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Continuous-time quantum Monte Carlo using worm sampling
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We present a worm sampling method for calculating one- and two-particle Green’s functions using continuous-
time quantum Monte Carlo simulations in the hybridization expansion (CT-HYB). Instead of measuring Green’s
functions by removing hybridization lines from partition function configurations, as in conventional CT-HYB, the
worm algorithm directly samples the Green’s function. We show that worm sampling is necessary to obtain general
two-particle Green’s functions which are not of density-density type and that it improves the sampling efficiency
when approaching the atomic limit. Such two-particle Green’s functions are needed to compute off-diagonal
elements of susceptibilities and occur in diagrammatic extensions of the dynamical mean-field theory and in
efficient estimators for the single-particle self-energy.
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I. INTRODUCTION

The Anderson impurity model (AIM) [1,2] is one of the
fundamental models for electronic correlations. The model
was originally developed to describe the physics of magnetic
impurities in solids but nowadays also serves as a model for
quantum dots [3–5], adatoms on surfaces [6,7] and appears as
an auxiliary model in the context of dynamical mean-field
theory (DMFT) [8–11]. Continuous-time quantum Monte
Carlo (CT-QMC) algorithms [12–16] are state of the art for
the numerical solution of the AIM. They are based on a
stochastic sampling of an imaginary-time partition function
expansion [17,18].

The methods are formally numerically exact and, in contrast
to other impurity solvers [19–25], can treat impurities with
many degrees of freedom, general interactions, and continuous
bath dispersions. The most widely known representatives are
formulated as an expansion of the partition function, either in
terms of the interaction (CT-INT and CT-AUX) [12,15] or in
terms of the impurity-bath hybridization (CT-HYB) [13,14],
with the resulting series sampled stochastically.

A variant of continuous-time algorithms, usually referred to
as the worm algorithm, expands both the partition function and
the Green’s function. This results in the configuration space
sampled by Monte Carlo to be enlarged (see Fig. 1). This
concept has been pioneered for diagrammatic Monte Carlo
solvers for bosonic Green’s functions [18,26] and adapted
for fermionic one-particle Green’s functions for the CT-INT
algorithm [27].

In this paper, we introduce a generalization of the worm
algorithm for the (multiorbital) hybridization expansion [14].
While worm sampling is not restricted to any specific quantity,
we show the application to fermionic two-particle Green’s
functions, which are necessary to compute response functions
and which appear in formulations of nonlocal extensions
of the DMFT such as the dynamical vertex approxima-
tion [28], the dual fermion approach [29], the one-particle
irreducible approach [30], and the DMFT to functional
renormalization group [31]. They also appear in the mea-
surement of single-particle self-energies using the “improved
estimator” [32] technique that has been shown to yield high

precision estimates for the high-frequency behavior of Green’s
functions.

In Sec. II we motivate our work by showing that con-
ventional CT-HYB partition function sampling fails due to
ergodicity problems when approaching the atomic limit and
when calculating general two-particle Green’s functions.

Section III first gives a short overview of worm sampling
and then generalizes CT-HYB to the Green’s function space,
introducing the Monte Carlo update procedure of our CT-
HYB worm method. Section IV introduces the measurement
procedure. Section V presents the results for large interactions
and the atomic limit, where analytical solutions are available.
Section VI focuses on results for the two-particle Green’s
function of the two-orbital model, further validating the worm
sampling algorithm by exploiting the SU(2) symmetry of the
magnetic (spin) susceptibility. Section VII provides a brief
summary.

II. MOTIVATION

We start with a brief motivation for measuring the n-particle
Green’s functions G(n) with worm sampling. The Hamiltonian
considered here is that of the multiorbital AIM, which in its
most general form reads

HAIM = 1

2

∑
αβγ δ

Uαβγ δd
†
αd

†
βdδdγ +

∑
α

ε̃αd†
αdα

︸ ︷︷ ︸
Hloc

+
∑
kα

εkαc
†
kαckα︸ ︷︷ ︸

Hbath

+
∑
kαβ

[
V

αβ

k c
†
kαdβ + (

V
βα

k

)∗
d†

αckβ

]
︸ ︷︷ ︸

Hhyb

.

