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Many-body calculations for multi-orbital systems at present typically employ Slater or Kanamori interactions
which implicitly assume a full rotational invariance of the orbitals, whereas the real crystal has a lower symmetry.
In cubic symmetry, the low-energy t2g orbitals have an on-site Kanamori interaction, albeit without the constraint
U = U ′ + 2J implied by spherical symmetry (U is the intra-orbital interaction, U ′ is the interorbital interaction,
J is Hund’s exchange). Using maximally localized Wannier functions we show that deviations from the standard,
spherically symmetric interactions are indeed significant for 5d orbitals (∼25% for BaOsO3; ∼12% if screening
is included) but are less important for 3d orbitals (∼6% for SrVO3; ∼1% if screened).
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I. INTRODUCTION

Strongly correlated electron systems show a rich vari-
ety of unconventional phenomena such as high tempera-
ture superconductivity [1] and quantum criticality [2]—and
their theoretical description and understanding constitutes
a particular challenge. The origin of these correlations is
the strong Coulomb interaction, as particularly found in
materials with partially filled d or f bands, such as tran-
sition metals, their oxides, and rare-earth and lanthanide
compounds.

The Coulomb interaction between two electrons, which
scatter from orbitals α, β to α′, β ′ in the course of the
interaction, is simply given by

Uα′β ′βα =
∫

d3rd3r ′ψ∗
α′ (r)ψ∗

β ′ (r′)V (|r′ − r|)ψβ(r′)ψα(r).

(1)
Here, V (|r′ − r|) = e2/(4πε0|r′ − r|) is the Coulomb interac-
tion with electron charge e and vacuum permittivity ε0; ψα(r)
is the electron wave function for orbital α; no screening by
further electrons has been included in this bare interaction
Uα′β ′βα . We do not consider relativistic corrections such as the
spin-orbit coupling here so that the one-electron eigenstates
simply need to be multiplied with a spinor and the integrals
Uα′β ′βα are independent of spin; however, the α′ and α

one-electron eigenstates (as well as β ′ and β) need to have the
same spin.

For practical calculations, it is essential to reduce the
number of interaction parameters. Often, e.g., in DFT + U

(density-functional theory augmented by a Hubbard-U inter-
action in a static mean-field approximation) [3] and DFT +
DMFT (dynamical mean-field theory) [4], one considers only
the local interaction. That is, all orbitals α,β in Eq. (1) are on
the same site; they might correspond to Wannier orbitals [5]
localized around the same lattice site. This is justified not
only because this on-site interaction is by far the largest
interaction parameter, but also since nonlocal interactions
between orbitals on different sites can be treated in simple
(Hartree) mean-field theory in the limit of a large number
of neighbors [6]. Certainly there are situations where such
nonlocal interactions can be of importance, particularly in one
and two dimensions, or also between transition-metal d and
oxygen p orbitals [7].

A further reduction of parameters can be achieved by using
the so-called Slater integrals [8]

Fl =
∫

drdr ′R(r)2R(r ′)2 min(r,r ′)l

max(r,r ′)l+1
r2r ′2. (2)

Here, the underlying assumption is spherical symmetry, which
allows for an analytical angular integration so that eventually
only the integrals (2) over the radial part R(r) of the wave
functions remain; see the appendix. These Slater integrals,
the simpler Kanamori [9] interaction, and or even just a
single U parameter, are commonly used in DFT + U [10],
DFT + DMFT [4,11–13], or full-multiplet configuration-
interaction calculations [14–16]. However, a crystal lattice
is not spherically symmetric. It has a lower, e.g., cubic,
symmetry.

The aim of our paper is hence to analyze the nature and
magnitude of the deviations from spherical interaction pa-
rameters. To this end, we study the specific and arguably most
relevant case of transition-metal oxides with a cubic perovskite
(ABO3) structure. In Sec. II, we study analytically the structure
of the Coulomb matrix elements for a BO6 octahedron. For the
low-energy t2g orbitals, the cubic Coulomb interaction requires
three parameters instead of the two parameters for spherical
symmetry. We explicitly derive the most relevant integrals that
deviate from the Slater integrals (2).

In Sec. III, we calculate the quantitative deviations from
spherical symmetry by means of maximally localized Wannier
orbitals. While the bare interaction in 3d1 SrVO3 is still de-
scribed reasonably well by spherically symmetric interaction
parameters, the stronger p-d hybridization in 5d4 BaOsO3

results in larger deviations (∼25%). In a Wannier basis which
includes both the transition-metal t2g and oxygen p orbitals,
working with spherically symmetric interactions is justified.
Even for BaOsO3, deviations between cubic and spherical
symmetric interactions are only 3% in this case.

