eq. (20). The terms of the second (quartic) order can be schematically written as �locG

2
loc�loc(φ+φ)(φ+φ) and

correspond to the second diagram in Fig. 3(b). Let us also note that higher-order contributions in φ, i.e., O((φ+φ)3), generate
terms that cancel the nonlocal corrections to the self-energy stemming from the three- (and more)-particle local 1PI vertices that
are already taken into account at the two-particle vertex level via combination of the elements of diagram technique of Fig. 3.
In this way any possible double counting is avoided in the 1PI approach. For a more detailed discussion of this issue we refer
to Ref. 31.

2. Transformation of integral variables and decoupling of the three-particle term

In this section we decouple the term in the second line of Eq. (20), which contains a three-particle interaction, as discussed
below Eq. (21). For this purpose we consider the following Hubbard-Stratonovich transformations:

exp

{
β

(
δ�DMFT[φ+,φ]

δφkσ

+ η+
kσ

)[
ζ−1
ν − G−1

0k

]−1
(

− δ�DMFT[φ+,φ]

δφ+
kσ

+ ηkσ

)}

=
∫

dψ+
kσ dψkσ exp

{
− 1

β

[
ζ−1
ν − G−1

0k

]
ψ+

kσψkσ

}
exp

{[(
δ�DMFT[φ+,φ]

δφkσ

+ η+
kσ

)
ψkσ

+ψ+
kσ

(
− δ�DMFT[φ+,φ]

δφ+
kσ

+ ηkσ

)]}
, (A9)

where we neglected the prefactor β[ζ−1
ν − G−1

0k ]−1 in front of the functional integral in this equation, since it drops out in the
calculation of the Green’s function. In the next step we insert Eq. (A9) into Eq. (20) and then perform the following shift of
integration variables:

ψ+
kσ → ψ+

kσ + φ+
kσ , ψkσ → ψkσ + φkσ . (A10)

One observes that the terms (δ�DMFT/δφ)φ and φ+(δ�DMFT/δφ+) in Eq. (20) are canceled by the corresponding ones from
Eq. (A9). Hence, one arrives at the following expression for the generating functional Z[η+,η]:

Z[η+,η] =
∫

D[φ+,φ] exp

{
− 1

β

∑
k,σ

[
ζ−1
ν − G−1

0k

]
(ψ+

kσ + φ+
kσ )(ψkσ + φkσ ) + δ�DMFT[φ+,φ]

δφkσ

ψkσ

−ψ+
kσ

δ�DMFT[φ+,φ]

δφ+
kσ

− �DMFT[φ+,φ] + η+
kσ (ψkσ + φkσ ) + (ψ+

kσ + φ+
kσ )ηkσ

}
J [φ+,φ]. (A11)

Inserting now the explicit expressions for �DMFT[φ+,φ] from Eq. (21) and (δ�DMFT/δφ(+)) from Eq. (A3) into Eq. (A11) one
arrives at the final expression for the generating functional Z[η+,η] in the 1PI representation as given in Eq. (22) [consider that
−ζ−1

ν + G−1
0k + G−1

loc,ν = G−1
k ].
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