
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 91, 121107(R) (2015)

Separability of dynamical and nonlocal correlations in three dimensions
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While second-order phase transitions always cause strong nonlocal fluctuations, their effect on spectral
properties crucially depends on the dimensionality. For the important case of three dimensions, we show that
the electron self-energy is well separable into a local dynamical part and static nonlocal contributions. In
particular, our nonperturbative many-body calculations for the three-dimensional Hubbard model at different
fillings demonstrate that the quasiparticle weight remains essentially momentum independent, including in
the presence of overall large nonlocal corrections to the self-energy. Relying on this insight, we propose a
“space-time-separated” scheme for many-body perturbation theory that is up to ten times more efficient than
current implementations. Besides these far-reaching implications for state-of-the-art electronic structure schemes,
our analysis will also provide guidance to the quest of going beyond them.
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Introduction. Several iconic phenomena of the many-body
problem, such as the Kondo effect or the Mott metal-insulator
transition, can be described by local correlation effects. This
explains the great success of dynamical mean-field theory
[1] (DMFT) for our understanding of numerous correlated
materials. However, DMFT ad hoc assumes the electron
self-energy to be independent of momentum. This is known
to fail in low dimensions, e.g., for the Luttinger liquid in one
dimension (1D) or the strong momentum-space differentiation
in (quasi)-2D systems. However, even in three dimensions—
the major realm of practical DMFT applications—signatures
of nonlocal spatial correlations are apparent, e.g., in the
presence of second-order phase transitions. In the 3D Hubbard
model, nearest-neighbor spin-spin-correlation functions [2,3],
non-mean-field critical exponents [4], and deviations from
a local correlations’ picture of the entropy [2,3] indicate a
paramount effect of nonlocal antiferromagnetic fluctuations in
a large region of the phase diagram.

Similarly, for realistic correlated materials, thought to
be well described by the combination of density functional
theory with DMFT, i.e., DFT + DMFT [5], important nonlocal
exchange and correlation effects have recently been estab-
lished [6–10] within the so-called GW approximation [11]—a
many-body perturbation theory [12]. Nonlocal effects have,
for example, been held accountable for a proper description of
the Fermi surfaces in the iron pnictides BaFe2As2 [6,13] and
LiFeAs [6,14], and for the nonmagnetic nature of BaCo2As2

[15].
Complementary to these manifestations of self-energy

effects that are nonlocal in space, one might also investigate
their structure in the time domain. While exchange contri-
butions to the electron self-energy are static by construction,
correlation effects are a priori both momentum and energy
dependent. Recently, it has been proposed that the quasiparticle
weight Zk = [1 − ∂ωRe�(k,ω)]−1

ω=0, accounting for the low-
energy dynamics in the (retarded) self-energy � of metals, is
essentially momentum independent in the iron pnictides [6],
as well as metallic transition-metal oxides [10].

Yet, the basis for the mentioned empirical finding of the
locality of Zk was the weak-coupling GW approach, where
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spin fluctuations are completely neglected. However, large
dynamical spin fluctuations have been found in the iron
pnictides, both theoretically [16,17] and experimentally [17].
Moreover, these fluctuations were shown to constitute the
leading contribution to nonlocal self-energies in the (extended)
Hubbard model [4,18,19].

Here, we put the analysis of nonlocal correlations in
spectral properties of metals on solid grounds. To this aim,
we apply a diagrammatic extension of DMFT, the dynamical
vertex approximation [20] (D�A), to the 3D Hubbard model
away from half filling. This allows for a precise study of
the electron self-energy beyond the weak-coupling regime.
We find that while nonlocal correlation effects increase
substantially when approaching the Mott insulating or the
magnetically ordered state, the associated fluctuations do not
manifest themselves as a sizable momentum differentiation in
the low-energy dynamics of the self-energy. In particular, the
quasiparticle weight is indeed found to be essentially local.
On the other hand, the momentum variation of the static part
of the nonlocal self-energy reaches a magnitude of 20% of the
half bandwidth, or more. Dynamical renormalizations acquire
an appreciable momentum dependence only at energies in the
outer half of the quasiparticle bandwidth or higher. We will
discuss the implications of our findings for electronic structure
schemes and make an explicit suggestion that speeds up
self-energy calculations for metals within GW by a factor of 10.

