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Comparing quasiparticle GW + DMFT and LDA + DMFT for the test bed material SrVO3
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We have implemented the quasiparticle GW + dynamical mean field theory (DMFT) approach in the Vienna
ab initio simulation package. To this end, a quasiparticle Hermitization of the G0W0 self-energy a lá Kotani-
Schilfgaarde is employed, and the interaction values are obtained from the locally unscreened random phase
approximation (RPA) using a projection onto Wannier orbitals. We compare quasiparticle GW + DMFT and
local density approximation (LDA) + DMFT against each other and against experiment for SrVO3. We observe a
partial compensation of stronger electronic correlations due to the reduced GW bandwidth and weaker correlations
due to a larger screening of the RPA interaction, so that the obtained spectra are quite similar and agree well with
experiment. Noteworthy, the quasiparticle GW + DMFT better reproduces the position of the lower Hubbard
side band.
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I. INTRODUCTION

The local density approximation (LDA) plus dynamical
mean field theory (DMFT) approach1–5 has been a significant
step forward for calculating materials with strong electronic
correlations. This is, because—on top of the LDA—DMFT6,7

includes a major part of the electronic correlations: the local
ones. In recent years, LDA + DMFT has been applied success-
fully to many materials and correlated electron phenomena,
ranging from transition metals and their oxides to rare earth
and their alloys, for reviews see Refs. 4 and 5.

For truly parameter-free ab initio calculations, however,
two severe shortcomings persist: (i) The screened Coulomb
interaction is usually considered to be an adjustable parameter
in LDA + DMFT and (ii) the so-called double counting prob-
lem, i.e., it is difficult to determine the electronic correlations
already accounted for at the local density approximation
(LDA) level. These shortcomings are intimately connected
with the fact that the nonlinear nature of density functional
theory does not match with the many-body, Feynman-diagram
structure of DMFT. Hence, it is not clear how to subtract
correlation effects already included on the LDA level or how
to express these as a self-energy to avoid a double counting
with DMFT correlations. These problems can be mitigated,
but not solved, by constrained LDA (cLDA) calculations,8–10

which can be exploited to extract two independent parameters:
interaction and double counting correction.9,11

A conceptually preferable and better defined many-body
approach is achieved if one substitutes LDA by the
so-called GW approximation.12,13 Since its proposition by
Biermann et al.,14 the development and application of such
a GW + DMFT scheme for actual applications has been
tedious. This is reflected in the number of LDA + DMFT
calculations for actual materials, which is of the order of a few
hundred, compared to two GW + DMFT calculations, one for
Ni (Ref. 14) and one for SrVO3,15 despite many advantages
of GW + DMFT, such as the possible rigorous definition in
terms of Feynman diagrams and the avoidance of introducing
ad hoc parameters for the Coulomb interaction and double
counting corrections. The reason for this imbalance is

twofold. First, since the GW approach is computationally
fairly demanding and complex, mature GW programs were
missing in the past. Second, the GW + DMFT scheme is
considerably more involved than LDA + DMFT, in particular,
if calculations are done self-consistently and with a frequency
dependent (screened) Coulomb interaction. Indeed, these
concepts are presently tested on the model level.16,17 Let us
also note in this context that a frequency dependent interaction
has been employed on top of an LDA band structure for
BaFe2As2 (Ref. 18) and SrVO3.19

In this paper we present results for a simplified quasiparticle
(qp) GW + DMFT implementation in the Vienna ab initio
simulation package (VASP) for SrVO3 and compare the
qpGW + DMFT results to those of LDA + DMFT20 as well
as photoemission spectroscopy.21 We find the qpGW + DMFT
spectra to be quite similar to that of LDA + DMFT due to a
partial cancellation of two effects: The reduced GW bandwidth
in comparison to LDA and the weaker screened Coulomb
interaction. An important difference, however, is the position
of the lower Hubbard band, which in qpGW + DMFT better
agrees with experiment. To mimic the frequency dependence
of the Coulomb interaction, which we have not included, we
also performed qpGW + DMFT calculations including a ZB

factor reduced bandwidth as suggested by Casula et al.23 The
obtained spectra are rather different from qpGW + DMFT
without ZB-reduced bandwidth and LDA + DMFT.