(1)

Here, d†
α (dα) denotes the creation (annihilation) operator of

an electron with spin-orbit flavor α on the impurity and c
†
kα

(ckα) denotes the creation (annihilation) operator of an electron
of momentum k in the noninteracting bath that belongs to the
impurity flavor α. The impurity problem is characterized by the
one-particle levels ε̃α , the interaction matrix Uαβγ δ , the bath
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FIG. 1. (Color online) Illustrating the concept of worm sampling.
The configuration space of the partition function CZ is enlarged by the
configuration space of the n-particle Green’s function CG(n) . A random
walk in the combined configuration space is shown, where dashed
lines represent the transition moves between the two configuration
spaces and solid lines the moves within one space.

dispersion εkα , and the hybridization strengths V
αβ

k . In CT-
HYB, given some inverse temperature β, the partition function
Z = Tre−βHAIM of the AIM Hamiltonian (1) is expanded in
terms of the hybridization Hhyb. The trace then decouples into
a local part described by the local impurity Hamiltonian (Hloc)
and a bath part described by the conduction electron bath
(Hbath). With the bath partition function Zbath = Tre−βHbath we
find [for a detailed derivation see Ref. ([13])]

Z = Zbath

∑
k∈2N0,αk

∫ β

τk−1

dτk

∫ β

τk−2

dτk−1 . . .

∫ β

τ1

dτ2

∫ β

0
dτ1

× Tr
[
Tτ e

−βHlocdαk
(τk)d†

αk−1
(τk−1) . . . dα2(τ2)d†

α1
(τ1)

]
︸ ︷︷ ︸

≡wloc(k,τ1,...,τk)

× det �︸ ︷︷ ︸
≡wbath(k,τ1,...,τk)

. (2)

Here d†
α(τ ) (dα(τ )) are the operators of Eq. (1) in Heisenberg

representation, whose evolution in imaginary time is given by
Hloc. Further, Tτ is the Wick’s time ordering operator and �

denotes the (k/2) × (k/2) matrix of all possible hybridization
lines between τ1 . . . τk , with the elements

�αα′ (τ ) =
∑
k,γ

(
V

αγ

k

)∗
V

α′γ
k

eβεkγ + 1

{−e−εkγ (τ−β) τ > 0

e−εkγ τ τ < 0,
(3)

where τ = τi − τj . We refer to hybridizations as diagonal if
�αα′ (τ ) = 0 ∀α �= α′; otherwise we call them off-diagonal.
In the following we will restrict ourself to diagonal hybridiza-
tions, even though in principle off-diagonal hybridizations can
also be considered.

In Eq. (2) abbreviations for the local weight wloc and the
bath weight wbath are introduced, which become important
when defining the Monte Carlo algorithm. In Fig. 2 we provide
an illustration of a configuration of the partition function Z for
a given expansion order k/2. A more detailed discussion is
found in Ref. [13]. In this work we refer to the expansion
order as k/2 so that the number of operators in the local trace
is given by k (different conventions exist in literature).

When measuring the one-particle Green’s function G(1)(τ )
in conventional CT-HYB, sampling takes place in partition

FIG. 2. (Color online) Illustration of a configuration of the parti-
tion function Z for an expansion order of k/2 = 3. Here we show the
case of a flavor-diagonal hybridization function, which connects only
operators of the same flavor to one another. The different flavors
are denoted using different colors (red, blue). When connecting
creation (filled shapes) and annihilation (empty shapes) operators
by hybridization lines, we number all creation operators from 1 to
k/2 and all annihilation operators from 1 to k/2.

function space CZ , i.e., the orders k/2 and τi in Eq. (2) are
sampled. One starts from the functional identity:

G
(1)
αα′ (τ ) = − 1

Z

δZ

δ�α′α(−τ )
. (4)

The conventional estimator is obtained from Eq. (2) by
replacing the functional derivative in Eq. (4) with the partial
derivative and using the chain rule, which generates local
operators by detaching their hybridization lines (a detailed
derivation can be found in Appendix C of Ref. [33]):