The effect of screening within the Thomas–Fermi approxi-
mation is considered in Sec. III C. For short screening lengths,
deviations from spherical symmetry are even larger than in
the unscreened case; for realistic screening lengths, deviations
are reduced but still significant for BaOsO3 in a three-orbital
Wannier basis (∼12%).
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II. CUBIC INTERACTION PARAMETERS

We consider the typical situation for transition-metal
oxides with an octahedron of oxygens surrounding each
transition-metal atom, as shown in Fig. 1. While an isolated
transition-metal atom would be spherically symmetric and
the parametrization in terms of Slater integrals exact, the
oxygen octahedron reduces the symmetry to cubic point group
symmetry [17] around the transition-metal atom. Therefore,
the fivefold degeneracy of the atomic d level is partially lifted,
leaving a threefold degenerate t2g and a twofold degenerate eg

level in the cubic environment. In the cases we consider, the
octahedron vertices are occupied by negatively charged O2−
ions. In this case, the eg states, which have a lot of weight
along the B-O lines, are higher in energy than the t2g states,
whose weight resides predominantly in the space between the
O ions; see Fig. 1(right).

The effective t2g orbitals are a combination of predom-
inantly transition-metal d orbitals admixed with oxygen p

orbitals. For many transition-metal oxides, these t2g orbitals
constitute the low-energy degrees of freedom for excitations
around the Fermi energy [18]. For an analytical description
we consider an atomic transition-metal t2g orbital, denoted dα

with α ∈ {xy,yz,xz} in the following. This dα orbital mixes
with a linear combination of oxygen p orbitals of the same
symmetry; see, e.g., Ref. [15]. It is convenient to define this
linear combination as oα: e.g.,

oxy = (
p+y

x + p+x
y − p−y

x − p−x
y

)
/2, (3)

where p
+y
x is the px orbital centered around the oxygen atom

in the the positive y direction; see Fig. 1. The orbitals oxz and
oyz follow from Eq. (3) by cubic symmetry, i.e., x ↔ z and
y ↔ z, respectively.

Symmetry ensures that the orbital oα is orthogonal to dα′ ,
except when α = α′. Thus to orthogonalize the set of orbitals
{oα,dα′ }, one has only to orthonormalize oα with respect to its
associated dα . The orthonormalized orbitals are

o′
α=ij = oij − dij 〈dij |oij 〉√

1 − 〈dij |oij 〉
. (4)

FIG. 1. (Color online) (left) In the perovskite (ABO3) structure,
the oxygen octahedron around the central transition-metal ion breaks
spherical symmetry down to cubic. The B ion (large sphere) occupies
the center of a cube with A at the corners and O at the face centers.
(right) Schematic representation of the low-energy d ′

xy orbital of
Eq. (5) [light and dark shading indicates opposite signs of the wave
function].

The mixing of transition-metal d orbitals and oxygen p

orbitals stems from hybridization; by symmetry, there is a
hybridization only between dα and o′

α with the same α. Hence
we obtain the tight-binding Hamiltonian(

Ed t

t Ep

)
,

where Ed and Ep are the d and p (more precisely the
orthogonalized o′) energy levels; Ed − Ep is the charge
transfer energy. The predominantly d eigenfunctions of this
tight-binding Hamiltonian, d ′

ij , are the effective low-energy
t2g orbitals

d ′
ij = adij + bo′

ij , (5)

with η = (Ed − Ep)/(2t), a = [2(η2 − η
√

η2 + 1 + 1)]−1/2,
and b = [2(η2 + η

√
η2 + 1 + 1)]−1/2.

After defining the low-energy t2g orbitals, we need to
calculate the Coulomb interaction between these one-particle
eigenstates, i.e.,

Uα′β ′βα = 〈d ′
α′=ij |〈d ′

β ′=kl|V |d ′
β=mn〉|d ′

α=op〉. (6)

This is the relevant site-local Coulomb interaction for the low-
energy degrees of freedom. Note that, in this context, Uα′β ′βα

is defined as the matrix element between direct products of
single-particle states denoted as |d ′

β=mn〉|d ′
α=op〉, not between

antisymmetrized Fock states.
Since often b 	 1 in transition-metal oxides, we consider

in the following only the leading terms in the limit of large
distance between transition-metal and oxygen sites. In this
limit, the direct overlap 〈dij |oij 〉, b (which is the overlap with
respect to the one-particle Hamiltonian, b ∼ t), and Coulomb
integrals between orbitals on different sites are small. In the
following we hence restrict ourselves to all terms up to second
order in (any) of the above off-site overlaps and obtain the
following three contributions:

Directly from the adij terms in Eq. (5) and from the
orthogonalization of the o′

ij we get a contribution
(

a4 − 4a3b
〈duv|ouv〉

N

)
〈dij |〈dkl|V |dmn〉|dop〉. (7)

This term is centered around the transition-metal ion and
can be expressed in terms of the Slater integrals Fl for the
dij orbitals. Hence, this term can still be parametrized with
Kanamori interaction parameters.