The paper is organized as follows: In Sec. II we discuss
the method and implementation. In Sec. III we compare
LDA + DMFT and qpGW + DMFT self-energies and spectral
functions. A comparison to photoemission experiments is
provided in Sec. IV and a conclusion in Sec. V. The
Appendix discusses the treatment of the double counting in
the qpGW + DMFT scheme.

II. METHOD

Let us briefly outline the relevant methodological aspects.
The starting point of our calculation is the GW implementation
within (VASP).24 Specifically, we first performed Kohn Sham
density functional theory calculations using the local density
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approximation for SrVO3 at the LDA lattice constant of
a = 3.78 Å and determined the Kohn Sham one-electron
orbitals φnk and one-electron energies εnk. The position of
the GW quasiparticle peaks were calculated by solving the
linear equation

E
qp
nk = εnk + ZnkRe[〈φnk|T + Vn-e + VH

+�(εnk)|φnk〉 − εnk], (1)

where T is the one-electron kinetic energy operator and Vn-e

and VH are the nuclear-electron potential and the Hartree
potential, respectively. � is the G0W0 self-energy, and Znk
is the renormalization factor evaluated at the Kohn-Sham
eigenvalues.24,25 The original Kohn Sham orbitals are main-
tained at this step. The Kohn Sham orbitals expressed in the
projector augmented wave (PAW) basis are then projected onto
maximally localized Wannier functions26 using the Wannier90
code.27,28 To construct an effective low-energy Hamiltonian for
the t2g vanadium orbitals, we follow Faleev, van Schilfgaarde,
and Kotani and approximate the frequency dependent G0W0

self-energy by an Hermitian operator H̄ that reproduces the
position of the quasiparticle peaks of the original self-energy
exactly:29,30

H̄mn,k = 1
2

[〈φmk|�∗(Eqp
mk

) + �
(
E

qp
nk

)|φnk〉
]
. (2)

This qp approximation is commonly used in GW calcula-
tions, in particular for self-consistent calculations, since fully
frequency dependent calculations are computationally very
demanding.

In practice, for the present calculations, we have applied
the slightly more involved procedure to derive an Hermitian
approximation outlined in Ref. 31, although this yields
essentially an almost identical Hermitian operator H̄mn,k.
Furthermore, the of-diagonal components are found to be
negligibly small, and henceforth disregarded. The final Her-
mitian and k-point dependent operator H̄ is transformed to the
Wannier basis and passed on to the DMFT code, where it is
used to construct the k-dependent self-energy by adding the
local DMFT self-energy.

This qpGW + DMFT procedure allows us to maintain the
structure and outline of the common DFT-DMFT scheme and
can be easily adopted in any DMFT code. Instead of the LDA
one-electron matrix elements, the qpGW ones are passed to
the DMFT. This procedure neglects lifetime broadening and
any frequency dependence of the GW self-energy beyond its
linear part. Subtracting the local part of this qpGW Hermitian
operator (to avoid a double counting, see the Appendix) yields
for the degenerate t2g orbitals basically a constant shift. Let us
also note that hitherto we did not perform self-consistency on
the GW part.

Figure 1 shows the obtained G0W0 band structure, which
for the t2g vanadium target bands is about 0.7 eV narrower
than for the LDA. The oxygen p band (below −2 eV) is
shifted downwards by 0.5 eV compared to the LDA, whereas
the vanadium eg bands (located about 1.5 eV above the Fermi
level) are slightly shifted upwards by 0.2 eV. In the LDA, the
top most vanadium t2g band at the M point is slightly above the
lowest eg band at the � point, whereas the G0W0 correction
opens a gap between the t2g and eg states.
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FIG. 1. (Color online) Upper panel: G0W0 quasiparticle bands
(red, gray) in comparison to LDA (black). The Fermi level sets our
zero of energy and is marked as a line. Lower panel: Wannier projected
t2g band structure from G0W0 (red, gray) and LDA (black). The t2g

target bands bandwidth is reduced by ∼0.7 eV in GW .