G
(1)
αα′ (τ ) = − 1

β

〈
k/2∑
nm

det �(nm)

det �
sgn δ(τ,τm−τn)δααm

δα′αn

〉
MC

,

(5)

where �(nm) is the (k/2) × (k/2) hybridization matrix �

with the nth row and mth column removed, corresponding
to the removal of hybridization lines; δ(τ,τm − τn) specifies
the imaginary-time bin of the measurement; and 〈...〉MC refers
to the Monte Carlo expectation value of the τ integrals and
k sums of Eq. (2), including the weighting factor e−βHloc ; and
“sgn” denotes the sign imposed by the Wick time ordering. In
the following we denote the estimate Eq. (5), suppressing the
indices α,α′, as G

(1)
CZ

(τ ).
Computing the Green’s function by evaluating the quotient

of the hybridization matrix reveals a first shortcoming of this
approach: the estimator in Eq. (5) fails if the hybridization
between the impurity and the bath becomes very weak. We
later see that the estimator of worm sampling instead does not
depend on the determinant ratio of the hybridization matrix
�, such that sampling is still possible for small or vanishing
�. This suggests that worm sampling does a better job for
systems approaching the atomic limit. We point out that some
methods exist in order to improve the estimator in Eq. (5).
A recent approach is the so-called remove-shift measurement
(or sliding measurement), which has been implemented for
density-density codes [34]. While the remove-shift estimator
is capable of enhancing measurements by decreasing autocor-
relation times, it does still depend on operator pairs which are
connected to the bath over their hybridization. As such, this
approach does not cure the problem encountered for weakly
hybridizing systems.
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Equation (5) is restricted to diagrams produced by partition
function sampling and does not generate off-diagonal Green’s
function contributions for diagonal hybridization matrices
�αα . However, for non–density-density interactions, such
terms are indeed present in the two-particle Green’s func-
tion G(2). One can immediately see this for the SO(n) ⊗
SU(2)-conserving Slater-Kanamori interaction: here, the spin
susceptibility is invariant under spatial rotations, such that,
e. g., 〈Sz(τ )Sz(0)〉 = 〈Sx(τ )Sx(0)〉. The spin susceptibility in z

direction relates to flavor-diagonal terms of G(2):〈
Si

z(τ )Sj
z (0)

〉
= 1

4 〈[ni
↑(τ ) − ni

↓(τ )][nj

↑(0) − n
j

↓(0)]〉
= 1

4 〈c†i↑(τ )ci↑(τ )c†j↑(0)cj↑(0) − c
†
i↑(τ )ci↑(τ )c†j↓(0)cj↓(0)

− c
†
i↓(τ )ci↓(τ )c†j↑(0)cj↑(0) + c

†
i↓(τ )ci↓(τ )c†j↓(0)cj↓(0)〉.

(6)

All terms can be obtained in conventional CT-HYB by
removing one hybridization line for orbital i and one for orbital
j , analogous to Eq. (5). The spin susceptibility in x direction,
on the other hand, manifests itself as spin-flip terms in G(2),
which are off-diagonal:〈
Si

x(τ )Sj
x (0)

〉
= 1

4 〈[Si
+(τ ) + Si

−(τ )][Sj
+(0) + S

j
−(0)]〉

= 1
4 〈c†i↑(τ )ci↓(τ )c†j↑(0)cj↓(0) + c

†
i↑(τ )ci↓(τ )c†j↓(0)cj↑(0)

+ c
†
i↓(τ )ci↑(τ )c†j↑(0)cj↓(0) + c

†
i↓(τ )ci↑(τ )c†j↓(0)cj↑(0)〉.

(7)

We emphasize that the two-particle generalization of Eq. (5)
does not provide the spin-flip terms of Eq. (7) but only
density-density–like terms as in Eq. (6). One can obtain
Eq. (7) by a functional derivative as in Eq. (4), albeit with
a hybridization function �αα′ that is either off-diagonal in the
orbitals or the spins. Such terms, however, are not generated in
the hybridization expansion Eq. (2), at least not for an orbital-
and spin-diagonal �αα .

A particularly important application of these off-diagonal
elements is found when extracting the self-energy 	(iω) from
the equation of motion, a technique that leads to precise
high-frequency estimates. This method is usually referred to
as improved estimators and has so far only been implemented
for density-density interactions [32]. For interactions of non–
density-density type, off-diagonal terms of the two-particle
Green’s function are needed when implementing improved es-
timators for the self-energy and the reducible vertex. We show
how worm sampling is capable of supplying such off-diagonal
terms, hereby overcoming the systematic shortcoming of
traditional CT-HYB algorithms of being restricted to Green’s
functions generated by the type of AIM hybridization.