From two bo′
ij s in Eq. (5) we get a contribution

(
2a2b2 1

N2

)
〈dij |〈okl|V |omn〉|dop〉. (8)

Note that okl and omn have a contribution from the same oxygen
site, so that the r and r ′ integrals both include on-site overlaps.
Since for large oxygen–transition-metal distances the intersite
overlap decays exponentially while the Coulomb interaction
decays like 1/r , we keep the term Eq. (8).

Finally, there is a contribution involving only one bo′
ij in

Eq. (5) and a Coulomb integral overlap between transition-
metal and oxygen sites:(

2a3b
1

N

)
〈dij |〈dkl|V |omn〉|dop〉. (9)
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All other terms are of higher order in b or the off-center overlap
integrals.

Equations (8) and (9) involve Coulomb integrals with two
distinct sites, oxygen and transition metal. Hence, they cannot
be expressed in terms of Slater integrals any longer. One can
also envisage this from the orbital in Fig. 1(right). While the
spherical rotations around the x or y axis of the central dxy

part of the d ′
xy orbital in Fig. 1(right) map the dxy orbital onto a

linear combination of the three dα orbitals, this is not possible
any longer with the oxygen admixture o′

xy in d ′
xy except for

90 degree rotations. Noncubic rotations will put the rotated
orbitals into positions where there is actually no oxygen site.

Employing the cubic symmetry, we can further reduce
the number of integrals needed in Eqs. (7)–(9); or (1); cf.
Ref. [19]. Any integral involving an orbital index α = ij once
or thrice is odd in one cubic direction and hence vanishes.
This leaves us with integrals where all orbitals are the same,
i.e., the intra-orbital Hubbard interaction U = Uαααα and
integrals where we have two distinct orbitals α 
= β twice.
For the latter we have three possibilities: the interorbital
interaction U ′ = Uαββα , the Hund’s exchange J = Uαβαβ , the
pair hopping term and Uααββ which, for real-valued wave
functions, has the same amplitude as J . These symmetry
considerations actually hold in general, but without spherical
symmetry U 
= U ′ + 2J because of the terms (8) and (9).
For spherical symmetry, the connection to the Slater integrals
is as follows (cf. Ref. [19]): U = F0 + 4

49 (F2 + F4), U ′ =
F0 − 2

49F2 − 4
441F4, J = 3

49F2 + 20
441F4, so that U = U ′ + 2J

holds [20]. If we have instead only cubic symmetry, we can
still parametrize the interaction in terms of U , U ′, and J , but
now with U 
= U ′ + 2J and no expression in terms of Slater
integrals.

In second quantization, this Kanamori Hamiltonian [9],
which is obtained from Eq. (1) by including all valid spin
combinations in Eq. (1), reads

HU = 1

2

∑
α,β

α′,β ′

Uα′β ′βα

∑
σ,σ ′

c
†
α′σ c

†
β ′σ ′cβσ ′cασ

= U
∑

α

nα,↑nα,↓ +
∑
α > β

σ,σ ′

[(U ′ − δσσ ′J )nα,σ nβ,σ ′]

−
∑
α 
=β

J (c†α,↓c
†
β,↑cβ,↓cα,↑ + c

†
β,↑c

†
β,↓cα,↑cα,↓ + H.c.).

(10)

Here, c†α,σ (cα,σ ) creates (annihilates) an electron with spin σ

in orbital α; nα,σ = c†α,σ cα,σ .
In contrast, for the eg orbitals, which are proportional to

3z2 − r2 and
√

3(x2 − y2), the relation U = U ′ + 2J still
holds for cubic symmetry: Again because of cubic symmetry
(x ↔ y) any term involving one or three x2 − y2 orbitals van-
ishes; only the terms U = Uαααα , U ′ = Uαββα , J = Uαβαβ =
Uααββ remain. However, now, instead of interchanging the
orbitals, cubic symmetry operations such as (x → x, y → z,
z → −y), lead to mixed orbitals: 3z2 − r2 → −1/2(3z2 −
r2) − √

3/2
√

3(x2 − y2). Hence, the intra-orbital Hubbard
interaction U for the eg orbitals is not a cubic invariant, and

U has to depend on the other parameters U ′ and J through
U = U ′ + 2J .

