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Asymmetry in band widening and quasiparticle lifetimes in SrVO3: Competition between screened
exchange and local correlations from combined GW and dynamical mean-field theory GW + DMFT
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The very first dynamical implementation of the combined GW and dynamical mean-field scheme
“GW + DMFT” for a real material was achieved recently [Tomczak et al., Europhys. Lett. 100, 67001 (2012)],
and applied to the ternary transition metal oxide SrVO3. Here, we review and extend that work, giving not only
a detailed account of full GW + DMFT calculations, but also discussing and testing simplified approximate
schemes. We give insights into the nature of exchange and correlation effects: dynamical renormalizations in
the Fermi liquid regime of SrVO3 are essentially local, and nonlocal correlations mainly act to screen the Fock
exchange term. The latter substantially widens the quasiparticle band structure, while the band narrowing induced
by the former is accompanied by a spectral weight transfer to higher energies. Most interestingly, the exchange
broadening is more pronounced in the unoccupied part of the spectrum than in the occupied one. In addition,
shorter lifetimes for unoccupied states further contribute to making the corrections to the Kohn-Sham band
structure asymmetric with respect to the chemical potential. As a result, the GW + DMFT electronic structure of
SrVO3 resembles the conventional density functional based dynamical mean-field (DFT + DMFT) description
for occupied states but is profoundly modified in the empty part. Our work leads to a reinterpretation of inverse
photoemission spectroscopy (IPES) data. Indeed, we assign a prominent peak at about 2.7 eV dominantly to
eg states, rather than to an upper Hubbard band of t2g character. Similar surprises can be expected for other
transition metal oxides. This prediction urgently calls for more detailed investigations of conduction band states
in correlated materials.
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I. INTRODUCTION

Within the last decade, a new research field has developed
at the interface of many-body theory and first principles
electronic structure calculations. The aim is the construction
of materials-specific parameter-free many-body theories that
preserve the ab initio nature of density functional based meth-
ods, but incorporate at the same time a many-body description
of Coulomb interactions beyond the independent-electron
picture into computational approaches for spectroscopic and
finite-temperature properties.

Historically, the first nonperturbative electronic structure
techniques for correlated materials evolved from many-body
treatments of the multiorbital Hubbard Hamiltonian with
realistic parameters. The general strategy of these so-called
“LDA++” approaches [1,2] (for reviews see, e.g., Refs. [3–6])
consists in the extraction of the parameters of a many-body
Hamiltonian from first-principles calculations and then solving
the problem by many-body techniques. In practice, this
procedure has met tremendous success in the description of
the electronic structure of correlated materials, for a wide
range of materials, from transition metals [7,8], their oxides
[9–30], sulfides [31,32], or silicides [33,34], to f -electron
compounds [35–38]. More recently, iron pnictide compounds
(see, e.g., Refs. [39–47]) or spin-orbit materials [48] have come
into the focus of many-body electronic structure calculations,
emphasizing the need for fully ab initio techniques, includ-
ing a first-principles description of the effective Coulomb
interactions. The challenge here is an accurate description of

screening of low-energy interactions by high-energy degrees of
freedom, the screening of local interactions by nonlocal charge
fluctuations [49–51], as well as the capturing of nonlocal
exchange and correlation effects [52,53].

Despite the tremendous success of LDA++ schemes,
one should be aware of the fact that the ambiguities in
the construction of the Hamiltonian are not limited to the
many-body part: not even the use of the Kohn-Sham band
structure of DFT as a starting Hamiltonian has a direct
microscopic justification beyond heuristic arguments. Though
renormalization group techniques suggest that in many cases
the relevant low-energy effective Hamiltonian can indeed be
cast into a generalized (multiorbital) Hubbard form, in practice
neither the precise form nor the parameters can be derived
directly from the Coulomb Hamiltonian in the continuum.
In this sense, the construction of an “LDA++” Hamiltonian
amounts to a rather ad hoc combination of a Kohn-Sham
Hamiltonian and multiorbital Hubbard (and Hund) interaction
terms for a subset of “correlated orbitals.”

Conceptually, there is moreover a mismatch arising from
the fact that the full long-range Coulomb interactions enter
the one-particle part of the Hamiltonian (even if only in
a mean-field fashion), while in the many-body part, they
are replaced by effective local interactions acting only in a
low-energy subspace. This has two consequences. The first—
well-known one—is related to the double counting correction:
correlation effects accounted for in the exchange-correlation
potential of DFT have to be subtracted. Yet, a microscopically
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motivated definition of this term is, even on a conceptual
level, impossible. The second one is more subtle and has only
recently started to receive some attention: in fact, the same
processes that screen the effective Coulomb interactions are
also responsible for renormalizations of the one-body part of
the Hamiltonian. This can be understood from an analysis of
screening as resulting from coupling of the electrons to bosonic
excitations, such as plasmons, particle-hole excitations or
more complex many-body processes. The diagonalization
of the corresponding electron-boson Hamiltonian results in
fermionic quasiparticles (“electronic polarons”) correspond-
ing to electrons dressed by their screening bosons, and thus
having heavier masses. This mass enhancement corresponds
to an effective renormalization of their kinetic energy, and
hence of the one-body part of the Hamiltonian. This kind
of effect has recently been demonstrated explicitly [54] on
the basis of the constrained random phase approximation
(cRPA) [55], which allows for an explicit (yet approximate)
estimation of dynamical Hubbard interactions in solids. The
corresponding one-body renormalizations have been inves-
tigated in the framework of dynamical mean-field theory
(DMFT) for SrVO3 [56] and BaFe2As2 [47], and a low-energy
effective Hamiltonian comprising these renormalizations has
been derived in Ref. [54].

In addition to these effects related to the construction
of the LDA++ setup, there are further difficulties arising,
when solving the resulting multi-orbital Hubbard Hamiltonian.
On the one hand, many approaches, such as those based
on dynamical mean-field theory [3,57], neglect nonlocal
exchange and correlation effects. However, nonlocal self-
energy contributions can have a notable influence on the
electronic structure of materials, see Refs. [52,53] for the
case of the iron pnictides and this paper for SrVO3. On the
other hand, while the construction of the one-body part of
the Hamiltonian (within DFT) naturally puts the electronic
density at the center of the attention, many-body theory is
most readily formulated within a Green’s function language.
This mismatch in language is the final capstone that ensures
that matching contributions between the effective one-body
Hamiltonian and the many-body terms are truly impossible to
identify.

Ideally, the desired specifications of new many-body
electronic structure techniques beyond “LDA++” approaches
can thus be summarized in three main requirements. (1) The
theory should be entirely formulated in the Green’s function
language, even at the one-body level. (2) The theory should
deal directly with the long-range Coulomb interactions, and
any effective local “Hubbard-like” interactions should arise
only as intermediate auxiliary quantities. (3) At the same
time, the theory should retain the nonperturbative character
of dynamical mean-field theory, thus avoiding limitations due
to a truncation of the perturbation series. This latter point is
essential to ensure the scheme to be equally appropriate in the
weak, strong and intermediate coupling regimes.

The combination of Hedin’s GW approximation—many-
body perturbation theory to first order in the screened Coulomb
interaction W—and dynamical mean-field theory meets these
criteria. Such a scheme was proposed a decade ago [58], based
on the construction of the free energy of a solid as a functional
of the Green’s function G and W .

Only very recently, however, have practical implemen-
tations for real materials been achieved [51,59] that go
beyond simple static approximation schemes [58,61,62]. The
reason was the necessity of dealing with frequency-dependent
interactions at the DMFT level, which has remained a major
bottleneck until recently. Recent advances in Monte Carlo
techniques [63] and the invention of a reliable cumulant-type
scheme, the “Bose factor ansatz” [56], have unblocked the
situation: two calculations within GW + DMFT taking into
account dynamical interactions have been achieved recently,
for SrVO3 [59] and for systems of adatoms on surfaces [51].
In this work, we review and extend the former calculations,
giving a detailed account of fully dynamical GW + DMFT
calculations for SrVO3. The paper is organised as follows.
In Sec. II, we give an extensive summary of the concepts of
the combined GW + DMFT scheme and discuss aspects of
its practical implementation, in particular related to the Bose
factor ansatz. Furthermore, we devote an extensive discussion
to the question of how to treat multiorbital materials: we
propose that for ligand and conduction band shells a pertur-
bative treatment might be sufficient, and show how such a
procedure can be combined with the nonperturbative DMFT
treatment of the low-energy correlated shells. In Sec. III,
we review the electronic structure of our target compound,
pointing out problems left open within conventional LDA++
schemes. Section IV presents the results of fully dynamical
GW + DMFT calculations, in comparison to GW calculations,
LDA + DMFT with static and dynamic interactions, and to
simplified combinations of GW and DMFT which allow for
a detailed analysis of the importance of the different terms
entering the theory. We discuss the implications of our results
in Sec. V, before arriving at our conclusions in Sec. VI.

II. THE “GW + DMFT” METHODOLOGY

A. Overview

The starting point of the GW + DMFT scheme is Hedin’s
GW approximation (GWA) [64], in which the self-energy of
a quantum many-body system is obtained from a frequency
convolution (or product in time) of the Green’s function G with
the screened Coulomb interaction W = ε−1V . The dielectric
function ε, which screens the bare Coulomb potential V ,
is—within a pure GW scheme—obtained from the random
phase approximation. The GW + DMFT scheme, as proposed
in Ref. [58], combines the first-principles description of
screening inherent in GW methods with the nonperturbative
nature of DMFT, where local quantities such as the local
Green’s function are calculated to all orders in the interaction
from an effective reference system (“impurity model”).1 In
DMFT, one imposes a self-consistency condition for the one-
particle Green’s function, namely, that its on-site projection
equals the impurity Green’s function. In GW + DMFT,
the self-consistency requirement is generalized to encompass
also two-particle quantities, namely, the local projection of
the screened interaction is required to equal the impurity

1The notion of locality refers to the use of a specific basis set of
atom-centered orbitals, such as muffin-tin orbitals, or atom-centered
Wannier functions.
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screened interaction. This in principle promotes the Hubbard
U from an adjustable parameter in DMFT techniques to a
self-consistent auxiliary function that incorporates long-range
screening effects in an ab initio fashion. Indeed, as already
alluded to above, not only higher energy degrees of freedom
can be downfolded into an effective dynamical interaction, but
one can also aim at incorporating nonlocal screening effects
into an effective dynamical U(ω). The theory is then free
of any Hubbard parameter, and the interactions are directly
determined from the full long-range Coulomb interactions in
the continuum.

From a formal point of view, the GW + DMFT method,
as introduced in Ref. [58],2 corresponds to a specific ap-
proximation to the correlation part of the free energy of
a solid, expressed as a functional of the Green’s function
G and the screened Coulomb interaction W : the nonlocal
part is taken to be the first order term in W , while the
local part is calculated from a local impurity model as in
(extended) dynamical mean-field theory. This leads to a set
of self-consistent equations for the Green’s function G, the
screened Coulomb interaction W , the self-energy �, and the
polarization P [65,66]. Specifically, the self-energy is obtained
as � = �local + �nonlocal

GW , where the local part �local is derived
from the impurity model. In practice, however, the calculation
of a self-energy for (rather delocalized) s or p orbitals has
never been performed within DMFT, and it appears to be
more physical to approximate this part also by a GW -like
expression. For these reasons, Ref. [59] proposed a practical
scheme, in which only the local part of the self-energy of the
“correlated” orbitals is calculated from the impurity model and
all other local and nonlocal components are approximated by
their first order expressions in W .

In the following sections, we first briefly summarize the
functional formulation of the GW , DMFT, and GW + DMFT
schemes from a general point of view (Sec. II B). The
corresponding GW + DMFT equations are summarized
in Appendix A. Sections II C and II D are devoted to the
“orbital-separated scheme” implemented for SrVO3, defining
the equations solved in practice. We then review the dynamic
atomic limit approximation for the solution of dynamical
impurity models (Sec. II E), while Sec. II F summarizes some
technicalities.

B. Unified view on GW , DMFT, and GW + DMFT

Within the Born-Oppenheimer approximation, the elec-
tronic many-body states in a solid are determined by the
eigenstates of the Coulomb Hamiltonian

H = Hkin + Hpot + Hee, (1)

where the first two terms denote the kinetic energy part and
one-body potential created by the ions, respectively. The
last term, Hee = ∑

nmn′m′ vnmn′m′a
†
na

†
mam′an′ , with vnmn′m′ =

〈nm| 1
|r−r ′ |n′m′〉 the matrix elements of the Coulomb in-

teraction in the continuum, denotes the electron-electron
interaction.

2See also the related scheme of Ref. [60] and the comparison to
GW + DMFT in Ref. [50]

Following Almbladh et al. [67], the free energy of a solid
can be formulated as a functional �[G,W ] of the Green’s
function G and the screened Coulomb interaction W of the
solid. The latter is defined as the correlation function of
bosonic excitations corresponding to density fluctuations, that
is, in mathematical terms, as the propagator of the Hubbard-
Stratonovich field decoupling the Coulomb interaction term.
The GW method, dynamical mean-field theory, and the
combined GW + DMFT scheme can then be viewed as
different approximations to this �[G,W ] functional.

The functional � can trivially be split into a Hartree part �H

and a many-body correction �, which contains all corrections
beyond the Hartree approximation: � = �H + �. The Hartree
part can be given in the form

�H [G,W ] = Tr ln G − Tr
[(

GH
−1 − G−1

)
G

]
− 1

2 Tr ln W + 1
2 Tr

[(
Vq

−1 − W−1
)
W

]
(2)

with GH being the Hartree Green’s function, and Vq the Fourier
transform of the bare Coulomb interaction. The � functional
is the sum of all skeleton diagrams that are irreducible with
respect to both one-electron propagator and interaction lines.
�[G,W ] has the following properties:

δ�

δG
= �xc, −2

δ�

δW
= P. (3)

The � functional was first derived in Ref. [67]. A de-
tailed discussion in the context of extended DMFT can be
found in Ref. [68], while Refs. [58,65,66] view it from the
GW + DMFT point of view.

An elegant derivation (see, e.g., Refs. [51,65,66]) of
the Almbladh free energy functional is obtained through a
Hubbard Stratonovich decoupling of the interaction term by
a bosonic field φ, the introduction of Lagrange multipliers �

and P imposing 〈cc†〉 and 〈φφ〉 to equal externally chosen
fermionic and bosonic propagators G and W , and finally, a
Legendre transformation to obtain a functional of the latter
two quantities.