III. SAMPLING AND ERGODICITY IN GREEN’S
FUNCTION SPACE

In order to solve the restrictions of the conventional Green’s
function estimator [Eq. (5)], we may be tempted to turn the

diagrammatic series of a local observable O,

〈O(τ )〉 = Zbath

Z

∑
k∈2N0,αk

∫ β

τk−1

dτk

∫ β

τk−2

dτk−1 . . .

∫ β

0
dτ1

× Tr
[
Tτ e

−βHlocO(τ )dαk
(τk) . . . dα2(τ2)d†

α1
(τ1)

]
det �,

(8)

into a Monte Carlo estimator by inserting O into diagrams
from the expansion of Z [Eq. (2)] and measuring the weight
ratio. However, as already noted in Ref. [16], such an estimator
for the Green’s function is not ergodic. (We elaborate on this
in Sec. III B.)

Using worm sampling, we solve this issue by enlarging our
configuration space

C = CZ ⊕ CG(n) (9)

to contain both types of diagrams of Eq. (2) of the partition
function space CZ and Eq. (8) of the n-particle Green’s
function space CG(n) (see Fig. 1). The sampling in CG(n)

allows us to generate all diagrams for the Green’s function,
thereby circumventing the ergodicity problems of both the
estimator constructed from insertion of local operators and
from removal of hybridization lines. While CG(n) was originally
introduced as an auxiliary space to restore ergodicity and lower
autocorrelation times for CZ , here the reverse can be argued:
excursions to partition function space lower the autocorrelation
times and provide the proper normalization for the Green’s
function (cf. Sec. IV).

In this work we restrict ourselves to sampling as O(τ ) in
Eq. (8) the one-particle Green’s function and the two-particle
Green’s function in imaginary time τ defined by

G(1)
α1α2

(τi,τj ) = −〈Tτdα1 (τi)d
†
α2

(τj )〉, (10)

G(2)
α1α2α3α4

(τi,τj ,τk,τl) = 〈
Tτdα1 (τi)d

†
α2

(τj )dα3 (τk)d†
α4

(τl)
〉
.

(11)

Restricting worm sampling to the Green’s functions space
CG(n) has two reasons: (i) the one- and two-particle Green’s
functions include almost all relevant information about the
quantum impurity [see Eqs. (2)–(5)], and (ii) when sampling
the one- and two-particle Green’s function, we can compare
our results against the measurements in the partition function
space CZ (especially with regard to the normalization, error
bars, and strong insulating cases). While a similar comparison
in principle would be possible for the three-particle Green’s
function G(3), we do not consider this quantity because of
the high computational effort involved and the less physical
significance in comparison to G(1) and G(2).

In Fig. 3 the Monte Carlo moves in CZ and CG(n) are
illustrated. We included all steps needed to be ergodic and to
decrease autocorrelation lengths in both configuration steps.
The pair insertion and removal steps in CZ [Figs. 3(a) and 3(b)]
are typical in the CT-HYB algorithm. We further introduce the
operator shift move for CZ [Fig. 3(c)], which shifts the time of
a creation or annihilation operator.

For later discussion, we set up a modified partition function
ZG(n) in configuration spaceCG(n) by integrating over all degrees
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FIG. 3. (Color online) Illustration of Monte Carlo moves in the
extended configuration space of worm sampling. Circles denote
operators connected by hybridization lines (indicated by vertical
lines), while rectangles denote worm operators. Moves (a), (b), and
(c) correspond to insertion, removal and shift, respectively, of an
hybridization operator pair in the configuration space Cz. Labels (d)
and (e) exemplify worm insertion and removal moves transitioning
between the two spaces, where the parameter η(1) rescales the
phase-space volume of CG(1) . (For details see Sec. III A.) Labels (f)
and (g) denote removal and insertion of a hybridization operator pair
in CG(1) (Sec. III B); (h) labels the worm operator replacement move
in CG(1) (Sec. III C).

of freedom of the Green’s function G(n) [27]:

ZG(n) :=
∫∑

G(n)
α1,...,αn

(τ1, . . . τn)

=
∑

α1,...,αn

∫
dτ1 . . . dτn G(n)

α1,...,αn
(τ1, . . . τn). (12)

This is not a “physical” partition function in the sense that
it is connected to a thermodynamic potential, but it simply
represents a phase-space volume in Green’s function space.
We now discuss all the steps mentioned in Fig. 3 in full detail.