Model and method. Our starting point is the 3D Hub-
bard model on the cubic lattice, H = −t

∑
〈i,j〉σ c

†
iσ cjσ +

U
∑

i ni↑ni↓, where c
†
iσ (ciσ ) creates (destroys) an electron

of spin σ at site i, niσ = c
†
iσ ciσ , t is the hopping amplitude

between nearest neighbor sites 〈i,j 〉, and U is the on-site
Hubbard interaction. Our D�A calculations exploit a DMFT
input for the local self-energy and vertex functions [21,22]
computed with an exact diagonalization solver and employ the
(particle-hole) ladder approximation with Moriya correction in
the spin channel [23,25]. Energies will be measured in units
of the half bandwidth W/2 = 6t ≡ 1. We choose U = 1.6,
which, at half filling, n = 1, yields a Mott insulator with
maximal Néel temperature [4]. We thus consider the crossover
regime between weak coupling (where the perturbative GW
approximation is most justified and magnetism is controlled by
Fermi-surface instabilities) and the Mott-Heisenberg physics
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FIG. 1. (Color online) Phase diagram of the 3D Hubbard model
within DMFT and D�A for U = 1.6. The solid (dashed) line
indicates the D�A (DMFT) Néel temperature, determined from the
divergence of the spin susceptibility. The vertical bars at fixed filling
n indicate the temperature paths followed in Fig. 2. The system is
Mott insulating at half filling (n = 1). All energies measured in units
of the half bandwidth.

at large interaction strengths. It was shown (for half filling)
that the effect of nonlocal fluctuations is strongest in this
intermediate coupling regime [21,23,24].

Results. Figure 1 shows the phase diagram of the 3D
Hubbard model as a function of filling n and temperature
T . As a clear signature of nonlocal fluctuations, the Néel
temperature is reduced by at least 30% in D�A with respect to
the DMFT result. To elucidate the influence of these manifestly
nonlocal effects in the two-particle antiferromagnetic (AF)
susceptibility onto the one-particle electronic structure, we
analyze the D�A self-energy when approaching the spin-
density wave (SDW) instability at constant filling.

First, we focus on effects near the Fermi level and
perform a low-energy expansion of the self-energy: �(k,ω) =
Re� (k, ω = 0) + [1 − 1/Z(k)]ω − ı�(k)(ω2 + π2T 2) + · · ·,
where γ (k) = −Im�(k,ω = 0) = �(k)π2T 2 + O(T 4) is the
scattering rate, and Z(k) can be identified as the quasiparticle

weight in the Fermi-liquid regime. We recall that in the
limit of infinite dimensions, nonlocal self-energy diagrams
vanish, and Z and γ are momentum independent [26]. The
DMFT self-consistency condition then yields, via Dyson’s
equation, the exact noninteracting propagator of an effective
Anderson impurity problem [1]. In finite dimensions, this
is no longer true. Therefore, besides the approximation of
assuming the self-energy to be local, this local self-energy
does not need to coincide with the local projection of the
exact lattice self-energy. In fact, the momentum average
aloc = 1/Nk

∑
k a(k) (with Nk the number of k points) of

the D�A quasiparticle weight and scattering rate, Zloc and
γloc, deviate notably from the DMFT prediction (Fig. 2,
middle and right panels). As expected [20,25], the inclusion
of antiferromagnetic fluctuations reduces the quasiparticle
weight Z. We note that the temperature evolution of Zloc

and its change in hierarchy (for small T , Z is smallest
at low doping, 1 − n; while for high T , Z is largest for
small doping) follows the same trends as the inverse of
the effective mass of the 3D electron gas [27]. For the
chosen parameter set, the scattering rate γ in DMFT is
large enough to induce a large violation of the pinning
condition ImGloc(ω = 0) = ImGU=0

loc (ω = 0), valid for local
self-energies with vanishing imaginary part at the Fermi level
[28]. Moreover, the temperature dependence of γ evidently
involves corrections [30] to the low-energy Fermi-liquid
behavior, as neither DMFT nor D�A yield a T 2 behavior,
and therewith the interpretation of the expansion coefficient
Z as quasiparticle weight breaks down. Nevertheless, in
the following, we will conventionally indicate as “Fermi
surface” the solutions kF of the quasiparticle equation,
det[μ − εk − Re�(k,0)] = 0, with the chemical potential
μ and the one-particle dispersion εk (see Supplemental
Material [29]). This can be motivated by the (co)existence
of quasiparticlelike excitations, even above the Fermi-liquid
coherence scale [30].