The GW approximation consists in retaining the first-order
term in the screened interaction W only, thus approximating
the � functional by

�[G,W ] = − 1
2 Tr(GWG). (4)

We then trivially find

�xc = δ�

δG
= −GW, (5)

P = −2
δ�

δW
= GG. (6)

Extended DMFT [69–71], on the other hand, would
calculate all local quantities that should be derived from this
functional from a local impurity model. One can thus formally
write

� = �imp[Gloc,W loc]. (7)

The combined GW + DMFT scheme [58] consists in
approximating the � functional as a combination of local and
nonlocal parts from GW and extended DMFT, respectively:

� = �nonloc
GW [G,W ] + �imp[Gloc,W loc]. (8)
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More explicitly, the nonlocal part of the GW + DMFT �

functional is given by

�nonloc
GW [G,W ] = �GW [G,W ] − � loc

GW [G,W ], (9)

while the local part is taken to be an impurity model �

functional. Following (extended) DMFT, this on-site part of the
functional is generated from a local quantum impurity problem.
The expression for its free energy functional �imp[Gimp,Wimp]
is analogous to (2) with the Weiss field G replacing GH and
the Hubbard U replacing V :

�imp[Gimp,Wimp] = Tr ln Gimp − Tr
[(
G−1 − G−1

imp

)
Gimp

]
− 1

2 Tr ln Wimp + 1
2 Tr

[(
U−1 − W−1

imp

)
Wimp

]
+�imp[Gimp,Wimp]. (10)

The impurity quantities Gimp,Wimp can thus be calculated from
the effective action:

S =
∫

dτdτ ′
[
−

∑
c
†
L(τ )G−1

LL′(τ − τ ′)cL′(τ ′)

+ 1

2

∑
: c

†
L1

(τ )cL2 (τ ) : UL1L2L3L4 (τ − τ ′) :

c
†
L3

(τ ′)cL4 (τ ′) :

]
, (11)

where the sums run over all orbital indices L. In this
expression, c†L is a creation operator associated with a localized
orbital L, and the double dots denote normal ordering (taking
care of Hartree terms). For simplicity, we restrict the discussion
to the paramagnetic case and omit any spin indices.

The construction (8) of the � functional is the only
ad hoc assumption in the GW + DMFT approach. The
explicit form of the GW + DMFT equations follows then
directly from the functional relations between the free energy,
the Green’s function, the screened Coulomb interaction etc.
Taking derivatives of the functional (8) as in Eq. (3) yields the
complete self-energy and polarization operators:

�xc(k,iωn)LL′ = �xc
GW (k,iωn)LL′ −

∑
k

�xc
GW (k,iωn)LL′

+ [
�xc

imp(iωn)
]
LL′, (12)

P (q,iνn)αβ = PGW (q,iνn)αβ −
∑

q

PGW (q,iνn)αβ

+Pimp(iνn)αβ. (13)

Here, Greek letters indicate a two-particle basis, con-
structed from the localized (Wannier) basis indexed by L.
The ad hoc combination of the functional � constructed as
a sum of local and nonlocal parts thus leads to a physically
attractive result: the off-site part of the self-energy (12) is
taken from the GW approximation, whereas the on-site part
is calculated to all orders from the dynamical impurity model.
This treatment thus goes beyond usual extended DMFT, where
the lattice self-energy and polarization are just taken to be their
impurity counterparts. The second term in Eq. (12) subtracts
the on-site component of the GW self-energy thus avoiding
double counting. At self-consistency this term can be rewritten

as∑
k

�xc
GW (k,τ )LL′ = −

∑
L1L

′
1

Wimp(τ )LL1L′L′
1
Gimp(τ )L′

1L1 (14)

so that it precisely subtracts the contribution of the GW

diagram to the impurity self-energy. Similar considerations
apply to the polarization operator.

The general set of GW + DMFT equations to be solved
self-consistently is summarized in Appendix. In the following,
we discuss a variant, which allows for a physically motivated
cheaper treatment of ligand and itinerant empty states.

C. The “orbital-separated” GW + DMFT scheme

In the original GW + DMFT scheme as described in
Ref. [58], the � functional is decomposed into nonlocal and
local parts, which are then approximated by GW and DMFT,
respectively. This means that the local physics of all valence
orbitals, including rather itinerant s or p states, would be
generated from a self-consistent impurity model. It stands to
reason that the self-consistent dynamical U for those orbitals
would in fact come out to be rather small, so that the local
dynamical contribution to the self-energy is also small and
well described by its first order term in W . In practice, the
self-energy for the itinerant states would thus be well described
by a perturbative self-energy, that is by the GW self-energy
for both, local and nonlocal parts.

In view of these considerations, it seems a waste of
computing time to attempt to solve a dynamical impurity
models for all valence states, since the same result can be
obtained by applying the DMFT construction only to a subset
of “correlated” states, and to treat all others entirely by GW .
A scheme along these lines was proposed and implemented in
Ref. [59].

The equations for the self-energy and polarization are in
this case replaced by

�xc(k,iωn)LL′ = �xc
GW (k,iωn)LL′ −

∑
k

�
xc,d
GW (k,iωn)LL′

+ [
�xc,d

imp (iωn)
]
LL′, (15)

P (q,iνn)αβ = PGW (q,iνn)αβ −
∑

q

P d
GW (q,iνn)αβ

+P d
imp(iνn)αβ, (16)

where the superscript d denotes the projection onto the low-
energy correlated space.

One may be tempted to redefine the � functional as the one
of the GW approximation GWG, corrected for its local part
by DMFT only within the correlated subspace (denoted here
as d), as follows:

�[G,W ] = GWG− Gloc,dW loc,dGloc,d

+�imp[Gloc,d ,W loc,d ] (17)

or, alternatively, by keeping the original decomposition into
local and nonlocal parts,

�[G,W ] = �nonlocal + � local, (18)
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but approximating the local one by a combination of GW and
DMFT:

� loc[G,W ] = GlocW locGloc − Gloc,dW loc,dGloc,d

+�imp[Gloc,d ,W loc,d ]. (19)

Here, the superscript loc denotes the projection on the local
component, and d the projection onto the correlated subspace.

Though appealing at first sight, such combinations cannot
be justified without further approximations on a functional
basis. This is due to the fact that screening couples the
correlated and itinerant subspaces, so that “downfolding” of
the interactions to obtain an effective bare interaction within
the correlated subspace necessarily involves a decoupling
approximation. In the functionals above, this is born out of the
difficulty of defining W loc,d , as well as of postulating that �imp

is a functional of the Green’s function and screened Coulomb
interaction of the correlated subspace only.

These considerations have an interesting consequence:
indeed, instead of Eqs. (15) and (16), one might have thought of
the following equations to define the orbital-separated scheme:

� = �GW − Gloc,dW loc,d + �imp, (20)

P = GG − Gloc,dGloc,d + Pimp. (21)

In the standard (nonorbitally-separated) GW + DMFT scheme
(that is, without the d-projections), these equations are
equivalent to their counterparts (15) and (16). However, in
the orbitally separated scheme, this is no longer the case, since
in general

�loc,d �= Gloc,dW loc,d . (22)

This is easily seen in the following way, assuming—as in
the application below—that the local Green’s function is by
symmetry diagonal in orbital space: using a symbolic notation
for orbitals in the d space and in its complement, denoted as
r space, respectively, matrix elements of the d-projected local
self-energy read:

�loc,d = Gloc
dd W loc

dddd + Gloc
rr W loc

drrd . (23)

The second term, which stems from the interaction of d-space
electrons with r-space ones, can obviously not be derived from
a functional �imp[Gloc

dd ,W loc
dddd ].

We note that this difficulty does not arise for the local
d-projected polarization, since here

P loc,d = Gloc,dGloc,d (24)

under the assumption of an orbital-diagonal local Green’s
function.

Summarizing, there are thus two quite intuitive possibili-
ties for the self-consistency in an orbital-separated scheme,
namely, (15), (16), (20), and (21), and since there is no
functional they can be derived from the choice between them
is necessarily ad hoc. If one thinks of �imp as containing
only physical processes that live in the local d problem, built
with a screened interaction that only knows about screening
processes in that subspace, one might be tempted to prefer (20)
over (15). Indeed, the term Gloc,dW loc,d removes only those
contributions from the full GW self-energy that find their
analog in the impurity self-energy. However, investigating

these considerations a bit more deeply, one realises that they
crucially rely on the assumption that �imp be derived from a
functional of Gimp and Wimp only. If, on the contrary, screening
processes involving the r-space enter the effective local U
through the fact that the total polarization enters the local
d-projected screened interaction,

W loc,d =
[∑

q

(
V −1

q − P
)−1

]
d

, (25)

this argument is no longer valid, and (15) might be preferable.
Fortunately, in practice, these conceptual difficulties are

not too serious. In fact, numerically, we found the second
term in Eq. (23) to be negligible, making the above—a priori
inequivalent—choices equivalent for all practical purposes.
In the following section, we therefore describe the “orbital-
separated scheme” used in the present work, where only the
local part of the self-energy of the “correlated” orbitals is
calculated from the impurity model and all other local and
nonlocal components are approximated by their first-order
expressions in W .

D. Orbital-separated scheme: the equations

For the reasons discussed above, in the orbital-separated
scheme, one deviates from the general prescription Eqs. (12)
and (13) for the self-energy and polarization by replacing their
local parts by their counterparts generated from an impurity
model within the correlated subspace only. We outline in the
following the iterative loop obtained at the one-shot GW level
but with full self-consistency at the impurity level. We call
the correlated subspace d space and its complement the r

space. Projections onto these spaces are noted by superscripts.
We furthermore assume that we dispose of a Wannier basis
that block-diagonalizes the full LDA Hamiltonian, and that
the GW self-energy is block-diagonal in the same basis.
The Wannier basis can be thought of as obtained from the
construction of maximally localized Wannier functions in the
d and in the r space separately. The assumption of a vanishing
GW self-energy block �dr in this basis is an additional
approximation [72], which is, however, very accurate, as we
have explicitly verified for our target compound SrVO3. We
note that the common assumption in GW calculations of a
diagonal self-energy in the Kohn-Sham basis is in fact a less
justified approximation, and even this is not a severe restriction
for SrVO3 [62].

Starting with a guess for the Weiss field and the auxiliary
Hubbard U , the impurity model is solved, that is the impurity
Green’s function Gimp and screened Coulomb interaction Wimp

are obtained. These are matrices in the orbital space of the
correlated states only. In order to obtain the full self-energy
and polarization, the combined quantities

� = �GW − �
loc,d
GW + �imp, (26)

P = GG − Gloc,dGloc,d + Pimp (27)

involve “upfolding” to the full Hilbert space.
Then, the self-consistency equations for the determination

of the Weiss mean-field and the auxiliary dynamical U of the
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impurity model require the d projections Gloc,d ,W loc,d of the
local Green’s function and screened Coulomb interaction

Gloc(ω) =
∑

k

(ω + μ − H0 − �)−1, (28)

W loc(ω) =
∑

q

(Vq − P )−1 (29)

to equal their impurity model counterparts. In the self-
consistency cycle, they are used to update the auxiliary
impurity model quantities:

G = (Gloc,d−1 + �imp)−1, (30)

U = (W loc,d−1 + Pimp)−1. (31)

The impurity model is solved for these new Weiss field and
dynamical U , the resulting impurity Green’s function and
screened Coulomb interaction are obtained and the cycle is
iterated until self-consistency.

In the present work, we resort to a further simplification
allowing us to carry out the full self-consistency cycle only
for the one-body quantities (Green’s function, self-energy,
and Weiss field) in the correlated subspace, but to work
with fixed dynamical interaction U . This is achieved by
approximating Pimp in Eq. (27) non-self-consistently by its
RPA value Gloc,dGloc,d leaving us, see Eq. (27), with P = GG

where the LDA Green’s function is used for G. Furthermore,
we replace Eq. (31) by

U =
[∑

q

(W−1 + P d )−1

]
d

(32)

projected on the d space and its local component. These ap-
proximations consist in taking as dynamical impurityU simply
the cRPA estimate for the dynamical Hubbard interaction of the
d subspace. This is done by partitioning the RPA polarization
into two contributions, P d and P r , calculated at the one-shot
level from the LDA electronic structure. P d includes only d-d
transitions, while P r includes all the rest.

For SrVO3, we consider the subset of t2g states as correlated,
while oxygen p-, vanadium eg-, and strontium-d states are
considered as r space. The scheme implemented in the present
work can then be summarized as follows. (1) Obtain U(ω)
from a cRPA calculation for a t2g low-energy subspace, that
is, as a matrix element:

U(ω) = 〈t2g| V

1 − V (P − P t2g )
|t2g〉. (33)

(2) Obtain � = GW from a one-shot GW calculation, decom-
pose it into the Fock part �x = GV and the correlation part
�c = GW − GV . (3) Construct the one-body Hamiltonian

H0 = HLDA − vxc
LDA + �x, (34)

where the LDA exchange-correlation potential has been
replaced by the Fock exchange �x . (4) Construct an impurity
model in the t2g subspace: start from an educated guess for
the Weiss field (in practice, at first iteration we use the LDA
local Green’s function). (5) Solve the impurity for the Green’s
function, that is, calculate the expectation value

Gimp(τ ) = −〈T c(τ )c†(0)〉S (35)

using the impurity action

S = −
∫

dτdτ ′c†(τ )G(τ − τ ′)c(τ ′) +
∫

dτHinst

+
∫

dτdτ ′Ū(τ − τ ′)n(τ )n(τ ′). (36)

Here, Hinst denotes the standard Hubbard-Kanamori Hamilto-
nian for t2g states, parameterized by the intraorbital interaction
U = U(ω = 0), its interorbital counterpart U − 2J , and the
interorbital interaction for like-spin electrons U − 3J , which
is reduced by the Hund’s exchange coupling J . The quantity
Ū(τ − τ ′) = U(τ − τ ′) − Uδ(τ − τ ′) denotes the dynamical
interaction without the instantaneous part U = U(ω = 0).

(6) From the impurity Green’s function, obtain the impurity
self-energy via the Dyson equation

�imp = G−1 − G−1
imp. (37)

(7) The full self-energy within the t2g space is obtained by
combining the nonlocal GW self-energy, projected onto this
subspace, with the impurity self-energy:

�(k,iω) = �GW − �
loc,t2g

GW + �imp. (38)

(8) Calculate the local Green’s function within the t2g space
using the combined self-energy

Gloc =
∑

k

[iω + μ − H0 − �(k,iω)]−1 (39)

(9) and use this Green’s function to update the Weiss field:

G = (Gloc,t2g−1 + �imp)−1. (40)

(10) Go back to the solver step, that is, calculate the impurity
Green’s function (35) for the impurity model defined by U(ω)
and the new Weiss field G. (11) Iterate until self-consistency.