A. Worm insertion and removal steps

The worm insertion and removal steps are transition steps
between the two configuration spaces, depicted in Figs. 3(d)
and 3(e). In order to sample in CZ and CG(n) , jumping between
the two spaces is needed. In general, the configuration spaces
CZ and CG(n) have very different phase-space volumes. This
difference is balanced out by introducing a weighting factor
η(n) so that the total partition function reads

W = Z + η(n)ZG(n) . (13)

For now it was not formalized how η(n) scales with the number
of orbitals, temperature, and interaction strength. It is best to
choose η(n) so that the simulation spends an equal amount of
steps in CZ and CG(n) . We revisit this fact when discussing the
normalization of the worm result in the following section.

It is important to mention that the only difference between
worm operators and hybridization operators is the missing
of hybridization lines. This has some implications for our

Metropolis acceptance rates. The proposal rate of inserting
a worm is given by the same expression as the proposal rate of
inserting n hybridization operator pairs [13], i.e.,

f (CZ → CG(n) ) = dτ 2n

β2n
. (14)

Adding worm pairs results in the expansion order k/2 of the
local trace being increased by n, whereas the expansion order
in the determinant is kept constant. This adds an ambiguity
to the expansion order which needs to be kept in mind. The
weight of a configuration in CG(n) modified by η(n) is then

p
(
CG(n) ,τ1, . . . ,τk; τi1 ,...,τi2n

)
= η(n) · wloc

(
k + 2n,τ1, . . . ,τk; τi1 ,...,τi2n

)
×wbath(k,τ1, . . . ,τk)dτ1 . . . dτk. (15)

We point out that combining the proposal probability
and the configuration of the weight, the 2n infinitesimals
dτi1 . . . dτi2n

do not cancel as they would have in partition
function sampling. This is due to the extra local degrees of
freedom introduced by the worm and is integrated over in
the computation of ZG(n) (12). The proposal probability for
removing the worm is simply

f (CG(n) → CZ) = 1. (16)

Note that since there is only one worm in the trace at a given
time, we always propose to remove exactly this worm. The
Metropolis acceptance rate of a worm insertion is hence

a(CZ → CG(n) )

= min

[
1,η(n)

∣∣wloc
(
k + 2n,τ1, . . . ,τk; τi1 , . . . ,τi2n

)∣∣
|wloc(k,τ1, . . . ,τk)| β2n

]
.

(17)

The bath weight wbath, which includes the hybridization
matrix, cancels out due to the fact that the bath remains
unchanged.

The inverse gives the acceptance probability of a worm
removal:

a(CG(n) → CZ)

= min

[
1,

1

η(n)

|wloc(k,τ1, . . . ,τk)|∣∣wloc
(
k + 2n,τ1, . . . ,τk; τi1 , . . . ,τi2n

)∣∣ 1

β2n

]
.

(18)

We point out that we jump between CZ and CG(1) and
between CZ and CG(2) , but never between CG(1) and CG(2) .
As mentioned in Sec. II, the two-particle Green’s function
for non–density-density interaction includes spin-flip and
pair-hopping terms. The one-particle Green’s function, on
the other hand, is always flavor diagonal for flavor-diagonal
hybridization functions. This way, inserting two worm pairs
consecutively by attempting to jump from CZ to CG(1) and
then to CG(2) will fail to provide flavor-off-diagonal, i.e.,
spin-flip and pair-hopping terms. A very similar observation
was recently made for the conventional CT-HYB algorithm
with a flavor-off-diagonal hybridization function [35].
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B. Pair insertion and removal steps in Green’s function space

In order to generate all possible Green’s function configu-
rations, we need to introduce additional updates in the Green’s
function space CG(n) . This is a crucial part of worm sampling;
without it, the estimator is not ergodic (cf. Fig. 4).