Within this Wannier basis, we also calculate the screened
Coulomb interaction using the random phase approximation
(RPA). As described in Ref. 32, for an accurate estimate of
the interaction value to be used in DMFT (UDMFT), only the
local screening processes of the t2g target bands of SrVO3 are
disregarded since only these are considered later on in DMFT.
This approach32 is similar to the constrained RPA (cRPA),33,34

with the difference being that in cRPA also nonlocal screening
processes of the t2g target bands are disregarded, since
these are not included in DMFT either. Depending on the
material and doping level, there might be a difference between
UDMFT and U cRPA. However, for the case of SrVO3, this
difference is very minor, and we hence only consider UDMFT

in the following. We carefully compare qpGW + DMFT with
LDA + DMFT calculations and experiment. In both cases, we
use (frequency-independent) interactions obtained from this
locally unscreened RPA and cLDA. The Kanamori interaction
parameters as derived from the locally unscreened RPA are
intraorbital Coulomb repulsion UDMFT = 3.44 eV; interorbital
Coulomb repulsion ŪDMFT = 2.49 eV; and Hund’s exchange
and pair hopping amplitude J DMFT = 0.46 eV.35 These values
are, for SrVO3, almost identical to the cRPA.32 In cLDA,
on the other hand, somewhat larger interaction parameters
were obtained and are employed by us for the corresponding
calculations U cLDA = 5.05 eV, Ū cLDA = 3.55 eV, and J cLDA =
0.75 eV.21,36
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For the subsequent DMFT calculation we employ
the Würzburg-Wien w2dynamics code,38 based on the
hybridization-expansion variant39 of the continuous-time
quantum Monte Carlo method (CT-QMC).40 This algorithm
is particularly fast since it employs additional quantum
numbers for a rotationally invariant Kanamori interaction.38

The maximum entropy method is employed for the analytical
continuation of the imaginary time and (Matsubara) frequency
CT-QMC data to real frequencies.41

All our calculations are without self-consistency, which is
to some extent justified for SrVO3. Since the three t2g bands of
SrVO3 are degenerate, DMFT does not change the charge den-
sity of the low-energy t2g manifold and hence self-consistency
effects are expected to be small for LDA + DMFT. This is, in
principle, different for qpGW + DMFT. Here the frequency
dependence of the DMFT self-energy might yield some
feedback already for a simplified Faleev, van Schilfgaarde,
and Kotani quasiparticle self-consistency.29,30 Finally, we also
test the ZB-factor renormalized GW bandwidth with ZB =0.7
obtained in Ref. 23 for mimicking the frequency dependence
of the cRPA interaction.

III. RESULTS

For analyzing the differences between qpGW + DMFT
and LDA + DMFT we analyze and compare five different
calculations in the following:

(1) LDA + DMFT@Ū cLDA (conventional LDA + DMFT
calculation with the cLDA interaction Ū cLDA = 3.55 eV).

(2) LDA + DMFT@ŪDMFT (LDA + DMFT calculation but
with the locally unscreened RPA interaction ŪDMFT =
2.49 eV).

(3) qpGW + DMFT@ŪDMFT (qpGW + DMFT calcula-
tion with ŪDMFT = 2.49 eV).

(4) qpGW + DMFT@Ū cLDA (qpGW + DMFT calculation
but with Ū cLDA = 3.55 eV).

(5) qpGW + DMFT@ŪDMFT,ZB =0.7 (as 3 but with a
Bose renormalization factor ZB).

Let us first turn to the imaginary part of the local self-energy
which is shown as a function of (Matsubara) frequency in
Fig. 2. The self-energy yields a first impression of how strong
the electronic correlations are in the various calculations. The
LDA + DMFT@ŪDMFT self-energy is the least correlated one,
somewhat less correlated than LDA + DMFT@Ū cLDA due to
the smaller locally unscreened Coulomb interaction (ŪDMFT =
2.49 < 3.55 eV = Ū cLDA). For the same reason also the
qpGW + DMFT@ŪDMFT self-energy is less correlated than
that of a qpGW + DMFT@Ū cLDA calculation.