III. QUANTITATIVE DEVIATIONS FOR SrVO3 AND
BaOsO3

A. Construction of Wannier functions

We now aim to validate our analytical results and quantify
the deviation from the spherical-symmetry relationship (1)
in real materials. To this end, we perform DFT calcula-
tions [21] by using a generalized-gradient approximation to the
exchange-correlation functional [22] for two cubic perovskite
materials and construct low-energy effective models using
maximally localized Wannier functions (MLWFs) [23,24].

In terms of the formalism of Sec. II, the role of the
Wannier functions is to provide the radial dependence of
the orbitals which was irrelevant for our arguments from
symmetry, but which must be provided to compute numerical
values for the interaction parameters. The main difference is
that we considered a local octahedron before, while Wannier
functions |wαR〉 properly belong to a periodic crystal: they
have finite hopping amplitudes tαRα′R′ also for R 
= R′ (or
equivalently, they show a k dispersion) and form an orthonor-
mal set 〈wαR|wα′R′ 〉 = δαα′δRR′ with respect to sites R and
orbitals α.

Our first example is SrVO3, which is often used as a
“test bed” strongly correlated material. (For DFT + DMFT
calculations; see, e.g., Ref. [25]. Detailed discussions of
Wannier projections in this and related materials are given
in Refs. [24,26,27].) The cubic perovskite SrVO3 is a para-
magnetic, correlated metal with electronic configuration 3d1,
i.e., one of the t2g-derived states will be filled.

Second, we consider the recently synthesized compound
BaOsO3 [28]. With a low-spin 5d4 configuration, this is
another paramagnetic metal. Since the 5d states are more
extended than the 3d states of V, we expect to find greater
p-d hybridization and, in turn, greater deviation from U =
U ′ + 2J in this case.

For each material, we construct two sets of Wannier
functions:

(1) three “d-only” Wannier functions corresponding to the
d ′

ij of Eq. (5), and
(2) twelve “d + p” Wannier functions corresponding to

the atomic dij and pi states.
It is instructive to compare these two approaches: The first

set of Wannier functions translates the three t2g-derived bands
to three orbitals |w′

α0〉 centered on the B ion. Direct and
O-mediated hopping processes are subsumed in an effective
B-B hopping td ′d ′ . To account for this, |w′〉 must have
substantial weight not only at B but also at O atoms. (In a
band picture, the reason is the significant O-p contribution
to the t2g-derived bands.) Which combinations of O-p and
B-d orbitals mix is determined by symmetry, as discussed in
Sec. II; cf. Fig. 2. Going beyond an effective single-particle
description, the Coulomb interaction is expected to be well
represented by a site local “multiband Hubbard” term Uα′β ′βα

which can be parametrized by three independent quantities U ,
U ′, and J , as we saw in the previous section.
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FIG. 2. (Color online) Densities of states and Wannier functions
for the d-only Wannier orbitals for SrVO3 (top) and BaOsO3 (bottom).
On the left, we show the total DOS (dotted line) and the projections
on transition-metal t2g (dark) and O (light) states. The shaded area
marks the region of integration used to estimate the O-p weight
[corresponding to |b|2 in Eq. (5)], see text. On the right, the light
(dark) lobes are isosurfaces for the positive (negative) parts of the
real-valued Wannier functions. The strong p-t2g hybridization and
the antibonding character are plainly visible.

The second set of Wannier functions spans nine additional
bands: three p-derived bands per O. With the p states explicitly
included, the d-like MLWFs are free to become more localized;
the weight at the O sites will be carried by the p-like orbitals
(cf. Fig. 3). The downside is that the resulting model becomes
significantly more complex, since a correct treatment of such
a d + p model must take into account not only the intra-
atomic interactions on the B (Udd ) and on the O (Upp) sites,
but also the interatomic (Upd ) interactions [7,29]. This added
complexity will increase the computational cost to solve the
model in any numerical method, but it will also make the
physical interpretation of the results more involved.

Before we turn to the results, note that the heavy (Z =
76) element Os leads to an appreciable spin-orbit splitting in
BaOsO3. Because it would invalidate the symmetry analysis
of Sec. II, we neglect this effect in the construction of the
Wannier functions. While our analysis could be extended to
include spin-orbit coupling, a spin-orbit interaction term can
also be added afterwards to the tight-binding model in any
case [30].