E. The Bose factor ansatz

At the heart of the set of GW + DMFT equations is the
solution of an impurity model with dynamical interactions.
As will be discussed in the results section, the typical
energy scale of variation of the latter is the plasma energy,
which for transition metal oxides is an order of magnitude
larger than the bandwidth. In this limit, the solution of the
dynamical impurity model can be greatly simplified. Indeed,
the Bose factor ansatz (BFA) within the “dynamic atomic limit
approximation” (DALA) introduced in Ref. [56] yields an
excellent approximation to the full solution. In this scheme, the
Green’s function of the dynamical impurity model is obtained
from a factorization ansatz:

G(τ ) =
(

G(τ )

Gstat(τ )

)
Gstat(τ ) ∼

(
G(τ )

Gstat(τ )

)∣∣∣∣
=0

Gstat(τ ),

(41)

where Gstat is the Green’s function for a static impurity model
with constant U =U(ω = 0), and the first factor is approxi-
mated by its value for vanishing bath hybridization  [56]. The
BFA yields an extremely efficient, yet accurate, way of solving
the impurity model, as was checked by benchmarks against
direct Monte Carlo calculations in Ref. [56]. It, moreover,
allows for a transparent physical interpretation of the arising
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spectral properties, since the spectral representation (lowest
panel of Fig. 2) of the bosonic renormalization factor that
enters Eq. (41),

B(τ ) =
(

G(τ )

Gstat(τ )

)∣∣∣∣
=0

, (42)

can be interpreted as the density of screening modes [56]. The
bosonic factor (42) can be expressed in terms of the frequency-
dependent interaction as

B(τ ) = exp

[
−

∫ ∞

0

dω

π

Im U(ω)

ω2
(Kτ (ω) − Kτ=0(ω))

]
(43)

with the bosonic kernel

Kτ (ω) = exp(−ωτ ) + exp(−ω(β − τ ))

1 − exp(−ωβ)
. (44)

F. Technicalities

In the practical calculations for SrVO3, we use the ex-
perimental (perfectly cubic perovskite) structure with lattice
constant a = 3.844 Å. Calculations are performed at inverse
temperature β = 10 eV−1 unless otherwise noted. We perform
a maximally localized Wannier function construction [75,76]
for the t2g part of the Kohn-Sham spectrum within LDA. A
one-shot GW calculation is performed within the full valence
orbital space and then projected into the t2g space. The GW

calculations are performed using a k mesh of 8 × 8 × 8 k

points (4 × 4 × 4 for the ARPES spectra), which is then
Wannier interpolated [76] to a dense grid of 27 × 27 × 27
k points for the GW + DMFT calculation.

In one-shot GW calculations (as employed here), the
chemical potential is notoriously difficult to place. This is
why we have also performed quasiparticle self-consistent
(QS)GW [77] calculations (results not shown). There, effects
of the self-energy are incorporated into an effective one-
particle potential, thus allowing for a precise determination
of the chemical potential analogous to DFT techniques. We
found kF to be conserved to its LDA value, as also suggested
by angle resolved photoemission spectroscopy results [78].3

Therefore also in the one-shot GW calculation, we fix the
Fermi vector kF to its LDA value, which thus determines the
chemical potential.

In the GW + DMFT, the nonlocal self-energy is fixed
at the one-shot level from the initial GW calculation, and
the frequency-dependent interaction U(ω) at its cRPA value
as discussed above. At the DMFT level our calculations are
fully self-consistent for all one-particle quantities within the
t2g space, determining the self-consistent Weiss field that—
together with U(ω)—defines the auxiliary impurity model,
self-consistently solved for fixed nonlocal-GW self-energies.
This loop is performed in imaginary time/frequency space at
an inverse temperature β = 10 eV−1, allowing at the same
time for the chemical potential to adjust self-consistently so as
to provide the correct particle number. The resulting Green’s
functions are analytically continued by means of a maximum

3A. Fujimori, private communication.

entropy algorithm, using the technology of Ref. [56] to access
the high-energy features.

III. ELECTRONIC STRUCTURE OF SrVO3

Our target material, SrVO3, has been the subject of intense
experimental and theoretical studies (for a review of work
until 1998 see Ref. [79]). In this section, we provide a brief
summary of our previous knowledge about the electronic prop-
erties of this material, in particular concerning photoemission
spectroscopy and the corresponding theoretical works.

SrVO3 crystallizes in the cubic perovskite structure: the
V 4+ ions are surrounded by oxygen octahedra, and these
octahedra occupy the sites of a simple cubic lattice. The
Sr2+ cation sits in the center of the cubes. The electron count
leaves a single d electron in the V-d states, which is largely
responsible for the electronic properties of the compound. The
octahedral crystal field splits the V-d states into a lower-lying
threefold degenerate t2g manifold, thus filled with one electron
per V, and an empty eg doublet. The compound exhibits
a metallic resistivity with a Fermi liquid T 2 behavior up
to room-temperature [80] and temperature-independent Pauli
paramagnetism without any sign of magnetic ordering [81].
Hall data and NMR measurements confirm the picture of
a Fermi liquid with moderate correlations [80,82]. These
properties make SrVO3 an ideal model material for studying
the effects of electronic Coulomb interactions.

Figure 1 summarizes the Kohn-Sham electronic structure
of density functional theory within the local density ap-
proximation (LDA): the O-2p states disperse between −2
and −7 eV, separated from the t2g states whose bandwidth
extends from −1 to 1.5 eV. While the t2g and eg bands are
well separated at every given k point, the partial density of
states (DOS) slightly overlap, and the eg states display a
pronounced peak at 2.3 eV. Finally, peaks stemming from
the Sr-d states are located at 6.1 and 7.1 eV. We have
superimposed to the LDA DOS the experimental PES and
Bremsstrahl-Isochromat spectroscopy (BIS) curves taken from
Refs. [73,74]. The comparison reveals the main effects of

FIG. 1. (Color online) Density of states within LDA in compari-
son with experimental spectra: PES [73] and PES+BIS [74].
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electronic correlation in this material; as expected on quite
general grounds, LDA locates the filled O-2p states at too
high and the empty Sr-d manifold at too low energies. The
t2g manifold undergoes a strong quasiparticle renormalization
with a concomitant shift of spectral weight, both of which
are effects beyond the one-particle picture. Photoemission
studies [83] early on provided detailed information on the
disagreement between the measured spectra and the LDA
DOS. In the experimental spectra the t2g spectral weight
extends down to binding energies of about −2 eV, i.e., to 1 eV
lower than is found in LDA. On the basis of comparison with
the Mott insulating compound YTiO3 the observed additional
peak between −1.5 and −2 eV was identified as a lower
Hubbard band (LHB)—due to the removal process of an
electron from an atomic-like localized t2g state—whereas the
low-energy spectral weight was attributed to renormalized but
coherent band states. A BIS study located an electron addition
peak at energies around 2.7 eV [74].

With the advent of dynamical mean-field theory, explicit
calculations for spectra for an infinite-dimensional Hubbard
model became available [57], supporting the idea of Hub-
bard bands persisting in the metallic state. The qualitative
resemblance of the photoemission spectra with the occupied
part of the three-peak structure of the infinite-dimensional
one-band Hubbard model suggested SrVO3 to be a prototypical
correlated metal, in which the coexistence of quasiparticle
states and Hubbard bands as well as their dispersions could
be studied. Due to the high symmetry of the crystal structure,
and the resulting threefold degeneracy of the t2g bands, it
was moreover argued that in a Fermi liquid a purely local
self-energy would lead to “pinning” of the value of the fully
interacting spectral function at the Fermi level to the one
corresponding to the density of states of the one-particle band
structure. Any deviation from such “pinning” behavior [84]
can thus be taken as a proxy for nonlocal components in the
many-body self-energy [74].

A difficulty arose from the extreme surface sensitivity of
the photoemission process, as evidenced in Refs. [85–88].
These authors performed systematic photoemission studies at
different photon energies, and witnessed a pronounced photon
energy dependence of the quasiparticle peak, which they
rationalized as a varying surface sensitivity. Measurements
at high photon energies (900 eV) [73] indeed found a more
developed t2g quasiparticle peak, in agreement with upcoming
many-body calculations within dynamical mean-field theory
using the LDA density of states (DOS) or the LDA Hamiltonian
as input [9,10,14,89]. The increased intensity ratio of the
quasiparticle and satellite feature thus suggested nonlocal self-
energy effects, neglected in DMFT, to be small. Interestingly,
even the surface sensitivity could be modelled within such
calculations [90]. Angle-resolved photoemission spectra [91]
measuring the Fermi surface of SrVO3 found cylindrical Fermi
sheets, in agreement with theory, confirming the picture of a
normal Fermi liquid.

Subsequent ARPES work adopted different strategies to
increase bulk sensitivity: Laser ARPES [92] studied the very
low-energy spectral features, finding a “dip” at the Fermi level
or a maximum of the quasiparticle peak slightly below (at
around −0.2 eV). This work reopened the question about the
role of nonlocal self-energy effects in the very low-energy

properties of SrVO3, since it remained unclear whether this
feature is a result of the different experimental conditions of
the laser ARPES setup (restricted Brillouin zone sampling,
matrix elements or other), or whether it reflects the true bulk
electronic structure at these very low energies. For a half-filled
one-band Hubbard model on a cubic lattice, a similar “dip”
effect was indeed found within a cluster dynamical mean-
field study [93]. Very recently, a realistic dynamical cluster
approximation study [94] confirmed the possibility of nonlocal
effects inducing such a depletion at the Fermi level.

Takizawa et al. used thin films with atomically flat surfaces
prepared in situ [95], and were able to observe the band dis-
persions not only of the coherent band but also of the Hubbard
bands. An interesting effect was observed concerning the lower
Hubbard band: its intensity is strongly momentum-dependent,
with its maximum in regions where also the band states
are occupied (k < kF ), whereas they fade away for k points
corresponding to empty coherent bands [96], in agreement
with theoretical modeling within DMFT [95]. Recently, also
SrVO3-based heterostructures have been studied experimen-
tally [97] and suggested for electronic device applications [98].

The overall picture which emerges from all these
works is that of a correlated metal with a quasiparticle mass
enhancement of about 2 [73,74,78,88,95] and a photoemission
(Hubbard–)satellite at around −1.6 eV binding energy. This
physics is reproduced by dynamical mean-field calculations
using the LDA electronic structure as input. The first
works [9,10,14,89] used a low-energy model comprising only
the t2g manifold, where the local orbitals are constructed
from a downfolding procedure that incorporates also the
ligand O-2p tails. Different choices of such orbitals were
compared [99], demonstrating that as long as the considered
energy window is restricted to the t2g bands only, results
do not depend on the precise choice of the local orbitals
(maximally localized Wannier functions, N th order muffin-tin
orbitals, or projected atomic orbitals).

SrVO3 became the drosophila of combined LDA and
DMFT calculations, and new implementations were quite sys-
tematically tested on this compound (see, e.g., Refs. [42,99–
102]). Apart from the effective t2g model, also Hamiltonians
including explicitly V-d and O-2p ligand states in the
noninteracting Hamiltonian were used [42,101,102]. It has
been argued that the inclusion of ligand states leads to more
localized d orbitals, and an a priori better justification of the
local approximation made by DMFT.

Momentum-resolved spectral functions were calculated
from dynamical mean-field theory in Ref. [16], in agree-
ment with the experimental dispersion. They evidenced an
additional feature, a “kink” structure at around −0.3 eV
binding energy, which was later on rationalized as a generally
expected phenomenon in correlated electron materials [103]:
of purely electronic origin, kinks appear at the crossover scale
at which the low-energy linear (Fermi liquid) behavior of the
real part and the quadratic behavior of the imaginary part
of the self-energy cease to be valid. In the meanwhile, kink
structures observed in other materials, e.g., LaNiO3 [104],
were also investigated theoretically and have been consistently
reproduced by dynamical mean-field calculations [105]. For
SrVO3, the theoretical predictions stimulated an intense search
in photoemission spectra. While Ref. [95] still had to conclude
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that “the kink is weak and broad, if it exists, but the curvature
does indeed change sign at around −0.2 eV, as predicted,” the
very recent work by Aizaki et al. indeed identified such a kink
structure at around −0.3 eV [78].

Besides dynamical mean-field theory and extensions, also
other techniques of many-body theory were employed to
investigate SrVO3. A Gutzwiller study [106] investigated the
mass renormalizations, and renormalized densities of states
as a function of the Hubbard U . Interestingly, to obtain the
experimentally observed mass enhancement a U value beyond
5 eV was found to be necessary in this scheme. Cluster
model calculations systematically addressed the spectroscopic
properties of SrVO3 and analyzed the necessary ingredients for
a minimal model thereof [107–110]. These studies emphasized
the strong pd hybridization, which is responsible for the large
charge transfer energy εd − εp. Interestingly, an analysis of
the orbital character of the different spectral contributions
identifies the spectral weight corresponding to the t2g addition
process as lying mainly between the Fermi level and about
1 eV, in contradiction with the dynamical mean-field studies
which suggest an upper Hubbard band of t2g character at
around 2.7 eV, that is at the precise location of the pronounced
peak in BIS spectra. The cluster model calculation attributed
this latter peak to the electron addition into eg states [108]. We
will come back to this point below.

With the advent of the constrained random phase ap-
proximation (cRPA) [55] it became possible to calculate
the values of the local Coulomb interactions (“Hubbard U”)
specifically for the model under consideration. Again, SrVO3

was chosen as a test material to demonstrate the power
of the method [111,112], and it was shown that while U

values for a full model comprising ligand states as well
as V-d states can be as large as 8 eV for the d orbitals,
for a t2g-only model the obtained value was quite small:
3.5 eV. The U values used in the above cited LDA + DMFT
calculations, on the other hand, varied rather between 4 and
5.5 eV. These values were such as to reproduce the observed
mass enhancement, even though the position of the lower
Hubbard band (LHB) was generally at slightly too high binding
energies, suggesting that these values of U were indeed on
the large side. LDA + DMFT calculations with a U value
of 3.5 eV, however, do not reproduce the observed mass
enhancement, nor result in a clear LHB. This puzzle was
solved only recently [56]: it was pointed out that U should
be considered as a dynamical quantity rather than a static
interaction [55,111]. An LDA + U(ω) + DMFT calculation
taking not only the ab initio value of the static component
of U = 3.5 eV but also its full frequency dependence into
account indeed reproduced the observed mass enhancement
as well as the position of the lower Hubbard band [56]. This
effect has very recently been confirmed within an analogous
study, using a different impurity solver scheme [113].

In the following, we briefly emphasize a few puzzles that
remain within the dynamical mean-field description of SrVO3,
resulting from the above mentioned works.

Inconsistency between LDA + DMFT and cluster model
calculations in the unoccupied part of the spectra. While
the assignment of orbital character to the peaks in the
spectral function made by the cluster model calculations [108]
coincides in the occupied part of the spectra with the results

of dynamical mean-field theory [or, to account also for the
correct position of the LHB, of LDA + U(ω) + DMFT], the
position of the upper Hubbard band (UHB) at 2.7 eV found
within the LDA + DMFT literature is inconsistent with the
cluster model findings.

Interpretation of 2.7 eV BIS feature as an upper Hubbard
band inconsistent with ab initio U values. The interpretation
of the BIS peak at 2.7 eV as an UHB of t2g character, done
in the LDA + DMFT literature, is inconsistent with the static
value of U from cRPA. Indeed, from the position of the LHB
(∼−1.5 ev) and the static U value (3.5 eV) one would expect
an UHB at 2 eV (as found in the LDA + U(ω) + DMFT
calculation [56]). This leaves the photoemission feature at
2.7 eV unexplained within LDA + DMFT.