If we compare LDA + DMFT and qpGW + DMFT on the
other hand, the LDA + DMFT self-energy is less correlated
than the qpGW + DMFT one, if the Coulomb interaction
is kept the same. This is due to the 0.7 eV smaller GW

t2g bandwidth in comparison to LDA. This observation also
reflects in the DMFT quasiparticle renormalization factors Z,
which were obtained from a fourth-order fit to the lowest
four Matsubara frequencies, see Table I. Also there is an
additional GW renormalization factor reducing the bandwidth
in comparison to LDA.
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FIG. 2. (Color online) Comparison of the imaginary part of the
DMFT t2g self-energies � vs (Matsubara) frequency ω for SrVO3 at
inverse temperature β = 40 eV−1 as computed in five different ways:
employing qpGW and LDA Wannier bands, the locally unscreened
RPA interaction ŪDMFT = 2.49 eV and the cLDA Ū cLDA = 3.55 eV,
as well as the ZB =0.7 renormalization.23

TABLE I. DMFT quasiparticle renormalization factors Z from
the five different calculations at inverse temperature β = 40 eV−1.
Also shown are the pairwise double occupations within the same
orbital dintra and between different orbitals with the same d

↑↑
inter

and opposite spin d
↑↓
inter. The “standard” LDA + DMFT@Ū cLDA and

qpGW + DMFT@ŪDMFT calculations are similarly correlated and
agree well with experiment. Using the cLDA interaction(Ū cLDA)
for qpGW + DMFT or the locally unscreened RPA (ŪDMFT) for
LDA + DMFT yields a too strongly and too weakly correlated
solution in comparison to experiment, respectively. Note that
qpGW + DMFT becomes even more strongly correlated if the Bose
renormalization factor is included.

Scheme Z dintra d
↑↑
inter d

↑↓
inter

LDA + DMFT@Ū cLDA 0.51 0.004 0.013 0.009
LDA + DMFT@ŪDMFT 0.67 0.007 0.016 0.013
qpGW + DMFT@ŪDMFT 0.57 0.005 0.014 0.010
qpGW + DMFT@Ū cLDA 0.39 0.003 0.010 0.007
qpGW + DMFT@ŪDMFT, ZB =0.7 0.36 0.003 0.009 0.006
Experiment21,43 ∼0.5–0.6
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FIG. 3. (Color online) Spectral function for SrVO3 (t2g orbitals only) computed in five different ways as in Fig. 2. At lower temperatures
the central peak gets only slightly sharper and higher, although the temperature effects from β = 25 to 40 eV−1 are small.

However, the effect of the smaller GW bandwidth
partially compensates with the smaller ŪDMFT interaction
strength. Altogether this yields rather similar self-energies
of the standard approaches: LDA + DMFT@Ū cLDA and
qpGW + DMFT@ŪDMFT, see lower panel of Fig. 2. This also
reflects in very similar renormalization factors in Table I, Z =
0.51 vs Z = 0.57, which both agree well with experimental
estimates of 0.5–0.6.21,42,43

Since one important difference is the strength of the
interaction, it is worthwhile recalling that ŪDMFT is defined
as the local interaction strength at low frequencies. While this
value is almost constant within the range of the t2g bandwidth,
it approaches the bare Coulomb interaction at larger energies,
exceeding 10 eV. It has been recently argued and shown in
model calculations23 that the stronger frequency dependence
of the screened Coulomb interaction at high energies is of
relevance and can be mimicked by a ZB renormalization of
the GW bandwidth. The latter has been determined asZB =0.7
for SrVO3. We have tried to take this into account in the
qpGW + DMFT@ŪDMFT, ZB =0.7 calculation. Due to the
additional bandwidth renormalization, this calculation is very
different from all others and yields the largest quasiparticle
renormalization, i.e., Z = 0.36 is smallest.

This too small quasiparticle weight can be understood as
follows: The ZB factor mimics the frequency dependence of
cRPA screened Coulomb interaction, which is much larger
at high frequencies. In a fully frequency dependent GW

calculation, this is properly matched by a correspondingly
large GW self-energy at large frequencies. However, within
the quasiparticle treatment of the GW self-energy (which
represents a linear approximation to its frequency dependence,
see the Appendix) such high frequency contributions of the
GW self-energy are not included. As our results show, in this
case, it is hence more consistent not to include the frequency

dependence for the Coulomb interaction only, which the ZB

factor emulates.
Next, we compare the k-integrated spectrum in Fig. 3. At

low frequency we find the same trends as for the self-energy
results: the qpGW + DMFT and LDA + DMFT at ŪDMFT