This explains why we are required to sample the Green’s
function space CG(n) separately with operators having hy-
bridization lines attached. To this effect, we perform insertions
and removals of hybridization operator pairs also in Green’s
function space [Figs. 3(f) and 3(g)]. Acceptance rates are
similar to the corresponding acceptance rates in CZ space:

a(CG(n) ; k + 2n → k + 2n + 2)

= min

(
1,

∣∣wloc
(
k + 2n + 2,τ1, . . . ,τi1 , . . . ,τi2n

, . . . ,τk; τi,τj

)∣∣∣∣wloc
(
k + 2n,τ1, . . . ,τi1 , . . . ,τi2n

, . . . ,τk

)∣∣ |wbath(k + 2,τ1, . . . ,τk; τi,τj )|
|wbath(k,τ1, . . . ,τk)|

β2

[(k + 2)/2]2

)
, (19)

where the worm operators are located at times τi1 , . . . ,τi2n
. The

Metropolis acceptance rate for a pair removal in the Green’s
function space is then just given by the inverse of Eq. (19).

We remind the reader of the fact that the local weight wloc

in Eq. (19) is expressed relative to a factor k + 2n + 2, while
the bath weight wbath is expressed relative to a factor k + 2.
The discrepancy comes from the n worm operator pairs in the
local trace without hybridization lines.

C. Worm replacement step in Green’s function space

While insertion and removal moves formally fulfill
the condition of ergodicity, worm sampling requires a
shift/replacement move in order to allow for acceptable
autocorrelation lengths. We elaborate on this requirement here.

Let us assume a local trace filled with hybridization operator
pairs. We now attempt to insert a worm pair into this trace. It
turns out that inserting a worm pair where the worm operators
are relatively close to one another is probable, while inserting
a worm pair where the worm operators are far apart is less
probable. This is because of (i) possible quantum number
violations, since there may be many creations and annihilations
in between the pair for long time differences, and (ii) the pair
insertion might lead to an energetically disadvantageous local
configuration, which is unfavorable to have for a long time.

Problem (i) is especially severe if we have a large amount
of operators in the trace, which occurs at small interaction

FIG. 4. (Color online) An “insertion estimator,” i.e., the mere
insertion of local operators into a diagram from CZ without sampling
is not ergodic; it fails to produce diagram (3) because (2b) violates the
Pauli principle and is therefore never reached. By first transitioning
to CG(1) space from (1) and then inserting a hybridization operator
pair into (2a), one indeed is able to reach diagram (3).

or low temperatures. Additionally, more restrictive interaction
types, such as the density-density interaction, produce more
rejects due to quantum number violations of attempted worm
inserts. This is why we do not observe this autocorrelation
problem at high temperatures, high interaction parameters, and
more general interactions such as Slater-Kanamori interactions
(which may change the quantum number in the local trace).

The solution to this problem is found in shift/replacement
moves. We consider, instead of a general worm shift move,
a replacement move which exchanges one of the worm
operators with an operator of the hybridization expansion, i.e.,
we replace it with one of the same flavor connected by a
hybridization line as illustrated in Fig. 3(h).

This way we do not have to recalculate the local trace, as two
locally indistinguishable operators switch position. Instead,
we need to recalculate the determinant of the hybridization
matrix since the replacement corresponds to a shift of the worm
operator and a shift of the hybridization operator. Furthermore,
we do not encounter any rejects of proposed moves due to local
quantum number violations.

It turns out that worm replacement moves (or in the same
way worm shift moves) are equally important for traces with
very few operators because of problem (ii). This problem
typically occurs if the weight e−Uτ of the worm becomes
prohibitively small, i.e., in particular, for a large interaction
strength and a long τ difference such as β

2 . We are then
effectively restricted to inserting operator pairs into the trace,
which are very close to each other in imaginary time. These
pairs have similar properties as density operators and can
in principle be inserted for very high insulating cases. By
inserting hybridization pairs at short distances τi − τj and then
replacing one worm operator with one hybridization operator
we are able to pass the restrictions of the time evolution. As
we will show in the following, the replacement move depends
only on the ratio of the determinant of the hybridization matrix.

