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Identifying the fingerprints of the Mott-Hubbard metal-insulator transition may be quite elusive in

correlated metallic systems if the analysis is limited to the single particle level. However, our dynamical

mean-field calculations demonstrate that the situation changes completely if the frequency dependence of

the two-particle vertex functions is considered: The first nonperturbative precursors of the Mott physics

are unambiguously identified well inside the metallic regime by the divergence of the local Bethe-Salpeter

equation in the charge channel. In the low-temperature limit this occurs for interaction values where

incoherent high-energy features emerge in the spectral function, while at high temperatures it is traceable

up to the atomic limit.

DOI: 10.1103/PhysRevLett.110.246405 PACS numbers: 71.27.+a, 71.10.Fd, 71.30.+h

Introduction.—Among all fascinating phenomena char-
acterizing the physics of correlated electronic systems, one
of the most important is undoubtedly the Mott-Hubbard
metal-to-insulator transition (MIT) [1]. Here, the onset of
an insulating state is a direct consequence of the strong
Coulomb repulsion rather than the underlying electronic
band structure. Mott MITs have been indeed identified
in several correlated materials [2], especially in the
class of transition metal oxides and heavy fermions.
The interest in the Mott MIT is not limited, however, to
the transition per se, but also includes the correlated (bad)
metallic regime in its proximity. In fact, this region of
the phase-diagram often displays a rich variety of
intriguing or exotic phases, which are often related to
the physics of the high-temperature superconducting
cuprates.

An exact theoretical description of the Mott MIT repre-
sents a considerable challenge due to its intrinsically non-
perturbative nature in terms of the electronic interaction.
However, significant progress was achieved with the inven-
tion of the dynamical mean field theory (DMFT) [3,4]. By
an accurate treatment of local quantum correlations,
DMFT has allowed for the first nonperturbative analysis
of the Mott-Hubbard MIT in the Hubbard model [5] and, in
combination with ab initio methods [6], also for the inter-
pretation and the prediction of experimental spectroscopic
results for strongly correlated materials, such as, e.g., the
paramagnetic phases of V2O3 [7]. Theoretically, the fol-
lowing ‘‘hallmarks’’ of the onset of the Mott insulating
phase can be unambiguously identified in DMFT: At the
one-particle level, a divergence of the local electronic self-
energy in the zero-frequency limit is observed, reflecting
the opening of the Mott spectral gap, while at the two-
particle level, the local spin susceptibility (�sð! ¼ 0Þ)

diverges at T ¼ 0, due to the onset of long-living local
magnetic moments in the Mott phase.
Description of the problem.—While the characterization

of the MIT itself is quite clear, at least on a DMFT level,
the physics of the correlated metal regime in the vicinity of
the MIT is far from being trivial and presents several
anomalies. We recall here the occurrence of kinks of purely
electronic origin [8] in the angular resolved one-particle
spectral functions or in the electronic specific heat, the
formation of large instantaneous magnetic moments,
screened by the metallic dynamics [9], the abrupt change
of the out-of-equilibrium behavior after a quench of the
electronic interaction [10], and the changes in the energy
balance between the paramagnetic and the low-
temperature (antiferromagnetically) ordered phase, which
also affect the restricted optical sum rules [11]. Also
motivated by these observations, many DMFT calculations
focused on a general characterization of this regime, e.g.,
by studying the phase-diagram of the half-filled Hubbard
model. However, no trace of other phase transitions has
been found beyond the MIT itself and the (essentially)
mean-field antiferromagnetically ordered phase, which is
not of interest here. Hence, one of the main outcomes of the
previous DMFTanalyses, mostly focusing on the evolution
of one-particle spectral properties (and, to a lesser extent,
on susceptibilities [12]), has been the definition of the
‘‘borders’’ of the so-called crossover regions at higher T
than those where the MIT can be observed. The shape of
these crossover regions has been analyzed in many differ-
ent ways [4,13–16]. We note here that the (different)
criteria used for defining crossover regimes imply a certain
degree of arbitrariness. Furthermore, the crossover region
is located at much higher Ts than those where some of the
above-mentioned anomalies are observed.
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In this Letter, going beyond the standard, typically one-
particle, DMFT analyses, we present a completely unam-
biguous criterion to distinguish the ‘‘weakly’’ and the
‘‘strongly’’ correlated regions in the phase diagram. By
studying the frequency structure of the two-particle local
vertex functions of DMFT, we observe the divergence of
the local Bethe-Salpeter equation in the charge channel.
This divergence defines a regime remarkably different, also
in shape, from the crossover region, where nonperturbative
precursor effects of the MIT become active, even well
inside the low-temperature metallic phase. The precise
definition of such a regime allows for a general interpre-
tation of the anomalous physics emerging as a precursor of
the MIT. Furthermore, our analysis, showing the occur-
rence of peculiar divergent features in some of the two-
particle local vertex functions of DMFT is also expected to
have a significant impact on future calculations for strongly
correlated electron systems, because the two-particle local
vertex functions represent a crucial ingredient for both
(i) the calculation of dynamical momentum-dependent
susceptibilities in DMFT [4,17,18], as well as (ii) the
diagrammatic extensions [19,20] of the DMFT, aiming at
the inclusion of nonlocal spatial correlations.