B. Results

Figure 2 shows the densities of states (DOS) of SrVO3

and BaOsO3, and the Wannier orbitals corresponding to the
three-band case. The DOS around the Fermi level is derived
from the π -antibonding combinations of O-p and B-t2g states;
correspondingly, the three-band orbitals are composed of a
d-like contribution at the B site and p-like contributions at
the O sites sharing a plane with the d-like part, akin to the o′

α

FIG. 3. (Color online) Twelve-orbital Wannier functions for
SrVO3 [plotted as in Fig. 2(right)]. (top left) By symmetry, the twelve
orbitals are grouped into three equivalent d-like orbitals; and two
types of p-like orbitals, (bottom) three “pσ ” whose symmetry axes
point toward their B neighbors, and (top right) six “pπ ” pointing away
from the B sites. With the O-p states explicitly included, no p-t2g

hybridization is seen in these orbitals. Correspondingly, the d and
pπ orbitals are close to their atomic counterparts. Conversely, the pσ

orbitals, which mediate the σ bonding between O-p and B-eg states,
are elongated along their symmetry axis and have large contributions
at their B neighbors [26,27].

orbitals in Sec. II. These Wannier orbitals are also referred to
as d only, where the quotation marks hint that these orbitals
are actually not pure d orbitals. The Wannier functions are
equivalent to each other under cubic symmetry.

As expected, the p-d hybridization is stronger in BaOsO3

than in SrVO3. This is seen both in the DOS (more O weight
around the Fermi energy EF = 0) and in the orbitals (bigger
lobes at the O sites). We can quantify this observation by
integrating over the shaded areas in the DOS; this yields
an O admixture of |bSrVO3 |2 ∼ 0.25 and |bBaOsO3 |2 ∼ 0.5,
respectively. In this sense, the “d bands” of BaOsO3 consist in
fact of almost equal parts O and Os contributions. These values
agree qualitatively with Eq. (5), which yields |bSrVO3 |2 ∼ 0.20
and |bBaOsO3 |2 ∼ 0.33 using the parameters from Table VI [31].
Quantitative differences have to be expected because (i) Eq. (5)
holds for an isolated octahedron instead of the periodic crystal,
(ii) there are further hopping integrals that would have to
be considered, and (iii) the partial DOS of Fig. 2 are only
projections within the muffin-tin spheres [21].

For these d-only Wannier orbitals, we calculated the
Coulomb interaction by spatial integration of Eq. (1) [32].
Table I summarizes the results obtained for the bare interaction.
For the 3d1 perovskite SrVO3, deviations from the spherical
symmetric relation U − U ′ = 2J are 6%. That is, calculations
employing this relation can still be expected to yield quite
reliable results. For the 5d4 perovskite BaOsO3, on the other
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TABLE I. Coulomb interactions (unscreened) for d-only Wannier
functions of SrVO3 and BaOsO3; (U − U ′)/2 = J holds for spherical
but not for cubic symmetry, for BaOsO3 deviations are indeed
substantial.

Interaction SrVO3 BaOsO3

U 16.30 eV 10.54 eV
U ′ 15.14 eV 9.67 eV
J 0.55 eV 0.33 eV
(U − U ′)/2 0.58 eV 0.44 eV

hand, deviations are 25%. The reason for this is the larger
admixture of oxygen p contributions, which according to
Sec. II yield larger off-center Coulomb integral overlaps and
hence a larger deviation from spherical symmetry.

Recently, transition-metal oxides with heavy 4d or 5d

elements have attracted more and more attention. Indeed,
in such systems electronic correlations are stronger than
expected—due to Hund’s rule coupling [19,33,34]. All the
more important is a correct Hamiltonian and multiplet structure
with Hund’s exchange. In this respect, our finding high-
lights the substantial difference between (U − U ′)/2 and J .
A Kanamori Hamiltonian with three independent Coulomb
interactions needs to be considered for obtaining the correct
multiplet structure.

Next, we turn to the twelve-orbital d + p Wannier func-
tions. This is an alternative description of the low-energy
physics, where the oxygen p orbitals are explicitly taken into
account. The corresponding Wannier functions for SrVO3 are
shown in Fig. 3. The d-like orbitals are again equivalent up
to symmetry, but two inequivalent types of p-like orbitals
appear. Symmetry also greatly restricts the possible hopping
processes between these states. The hopping amplitudes within
the octahedron as well as selected longer-ranged ones for all
four Wannier projections are reported in Appendix B.