The proposal probability of a worm replacement step is
given by

f ′(CG(n),k + 2n → k + 2n) = 1

2n(k/2)
. (20)

This corresponds to selecting one creation/annihilation op-
erator of the 2n worm operators at random and selecting
one creation/annihilation of the same spin-orbit flavor with a
hybridization line. In practice, we choose an operator from the
k/2 operators of the same type (annihilator/creator) and then
discard flavors, which are not equivalent to the worm flavor.
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FIG. 5. (Color online) One-particle Green’s function G(1)(τ ) in
imaginary time τ , illustrating the ergodicity problem of the worm
algorithm for an average expansion order of k/2 ∼ 40. Parameters:
inverse temperature β = 200/D, Coulomb repulsion U = 0.5D and
μ = 0.3D (out of half-filling) for the the single-orbital AIM with
semielliptic conduction electron density of states with half bandwidth
D = 1 and V = 0.5D. The balancing parameter η(1) was chosen in the
interval [0.15,0.22]. We observe the ergodicity problem between τ =
25/D and τ = 175/D (blue curve). When adding replacement moves,
we are able to insert worm operators for such τ ’s around β/2 (green
crosses) and hence obtain much better results. We have additionally
supplied G(1)(τ ) for the measurement in partition function space (red
line).

The proposal probability of switching the operators back to
their original position is hence also given by Eq. (20).

We observe that the proposal probabilities for the re-
placement move cancel out and the acceptance ratio is
fully determined by the ratio of weights. Further, the local
weights cancel, since a worm operator and the corresponding
hybridization operator are indistinguishable within the local
trace. The Metropolis acceptance rate is hence given by

a′(CG(n),k + 2n → k + 2n)

= min

(
1,

|wbath(k,τ1, . . . ,τi, . . . ,τk)|
|wbath(k,τ1, . . . ,τj , . . . ,τk)|

)
, (21)

where τi refers to the initial position of the worm operator and
τj to the initial position of the operator with the hybridization
line. Figure 5 shows how worm replacement moves alleviate
the ergodicity problem of the worm algorithm for the situation
where many operators are found in the local trace.

We would like to use this opportunity to point out the
difference between a worm replacement and a worm shift
move. The acceptance rate of the worm replacement move
depends on a determinant ratio of two matrices of dimension
(k/2) × (k/2), where k here refers to the number of operators
with hybridization lines connected. In that sense it is very
comparable to the determinant ratio of two matrices of
dimension (k/2 − 1) × (k/2 − 1) and (k/2) × (k/2) in Eq. (5)
when changing the order between k/2 and (k/2 − 1) in
partition function sampling. The acceptance rate of a worm
shift move, on the other hand, depends only on the ratio of
the local traces. While for the worm replacement move we

are able to pass the restrictions of the local time evolution, for
the worm shift move we are able to pass the restrictions of
the hybridization function. When calculating strong insulating
cases we profit the most if we consider both moves.

IV. WORM MEASUREMENT

We now show how the measurement of Green’s function
looks in CG(n) . It turns out that the measurement itself is
trivial and we only need to find the correct normalization
of the Green’s functions measured and the correct sign. For
the one-particle Green’s function G(1) a worm is defined by the
operators d(τi) and d†(τj ). The correct weight is intrinsically
given as we sample in the Green’s function space CG(n) . Thus,
the estimator of the Green’s function simply follows as

G
(1)
CG

(τ ) = 〈sgn δ(τ,τi − τj )〉MC. (22)

The Green’s function in Matsubara frequencies can be
calculated by substituting the δ function by the Fourier
transform:

G
(1)
CG

(iν) = 〈sgn eiν(τi−τj )〉MC. (23)

The measurement of the two-particle Green’s function in
Matsubara frequencies in the particle-hole channel is given by

G
(2)
CG

(iν,iν ′,iω) = 〈sgn eiν(τi−τj )eiν ′(τk−τl )eiω(τi−τl )〉MC.

(24)

The imaginary-time arguments τi, . . . ,τl are assigned to
creation and annihilation operators according to Eq. (11).