Σ(k, ω) = ReΣ(k, ω = 0)ReΣ(k, ω = 0)ReΣ(k, ω = 0) + (1 − 1/Z(k)Z(k)Z(k))ω − ıΓ(k)Γ(k)Γ(k) ω2 + π2T 2 + · · ·
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FIG. 2. (Color online) Low-energy expansion of the D�A self-energy and momentum dependence of the expansion coefficients. The
shaded areas (light gray, gray, black) indicate the standard deviation, 
ka(k) = √

1/Nk
∑

k |a(k) − aloc|2 , of the expansion coefficients
a(k) = Re�(k,ω = 0), Z(k), and γ (k) = −Im�(k,ω = 0) = �(k)π2T 2 + O(T 4) in the Brillouin zone with respect to their local values aloc,
as a function of temperature for different fillings (n = 0.9, 0.95, 0.975). From left to right: (i) The static real part of the self-energy at the Fermi
level, Re�(k,ω = 0). Its standard deviation increases notably on approaching the Néel transition (marked by green lines). The local value of
Re�(k,ω = 0), including the Hartree term, was absorbed into the chemical potential. (ii) The quasiparticle weight Z(k). (iii) The scattering
rate γ (k). For (ii) and (iii), the standard deviation with respect to momentum is shown as stripes (shades of gray) around the respective local
value, Zloc and γloc, within D�A (solid lines). As a comparison, the (by construction) local values of Z and γ within DMFT are shown (dotted
lines). U = 1.6 and the temperatures and fillings correspond to the vertical cuts shown in Fig. 1.
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In D�A, the spectral weight at the Fermi level is further
depleted compared to DMFT (see Supplemental Material
[29] and Refs. [4,20]) and effective masses are reduced
(see below). Hence, the local electron-electron scattering
contributions to quasiparticle lifetimes decrease, explaining
why γ DMFT > γ D�A

loc . When approaching the SDW state,
however, nonlocal spin fluctuations provide an additional
scattering mechanism: While γ → 0 for T → 0 in DMFT,
the inverse lifetime in D�A levels off. Concomitantly, and
analogous to the incoherence crossover at high T via local
electron-electron scattering, the emerging low-T scattering in
D�A causes ZD�A to saturate towards the SDW state.

We now analyze the momentum dependence of the self-
energy by calculating the standard deviation of the expansion
coefficients, a(k) = Re�(k,ω = 0), Z(k), and γ (k), with re-
spect to their local values: 
ka(k) =

√
1/Nk

∑
k |a(k) − aloc|2

(see Ref. [6] and Supplemental Material [29]). We find that
nonlocal fluctuations manifest themselves very differently in
the individual coefficients as follows (from left to right in
Fig. 2):

(i) The momentum dependence of the static part of the self-
energy Re�(k,ω = 0), as measured by the above standard
deviation, increases substantially towards the spin-ordered
phase, and grows sharply when approaching the Mott insulator
at half filling; 
kRe�(k,ω = 0) reaches values as large as
20–40% of the half bandwidth W/2—a large effect that is
fully neglected in DMFT.

(ii) The standard deviation in momentum space of the
quasiparticle weight, 
kZ(k) [depicted as shaded areas around
the local values in Fig. 2(b)], is small in all considered cases.
Indeed, the largest absolute deviation amounts to only 0.07.
In particular, 
kZ(k) does not dramatically increase upon
approaching the Néel temperature, in stark contrast to the
discussed static part of the self-energy.

(iii) The momentum dependence of the scattering rate γ ,
shown in Fig. 2(c), remains always moderate. Specifically,
the momentum variation increases on absolute values when
approaching the Mott insulator at half filling, although the
relative importance 
kγ (k)/γ actually decreases.