We list the Coulomb interaction parameters between the
twelve-band orbitals for SrVO3 and BaOsO3 in Tables II
and III, respectively. For the d-like orbitals, U = U ′ + 2J

is fulfilled with a reasonable accuracy of 3% even in BaOsO3.
Having the additional degree of freedom regarding oxygen-p
Wannier orbitals, the t2g orbitals are now localized around the
transition-metal ion and have the spherically symmetric form;
cf. Fig. 3. In this case, two parameters are sufficient for the
d-d Kanamori interaction.

TABLE II. Left: Same as Table I but for d + p SrVO3 Wannier
functions. Right: the different d-p density-density Coulomb interac-
tions for these Wannier functions; see main text for the notation.

Interaction SrVO3 Interaction SrVO3

U 19.99 eV Upπ d 7.24 eV

U ′ 18.52 eV U ′
pπ d 7.18 eV

J 0.74 eV Upσ d 8.52 eV

U⊥
pσ d 6.87 eV

(U − U ′)/2 0.74 eV U⊥
pπ d 8.06 eV

TABLE III. Same as Table II but for d + p BaOsO3 Wannier
functions.

Interaction BaOsO3 Interaction BaOsO3

U 14.90 eV Upπ d 6.94 eV

U ′ 13.65 eV U ′
pπ d 6.80 eV

J 0.64 eV Upσ d 7.85 eV

U⊥
pσ d 7.23 eV

(U − U ′)/2 0.62 eV U⊥
pπ d 6.38 eV

As a side note, observe that in the twelve-band case U −
U ′ < 2J , while in the three-band case U − U ′ > 2J . This is
because U ′ and J are more strongly reduced than U by the shift
of t2g weight to the oxygens which occurs in the three-band
case, as U ′ and J are interorbital interactions that include more
nonoverlapping oxygens in the interaction integral.

Let us emphasize that the d-p interaction also plays an
important role [29]. The d-p interactions of density-density
type are listed in Tables II and III (right). There are two types of
p orbitals, denoted pπ and pσ (see Fig. 3). Interactions with p

orbitals centered on an oxygen atom outside the plane of the d

orbital lobes are denoted by ⊥. The d-pσ interactions Upσ d and
U⊥

pσ d with the pσ orbitals oriented toward the transition-metal
site is considerably stronger than that with the more regular pπ

orbitals. There is only one U⊥
pπ d , while two parameters arise

from density-density interaction between d and pπ orbitals
with the pπ orbitals being centered around oxygen sites within
the plane defined by the d orbitals. We denote these as Upπ d

if the pπ orbital lies within the same plane and U ′
pπ d if it is

oriented perpendicular to it. The considerable differences in
the d-p Coulomb interaction can be understood from the very
different pπ and pσ orbitals in Fig. 3. These differences are of
relevance for d + p DFT + DMFT calculations that include
Upd [29].

C. Effect of screening

The values reported above were calculated for a bare,
unscreened Coulomb interaction. In this section we include
screening, within Thomas–Fermi theory. That is, we replace
the bare interaction in Eq. (1) by

V (|r′ − r|) = e2

4πε0

1

|r′ − r|e
−|r′−r|/λTF , (11)

where λTF is the Thomas–Fermi screening length. Let us
emphasize that, for a cubic crystal, the screened interaction
V (r,r′) itself will be of cubic symmetry and hence deviate
from spherical symmetry. This effect is not taken into account
in the following; it will on its own generate further deviations
of the Kanamori interaction parameters from the spherical
relation U = U ′ + 2J .

In the following, we adjust the parameter λTF to yield a
screened Coulomb interaction U ′ ∼ 3.5 eV for 3d SrVO3,
as calculated using the constrained local density approxima-
tion [25]. This corresponds to a screening length λTF = 0.43
Å (the lattice parameters are aSrVO3 = 3.8425 Å [35] and
aBaOsO3 = 4.025 Å [28]). We employ the same screening length
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TABLE IV. Same as Table I but for screened interaction with
screening length λTF = 0.43 Å.

Interaction SrVO3 BaOsO3

U 4.40 eV 2.44 eV
U ′ 3.47 eV 1.80 eV
J 0.46 eV 0.28 eV
(U − U ′)/2 0.47 eV 0.32 eV

also for BaOsO3 because this yields an interaction parameter
U ′ ∼ 1.8 eV, which is in the expected range for the 5d BaOsO3.