DMFT results at the two-particle level.—We consider
the Hubbard model on a square lattice in the paramagnetic
phase at half-filling, which is one of the most basic
realizations of the MIT in DMFT. The corresponding
Hamiltonian is

H ¼ �t
X

hiji�
cyi�cj� þU

X

i

ni"ni#; (1)

where t is the hopping amplitude between nearest neigh-

bors, U is the local Coulomb interaction, and cyi�ðci�Þ
creates (annihilates) an electron with spin � ¼" , # at site
i; ni� ¼ cyi�ci�. Hereafter, all energy scales will be given
in units ofD ¼ 4t ¼ 1, i.e., twice the standard deviation of
the noninteracting DOS [21].

Differently from previous studies, we will focus on the
analysis of the two-particle local vertex functions com-
puted with DMFT. By using a Hirsch-Fye quantum
Monte Carlo impurity solver [4], whose accuracy has
been also tested in selected cases with exact-
diagonalization DMFT calculations, we have first com-

puted the generalized local susceptibility ���0 ð!Þ. This is
defined, following the notation of Ref. [22], as

���0
��0 ð!Þ ¼

Z
d�1d�2d�3e

�i��1eið�þ!Þ�2e�ið�0þ!Þ�3

� ½hT�c
y
�ð�1Þc�ð�2Þcy�0 ð�3Þc�0 ð0Þi

� hT�c
y
�ð�1Þc�ð�2ÞihT�c

y
�0 ð�3Þc�0 ð0Þi�; (2)

where T� is the (imaginary) time-ordering operator and �,
�0 and ! denote the two fermionic and the bosonic
Matsubara frequencies, respectively. Then, the Bethe-
Salpeter equation in the charge channel [defined as

���0
c ð!Þ ¼ ���0

"" ð!Þ þ ���0
"# ð!Þ] has been considered for

! ¼ 0, allowing us to determine the corresponding irre-
ducible vertex [22]

���0
c ¼ ½���0

c ð! ¼ 0Þ��1 � ½���0
0 ð! ¼ 0Þ��1; (3)

where the last term is defined through the convolution

of two DMFT Green’s functions as ���0
0 ð!Þ ¼

�T�1Gð�ÞGð�þ!Þ���0 . The vertex ���0
c can be viewed

as the two-particle counterpart of the electronic self-energy
and, for a half-filled system, it is a purely real function. Our
numerical results are reported in Fig. 1 for four different
values of the electronic interactionU at a fixed temperature
of T ¼ 0:1. Starting by examining the first panel, corre-
sponding to the smallest value of U ¼ 1:2, one observes
two main diagonal structures in the Matsubara frequency
space. These structures are easily interpretable as origi-
nated by reducible ladder processes in the (transverse)
particle-hole (� ¼ �0) and particle-particle (� ¼ ��0)
channels, respectively, [22]. Following the behavior of
the local spin susceptibility in the Mott phase, the
main diagonal structure will diverge exactly at the MIT
(UMIT � 3) in the T ¼ 0 limit [22,23].

In contrast to these standard properties of ���0
c , visible in

the first panel, the analysis of the other three panels of
Fig. 1 shows the emergence of a low-frequency singular
behavior of the vertex functions for a value of U much
smaller than that of the MIT. Already at U ¼ 1:27 (second
panel), one observes a strong enhancement of the vertex
function at the lowest Matsubara frequencies (note the
change in the intensity scale). This is visible as an emer-
gent ‘‘butterfly’’-shaped structure, where the intense red-
blue color coding indicates alternating signs in the (�, �0)
space. Remarkably, such a low-energy structure becomes
predominant over the other ones along the diagonals. That
a true divergence takes place is suggested by the third panel
(U ¼ 1:28), where the intensity of the ‘‘butterfly’’ structure
is equally strong, but the signs are now inverted as indi-
cated by the colors. This is also shown more quantitatively

by the values of ���0
c along a selected path of ���0

c in
frequency space (lower panels in Fig. 1). Note that the
inversion of the signs cannot be captured by second-order
perturbation theory calculations (green circles), marking
the nonperturbative nature of the result. The rigorous proof
of the divergence is provided by the evolution of the matrix