Position of O-2p ligand states. LDA + DMFT calculations
that also include oxygen ligand orbitals, do not in principle
account for corrections to the LDA for these orbitals. Such
corrections have been introduced by hand as an arbitrary shift
on the O-2p states [42,101]. This means that this position is
not known ab initio from LDA + DMFT. On the other hand,
it is well known that in the related compound SrTiO3, which
is isostructural to SrVO3 but of d0 configuration, the pd gap
of Kohn-Sham theory within the LDA is underestimated by
1.3 eV compared to experiment [114].

Position of Sr-4d states. An analogous problem arises
when comparing the energetic position of the Sr-4d states
in BIS and in Kohn-Sham density functional theory, which
underestimates their energy by almost 2 eV. By construction,
combined LDA + DMFT schemes do not correct for this error.

Relation between laser ARPES results and nonlocal effects.
To the best of our knowledge, it remains open at this stage how
to reconcile the laser ARPES experiments (and, in particular,
the finding of a dip at the Fermi level) with the high-photon
energy PES which display a pronounced peak. The study
of nonlocal many-body effects on a very low-energy scale
remains thus a challenging task for the future.

The present work addresses the first four issues, leaving the
last one for future work. In particular, we review and extend the
GW + DMFT calculations of Ref. [59]. Since the publication
of Ref. [59], electronic structure calculations for SrVO3 have
met renewed interest: besides a study [115] within the GW

approximation (including a cumulant correction similar to
the above discussed Bose factor ansatz), several groups have
embarked into attempts of setting up simplified schemes
mimicking the results of GW + DMFT.4 Interestingly,
while different elements of the full calculations are indeed
captured in the different schemes, no scheme so far could
fully reproduce the low-energy behavior, and the question of
designing approximate schemes in a specific low-energy range
remains a largely open one. We will therefore also devote an
extended paragraph to a systematic comparison of different
approximate schemes and a discussion of what they can be
expected to provide.

4See, e.g., Taranto et al. [62] for a study exploring the limits
of an implementation with static Hubbard interactions, and—most
recently—Sakuma et al. [122] who investigated the ad hoc combina-
tion of an LDA + U(ω) + DMFT self-energy with a GW one.
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FIG. 2. (Color online) Dynamical screening in SrVO3. From top
to bottom: (a) comparison of the inverse dielectric function of SrVO3

within RPA with the experimental EELS spectrum of SrTiO3 [116].
(b)/(c) real/imaginary part of the fully (partially) screened interaction
W loc,d (U) in the Wannier basis. (d) Bosonic factor (see text for
definition) and density of screening modes Im U(ω)/ω2.

IV. RESULTS

We now turn to the description of the results of
GW + DMFT calculations using the formalism outlined
above for our target compound, SrVO3. The GW + DMFT
calculations will be put into perspective by confronting them
to pure GW calculations, as well as to LDA + DMFT
calculations both, with static and dynamical interactions. As
a prelude, we discuss the dynamical Hubbard interactions
obtained for SrVO3 within the cRPA scheme.

A. Dynamical interactions

In Fig. 2, we plot the screened and partially screened
Coulomb interactions: W denotes the matrix element of the
fully screened interaction in t2g maximally localized Wannier
functions and the Hubbard U is defined in Eq. (33). The
physical interpretation of the frequency dependence of the
interactions is transparent, if one recalls that the effective
bare interaction within a subspace of the original Hilbert
space should include screening by the omitted (e.g., higher-
energy [55] or nonlocal [117]) degrees of freedom. Indeed,
the net result of the rearrangement of the high-energy degrees
of freedom as response to a perturbation of the system is
an effective reduction of the perturbation strength in the
low-energy space. The effective Coulomb interaction in a low-
energy effective model for a correlated system is therefore in
general an order of magnitude smaller than the matrix element
of the bare Coulomb interaction. Nevertheless, the latter is
recovered in the limit of high-frequencies of the perturbation,
when screening becomes inefficient. The crossover—as a
function of frequency—from the low-energy screened regime
to the high-frequency bare matrix element of e2

|r−r′| takes place

at a characteristic screening (plasma) frequency where the
dielectric function exhibits a pole structure.

For SrVO3, the (partially) screened interaction, correspond-
ing to the dynamical Hubbard interaction at vanishing fre-
quency, takes on a value of U = 3.5 eV [112] for the t2g orbital-
subspace spanned by maximally localized Wannier functions.
The corresponding Hund’s rule exchange J is 0.6 eV. The bare
interaction, the matrix element of the Coulomb interaction
within the t2g Wannier orbitals, equals V = 15 eV. As seen
in Fig. 2, the crossover from the low-energy screened regime
to the high-energy tail takes place at about 15 eV. At this
energy, a well-defined plasma excitation is observed. Indeed,
the upper panel reproduces experimental electron energy loss
(EELS) spectra for the related compound SrTiO3 [116]. This
material is isostructural to our target compound, and has one
electron less (d0 configuration). The EELS data display a well-
defined plasmon excitation at about 15 eV. The experimental
spectrum is well-reproduced by the theoretical imaginary part
of the inverse dielectric function calculated within the RPA.
The reason that, besides higher energy one-particle derived
features, also the collective plasmon satellite of d0 SrTiO3 is
well described by our calculation for the nonisoelectronic d1

SrVO3 resides in the fact that it is not dominated by d-electron
contributions. This is evident since the fully and partially
screened interaction of the t2g orbitals, Wt2g and Ut2g , are
very similar at these energies. Overall, this validates using the
LDA electronic structure for the purpose of calculating the
effective interaction U(ω) of SrVO3.

The fully screened interaction W furthermore exhibits a
weaker feature at low energies (∼2 eV), a “subplasmon,”
corresponding to a collective charge oscillation of the t2g

charge only. This peak is therefore not present when the
t2g screening processes are cut out, as is the case in the
construction of the effective interaction U(ω). As we will
see later, this is the energy regime where the local vertex
corrections introduced by DMFT modify the GW description
of the spectral properties. Features at these energies produced
within GW calculations are thus not present any more in the
GW + DMFT results (see below).

In the many-body calculation, the frequency-dependent
interaction enters the bosonic factor B(τ ) of Eq. (43) in the
form of Im U(ω)/ω2. This function can be interpreted as the
density of screening modes. It is plotted in the lowest panel
of Fig. 2, together with the spectral function of B(τ ) defined
in Eq. (42). Interestingly, these functions allow to identify yet
another feature, namely a well-defined peak at about 5 eV. We
will come back to this point later.

B. GW

Several of the deficiencies of DFT calculations mentioned
above can be addressed with Hedin’s GW approximation [64],
that uses the fully screened interaction W discussed in the
previous section. We will in particular address the following
two issues. (1) Higher energy states (O-2p, Sr-4d,. . . ).
Improvement of these is governed by exchange and correlation
effects (beyond DFT) that (i) lie outside the realm of purely lo-
cal interactions, and (ii) are beyond the (low energy/t2g) orbital
subspace. Thus inaccessible to DMFT-based methods, their
correction is one pivotal merit that GW contributes to theories
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FIG. 3. (Color online) The GW spectral function in comparison
to the same experiments as in Fig. 1.

beyond DFT and DFT + DMFT. (2) Many-body effects at low
energies. Here we will discuss the impact of many-body renor-
malization on the t2g spectrum, with particular focus on non-
local self-energy effects (beyond DFT, and absent in DMFT).

Besides a better description of the electronic structure of
SrVO3, our GW calculation also gives useful fundamental
insights into the nature of correlation effects in transition metal
oxides. We will present evidence that dynamical and nonlocal
correlation effects can essentially be separated (this was
previously discovered for the iron pnictides and chalcogenides
in Ref. [52]). Further we will discuss the spatial extent
of correlation effects in real space, putting into perspective
corrections to the local picture of DMFT.

1. Correction of higher-energy features

The GW spectral function is shown in Fig. 3. In the unoccu-
pied part of the GW spectrum a substantial improvement over
the LDA band-structure result, Fig. 1, is seen: states beyond
the t2gs are in excellent agreement with inverse photoemission
results. In particular, the hump at around 2–5 eV is very well

captured. In contrast to assignments in the DMFT literature,
its spectral weight stems largely from the vanadium eg states
within GW , in congruence with cluster based methods [108].
Beyond 5 eV appear the Sr-4d orbitals, again in remarkable
accordance with the experimental intensity.

Also the position of occupied states, the O-2p orbitals
in the shown energy range, improve to the extent that the
experimental satellite at −1.6 eV is no longer obscured by
oxygen spectral weight. With respect to the photoemission
experiment, however, the binding energy of the O-2p is still
too small by at least an electronvolt. A possible remedy
to this issue could be to extend the Wannier space to the
O-2p and vanadium eg states and include a local Hubbard
interaction on the latter in the GW + DMFT. This would favor
a charge transfer into the O-2p orbitals with which the eg states
hybridize most, thus pushing the oxygen states further down.
In our GW + DMFT calculations here, we only consider the
impact of local Hubbard interactions on the t2g subspace.

2. Low-energy renormalizations

Also shown in Fig. 3 is the t2g contribution to the full
spectral function. The t2g bandwidth is reduced by about
25% with respect to LDA, see also the momentum resolved
spectra in Figs. 4 and 10. This suggests an overall effective
mass mGW/mLDA ∼ 1.3. The corresponding spectral weight
is transferred to satellites that correspond to the features seen
in the fully screened interaction W , see Fig. 2, namely, at
±(∼ 2) eV as well as the t2g contributions to the plasmon
satellite at 17 eV.

To analyze the low-energy renormalizations further, we
note that the mass enhancement relative to the LDA band
masses is given by the ratio of the magnitudes of the group
velocities within LDA, dεki

dkα
= 〈�ki |∂kα

HLDA(k)|�ki〉k=kF
, and

the GW ,

dEki

dkα

= 〈�ki |∂kα
(HLDA(k) + Re�GW (k,ω))|�ki〉

1 − 〈�ki |∂ωRe�GW (k,ω)|�ki〉
∣∣∣∣

k=kF
ω=0

,

(45)

evaluated on the Fermi surface. Here, the self-energy
is defined with respect to the LDA exchange-correlation

FIG. 4. (Color online) Momentum resolved spectral function (a) within the GW approximation and (b) taking into account only the nonlocal
part of the GW self-energy. Superimposed is the LDA band structure.
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FIG. 5. (Color online) Comparison of the local GW spectral
function with the LDA density of states. Also shown is the spectral
function Eq. (46) and density of states Eq. (57) of nonlocal-GW . See
text for details.

potential: �GW = �xc
GW − vxc

LDA. Thus (besides a modified
electron density) two ingredients for changes in effective
many-body masses can be identified: (a) the dynamical part
of the self-energy through the quasiparticle weight Zk =
1/[1 − ∂ωRe�GW (k,ω)]ω=0 and (b) a renormalization via the
nonlocality of the self-energy, ∂kα

Re�(k,ω). In DMFT-based
approaches, where the self-energy is local by construction,
only the first mechanism is present, hence mDMFT/mLDA =
1/ZDMFT.5

The weight of the t2g quasiparticles in SrVO3 is ZkF
∼ 0.53

within the GW approximation. This is virtually the same value
that is found for the homogeneous electron gas at the same den-
sity, rs = 7.26, when using the same method [64]. The notable
inverse quasiparticle weight, 1/Z = 1.9, in conjunction with
the only moderate bandwidth narrowing, mGW/mLDA = 1.3,
thus advocates a notable enhancement of the group velocity,
and thus bandwidth, from nonlocal correlations. We find it
instructive to compute the spectral function when only taking
into account these nonlocal effects. To this effect, we take out
the local part of the GW correlation self-energy and con-
struct �nonloc

GW (k,ω) = �xc
GW (k,ω) − [�xc loc

GW (ω) − �c loc(ω =
0)] − vxc

LDA(k), where �c loc = ∑
k �c

GW . The spectral function
of this “nonlocal-GW” is shown in Fig. 4(b) for a selected
k path, while the local projection (orbital-summed, with m

running over the t2g states)

A(ω) = − 1

π

∑
k,m=1,2,3

[
ω + μ − εkm − �nonloc

GWm (k,ω)
]−1

(46)

can be seen in Fig. 5. As anticipated, the t2g bandwidth
is substantially widened. It becomes 44% larger than the
dispersion of the LDA. In particular, we see that this effect

5Of course, the LDA + DMFT self-energy will acquire a trivial
momentum dependence when transformed from the local into the
Kohn-Sham basis, which is owing to the change in orbital characters
for varying momenta.

is more pronounced in the unoccupied part of the spectrum.
DFT being a theory to yield the correct ground state properties
(if the exact vxc was known), it seems natural that occupied
states are better captured than unoccupied (excited) states
(even though of course, the Kohn-Sham spectrum, in principle,
has no physical meaning to begin with). This will eventually
result in an asymmetric renormalization of the quasiparticle
states, with respect to the LDA, as will be discussed below.
Interestingly, in SrVO3, a second effect enhances such an
asymmetry, namely larger life-time effects in the unoccupied
part of the spectrum than in the occupied one. The latter effect
can be read off from Fig. 6, middle panel, where the imaginary
part of the GW self-energy is plotted.

Also shown in Fig. 5 is the nonlocal-GW density of
states, in which all (local and nonlocal) imaginary parts of
the GW self-energy are omitted. The presence of nonlocal
correlation effects in the GW approximation for SrVO3 can
also be evidenced as follows: Indeed, for a purely local
self-energy, and in the absence of orbital charge transfers (the
t2g-orbitals are locally degenerate), the value of the spectral
function at the Fermi level, A(ω = 0), is “pinned” to its
noninteracting (LDA) value [84]. The violation of this pinning
condition, see Fig. 5, is thus heralding a nonlocal self-energy.
Obviously, the evidenced nonlocal renormalization is also
beyond DFT + DMFT approaches, and hence another crucial
contribution of the GW to schemes such as GW + DMFT.

Thus the fact that the LDA and GW dispersion are
somewhat comparable is owing to the competition and partial
cancellation of a bandwidth narrowing through the dynamics

FIG. 6. (Color online) The GW self-energy at several high sym-
metry points resolved into the three t2g (Wannier) orbitals as a function
of frequency. Also shown is the local projection (real parts: top
panel, imaginary parts: middle panel). The lower panel displays the
standard deviation of the frequency dependent generalization of the
quasiparticle weight Zk(ω) with respect to its local projection Zloc(ω)
[see Eq. (48)]. The origin of energy corresponds to the Fermi level
and the shaded area roughly delimits the Fermi liquid regime within
GW .
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of the self-energy, and the tendency of nonlocal contributions
to delocalize charge carriers. However, the physics underlying
these similar dispersions is very different. Indeed, within the
GW , almost half of the t2g spectral weight is transferred to
collective excitations at higher energies. This phenomenon
is absent in effective one-particle theories such as DFT, but
a physical reality, see, e.g., the EELS data in the preceding
section. However, due to the perturbative nature of GW , and
its limitations regarding dynamical local correlations [52], it
is not able to reproduce the lower Hubbard satellite seen in
photoemission spectroscopy (Fig. 3).