Table IV shows the results obtained for the d-only models.
In the case of 3d orbitals, as exemplified by SrVO3, deviations
from spherically symmetric interaction parameters are already
small without screening and become negligible if screening
is included. By contrast, for 5d BaOsO3, U − U ′ = 2J is
significantly violated even when screened. Let us note that
the degree of deviation is quite robust over a large range of
screening lengths. For example with λTF = 0.61 Å we obtain
a similar deviation of 14% (U = 2.55 eV, U ′ = 1.90 eV, and
J = 0.28 eV).

Interestingly, for weak screening (large λ) J can even be
enhanced whereas U and U ′ are always reduced. The reason
for this is that the exchange integral J includes positive
and negative contributions; and for large λTF, the negative
contributions are more strongly reduced than the positive ones.
For example, at λTF = 21.13 Å we obtain J = 0.5465 eV for
SrVO3, which is larger than the unscreened J = 0.5464 eV.
As the increase is very small, the results are given to a higher
precision than elsewhere in the paper. With U = 15.67 eV and
U ′ = 12.50 eV, deviations are 6.2% for this screening strength.

In the limit of infinite screening, i.e., λTF → 0, one can
show that U ′ = J . That is, one can describe this limit by one
Kanamori interaction parameter U = 3U ′ = 3J for spherical
symmetry, and two (U and U ′ = J ) for cubic symmetry.
Numerically, we get, however, also for cubic d-only Wannier
functions, U/J ∼ 3 for both SrVO3 and BaOsO3. The limits
of strong and weak screening show that the idea that screening
strongly reduces U ′ and hardly reduces J is not true in general.
For strong screening, J is reduced as much as U ′, since they
are equal, while for weak screening J is even enhanced.

IV. CONCLUSION

We analyzed the physical origin and the magnitude of the
difference between a spherically symmetric and a cubic inter-
action for t2g orbitals. Deviations are quite large for 5d orbitals
of heavy transition metals. Since for these systems Hund’s ex-
change is paramount for electronic correlations [12,19,34,36],
we conclude that a Kanamori interaction with three instead of
two independent parameters is necessary. Unfortunately, this
requires the calculation of one additional interaction parameter
and hence a more thorough analysis of the interaction in
DFT + DMFT calculations than was customary hitherto. Only
if the oxygen degrees of freedom are included in the Wannier
projection is this not necessary. In this case, however, the
(different) d-p Coulomb interactions should be taken into
account. For eg orbitals there is no such difference between
spherical and cubic interaction.

Depending on the screening length, screening enhances
or reduces the difference between spherically symmetric and
cubic interaction parameters. Screening can even enhance J

whereas U and U ′ are always reduced. For Thomas–Fermi
screening, U = U ′ + 2J is still significantly violated for
5d BaOsO3. Let us note that the simple Thomas–Fermi
screening employed here is spherically symmetric, whereas the
physical screening function obeys the cubic, not the spherical
symmetry. This effect is an additional source of deviations
from spherically symmetric interaction parameters.

For both eg-only and t2g-only low-energy effective models,
we have a Kanamori interaction for cubic symmetry. This
makes continuous-time quantum Monte Carlo simulations [37]
very efficient because of an additional local symmetry; see
Ref. [38].
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APPENDIX A: COULOMB INTERACTION AND SLATER
INTEGRALS

For the sake of completeness, let us briefly add the repre-
sentation of the Coulomb interaction (1) by Slater integrals.
Expressing

1/|r − r′| =
∑
l,m

min(r,r ′)l

max(r,r ′)l+1

4π

2l + 1
Yl,m(θ,ϕ)Y ∗

l,m(θ ′,ϕ′)

in terms of spherical harmonics Yl,m and with ψα(r) = R(r)Yα

where R(r) is independent of l (or α), the Coulomb interaction
Eq. (1) becomes

Uα′β ′βα = e2

4πε0

∫
drddr ′d′R(r)Yα′(θ,ϕ)R(r ′)Yβ ′(θ ′,ϕ′)

×
∑
l,m

[
min(r,r ′)l

max(r,r ′)l+1

4π

2l + 1
Yl,m(θ,ϕ)Yl,m(θ ′,ϕ′)

]

×R(r ′)Yβ(θ ′,ϕ′)R(r)Yα(θ,ϕ)r ′2r2. (A1)

This integral can be decomposed into a radial part (drdr ′)and
an angular part (dd′), and the latter can be expressed in
terms of Clebsch–Gordan coefficients. Thus, only the radial
integrals (also known as Slater parameters) Fl of Eq. (2) need
to be calculated.