���0
c , which is positive definite at weak coupling, while one

of its eigenvalues (see legends and insets in the bottom row
of Fig. 1) becomes negative crossing 0. Finally, by further
increasingU, the low-energy structure weakens, indicating
that at fixed T ¼ 0:1 this vertex divergence is taking place
only for a specific value of the Hubbard interaction, i.e., for
~U ’ 1:275. This finding naturally leads to the crucial ques-
tion of the temperature dependence of the results: Does
such a divergence occur for all temperatures, and if yes, is
the temperature dependence of ~U significant? As one can
immediately understand from Fig. 2, the answer to both
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questions is positive [24]. By repeating the analysis of
Fig. 1 for different temperatures, we could identify the
loci ( ~T, ~U, red dots in Fig. 2) in the phase-diagram, where

the low-frequency divergence of ���0
c occurs. This defines a

curve ~TðUÞ with a quite peculiar shape, where the follow-
ing three regions can be distinguished: (I) at very high T,
the behavior is almost perfectly linear ~T / ~U; (II) in the
low T limit the curve strongly bends, extrapolating for T !
0 at ~Uð0Þ � 1:5 � UMIT � 3; (III) at intermediate T the
curve interpolates between these two regimes, with a
‘‘reentrance’’ clearly affected by the presence of the MIT
at larger U (blue line in Fig. 2). We note that by increasing
U much further than the ~TðUÞ curve, one eventually
observes a divergence also of the local Bethe-Salpeter in
the particle-particle channel (orange points in Fig. 2),
while for all values of T, U considered, no similar diver-
gence is found in the spin channel.
Interpretation of the results.—In contrast to the case of

the main diagonal structures of the vertex functions, the

interpretation of the low-frequency divergences of ���0
c is

not directly related to the MIT. However, even if at low T
the divergences take place in the metallic region of the
phase diagram, the reentrance shape of the ~TðUÞ curve is
indeed remarkably affected by the position of the MIT. The
most natural interpretation is, hence, that the shaded area in
the phase diagram defines the region where the precursor
effects of the MIT physics preclude the perturbative
description and become a crucial ingredient in determining
the properties of the system. This interpretation is evi-
dently supported by the fact that the signs of the two-
particle vertex functions are correctly predicted in
perturbation theory only up to the left-hand side of the
~TðUÞ curve. More generally, the ~TðUÞ curve can be
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FIG. 2 (color online). Instability lines of the irreducible verti-
ces in the charge (�c red circles) and in the particle-particle
channels (�pp orange diamonds) reported in the DMFT phase

diagram of the half-filled Hubbard model (the data of the MIT,
blue solid line, are taken from Ref. [13,14]). The red dashed line
indicates the corresponding instability condition ( ~T ¼
ð ffiffiffi

3
p

=2�Þ ~U) estimated from the atomic limit. Inset: zoom on
the low-T region, where also different estimations (dashed
light blue [13], dashed blue [14]) of the crossover region are
indicated [30].
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FIG. 1 (color online). Upper row: Evolution of the frequency-dependent two-particle vertex function, irreducible in the charge
channel, (���0

c ) for increasing U. Note that the lowest-order contribution U has been always subtracted so that �c ¼ U corresponds to
the white color in all plots. The data have been obtained by DMFTat zero external frequency (! ¼ 0) and fixed temperature (T ¼ 0:1);
lower row: linear snapshot of the same �c along the path marked by the dashed line in the first panel of the upper row, i.e., as a function
of � ¼ ð�=�Þð2nþ 1Þ for n0 ¼ 0 (�0 ¼ ð�=�Þ), compared to second-order perturbation theory (PT) results. In the legends/insets the
closest-to-zero eigenvalue (�) of ���0

c =���0
0 is reported for each U.
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identified with the limit of the region of applicability of
perturbative schemes based on the Baym-Kadanoff [25]
functional �½G�, since ð�2�=�G2Þ ¼ �c can no longer be
defined on that line. Note that this, in principle, does not
preclude a generalized formulation of a Luttinger-Ward
functional [26] also after having crossed the divergency
line, hence preserving the conserving nature of the theory.
At the same time, the low-frequency singularities of the
vertex may render problematic the numerical evaluation of
the Bethe-Salpeter equation to compute momentum-
dependent DMFT response functions in specific regions
of the phase diagrams, suggesting the use of alternative
procedures [27].