and Ū cLDA, respectively, yield a rather similar spectrum. In
particular, the quasiparticle peak has a similar weight and
shape. However, a difference is found at larger frequencies:
The qpGW + DMFT Hubbard bands are closer to the Fermi
level in comparison to LDA + DMFT (see Sec. IV). If we
perform qpGW + DMFT and LDA + DMFT at the “wrong”
interaction strength (i.e., Ū cLDA and ŪDMFT, respectively), we
obtain a noticeably stronger and weaker correlated solution,
respectively. This trend is also reflected in the double occu-
pations presented in Table I. Finally, as in the case of the
self-energy, the qpGW + DMFT@ŪDMFT, ZB =0.7 solution
is much more strongly correlated, with Hubbard side bands at
much lower energies.

IV. COMPARISON TO PHOTOEMISSION SPECTROSCOPY

An obvious question is whether LDA + DMFT or
qpGW + DMFT yields “better” results. This question is
difficult to answer and for the time being we resort to a
comparison with experimental photoemission spectroscopy
(PES).21 However, one should be well aware of the limitations
of such a comparison. On the theory side, the involved ap-
proximations common to the calculations, as, e.g., neglecting
nonlocal correlations beyond the DMFT and GW level, or
further effects, such as the electron-phonon coupling or the
photoemission matrix elements, might bias the theoretical
result in one way or the other. On the experimental side, care
is in place, as well, although the PES results have considerably
improved in the last years due to better photon sources.
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FIG. 4. (Color online) Comparison of LDA + DMFT@U cLDA,
qpGW + DMFT@UDMFT (without and with Bose renormalization
ZB =0.7), and experiment. The position of the lower Hubbard band
is better reproduced in qpGW + DMFT, whereas the central peak is
similar in LDA + DMFT and qpGW + DMFT. The Bose renormal-
ization qpGW + DMFT differs considerably (photoemission spectra
reproduced from Ref. 21).

Furthermore, in Ref. 21 an oxygen p background has been
subtracted, which by construction removes all spectral weight
below the region identified as the lower Hubbard band.

Figure 4 compares the proposed LDA + DMFT and
qpGW + DMFT (with and without Bose renormalization)
with PES experiment. To this end, the theoretical results have
been multiplied with the Fermi function at the experimental
temperature of 20 K and broadened by the experimental
resolution of 0.1 eV. The height of the PES spectrum has
been fixed so that its integral yields 1, i.e., accommodates one
t2g electron, as in theory.

The qpGW + DMFT@ŪDMFT and LDA + DMFT@Ū cLDA

have a quite similar quasiparticle peak, which also well
agrees with experiment, as it was already indicated by the
quasiparticle renormalization factor. A noteworthy differ-
ence is the position of the lower Hubbard band which is
at −2 eV for LDA + DMFT@Ū cLDA and ∼−1.6 eV for
qpGW + DMFT@ŪDMFT. The latter is in agreement with
experiment and a result of the reduced GW bandwidth. Let
us note that the sharpness and height of the lower Hubbard
band very much depends on the maximum entropy method,
which tends to overestimate the broadening of the high-energy
spectral features. Hence, only the position and weight is a
reliable result of the calculation.

As we have already seen, the Bose-factor renor-
malized qpGW + DMFT@ŪDMFT, ZB =0.7 calculation
is distinct from both qpGW + DMFT@ŪDMFT and
LDA + DMFT@Ū cLDA. It is also different from experiment
with a much more narrow quasiparticle peak and a lower Hub-
bard band much closer to the Fermi level. A similar difference
between static U on the one side and frequency dependent
U was reported in Ref. 19. A difference of this magnitude is
hence to be expected. Recently we became aware of Ref. 44,
in which Tomczak et al. report a qpGW + DMFT calculation

with the full frequency dependence of the cRPA interaction
for SrVO3 obtaining good agreement with experiment as well.