TABLE V. Hopping amplitudes t between the three t2g Wannier
functions at various distances and their on-site energies E relative to
the Fermi level. Values are in eV.

t (1)
π t

(1)
δ t (2)

σ t
(2)
⊥ t

(2)
‖ E

SrVO3 − 0.263 − 0.027 − 0.084 0.009 0.006 0.580
BaOsO3 − 0.394 − 0.043 − 0.112 − 0.012 0.013 − 0.453
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TABLE VI. Selected hopping amplitudes t between twelve-band Wannier functions and their on-site energies E relative to the Fermi level.
Where the sign of the hopping alternates due to the signs of the p-type orbitals, we give the modulus. Values are in eV.

t
(1)
ddπ t

(1)
ddδ |tdpπ

| |tpπ pπ
| |tpπ p′

π
| |tpπ pσ

| tpσ pσ
t (1)
pπ pπ

t (1)
pσ pσ

Ed Epπ
Epσ

SrVO3 −0.128 −0.005 1.099 0.064 0.369 0.258 −0.044 −0.078 0.671 −0.407 −3.780 −5.520
BaOsO3 −0.187 −0.002 1.240 0.007 0.204 0.195 −0.024 −0.107 0.903 −2.063 −3.896 −6.887

APPENDIX B: HOPPING MATRICES

In this appendix, we report the numerical values of selected
hopping amplitudes in our Wannier projections [39]. The
values for SrVO3 may be compared with Refs. [24,26].
Note that this is not an enumeration of the largest hopping
amplitudes; rather, the selection is meant to be illustrative.

For the three-band Wannier functions (values in Table V),
no hopping is possible within the unit cell. Two nearest-
neighbor hoppings are allowed, a π -type hopping t (1)

π when the
displacement is in the same plane as the orbital lobes [e.g., xy

orbitals with displacement (1 0 0)], and a smaller t
(1)
δ of δ type

where the displacement is perpendicular [e.g., xy and (0 0 1)].
Interorbital nearest-neighbor hopping is forbidden by cubic
symmetry. There are three second-nearest-neighbor hopping
parameters: t (2)

σ when both orbitals and the displacement share
a plane [e.g., xy and (1 1 0)]; t

(2)
‖ when the orbitals’ planes are

parallel [e.g., xz ↔ xz and (1 1 0)]; and t
(2)
⊥ when the planes

are perpendicular [e.g., xz ↔ yz and (1 1 0)].
For the twelve-band case (Table VI), we report the nearest-

neighbor d ↔ d hopping parameters t
(1)
dd analogous to those

of the three-band case, but not those to further neighbors. In
any case, O-mediated hopping, which was subsumed in the
hoppings of the three-band orbitals, now has to be taken into
account explicitly.

Within the octahedron, the following hopping processes are
possible: tdpπ

when the pπ orbital resides in the plane defined
by the d (e.g., dxy ↔ p+x

y ); tpπ pπ
between nearest-O neighbors,

i.e., along an edge of the octahedron (e.g., p+x
y ↔ p+z

y ); tpπ p′
π

which is the same as the last, but between orbitals of different
orientation (e.g., p+x

y ↔ p
+y
x ); tpπ pσ

along an edge (e.g.,

p+x
y ↔ p

+y
y ); tpσ pσ

along an edge (e.g., p+x
x ↔ p

+y
y ); t (1)

pπ pπ

across the octahedron (e.g., p+x
y ↔ p−x

y ); and t (1)
pσ pσ

across the
octahedron (e.g., p+x

x ↔ p−x
x ).

Comparing the sequences of values for the two materials,
the same trends are observed (with the exceptions of t

(2)
⊥ ≷ t

(2)
‖

and |tpπ pπ
| ≷ |tpσpσ |). However, the values for the d-only

orbitals, and for dd and pd processes in the twelve-band
orbitals, are in general larger for BaOsO3 than for SrVO3,
the larger lattice constant of BaOsO3 notwithstanding (4.03 Å
versus 3.84 Å for SrVO3). This is reflective of the greater p-d
hybridization and spatial extent of the 5d states.

Contrariwise, the twelve-band pp hopping processes have
larger amplitude in SrVO3. Our interpretation is that, in
this case, the larger spatial distance prevails; indeed, the
difference in Wannier-function spread 〈r2〉 between SrVO3

and BaOsO3 is much more pronounced for the d than for the p

orbitals. The exceptions to this rule, t (1)
pπpπ

and t (1)
pσ pσ

(hopping
across the octahedron), may be explained by the stronger p-d
hybridization in BaOsO3.
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