3. Separability of dynamical and nonlocal correlations

Having discussed different ingredients to bandwidth renor-
malizations, we now examine the nature of correlation effects
in more detail. For the case of the iron pnictides and
chalcogenides, Tomczak et al. [52] found that—within the
QSGW approximation—electronic correlation effects in the
Fermi liquid regime are separable into a dynamical self-energy
that is local, and nonlocal contributions that are static. This
notion of locality holds when the self-energy is expressed in
a local basis, in our case the maximally localized Wannier
functions for the t2g subspace. Does this empirical finding
extend to the transition metal oxide SrVO3? In the upper panel
of Fig. 6, the real part of the GW self-energy of SrVO3 is shown
for several high symmetry points in the Brillouin zone as well
as the local, i.e., momentum summed, element, as a function of
frequency. The offset, �GW (ω = 0), is positive for unoccupied
orbital characters (xy/xz at the X point, and all t2g orbitals at
the M point, cf. Fig. 10), and negative for the occupied orbitals.
Thus (un)occupied spectral weight gets pushed (up) down in
energy, congruent with the changes in the bandwidth seen in
Figs. 5 and 4(b), as well as the reduction of the effective mass
m∗/mLDA from the value of the inverse quasiparticle weight
1/Z (for a purely local self-energy, m∗/mLDA = 1/Z holds).

Regarding the frequency dependence, one can see that
the self-energy is linear from roughly −2 to +1.8 eV,
which thus delimits the Fermi liquid regime within the GW

approximation. The slope of the self-energy is slightly larger
for ω > 0, thus compensating, in part, the static shift that is
larger for unoccupied states. Correspondingly, the imaginary
part of the self-energy also grows faster with frequency in the
unoccupied part, signaling stronger correlations for ω > 0.
The important finding here is that in the Fermi liquid regime,
the frequency dependence (the linear slope in the real parts) at
different momenta is very similar. That is to say that dynamical
renormalizations in different regions of the Brillouin zone are
comparable. To investigate this more quantitatively, we define

Zk(ω) =
[

1 − ∂Re�(k,ω)

∂ω

]−1

(47)

as a generalization of the quasiparticle weight ZkF
(ω = 0).

We further introduce its standard deviation in momentum
space [52],

kZ =
√∑

k

Tr|Zk(ω) − Zloc(ω)|2, (48)

as defined with respect to the local projection Zloc of Eq. (47),
where the trace sums over the Wannier orbitals. Then, kZ is
a measure for the importance of dynamical self-energy effects
that are nonlocal. As is apparent from Fig. 6, kZ virtually
vanishes at the Fermi level and is small compared to Zloc(ω =
0) = 0.53 within the linear regime.6

This means that—at least at the GW level7—the dynamics
of the quasiparticle renormalization in 3D 8 is local, and,
conversely, that nonlocal correlation effects are static [52].
As a consequence, the self-energy becomes separable; the
dynamical part is (almost) purely local, thus providing an a
posteriori justification for the use of local but dynamic theories
such as DMFT. Nonlocal self-energies are static, suggesting
that these important effects beyond LDA can be captured
by employing generalized (orbital dependent and nonlocal)
effective potentials.

This nontrivial finding suggests that for many materials (in
and for their Fermi liquid regime) the separation into local
and nonlocal self-energies à la GW + DMFT simplifies to
the extent that nonlocal correlations can be accounted for by
a nonlocal yet static potential. This finding may pave the way
for physically motivated electronic structure schemes, such as
efficient approximations to the full GW + DMFT approach.
We will come back to this point in Sec. IV D 2 below.

4. Bandwidth widening by nonlocal self-energy contributions

We now discuss more in detail the widening of the band
by nonlocal self-energy contributions, as seen in Fig. 4. To
this effect, we note that the separation of the self-energy
into a local dynamical and a nonlocal static part [52] can
be interpreted as a generalization of the familiar Coulomb-
hole-screened exchange (COHSEX) approximation to a full
GW treatment. Indeed, in the COHSEX approximation [64]
the GW self-energy is given by a static self-energy of the
following form:

�(r,r ′,ω) = �SEX(r,r ′) + �COH(r,r ′), (49)

6It can be shown that the linear increase of kZ away from the Fermi
level stems from the momentum dependence of O(ω2) corrections to
Re�(k,ω).

7Nonlocal correlation effects beyond the GW picture, stemming,
e.g., from fluctuations in the spin-channel, are not included in this
discussion. Also, the energy range of validity of the Fermi liquid
regime is generally overestimated within the GW approximation,
confining the argument to energies lower than suggested by the GW

picture. For a discussion beyond GW , see T. Schäfer, A. Toschi, and
J. M. Tomczak (unpublished).

8Naturally, a nonlocal dynamics is expected in lower dimensional
systems, when spin fluctuations (not accounted for in GW ) become
important, e.g., in the quasi-2D cuprates. In Refs. [49,50], for
example, it was found that nonlocal self-energy effects obtained from
fluctuations in the charge channel are small within GW + DMFT
calculations of an extended Hubbard model, indicating that the
leading nonlocal corrections are in the spin channel rather than the
charge channel.
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where the first term is a screened exchange self-energy built
from the static screened Coulomb interaction

�SEX(r,r ′) = −
occ∑
kn

φkn(r)φ∗
kn(r ′)W (r,r ′,ω = 0) (50)

and the second contains the effect of the Coulomb hole:

�COH(r,r ′) = 1
2δ(r − r ′)[W (r,r ′,ω = 0) − v(r − r ′)]. (51)

Here, the indices k,n denote Kohn-Sham states of wave vector
k, and the sum runs over occupied states only. Interestingly,
when separating the COHSEX self-energy into local and
nonlocal parts in the many-body sense (that is, with respect
to a localized basis set), the nonlocal contribution stems from
the screened exchange self-energy only. For a system such as
SrVO3, the local part of �SEX is—by symmetry—a scalar in
the space of t2g orbitals and can thus be considered an irrelevant
constant in that space. The Coulomb hole self-energy, on the
other hand, is purely local.

The separation in static nonlocal and dynamical local parts
found in the preceding section can therefore be interpreted
in the following way. (1) The nonlocal contribution to
the self-energy can be mostly attributed to a screened ex-
change self-energy �SEX = GW (ω = 0) − [GW (ω = 0)]local.
(2) The local contribution contains the Coulomb hole effect
as well as band renormalizations beyond the COHSEX
approximation that stem from the frequency dependence of
the local dynamical self-energy.

Therefore, when considering the band structure correspond-
ing to the nonlocal self-energy contribution only, the Coulomb
hole part as well as the dynamical correlations are taken out
since they are purely local, and the remaining correction
can thus largely be interpreted as the screened exchange
contribution. The widening of the band as compared to the
Kohn-Sham band structure is therefore the familiar broadening
by exchange interactions (which, here, are screened, thus
leading to substantial but not as large effects as in unscreened
Hartree-Fock theory).

The screened exchange self-energy correction to the DFT
exchange correlation potential can be written as

(�SEX − vxc)(r,r ′)

= −
occ∑
k′n′

ψ∗
k′n′ (r)ψk′n′(r ′)[W (r,r ′,ω = 0) − δ(r − r ′)ṽ(r)]

(52)

with a potential ṽ(r) representing the Kohn-Sham exchange-
correlation contribution.

Matrix elements of this quantity in the Kohn-Sham basis
read

〈k0n0|�SEX − vxc|k0n0〉

= −
occ∑
k′n′

∫
d3r

∫
d3r ′ψ∗

k′n′ (r)ψk′n′(r ′)W (r,r ′,ω = 0)

×ψ∗
k0n0

(r)ψk0n0 (r ′) +
∫

d3rṽ(r)n(r)|ψk0n0 (r)|2. (53)

An intuitive inspection of these matrix elements suggests
the resulting correction to be small for occupied |k0n0〉

states, but to result in an upward shift for unoccupied
states. Indeed, for unoccupied states, the matrix elements
〈k0n0k

′n′|W |k0n0k
′n′〉 are necessarily between product states

that mix occupied |k0n0〉 and unoccupied states |k′n′〉, and
thus small compared to vxc. This results in the familiar effect
of a GW self-energy on the conduction band states in simple
semiconductors, correcting the too small Kohn-Sham band
gaps.

In the case of the metallic SrVO3 with d1 filling, the
band widening by nonlocal contributions is slightly bigger
for the unoccupied part of the spectrum than for the occupied
part. As we will see below, this effect will carry through to
the GW + DMFT treatment, where the screened exchange
band structure becomes renormalized by local dynamical
correlations encoded in the DMFT self-energy.

5. The spatial range of correlations

Having established the importance of nonlocal correlation
effects, as well as their static nature at low energies, we want to
characterize their extent in real space. Indeed, there are efforts
to extend DMFT calculations from the single impurity setup
to a cluster of several sites (or several momenta) even for ab
initio calculations. For the case of SrVO3, this was first done
in Ref. [94] using the dynamical cluster approximation (DCA)
method, that partitions the Brillouin zone into momentum
patches (two patches, in the cited work) and thus gives
momentum resolved information on a coarse grid.

Here, we will rather follow the spirit of cellular DMFT, in
which real-space clusters are embedded into the solid, thus
allowing for nonlocal correlations of the range of the cluster
size. The important question now is how big that cluster has
to be in order to exhaust the extent of pertinent nonlocal
correlations. For this, we note that self-energy diagrams
beyond GW give mainly local contributions [118], and thus
our findings based on the GW approximation are expected to
have a wide range of validity.9

In Fig. 7, we show the magnitudes of the GW self-energy
corrections with respect to LDA at the Fermi level (ω = 0) and
at energies near the plasmon peak (ω = 15 eV) as a function
of the real space distance to a reference vanadium atom.

At the Fermi level, this correction is indeed rather short-
ranged; already at the next-nearest (vanadium) neighbor it
has decreased by one order of magnitude. This advocates
that a 2 × 2 × 2 unit-cell cluster (beyond current computa-
tional capabilities) might already give meaningful results. For
ω = 15 eV, the decrease in magnitude occurs more slowly,
suggesting much larger cluster sizes. This does not come
as a surprise, since at these energies collective long-ranged
(plasmon) excitations are dominant.

C. DMFT

1. DMFT with static interaction

SrVO3 has been used as a benchmark compound for
standard LDA + DMFT calculations, both within a low-energy
description comprising only the t2g states and including

9See, however, the preceding footnote.
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FIG. 7. (Color online) The GW self-energy correction to DFT as
a function of real space distance at the Fermi level (ω = 0) and the
energy region of the plasmon satellite (ω = 15 eV). The occurrence
of several values per distance owes to different orbital orientations at
growing numbers of neighbours. Also shown are the absolute values
of the (ω = 0) correlation and exchange self-energies of the GW .

the oxygen ligands. It was argued that the static Hubbard
interactions have to be at least as large as 4 eV to reproduce
the experimentally observed mass enhancement. The local
spectral function then displays a three-peak structure as
in the correlated metal phase of the half-filled single-band
Hubbard model, even though the low filling of one electron
in three bands makes the spectra highly asymmetric. The
lower Hubbard band, at U = 4 eV, is located at slightly
too low binding energy (nearly −2eV, instead of the exper-
imentally observed −1.5 eV). At about 2.5 to 2.7 eV, an
upper Hubbard band is found. Since this feature coincides
in energy with an experimentally observed electron addition
peak, the LDA + DMFT literature has thus identified the
latter as an upper Hubbard band (see, however, the GW

spectrum in Fig. 3 and the discussion below). When using
the static component of the Hubbard interaction calculated
within cRPA (∼3.5 eV), however, a very weakly correlated
metal is obtained, where the lower Hubbard band is barely a

shoulder structure and the mass enhancement is much smaller
than the experimentally observed one. Figure 8(a) reproduces
the local spectral function for U values varying between 3.5
and 4 eV, as calculated in Ref. [99].

2. DMFT with dynamical interaction

The puzzle of the too weak mass renormalizations within
LDA + DMFT when the static component of the cRPA U

is used was solved when it was realized that taking into
account the frequency dependence of the interactions leads to
additional mass enhancements [56]. Indeed, the high-energy
tail of the dynamical interaction alone was shown to be at the
origin of a mass enhancement of Z−1

B with ZB = 0.7 [56].
The overall mass enhancement of the calculation with the
dynamical cRPA interaction is m∗/mLDA ∼ 2, in reasonable
agreement with ARPES estimates[78,95]. Since, however,
the static component of U is smaller than what was used
before in static LDA + DMFT calculations, the position
of the lower Hubbard band is shifted towards the Fermi
level, correcting the deficiency of LDA + DMFT discussed
above. On the unoccupied side of the spectrum, an upper
Hubbard band feature appears at about 2 eV, substantially
lower than what was discussed within LDA + DMFT, see
Fig. 8. Experimentally, such a feature is not clearly resolved.
We can thus summarize the effect of dynamical interactions
within LDA + U(ω) + DMFT calculations by noting that
the only notable modification in the electronic structure is the
improved description of the lower Hubbard band, compared
to experiment, whereas the situation is less clear for the
unoccupied part of the spectrum. We will argue below that
this scheme is actually as little appropriate for unoccupied
states as is the standard static LDA + DMFT.