V. CONCLUSION

We have carried out a careful comparison of LDA + DMFT,
qpGW + DMFT (specifically, quasiparticle G0W0 + DMFT),
and experiment for the case of SrVO3, which is often
considered to be a “benchmark” material for new methods.
To this end, the LDA or G0W0 quasiparticle band structure
was projected onto maximally localized Wannier orbitals
for the t2g bands. For these in turn correlation effects have
been calculated on the DMFT level. If we take the locally
unscreened RPA interaction (or the similar cRPA one) for the
qpGW + DMFT and the cLDA interaction for LDA + DMFT,
the two approaches yield rather similar self-energies and
spectral functions at the Fermi level. These also agree
rather well with photoemission spectroscopy. A noteworthy
difference between these two calculation is found, however,
for the position of the lower Hubbard band, which is better
reproduced in qpGW + DMFT. Similar spectra were also
obtained by Tomczak et al.44 using a GW + DMFT calculation
including the frequency dependence of the interaction.

From a principle point of view also a LDA + DMFT
calculation with a locally unscreened or cRPA Coulomb
interaction is possible and employed in the literature. In the
static limit, these cRPA interactions are typically smaller than
cLDA values. At least for SrVO3, these smaller interaction
values yield too weak electronic correlations if used for
LDA + DMFT calculations.
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APPENDIX

In this Appendix we briefly discuss the quasiparticle
“Hermitization” that we employ to the G0W0 self-energy,
and explain how to deal with the double counting within this
approximation.

The quasiparticle eigenvalues are obtained by linearizing
the G0W0 self-energy around the LDA single particle levels
ε0
nk:

�
(
k,E

qp
nk

) = �
(
k,ω = ε0

nk

)

+ ∂�(k,ω)

∂ω

∣∣∣∣
ω=ε0

nk︸ ︷︷ ︸
≡ξnk

(
E

qp
nk − ε0

nk

)
. (A1)

Since the off-diagonal components are small, we concentrate
here on the diagonal components only. This yields the
following equation for the quasiparticle poles:

E
qp
nk〈φnk|1 − ξnk|φnk〉
= 〈φnk|T + Vn-e + VH + �

(
k,ε0

nk

) − ξnkε
0
nk|φnk〉, (A2)
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which is the same as Eq. (1), except for substituting the
derivative of the self-energy by Znk = (1 − ξnk)−1. For
these diagonal elements, Hermitization involves just setting
the imaginary part to zero. Generalization of this equation to
the nondiagonal components is given in Ref. 31.

Since in DMFT the local contribution of the exchange-
correlation term is considered as well, we need to subtract
this contribution to avoid a double counting. This can be
done by subtracting the local part of all qpGW self-energy
contributions, i.e., the local part of the �(k,ε0

nk), ξnk, and
ξnkε

0
nk terms in Eq. (A2). We define their local part as the

one-center R = 0 component of the Wannier representation:

Aij = 1

Nk

∑

nk

U
∗(k)
in An(k)U (k)

jn . (A3)

where Nk is the number of k points and U
(k)
in is the unitary

matrix for the transformation of Bloch vectors |φnk〉 to Wannier
states |wi0〉. For An(k) = �(k,ε0

nk), ξnk, and ξnkε
0
nk these

averages are computed, transformed back to the Bloch basis
using again U

(k)
ni , and subtracted in Eq. (A2). With the local

part subtracted, Eq. (A2) becomes

E
qp−nl
nk 〈φnk|1 − ξnk + ξn|φnk〉
= 〈φnk|T + Vn-e + VH + �

(
k,ε0

nk

)
(A4)

−�n − ξnkε
0
nk + ξε0

n|φnk〉.

This yields the band structure without local quasiparticle
self-energy contributions. The Hamiltonian corresponding to
this band structure is subsequently transformed again to the
Wannier basis and passed to the DMFT.

Let us emphasize that this local part of the quasiparticle
GW self-energy is very different from the local part of
a frequency-dependent full GW self-energy. In the latter
case we naturally also obtain a frequency-dependent local
part �GW

loc. = ∑
k �(k,ω). In our case of the quasiparticle

linearization of the GW self-energy [Eq. (A1)], we obtain three
frequency-independent terms stemming from the constant
[�n] and linear terms [ ξn and ξε0

n] in Eq. (A1), respectively.
This is consistent with the qpGW approximation. Let us note
though that doing (i) the qp approximation and (ii) subtracting
the local part does not commute.
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