In all, we thus find that while spin and charge fluctua-
tions, which develop upon approaching the spin-ordered or
Mott-insulating state (see Supplemental Material [29]), can
significantly renormalize the value of the quasiparticle weight
Z, they do not introduce any sizable momentum differentiation
in it. This is in strong opposition to the pronounced nonlocal
effects in the static part of the self-energy. The latter will,
however, strongly modify the mass m∗ of the quasiparticles,
as, e.g., extracted from Shubnikov–de Haas or photoemission
experiments. Indeed, the effective mass enhancement m∗/m is
defined by the ratio of group velocities of the noninteracting
and interacting system, respectively,

(
m∗

m

)−1 ∣∣∣∣
kF

= Z(kF )

[
1 + ekF

· ∇kRe�(k,ω = 0)

ekF
· ∇kεk

]
k=kF

,

(1)

where εk is the noninteracting dispersion and ekF
is the unit

vector perpendicular to the Fermi surface for a given kF . Thus,
besides the enhancement of m∗ via Z (which we showed to be

TABLE I. Effective masses on the Fermi surface. Contributions to
m∗/m from dynamical [Z] and static [∇kRe�(k,0)] renormalizations
for three kF ; see also Fig. 3. In DMFT, m∗/m = 1/Z = 1/0.44 =
2.26. U = 1.6, T = 0.043.

k = kF k0 ∇kεk ∇kRe�(k,0) Z 1/Z m∗/m

k1 = (k0,k0,0) 2.16 0.55 0.30 0.45 2.20 1.42
k2 = (k0,0,π ) π/2 0.67 0.20 0.45 2.23 1.72
k3 = (k0,k0,k0) π/2 0.99 0.35 0.41 2.44 1.81

quasilocal; see also Table I), there is a contribution to m∗
from the momentum dependence of the static self-energy.
The sign of the derivative ∇kRe� is always positive, thus
the effect of nonlocal correlations is to reduce the effective
mass. In Table I, we give the individual components to
m∗/m for three Fermi vectors kF [on the Fermi surface, Z

and γ are maximal (minimal) for k2 (k3)]. We find m∗/m

to be notably momentum dependent: m∗/m = 1.4 for k1,
while for k3, m∗/m = 1.8—a value larger by 30%. However,
it is dominantly the spatial variation of the self-energy
(∇kRe�), not a nonlocal dependence in its dynamics (Z),
that causes this momentum differentiation. Depending on kF ,
nonlocal correlation effects reduce the effective mass down
to 55–75% of its dynamical contribution, 1/Z. In realistic
GW calculations, even larger reductions were found for iron
pnictides [6]. Besides the change in the (local) quasiparticle
weight, this is a second, significant effect not accounted for in
local approaches, such as DMFT.

Having so far concentrated on effects at the Fermi level, a
natural question arises: Up to which energy scale do dynamical
correlations remain essentially local? Figure 3 shows the Fermi
surface within D�A for n = 0.9 and the real parts of the
self-energies [31] along a path in the Brillouin zone. Congruent
with the quasiparticle weight being quasilocal, the slopes of the
self-energies at the Fermi level are the same for all momenta
and the curves differ by a static shift only. To quantify this
observation, we plot in Fig. 3 (right) the standard deviation

kZ(k,ω), where we have formally extended the Z factor to fi-
nite frequencies: Z(k,ω) = 1/[1 − ∂ωRe�(k,ω)]. 
kZ(k,ω),
a measure for the momentum dependence of dynamical
correlations, is negligible in the energy window [−0.25 : 0.6].
Given the bandwidth renormalization W → Wm/m∗, with the
above effective mass ratio, nonlocal correlations are effectively
static over most of the interacting quasiparticle dispersion.

In Fig. 3, we also show GW results: While the slope of the
self-energy is constant throughout the Brillouin zone within
the linear Fermi-liquid regime (the extension of which GW
overestimates), the static part shows only a weak momentum
dependence also [32]. The comparatively large variations
of Re�(k,ω = 0) in D�A therefore emphasize the pivotal
influence of spin fluctuations (neglected by GW) onto (static)
nonlocal correlations.