D. GW + DMFT

1. Full calculations

We now discuss the results of our combined GW + DMFT
calculations for the spectral properties of SrVO3. Figures 9(a)
and 9(b) displays the local projection of the spectral function,
while Fig. 10 shows momentum dependent t2g spectra in
comparison with ARPES measurements [78,95]. The global

FIG. 8. (Color online) Local spectral function from standard LDA + DMFT with static interactions (left). LDA + DMFT with dynamical
interactions (right). Spectral functions are normalized to one, such that the filling corresponding to SrVO3 is 1/6.
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FIG. 9. (Color online) GW + DMFT spectral function for a large (left) and low-energy (right) windows, in comparison to (inverse)
photoemission spectra of Refs. [73,74]. Note in particular the appearance of a lower Hubbard at the correct energy in the occupied part of the
spectrum, and the fact that the peak at +3 eV in the inverse photoemission spectrum is not derived from a t2g upper Hubbard band, but rather
from the eg orbitals.

view on the spectral function in the full energy range
of valence and conduction band states, Fig. 9(a), reveals
an overall remarkable agreement with experiments. Indeed,
GW + DMFT inherits from the GW calculation the excellent
agreement of the Sr-4d states, both, in position and shape,
with BIS spectra, and the improved agreement of the O-2p

ligand states with photoemission. The low-energy part of the
spectrum is dominated by the t2g contribution, which, here,
is profoundly modified with respect to pure GW results. A
renormalized quasiparticle band disperses around the Fermi
level : At the � point (see Fig. 10) the peak is located at

FIG. 10. (Color online) Momentum-resolved spectral function
from GW and GW + DMFT in comparison to angle resolved
photoemission experiments [78,95]. Also shown is the position of
the LDA band at the � (lower band edge) and X points. The arrows
indicate how these states are renormalized by GW (middle panel) and
GW + DMFT (lower panel). Note that the position of the unoccupied
LDA band at X coincides with the corresponding quasiparticle peak
within GW + DMFT.

about −0.5 eV—this reveals (in agreement with ARPES)
a strong renormalization of the corresponding Kohn-Sham
state which, at this momentum, has an energy of −1 eV.
At the X point, the t2g bands are no longer degenerate, and
surprisingly weakly renormalized xy/xz states are observed
at 0.9 eV, that is, at the position of the original LDA band
states at this k point. This indicates the extremely weak
quasiparticle renormalizations in the unoccupied part of the
spectrum, resulting from a strong cancellation effect between
exchange widening and narrowing by correlations. The yz

band is located at nearly the same energy as at the � point,
again in agreement with ARPES. At binding energies of
−1.6 eV, ARPES witnesses a weakly dispersive Hubbard
band, whose intensity varies significantly as a function of
momentum [95]. In the GW + DMFT spectral function the
Hubbard band—absent in GW—is correctly observed at about
−1.6 eV and its k-dependent intensity variation (see Fig. 10)
is, indeed, quite strong. Previous LDA + DMFT calculations
placed the lower Hubbard band at larger negative energies
(see, e.g., Ref. [10]). This is owing to the fact discussed
above that when using a static Hubbard interaction, a value
of 4–6 eV [10,101], that is larger than the zero frequency limit
of the ab initio U(ω = 0) = 3.5 eV [112], is needed to account
for the observed transfers of spectral weight. As in DMFT with
dynamic U , GW + DMFT yields a good description of the
Hubbard band and the spectral weight reduction at the same
time, thanks to the additional transfers of spectral weight due
to the dynamical screening [54,56,59].

At positive energies nonlocal self-energy effects are larger.
Interestingly, our k-integrated spectral function [see the dashed
line in Fig. 9(a) for the t2g contribution to the total (solid
line) spectrum] does not display a clearly separated Hubbard
band. The reason is visible from the k-resolved spectra: the
upper Hubbard band is located at around 2 eV, as expected
from the location of the lower Hubbard band and the fact
that their separation is roughly given by the zero-frequency
value of U . The peak around 2.7 eV that appears in the
inverse photoemission spectrum [74]—commonly interpreted
as the upper Hubbard band of t2g character in the DMFT
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literature—arises in fact from eg states located in this energy
range. The nonlocal self-energy effects lead, in the unoccupied
part of the spectrum, to overlapping features from different
k-points and an overall smearing of the total spectral function.

The Bose factor ansatz discussed above does not only
provide us with an efficient technique for solving the
GW + DMFT equations. It also allows for a transparent
physical interpretation of the arising spectral properties. In-
deed the spectral representation of the bosonic renormalization
factor B(τ ) of Eq. (41) (displayed in the lower panel of
Fig. 2) is directly related to the density of screening modes
Im U(ω)/ω2 [56]. In this way, we can trace back the
GW + DMFT satellite at −4.5 eV to the onset of p-t2g

excitations, discussed above for W and U . On the other hand,
since the feature below 3 eV in W is absent in U and B, the
spurious GW peaks are consistently eliminated. The strong
peak at 15 eV is the well-known plasma excitation, seen, e.g.,
in electron energy loss spectra of SrTiO3 [116].

2. Test of a simplified scheme: DMFT@nonlocal-GW

We now turn to the question of how to set up simplified
schemes that would still reproduce the results of the full
GW + DMFT calculations within the low-energy regime.
Besides the methodological interest, this study also allows
us to analyze more in detail the dominant effects leading to
corrections to the Kohn-Sham band structure.

As can be seen from the methodological section, the DMFT
self-consistency condition for the one-body quantities requires
the local Green’s function to equal

Gloc(iω)

=
∑

k

[
iω + μ − H0(k) − �xc nonloc

GW (k,iω) − �imp(iω)
]−1

(54)

with H0 = HLDA − vxc
LDA from Eq. (34), and �xc nonloc

GW is the
nonlocal part of the full GW t2g self-energy. The exchange
contribution to the latter, �x

GW , is static by construction
and can thus be absorbed into an effective Hamiltonian. If
also the nonlocal correlation self-energy, �c = GW − GV ,
were purely static, that is, ω-independent, �c nonloc

GW (k,ω) =
�c nonloc

GW (k), one could construct an effective quasiparticle
Hamiltonian that comprises all nonlocal correlation effects:

H nl(k) = H0(k) + Re�xc nonloc
GW (k). (55)

In Sec. IV B, we have empirically shown (as seen before in
Ref. [52] for the iron pnictides) that nonlocal correlations are
static within the low-energy Fermi liquid regime. This thus
provides a justification for using H nl for the construction
of the free (of local correlations) propagator of the DMFT
impurity. We will refer to the scheme that uses Eq. (55) as
“DMFT@nonlocal-GW”, and present here a proof of principle
that DMFT@nonlocal-GWyields excellent results for the
properties that it was designed for. Of course, the scheme is
not expected to give quantitatively accurate results outside the
quasiparticle energy range. In particular, the dispersion of col-
lective excitations will not be captured. However, their position
in the local spectrum which is determined by the structure of
the dynamic interactionU(ω) is still meaningful as seen below.

For our current material, we can further simplify the
approach. Indeed, for the fully degenerate t2g states, the local
self-energy is by symmetry a scalar (that is proportional to the
3 × 3 unit matrix). Equation (54) then reads for each of the
three orbital components:

Gloc(iω) −
∫

dεDeff(ε)
1

iω + μ − ε − �imp(iω)
, (56)

where we have defined the density of states of the effective
nonlocal-GW Hamiltonian H qp as

Deff(ε) = − 1

3π
Im Tr

∑
k

[ε − H nl(k) + i0+]−1. (57)

This auxiliary quantity was discussed in the GW section and
is plotted in Fig. 5. It contains all information on nonlocal
correlations, and is double counting free when combined
with the DMFT self-energy. In the current case, where the
correlated orbitals are locally degenerate, we can go one step
further and include nonlocal life-time effects in this effective
density of states:

D̃eff(ε)

= − 1

3π
Im Tr

∑
k

[
ε − H nl(k) + iIm�c nonloc

GW (k,ε)
]−1

.

(58)

Using this density (also shown in Fig. 5) with the cRPA
U(ω) in the DMFT methodology yields the spectral function
that is displayed in Fig. 11(left) along the usual k path. A
comparison with Fig. 10 shows a remarkable agreement with
the full GW + DMFT dispersion. In Fig. 12 is further shown
the local projection of this spectral function in comparison
to the full GW + DMFT and the LDA + U(ω) + DMFT
results. Bearing in mind the different conditions for the
analytical continuation necessary to obtain these spectra, the
agreement between the DMFT@nonlocal-GW and the full
GW + DMFT at low energies is very good: captured are
the t2g bandwidth, the position of the lower Hubbard band,
the satellite at +4 eV, and even the plasmon at 17 eV. The
DMFT@nonlocal-GW approach is thus a promising approach
when a full GW + DMFT calculation is too costly.

An obvious advantage that we exploit here is, that it is
easier to access the full momentum-resolved spectral function,
since an analytical continuation is required only for the
local self-energy. From Fig. 11, we observe the asymmetric
band renormalization already mentioned before, particularly
apparent around the X point. Moreover, we can put it into
perspective with yet another effect widely discussed in the
literature, namely the appearance of low-energy kink structures
around the Fermi energy [78,103,119]. Indeed, a low-energy
zoom (see right-hand side of Fig. 11) reveals a change of slope
in the quasiparticle dispersion between a very low-energy
regime of about ∼±0.1 eV around the Fermi level and the
overall band dispersion. The ratio of the group velocities
of the very low-energy dispersion to the LDA one yields
a factor of two, roughly corresponding to estimates from
effective heat measurements [86]. We add a caveat, however,
concerning the precise location in energy of the kink structure:
the calculation involves the numerically delicate process of

165138-17



JAN M. TOMCZAK, M. CASULA, T. MIYAKE, AND S. BIERMANN PHYSICAL REVIEW B 90, 165138 (2014)

FIG. 11. (Color online) The DMFT@nonlocal-GW approach. The left panel shows the spectral function resolved along the usual
momentum path, while the right panel displays a low-energy zoom around the �-point. There, the dashed (blue) lines are guides to the
eye highlighting the reduced group velocity for energies below the kink in the dispersion (see text for details). The calculation was performed
at an inverse temperature β = 10/eV. Owing to the large temperature, the Fermi vector kF is slightly reduced with respect to our LDA (and
GW ) results.

analytically continuing imaginary frequency data to the real
axis, a procedure easily affected with an error bar of 0.1 or
0.2 eV for the position of such subtle structures.

3. Related approaches: QSGW + DMFT and screened
exchange+DMFT

Interestingly, the prerequisite of having a separable self-
energy at the GW level can be relaxed if instead of constructing
H nl from a (one-shot) GW calculation, the quasiparticle
self-consistency (QS) scheme of Ref. [77] is employed. In
the QSGW scheme dynamical self-energies, both local and
nonlocal, are incorporated (in a hermitianized form) into
an effective one-particle Hamiltonian. In the self-consistency
loop, dynamical dependencies are transformed into a gener-
alized orbital- and momentum-dependent static potential. Re-
cently, it was argued [120] that quasiparticle-self-consistency

FIG. 12. (Color online) k-summed spectrum of the
DMFT@nonlocal-GW approach in comparison with the full
GW + DMFT and LDA + U(ω) + DMFT. All DMFT calculations
were performed at β = 10 eV−1.

yields the noninteracting Green’s function closest to the one
of the interacting many-body system. Therewith, also the
QSGW + DMFT approach proposed in Ref. [52] is more
general than a short-cut requiring a separable self-energy.

A “quasiparticlized” GW (even though at the one-shot
level) in combination with DMFT was also studied in Ref. [62],
with an application to SrVO3. In this work, however, that
scheme was merely used for generating a band structure
that was then employed as such as an approximation for
a noninteracting Hamiltonian used for DMFT (with static
Hubbard interactions). As pointed out in Ref. [52] and
immediately obvious from the original GW+DMFT scheme, a
consistent combination of QSGW with DMFT must include a
correction for avoiding the local GW self-energy to be counted
twice. To the best of our knowledge, the form of this correction
has not yet explicitly been worked out in the literature. Here,
we therefore first define what we mean by QSGW + DMFT
before proceeding to a conceptual comparison with the above
DMFT@nonlocal-GW scheme.

QSGW proceeds in the following way. First, a GW
calculation is performed, and the obtained self-energy is
“quasiparticlized” in the following sense: the quasiparticle
energies are found (from solving the quasiparticle equation
either fully or in a linearized fashion) and the self-energy is
evaluated at the corresponding energies Ekn. This generates
a static correction to the initial Hamiltonian [which we will
schematically denote as �(k,ω → H

qp
N )]. Here, the symbolic

notation “ω → H
qp
N ” means that the self-energy correction for

the state k,n is evaluated at the corresponding quasiparticle
energy Ekn. The latter is obtained as the pole of the Green’s
function [ω − H

qp
N + V xc − �(k,ω)]−1.10 By construction,

the corrected Hamiltonian H
qp
N+1 = H

qp
N − Vxc + �(k,H

qp
N )

10For simplicity, we do not enter here in a discussion of how to
treat off-diagonal self-energy matrix elements and different flavors
of choosing the reference energies for those. These issues have been
extensively discussed in the literature [123].
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then reproduces as eigenvalues the quasiparticle poles of the
initial problem H

qp
N − Vxc + �(k,ω). It serves as a starting

point for the next iteration, and the process is repeated until
convergence is reached. At self-consistency, one can thus
think of the obtained Hamiltonian as an optimized one-particle
Hamiltonian, motivating its use with DMFT.

In order to combine the QSGW with DMFT, we propose
the following scheme: perform a self-consistent QSGW

calculation and extract at the last iteration the following
quantities: (1) H qp as above, as well as its eigenvalues Ekn,
(2) Hnl = H qp − �local(H qp), where �local(ω) = ∑

k �(k,ω)
is the local self-energy matrix in the localized orbitals. It is
quasiparticlized by evaluating it at the eigenvalues Ekn of
H qp. Then, a DMFT calculation (with dynamical U) can be
performed on top of Hnl , and double counting of the local part
is automatically avoided.

We stress that it is essential to substract the local self-
energy part before the “quasiparticlization” in the second
step. The argument that this term should be a purely constant
shift (advanced in Ref. [62]) is in fact incorrect, since the
quasiparticlization �local(ω → H qp) makes it momentum- and
state-dependent. If omitted, the resulting starting Hamiltonian
is already renormalized by local dynamical correlations, and
application of DMFT leads to a double counting of this
renormalization effect, as found in Ref. [62]. Indeed, the
band widening induced by the nonlocal part of the self-
energy (see discussion above) is then entirely missed, and
the band appears too narrow. The crucial issue to realize is
that the two operations of quasiparticlization and extraction
of the local part (that is, summing over k) do not commute,
since the quasiparticlization requires to evaluate the self-
energy at a specific energy Ekn and thus makes it again
k-dependent.

The interesting feature of QSGW is the fact that the final
Hamiltonian—through the successive iterations at the quasi-
particle level—incorporates corrections that would have been
dynamical corrections at the one-shot level in an effective static
form. In DMFT@nonlocal-GW , on the other hand, we use the
empiric observation made at the GW level that the self-energy
becomes separable.

Last but not least, we mention yet another simplified
scheme that incorporates nonlocal self-energy corrections
in a static fashion: between the initial submission and the
resubmission of the present work, a combined “screened
exchange+DMFT” (“SEx+DMFT”) scheme was proposed
and implemented [121], which offers a yet numerically cheaper
way to incorporate nonlocal effects due to screened exchange.

From a computational point of view, in all three schemes
DMFT@nonlocal-GW , QSGW + DMFT and SEx+DMFT,
only quantities that either depend on frequency or momentum
enter the DMFT self-consistency, which drastically reduces
memory requirements.

4. Further methodological remarks

We now turn to a comparison of the contributions con-
tained in full GW + DMFT, DMFT@nonlocal-GW , and
LDA + DMFT with static and dynamical interactions on
the basis of the local part of the Matsubara axis self-energies
�(iω), plotted in Fig. 13. The most striking feature in the com-

FIG. 13. (Color online) Comparison of local t2g self-energies on
the Matsubara axis: usual LDA + DMFT, LDA + DMFT with
dynamical interactions, DMFT@nonlocal-GW and local part of full
GW + DMFT.

parison is the small amplitude of the standard LDA + DMFT
self-energy. This can be trivially understood from the fact
that only the partially screened value of the interaction, the
Hubbard U , enters into the description. This scheme does
not contain any information about the bare interaction—in
contrast to all the other schemes, where it is recovered as
the high-frequency limit. This information does lead to much
higher characteristic energy scales in the schemes beyond
LDA + DMFT, with self-energies living on the scale of the
plasma energy of ∼15 eV.