As the singularity of �c (and later on of �pp) is not

associated to simultaneous divergences in the other chan-
nels, the application of the local parquet equations [22,28]
allows us to identify the ultimate root of these divergences
in the fully two-particle irreducible diagrams. Hence, this
is an ‘‘intrinsic’’ divergence, deeply rooted in the diagram-
matics and not generated by ladder scattering processes in
any channel. From a more physical point of view, the fact
that the only irreducible vertex � displaying no singular-
ities at low frequencies is the spin one, might also indicate
the emergent role played by preformed local magnetic
moments as MIT precursors, even in regions where the
metallic screening is rather effective.

We can go, however, beyond these general considera-
tions and analyze the three regimes of the ~TðUÞ curve in
detail, discussing the relation with the emergence of some
of the anomalous properties of the physics in the vicinity of
the MIT. The analysis of the high-T linear regime [(I) in
Fig. 2] of ~TðUÞ is probably the easiest. Here U, T � D,
and hence a connection with the atomic limit (D ¼ 0) can
be established. Using analytic expressions [22,29] for the
reducible two-particle vertex functions as an input for
Eq. (3), we find that the low-frequency divergence of

���0
c occurs at ~T= ~U ¼ ð ffiffiffi

3
p

=2�Þ and that the eigenvector

associated to the vanishing eigenvalue of ���0
c has the

particularly simple form, ð1= ffiffiffi
2

p Þð��ð�TÞ � ��ð��TÞÞ. As is
clear from the comparison with the red dashed line in
Fig. 2, this proportionality exactly matches the high-T
linear behavior of our ~TðUÞ curve. Crossing this curve in
its high-T linear regime, which extends indeed over a large
portion of the phase diagram, corresponds to entering a
region where the thermal occupation of the high-energy
doubly occupied or empty states becomes negligible, let-
ting the physics be dominated by the local moments. The
connection with the local moment physics also holds for
the low-T region (II), though via a different mechanism.
For T ! 0, the relevant energy scales are the kinetic (�D)
and the potential (U) energy, whose competition is regu-
lated by quantum fluctuations. In this case, obviously, only
numerical results are available. We observe that the T ! 0
extrapolated value of ~Uð0Þ � 1:5 falls in the same region
(gray arrow in inset of Fig. 2), where DMFT(NRG) [30]

see a first clear separation of the Hubbard subbands from
the central quasiparticle peak [‘‘dip’’ in the spectral func-
tion Að!Þ]. We recall here that the formation of well-
defined minima in Að!Þ between the central quasiparticle
peak and the Hubbard subbands is directly connected with
the anomalous phenomenon of the appearance of kinks in
the electronic self-energy and specific heat [8]. At the same
time, more recent DMFT(DMRG) [31] data rather indicate
that forU � ~Uð0Þ � 1:5 two sharp peak features emerge at
the inner edges of the Hubbard subbands, which, however,
would be already visible at U � 1.
Looking for a more analytical description of this sce-

nario, we can consider the DMFT solution of the much
simpler Falicov-Kimball (FK) model [32]. Here one can

exactly show that ���0
c indeed diverges before the MIT is

reached (precisely at ~UFK ¼ ð1= ffiffiffi
2

p ÞUFK
MIT). However, for

the FK results, a direct relationwith the formation of the two
minima in Að!Þ cannot be completely identified, as the
renormalization of the central peak is not captured in this
scheme [33]. Finally, in the intermediate temperature region
(III), a direct connection with the structure of the spectral
function or with the atomic physics cannot bemade because
here all the three energy scales (D,T, andU) are competing.
However, an interesting observation can be made. Recent
out-of-equilibrium calculations for the Hubbard model
have shown [10] that after a quench of the interaction
(i.e., from U ¼ 0 to U > 0), the system’s relaxation occurs
in two different (nonthermal) ways. The changeover
between these two regimes, however, appears for a given
set of parameters, �U� 1:65 and Teff � 0:4, in close prox-
imity of the vertex instability line in our phase diagram.
Conclusions and outlook.—Our DMFT calculations

have shown how the emergent (nonperturbative) precursor
effects of the MIT determine a low-frequency divergence
of the local Bethe-Salpeter equation in the charge channel.
This allows for an unambiguous identification of the
regime, where perturbation and Baym-Kadanoff functional
theory break down, and where, at the same time, several
anomalous properties are observed or predicted for corre-
lated metals. Taking properly into account the physics
emerging from the singularity of the two-particle vertex
functions will represent one of the main challenges for
future improvements of the theoretical many-body treat-
ments at the precision level required by the increasingly
high experimental standards.
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