Discussion and outlook. The central findings of our analysis
for correlated metals in 3D are as follows: (1) Within most
of the quasiparticle bandwidth, nonlocal correlations are
static. Conversely, dynamical correlations are local. Hence, the
self-energy is separable into nonlocal and dynamical contri-
butions,

�(k,ω) = �nonloc(k) + �loc(ω), (2)
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FIG. 3. (Color online) D�A Fermi surface and momentum dependence of the self-energy. Shown is the Fermi surface computed in D�A
for n = 0.9, U = 1.6, T = 0.043 (left). There, the green square indicates the cut of the Brillouin zone that contains the path (k,k,0) for which
the real parts of the D�A self-energies (middle panel) are shown. Indicated are also the k points of Table I. The maximal (minimal) Z and γ

on the Fermi surface occur at k2 (k3). We also show self-energy results from the GW approach (thin dashed lines): GW overestimates Z and the
energetic extent of the (linear) Fermi-liquid regime. The right panel shows the standard deviation 
kZ(k,ω) for the generalized quasiparticle
weight Z(k,ω) = 1/[1 − ∂ωRe�(k,ω)]: Its momentum variation is negligible with respect to its local value within the gray-shaded energy
range that encompasses most of the quasiparticle bandwidth.

providing an a posteriori justification for the application
of a DMFT-like method to describe �loc(ω) in 3D. We
stress, however, that since, e.g., ZDMFT �= ZD�A

loc , ways to
improve the DMFT impurity propagator [e.g., by incorpo-
rating �nonloc(k) in the DMFT self-consistency] need to
be pursued. (2) Static correlations have a large momentum
dependence, calling for a description of �nonloc beyond,
say, DFT. This can, e.g., be achieved with the GW+DMFT
approach [7,33] or the recently proposed quasiparticle self-
consistent (QS)GW+DMFT [6,34]. Exploiting Eq. (2), these
can be simplified, as is the strategy in DMFT@(nonlocal
GW) [10]. Yet, already the GW can profit: Here we
propose to replace Hedin’s �GW (k,ω) = 1/Nq

∑
q,ν G(k +

q,ω + ν)W (q,ν) with �̃GW (k,ω) = �loc
GW (ω) + �nonloc

GW (k),
where �loc

GW (ω) = ∑
ν Gloc(ω + ν)W loc(ν), �nonloc

GW (k) =
1/Nq

∑
q,ν G(k + q,ν)W (q,ν) − �loc

GW (ω = 0) for GW calcu-
lations of metals. We shall refer to this physically moti-
vated scheme as “space-time-separated GW.” Avoiding the
q and ω convolution, respectively, reduces the numerical
expenditure from NkNq × NωNν to NωNν + NkNq × Nν ,
typically gaining more than an order of magnitude [35]. If
the dominant nonlocal self-energy derives from exchange
effects, Eq. (2) holds and screened exchange (SEx)+DMFT
[15] can be employed. In the (one-band) Hubbard model,
however, nonlocal self-energies are not exchange driven. Still,
as we have shown, �nonloc is significant, and in particular
beyond a perturbative technique such as GW. Consequently,
at least in the vicinity of second-order phase transitions, a
methodology beyond (QS)GW+DMFT is required. Ab initio
D�A [36] or realistic applications of other diagrammatic

extensions [37–41] of DMFT might provide a framework
for this. That Eq. (2) holds beyond weak coupling, however,
nourishes the hope that a much less sophisticated electronic
structure methodology can be devised in 3D.

Nonlocal renormalizations that are dynamical occur in
lower dimensions, as, e.g., shown theoretically for 2D [41–45].
However, also in 3D, momentum-dependent quasiparticle
weights can be generated. In fact, this is the typical situation
in heavy fermion systems below their (lattice) Kondo tem-
perature. There, the hybridization amplitude for spin singlets
between atomiclike f states and conduction electrons is modu-
lated on the Fermi surface, as it can be rationalized with mean-
field techniques [46]. Thus, even a local quasiparticle weight
of the f states yields a momentum-space anisotropy of Z via
the change in orbital character. This effect has also been held
responsible for anisotropies in some Kondo insulators [47].
Beyond this scenario, however, strong intersite fluctuations
in the periodic Anderson model [48] suggest actual nonlocal
correlation effects to be of crucial relevance to heavy fermion
quantum criticality [49,50]. A further source of nontrivial
nonlocal correlation effects in 3D are multipolar Kondo liquids
[51–53]. To elucidate the latter two phenomena, an application
of D�A to, e.g., the periodic Anderson model is called for.
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