When comparing the shape of the self-energies
at low-energies, one can observe that the one for
LDA + U(ω) + DMFT is slightly steeper, leading to
an overestimation of the mass renormalization. The self-
consistency loop in the full GW + DMFT scheme leads
to a relaxation of the impurity self-energy, and thus less
important renormalization effects. The change is in fact
quite substantial, leading to different quasiparticle weights
corresponding to the different self-energies: while the local Z

factor for the fully self-consistent GW + DMFT calculation
is nearly 0.7, the LDA + DMFT calculation with dynamical
U yields 0.5. A non-self-consistent calculation combining a
local LDA + U(ω) + DMFT self-energy with a nonlocal-GW

self-energy could therefore be expected to underestimate the
bandwidth by a factor 0.7/0.5. This may explain why a
recent paper for SrVO3 [122] using such a nonselfconsistent
“[LDA + U(ω) + DMFT]local+[GW ]nonlocal” approach finds
a much narrower empty band than our GW + DMFT
calculations. This puts strong constraints on the design of
simplified schemes: it highlights the importance of having the
nonlocal correlations present in the DMFT self-consistency,
as done in the DMFT@nonlocal-GW approach discussed
above, and also in the QSGW + DMFT scheme [52]. Finally,
DMFT@nonlocal-GW and full GW + DMFT agree very
well at low energies, as expected from the analysis above, but
start to deviate on a scale of several eVs where the nonlocal
self-energy correction on the real axis recovers some frequency
dependence.
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V. SUMMARY

We now come back to the list of physics questions on
our target compound, outlined in the introductory section on
SrVO3.

Reconciliation of results of DMFT and cluster model
calculations in the unoccupied part of the spectra, and
consistency with ab initio U values. Our finding of the IPES
peak at 2.7 eV being dominantly of eg character, rather than
being an upper Hubbard band of t2g character, coincides
with the interpretation of cluster model calculations [108],
thus reconciling DMFT with the cluster model literature.
Cluster model calculations place an upper Hubbard band
of t2g character at about 2 eV, which would be consistent
with the static value of U(ω = 0) = 3.5 eV. The cluster
calculations, however, do not have access to the effects of
the enhancement of the bare band dispersion by nonlocal
exchange. Our GW + DMFT calculations reveal that the latter
is in fact the dominant effect, preventing the formation of a
clearly separated sharp upper Hubbard band.

The 2.7-eV feature in BIS spectra. Related to the previous
point, the photoemission feature at 2.7 eV is not an upper Hub-
bard band, but rather dominated by eg states. It would be most
interesting to perform orbital-resolved inverse photoemission
studies to confirm this orbital assignment. A second challenge
to inverse photoemission is the question of whether or not the
broad feature at lower energies can be resolved into the true
lower Hubbard band (at around 2 eV) and the quasiparticle
peak dispersing around the Fermi level.

Position of O-2p ligand states. The inclusion of the GW

self-energy for the “uncorrelated” states, as explained in
the section on the orbital-separated GW + DMFT scheme,
introduces corrections on the O-2p ligand states, which
are pushed down in energy, improving the agreement with
experiment. We note, however, that the size of the correction
is not quite large enough, compared to experiment. To some
extent, this could have been expected: indeed, we believe
feedback effects of the Coulomb interactions on the V-d states
(and their hybridization) to be important for determining the
O-2p position. However, such effects would only be included
if an update of the GW part of the calculation were also
performed. This observation thus opens important perspectives
for further work.

Position of Sr-4d states. The Sr-4d states are pushed up
by the GW self-energy. The total O-2p to Sr-4d energetic
distance is enhanced by about 1.25 eV. Comparison with the
experimental spectra shows that this correction is excellent in
the unoccupied part of the spectrum.

Most importantly, however, we identify a substantial broad-
ening of the unoccupied bandwidth with respect to standard
LDA + DMFT calculations. Indeed, the nonlocal part of
the GW self-energy, when applied as a correction to the
LDA band structure, leads to a widening by more than 40
percent. When local correlations [within DMFT with U(ω)]
are added, the corresponding renormalizations renarrow the
unoccupied band roughly such as to recover the original
LDA bandwidth. For this reason, while being similar to the
LDA + DMFT description for the occupied states, our results
suggest an entirely new description for the unoccupied part of
the spectrum, calling for a reinvestigation within techniques

capturing empty states properties (BIS, IPES, time-resolved
ARPES, or similar).

VI. CONCLUSIONS

We have implemented the combined GW + DMFT scheme
in a fully dynamical manner, by treating the GW part at
the one-shot level, but self-consisting over the DMFT part.
Comparisons with pure LDA, pure GW , and LDA + DMFT
calculations with static and dynamic interactions allow to
assess the importance of the various features of these schemes,
such as inclusion of dynamical screening, local and nonlocal
self-energy contributions, and self-consistency.

In particular our analysis confirms [52] that at low-energies,
the dynamical self-energy contributions of GW or combined
GW + DMFT schemes are strongly dominated by the local
part, and that the crucial nonlocal corrections are a purely static
correction to the LDA exchange correlation potential. This is
strongly encouraging in view of the accuracy of DMFT-based
schemes for correlated materials, and may allow for shortcuts
when going beyond them.

The calculated GW + DMFT spectral functions for SrVO3

are in good agreement with available experimental data for
the occupied electronic states. In this part of the spectra, the
GW + DMFT scheme only leads to a slight improvement over
conventional LDA + DMFT results (provided that in the latter
the dynamics of the Hubbard U is included).

Very importantly, however, our GW + DMFT results
also suggest, that the unoccupied band structure is not well
described by many-body calculations based on LDA-derived
one-body Hamiltonians. Indeed, broadening by the Fock ex-
change term is substantial; the appropriate bare band structure
for a DMFT-based electronic structure calculation should be
wider by about 40% than the corresponding LDA bands, so
that the final dispersion after the many-body calculation is
eventually comparable again to the LDA one.

The mechanism leading to these corrections is quite
general: it is based on the simple observation that the
exchange-correlation potential of DFT provides a much better
approximation to (screened) exchange for occupied electronic
states than for empty ones. This, quite generally, suggests
that—despite their successes in describing occupied electronic
states—many-body techniques based on LDA Hamiltonians
are inappropriate for describing unoccupied states of corre-
lated transition metal oxides. This is, in particular, true for the
combined LDA + DMFT scheme.

These predictions urgently call for experimental stud-
ies of correlated oxides by techniques suitable for
measuring empty electronic states. Candidates could be
bremsstrahl-isochromatography (BIS)/inverse photoemission,
time-resolved ARPES, or more indirect probes such as reso-
nant inelastic x-ray scattering (RIXS), optical spectroscopy, or
x-ray absorption (XAS).
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APPENDIX: THE GW + DMFT EQUATIONS

As discussed in Sec. II B, the GW + DMFT scheme as
formulated in Refs. [58,65,66] can be derived as a stationary
point (G,W ) of the Almbladh free energy functional [67]
after approximating the correlation part of this functional by
a combination of local and nonlocal terms stemming from
DMFT and GW , respectively.

For reference, we here review the equations derived from
this construction, leading to an iterative loop which determines
G and U self-consistently (and, eventually, the full self-energy
and polarization operators). (1) The impurity problem (11) is
solved, for a given choice of GLL′ and Uαβ : the “impurity”
Green’s function

GLL′
imp ≡ −〈Tτ cL(τ )c+

L′(τ ′)〉S (A1)

is calculated, together with the impurity self-energy

�xc
imp ≡ δ�imp/δGimp = G−1 − G−1

imp. (A2)

The two-particle correlation function

χL1L2L3L4 = 〈
: c

†
L1

(τ )cL2 (τ ) :: c
†
L3

(τ ′)cL4 (τ ′) :
〉
S

(A3)

must also be evaluated.
(2) The impurity effective interaction is constructed as

follows:

Wαβ
imp = Uαβ −

∑
L1···L4

∑
γ δ

Uαγ O
γ

L1L2
χL1L2L3L4

[
Oδ

L3L4

]∗Uδβ,

(A4)

where Oα
L1L2

≡ 〈φL1φL2 |Bα〉 is the overlap matrix between
two-particle states and products of one-particle basis functions.

The polarization operator of the impurity problem is then
obtained as

Pimp ≡ −2δ�imp/δWimp = U−1 − W−1
imp, (A5)

where all matrix inversions are performed in the two-particle
basis Bα (see the discussion in Refs. [65,66]).

(3) From Eqs. (12) and (13), the full k-dependent Green’s
function G(k,iωn) and effective interaction W (q,iνn) can be
constructed. The self-consistency condition is obtained, as
in the usual DMFT context, by requiring that the on-site
components of these quantities coincide with Gimp and Wimp.
In practice, this is done by computing the on-site quantities

Gloc(iωn) =
∑

k

[
G−1

H (k,iωn) − �xc(k,iωn)
]−1

, (A6)

W loc(iνn) =
∑

q

[
V −1

q − P (q,iνn)
]−1

, (A7)

and using them to update the Weiss dynamical mean-field G
and the impurity model interaction U according to

G−1 = Gloc−1 + �xc
imp, (A8)

U−1 = W loc−1 + Pimp. (A9)

The set of equations (A1) to (A9) [including (12) and (13)] is
iterated until self-consistency.

This in fact means that, conceptually, there are two levels
of self-consistency: the one over local quantities, for a given
GW calculation, and, eventually, also the update of nonlocal
quantities by recalculation of the GW self-energies and polar-
ization. In real materials calculations, this full self-consistency
has been only performed once so far, namely in the relatively
simple case of a single-orbital system [51]. Here, we restrict
ourselves to self-consistency at the DMFT level for a given
GW calculation, as discussed in the methodological sections
above.
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P. Le Fèvre, F. Bertran, M. Casula, P. Werner, S. Biermann,
F. Rullier-Albenque, A. Forget, and D. Colson, Phys. Rev.
Lett. 110, 167002 (2013).

[54] M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, T. Miyake,
A. J. Millis, and S. Biermann, Phys. Rev. Lett. 109, 126408
(2012).

[55] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar,
S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104
(2004).

[56] M. Casula, A. Rubtsov, and S. Biermann, Phys. Rev. B 85,
035115 (2012).

[57] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[58] S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett.
90, 086402 (2003).

[59] J. M. Tomczak, M. Casula, T. Miyake, F. Aryasetiawan, and
S. Biermann, Europhys. Lett. 100, 67001 (2012).

[60] P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002).
[61] K. Karlsson, J. Phys.: Condens. Matter 17, 7573 (2005).
[62] C. Taranto, M. Kaltak, N. Parragh, G. Sangiovanni, G. Kresse,

A. Toschi, and K. Held, Phys. Rev. B 88, 165119 (2013).
[63] P. Werner and A. J. Millis, Phys. Rev. Lett. 104, 146401 (2010).
[64] L. Hedin, Phys. Rev. 139, A796 (1965).
[65] S. Biermann, F. Aryasetiawan, and A. Georges, Physics of

Spin in Solids: Materials, Methods, and Applications (Kluwer
Academic, Dordrecht, 2004), pp. 43–65.

[66] F. Aryasetiawan, S. Biermann, and A. Georges, Proceedings of
the Conference on Coincidence Studies of Surfaces, Thin Films
and Nanostructures, Ringberg castle, September 2003, edited
by J. Berakdar and J. Kirschner (Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim, 2004).

[67] C.-O. Almbladh, U. V. Barth, and R. V. Leeuwen, Int. J. Mod.
Phys. B 13, 535 (1999).

165138-22

http://dx.doi.org/10.1103/PhysRevB.73.155112
http://dx.doi.org/10.1103/PhysRevB.73.155112
http://dx.doi.org/10.1103/PhysRevB.73.155112
http://dx.doi.org/10.1103/PhysRevB.73.155112
http://dx.doi.org/10.1103/PhysRevB.71.153108
http://dx.doi.org/10.1103/PhysRevB.71.153108
http://dx.doi.org/10.1103/PhysRevB.71.153108
http://dx.doi.org/10.1103/PhysRevB.71.153108
http://dx.doi.org/10.1103/PhysRevLett.104.047401
http://dx.doi.org/10.1103/PhysRevLett.104.047401
http://dx.doi.org/10.1103/PhysRevLett.104.047401
http://dx.doi.org/10.1103/PhysRevLett.104.047401
http://dx.doi.org/10.1103/PhysRevB.85.115136
http://dx.doi.org/10.1103/PhysRevB.85.115136
http://dx.doi.org/10.1103/PhysRevB.85.115136
http://dx.doi.org/10.1103/PhysRevB.85.115136
http://dx.doi.org/10.1103/PhysRevB.86.195136
http://dx.doi.org/10.1103/PhysRevB.86.195136
http://dx.doi.org/10.1103/PhysRevB.86.195136
http://dx.doi.org/10.1103/PhysRevB.86.195136
http://dx.doi.org/10.1103/PhysRevB.86.184413
http://dx.doi.org/10.1103/PhysRevB.86.184413
http://dx.doi.org/10.1103/PhysRevB.86.184413
http://dx.doi.org/10.1103/PhysRevB.86.184413
http://dx.doi.org/10.1103/PhysRevB.85.035124
http://dx.doi.org/10.1103/PhysRevB.85.035124
http://dx.doi.org/10.1103/PhysRevB.85.035124
http://dx.doi.org/10.1103/PhysRevB.85.035124
http://dx.doi.org/10.1103/PhysRevLett.104.226401
http://dx.doi.org/10.1103/PhysRevLett.104.226401
http://dx.doi.org/10.1103/PhysRevLett.104.226401
http://dx.doi.org/10.1103/PhysRevLett.104.226401
http://dx.doi.org/10.1103/PhysRevLett.104.086402
http://dx.doi.org/10.1103/PhysRevLett.104.086402
http://dx.doi.org/10.1103/PhysRevLett.104.086402
http://dx.doi.org/10.1103/PhysRevLett.104.086402
http://dx.doi.org/10.1103/PhysRevLett.99.126402
http://dx.doi.org/10.1103/PhysRevLett.99.126402
http://dx.doi.org/10.1103/PhysRevLett.99.126402
http://dx.doi.org/10.1103/PhysRevLett.99.126402
http://dx.doi.org/10.1103/PhysRevLett.102.146402
http://dx.doi.org/10.1103/PhysRevLett.102.146402
http://dx.doi.org/10.1103/PhysRevLett.102.146402
http://dx.doi.org/10.1103/PhysRevLett.102.146402
http://dx.doi.org/10.1103/PhysRevLett.110.267204
http://dx.doi.org/10.1103/PhysRevLett.110.267204
http://dx.doi.org/10.1103/PhysRevLett.110.267204
http://dx.doi.org/10.1103/PhysRevLett.110.267204
http://dx.doi.org/10.1103/PhysRevLett.94.026404
http://dx.doi.org/10.1103/PhysRevLett.94.026404
http://dx.doi.org/10.1103/PhysRevLett.94.026404
http://dx.doi.org/10.1103/PhysRevLett.94.026404
http://dx.doi.org/10.1002/pssb.200945231
http://dx.doi.org/10.1002/pssb.200945231
http://dx.doi.org/10.1002/pssb.200945231
http://dx.doi.org/10.1002/pssb.200945231
http://dx.doi.org/10.1209/0295-5075/86/37004
http://dx.doi.org/10.1209/0295-5075/86/37004
http://dx.doi.org/10.1209/0295-5075/86/37004
http://dx.doi.org/10.1209/0295-5075/86/37004
http://dx.doi.org/10.1103/PhysRevLett.94.166402
http://dx.doi.org/10.1103/PhysRevLett.94.166402
http://dx.doi.org/10.1103/PhysRevLett.94.166402
http://dx.doi.org/10.1103/PhysRevLett.94.166402
http://dx.doi.org/10.1103/PhysRevB.76.085101
http://dx.doi.org/10.1103/PhysRevB.76.085101
http://dx.doi.org/10.1103/PhysRevB.76.085101
http://dx.doi.org/10.1103/PhysRevB.76.085101
http://dx.doi.org/10.1073/pnas.1118371109
http://dx.doi.org/10.1073/pnas.1118371109
http://dx.doi.org/10.1073/pnas.1118371109
http://dx.doi.org/10.1073/pnas.1118371109
http://dx.doi.org/10.1143/JPSJS.77SC.99
http://dx.doi.org/10.1143/JPSJS.77SC.99
http://dx.doi.org/10.1143/JPSJS.77SC.99
http://dx.doi.org/10.1143/JPSJS.77SC.99
http://dx.doi.org/10.1073/pnas.1215066110
http://dx.doi.org/10.1073/pnas.1215066110
http://dx.doi.org/10.1073/pnas.1215066110
http://dx.doi.org/10.1073/pnas.1215066110
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.100.226402
http://dx.doi.org/10.1103/PhysRevLett.100.226402
http://dx.doi.org/10.1103/PhysRevLett.100.226402
http://dx.doi.org/10.1103/PhysRevLett.100.226402
http://dx.doi.org/10.1103/PhysRevB.80.092501
http://dx.doi.org/10.1103/PhysRevB.80.092501
http://dx.doi.org/10.1103/PhysRevB.80.092501
http://dx.doi.org/10.1103/PhysRevB.80.092501
http://dx.doi.org/10.1088/0953-8984/21/7/075602
http://dx.doi.org/10.1088/0953-8984/21/7/075602
http://dx.doi.org/10.1088/0953-8984/21/7/075602
http://dx.doi.org/10.1088/0953-8984/21/7/075602
http://dx.doi.org/10.1103/PhysRevB.80.085101
http://dx.doi.org/10.1103/PhysRevB.80.085101
http://dx.doi.org/10.1103/PhysRevB.80.085101
http://dx.doi.org/10.1103/PhysRevB.80.085101
http://dx.doi.org/10.1103/PhysRevB.82.064504
http://dx.doi.org/10.1103/PhysRevB.82.064504
http://dx.doi.org/10.1103/PhysRevB.82.064504
http://dx.doi.org/10.1103/PhysRevB.82.064504
http://dx.doi.org/10.1103/PhysRevLett.104.197002
http://dx.doi.org/10.1103/PhysRevLett.104.197002
http://dx.doi.org/10.1103/PhysRevLett.104.197002
http://dx.doi.org/10.1103/PhysRevLett.104.197002
http://dx.doi.org/10.1103/PhysRevB.81.220506
http://dx.doi.org/10.1103/PhysRevB.81.220506
http://dx.doi.org/10.1103/PhysRevB.81.220506
http://dx.doi.org/10.1103/PhysRevB.81.220506
http://dx.doi.org/10.1103/PhysRevB.85.094505
http://dx.doi.org/10.1103/PhysRevB.85.094505
http://dx.doi.org/10.1103/PhysRevB.85.094505
http://dx.doi.org/10.1103/PhysRevB.85.094505
http://dx.doi.org/10.1038/nphys2250
http://dx.doi.org/10.1038/nphys2250
http://dx.doi.org/10.1038/nphys2250
http://dx.doi.org/10.1038/nphys2250
http://dx.doi.org/10.1103/PhysRevLett.107.266404
http://dx.doi.org/10.1103/PhysRevLett.107.266404
http://dx.doi.org/10.1103/PhysRevLett.107.266404
http://dx.doi.org/10.1103/PhysRevLett.107.266404
http://dx.doi.org/10.1103/PhysRevLett.109.226401
http://dx.doi.org/10.1103/PhysRevLett.109.226401
http://dx.doi.org/10.1103/PhysRevLett.109.226401
http://dx.doi.org/10.1103/PhysRevLett.109.226401
http://dx.doi.org/10.1103/PhysRevB.87.125149
http://dx.doi.org/10.1103/PhysRevB.87.125149
http://dx.doi.org/10.1103/PhysRevB.87.125149
http://dx.doi.org/10.1103/PhysRevB.87.125149
http://dx.doi.org/10.1103/PhysRevLett.110.166401
http://dx.doi.org/10.1103/PhysRevLett.110.166401
http://dx.doi.org/10.1103/PhysRevLett.110.166401
http://dx.doi.org/10.1103/PhysRevLett.110.166401
http://dx.doi.org/10.1103/PhysRevLett.109.237010
http://dx.doi.org/10.1103/PhysRevLett.109.237010
http://dx.doi.org/10.1103/PhysRevLett.109.237010
http://dx.doi.org/10.1103/PhysRevLett.109.237010
http://dx.doi.org/10.1103/PhysRevLett.110.167002
http://dx.doi.org/10.1103/PhysRevLett.110.167002
http://dx.doi.org/10.1103/PhysRevLett.110.167002
http://dx.doi.org/10.1103/PhysRevLett.110.167002
http://dx.doi.org/10.1103/PhysRevLett.109.126408
http://dx.doi.org/10.1103/PhysRevLett.109.126408
http://dx.doi.org/10.1103/PhysRevLett.109.126408
http://dx.doi.org/10.1103/PhysRevLett.109.126408
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.85.035115
http://dx.doi.org/10.1103/PhysRevB.85.035115
http://dx.doi.org/10.1103/PhysRevB.85.035115
http://dx.doi.org/10.1103/PhysRevB.85.035115
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1209/0295-5075/100/67001
http://dx.doi.org/10.1209/0295-5075/100/67001
http://dx.doi.org/10.1209/0295-5075/100/67001
http://dx.doi.org/10.1209/0295-5075/100/67001
http://dx.doi.org/10.1103/PhysRevB.66.085120
http://dx.doi.org/10.1103/PhysRevB.66.085120
http://dx.doi.org/10.1103/PhysRevB.66.085120
http://dx.doi.org/10.1103/PhysRevB.66.085120
http://dx.doi.org/10.1088/0953-8984/17/48/010
http://dx.doi.org/10.1088/0953-8984/17/48/010
http://dx.doi.org/10.1088/0953-8984/17/48/010
http://dx.doi.org/10.1088/0953-8984/17/48/010
http://dx.doi.org/10.1103/PhysRevB.88.165119
http://dx.doi.org/10.1103/PhysRevB.88.165119
http://dx.doi.org/10.1103/PhysRevB.88.165119
http://dx.doi.org/10.1103/PhysRevB.88.165119
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1142/S0217979299000436
http://dx.doi.org/10.1142/S0217979299000436
http://dx.doi.org/10.1142/S0217979299000436
http://dx.doi.org/10.1142/S0217979299000436


ASYMMETRY IN BAND WIDENING AND QUASIPARTICLE . . . PHYSICAL REVIEW B 90, 165138 (2014)

[68] R. Chitra and G. Kotliar, Phys. Rev. B 63, 115110 (2001).
[69] H. Kajueter, Ph.D. thesis, Rutgers University, 1996.
[70] Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 (1996).
[71] A. M. Sengupta and A. Georges, Phys. Rev. B 52, 10295

(1995).
[72] F. Aryasetiawan, J. M. Tomczak, T. Miyake, and R. Sakuma,

Phys. Rev. Lett. 102, 176402 (2009).
[73] A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki, S. I.

Uchida, K. Takegahara, H. Harima, Y. Saitoh, I. A. Nekrasov,
G. Keller, D. E. Kondakov, A. V. Kozhevnikov, T. Pruschke,
K. Held, D. Vollhardt, and V. I. Anisimov, Phys. Rev. Lett. 93,
156402 (2004).

[74] K. Morikawa, T. Mizokawa, K. Kobayashi, A. Fujimori,
H. Eisaki, S. Uchida, F. Iga, and Y. Nishihara, Phys. Rev. B 52,
13711 (1995).

[75] I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,
035109 (2001).

[76] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and
D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[77] S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev.
Lett. 93, 126406 (2004).

[78] S. Aizaki, T. Yoshida, K. Yoshimatsu, M. Takizawa,
M. Minohara, S. Ideta, A. Fujimori, K. Gupta, P. Mahadevan,
K. Horiba, H. Kumigashira, and M. Oshima, Phys. Rev. Lett.
109, 056401 (2012).

[79] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998).

[80] M. Onoda, H. Ohta, and H. Nagasawa, Solid State Commun.
79, 281 (1991).

[81] I. Inoue, H. Makino, I. Hase, M. Ishikawa, N. Hussey, and
M. Rozenberg, Physica B: Condens. Matter 237-238, 61
(1997).

[82] H. Eisaki, Ph.D. thesis, Tokyo University, 1991.
[83] A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Y. Tokura,

H. Eisaki, S. Uchida, K. Takegahara, and F. M. F. de Groot,
Phys. Rev. Lett. 69, 1796 (1992).

[84] E. Müller-Hartmann, Zeitschrift für Physik B Condensed
Matter 76, 211 (1989).

[85] I. Inoue, Ph.D. thesis, Tokyo University, 1998.
[86] I. H. Inoue, O. Goto, H. Makino, N. E. Hussey, and

M. Ishikawa, Phys. Rev. B 58, 4372 (1998).
[87] K. Maiti, D. D. Sarma, M. J. Rozenberg, I. H. Inoue, H. Makino,

O. Goto, M. Pedio, and R. Cimino, Europhys. Lett. 55, 246
(2001).

[88] K. Maiti, U. Manju, S. Ray, P. Mahadevan, I. H. Inoue,
C. Carbone, and D. D. Sarma, Phys. Rev. B 73, 052508
(2006).

[89] E. Pavarini, A. Yamasaki, J. Nuss, and O. K. Andersen, New
J. Phys. 7, 188 (2005).

[90] H. Ishida, D. Wortmann, and A. Liebsch, Phys. Rev. B 73,
245421 (2006).

[91] T. Yoshida, K. Tanaka, H. Yagi, A. Ino, H. Eisaki, A. Fujimori,
and Z.-X. Shen, Phys. Rev. Lett. 95, 146404 (2005).

[92] R. Eguchi, T. Kiss, S. Tsuda, T. Shimojima, T. Mizokami,
T. Yokoya, A. Chainani, S. Shin, I. H. Inoue, T. Togashi, S.
Watanabe, C. Q. Zhang, C. T. Chen, M. Arita, K. Shimada,
H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 96, 076402
(2006).

[93] Y. Z. Zhang and M. Imada, Phys. Rev. B 76, 045108
(2007).

[94] H. Lee, K. Foyevtsova, J. Ferber, M. Aichhorn, H. O. Jeschke,
and R. Valentı́, Phys. Rev. B 85, 165103 (2012).

[95] M. Takizawa, M. Minohara, H. Kumigashira, D. Toyota,
M. Oshima, H. Wadati, T. Yoshida, A. Fujimori, M. Lippmaa,
M. Kawasaki, H. Koinuma, G. Sordi, and M. Rozenberg, Phys.
Rev. B 80, 235104 (2009).

[96] T. Yoshida, M. Hashimoto, T. Takizawa, A. Fujimori,
M. Kubota, K. Ono, and H. Eisaki, Phys. Rev. B 82, 085119
(2010).

[97] K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto,
S. Aizaki, A. Fujimori, and M. Oshima, Phys. Rev. Lett. 104,
147601 (2010).

[98] Z. Zhong, M. Wallerberger, J. M. Tomczak, C. Taranto,
N. Parragh, A. Toschi, G. Sangiovanni, and K. Held,
arXiv:1312.5989 [cond-mat.str-el].

[99] F. Lechermann, A. Georges, A. Poteryaev, S. Biermann,
M. Posternak, A. Yamasaki, and O. K. Andersen, Phys. Rev. B
74, 125120 (2006).

[100] G. Trimarchi, I. Leonov, N. Binggeli, D. Korotin, and V. I.
Anisimov, Journal of Physics: Condens. Matter 20, 135227
(2008).

[101] B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O.
Wehling, and A. I. Lichtenstein, Phys. Rev. B 77, 205112
(2008).

[102] M. Karolak, T. O. Wehling, F. Lechermann, and A.
I. Lichtenstein, J. Phys.: Condens. Matter 23, 085601
(2011).

[103] K. Byczuk, M. Kollar, K. Held, Y. F. Yang, I. A. Nekrasov,
T. Pruschke, and D. Vollhardt, Nat. Phys. 3, 168
(2007).

[104] R. Eguchi, A. Chainani, M. Taguchi, M. Matsunami, Y. Ishida,
K. Horiba, Y. Senba, H. Ohashi, and S. Shin, Phys. Rev. B 79,
115122 (2009).

[105] X. Deng, M. Ferrero, J. Mravlje, M. Aichhorn,
and A. Georges, Phys. Rev. B 85, 125137
(2012).

[106] X. Y. Deng, L. Wang, X. Dai, and Z. Fang, Phys. Rev. B 79,
075114 (2009).

[107] R. J. O. Mossanek, M. Abbate, and A. Fujimori, Phys. Rev. B
74, 155127 (2006).

[108] R. J. O. Mossanek, M. Abbate, T. Yoshida, A. Fujimori, Y.
Yoshida, N. Shirakawa, H. Eisaki, S. Kohno, P. T. Fonseca,
and F. C. Vicentin, Phys. Rev. B 79, 033104 (2009).

[109] R. J. O. Mossanek, M. Abbate, T. Yoshida, A. Fujimori,
Y. Yoshida, N. Shirakawa, H. Eisaki, S. Kohno, and F. C.
Vicentin, Phys. Rev. B 78, 075103 (2008).

[110] H. Wadati, A. Chikamatsu, M. Takizawa, H. Kumigashira,
T. Yoshida, T. Mizokawa, A. Fujimori, M. Oshima, and
N. Hamada, J. Phys. Soc. Jpn. 78, 094709 (2009).

[111] F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger,
Phys. Rev. B 74, 125106 (2006).

[112] T. Miyake and F. Aryasetiawan, Phys. Rev. B 77, 085122
(2008).

[113] L. Huang and Y. Wang, Europhys. Lett. 99, 67003
(2012).
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