While we employ both Eq. (22) and Eq. (23) for the
one-particle Green’s function measurement, the measurement
of the two-particle Green’s function in Matsubara frequencies,
Eq. (24), is far more convenient than a binned measurement
in imaginary time. It is especially difficult to resolve jumps
in the imaginary-time measurement due to fermionic sign
changes in the time ordering of operators. Measuring the two-
particle Green’s function in imaginary time using a binning
procedure and then applying the Fourier transform gives wrong
high-frequency asymptotics, while the direct measurement in
Matsubara frequencies is free of errors resulting from binning.

As with conventional sampling, we do not observe any sign
problem for worm sampling in the case of a flavor-diagonal
hybridization function. However, unlike in the G

(n)
CZ

estimator,
the flavor indices and the imaginary-time bins in the worm
estimator G

(n)
CG

are outer indices, such that the mean sign in
principle also becomes flavor- and τ -dependent.

Equations (22) and (23) are normalized to ZG(1) and Eq. (24)
to ZG(2) as defined in Eq. (12), as opposed to the physically
correct normalization to Z. We now discuss the normalization
in more detail.

A. Normalization and autocorrelation

In principle we are ergodic in CG(n) when assuming worm
replacement or worm shift moves. It turns out, however, that
we need to sample both in CG(n) and CZ with about the same
number of steps to fix the normalization 1

Z
of the thermal

expectation value in Eq. (8).
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When measuring the Green’s functions in CG(n) we implic-
itly normalize with the number of steps taken in CG(n) . We
correct for this factor by explicitly counting how many steps
NG were taken in CG(n) . We further count how many steps NZ

were taken in CZ . This estimates the size of the configuration
space CZ , which then gives the correct normalization. The
normalization for G(n) is then given by [36]

G(n) = 1

η(n)

NG

NZ

G
(n)
CG

, (25)

where G
(n)
CG

is measured in CG(n) and the factor 1/η(n) is a result
of rescaling ZG(n) in Eq. (13).

Let us note that Eq. (25) is only one way of normalizing
the worm measurement. In a different approach, we could
do the entire sampling in worm space without removing the
worm operators at all. We are then required to generate worm
configurations by shift moves and replacement moves. In this
case, we could normalize the result by assuming some physical
knowledge of the Green’s function. One possibility is to extract
the normalization by assuming the correct behavior of the
large-frequency asymptotics of G(1)(iν) or G(2)(iν,iν ′,iω).

In order to calculate the Monte Carlo expectation value
Eq. (23), we still need to divide by the number of measurements
N taken. It is important to notice the difference between the
number of measurements N and the number of steps NG and
NZ taken, since it is common to skip steps during two consec-
utive measurements to assure uncorrelated measurements.

This directly relates to the autocorrelation length of the
QMC sampling. The autocorrelation length in worm space
CG(n) looks very different from the autocorrelation in partition
function space CZ . A well-accepted estimate for the autocor-
relation length in traditional CT-HYB is given by the quotient
of the number of operator pairs (k/2) over the acceptance rate
for removal in partition function space rrem,Z [16]:

Ncorr,Z ≈ (k/2)

rrem,Z

. (26)

In principle, a similar estimate holds for the Green’s
function sampling CG(n) . However, another possibility to arrive
at an uncorrelated worm is to remove one worm and insert
a new worm into the local trace at another location. If the
acceptance rate for removal of a worm pair is rrem,W , this gives
another estimate for the autocorrelation length in worm space:

Ncorr,W ≈ 1

rrem,W

, (27)

which we employ in practice.
It is still necessary to modify the approximations in

Eqs. (26) and (27) by the percentage of worm steps proposed
and the percentage of hybridization operator steps proposed,
since our system has two different types of moves instead
of one. We observe that the acceptance rate of worm inserts
and worm removals is generally lower when inserting four
operators at once, as is the case for the two-particle Green’s
function G(2). While we are able to alleviate this problem
partially by adjusting η(2), the acceptance rate is still lower
due to quantum number violations. The reduced acceptance
rate directly translates to an increased autocorrelation length
of the two-particle Green’s function.

V. ATOMIC LIMIT RESULTS

As a first test and validation of the worm algorithm we
consider the atomic limit. We distinguish two scenarios with a
divergent ratio of Coulomb repulsion to hybridization strength
U/V → ∞. (i) The actual atomic limit defined as V → 0 for
finite U , i.e., we decouple the impurity from the bath. In this
scenario, we are still able to choose U freely. This allows us
to control the time evolution in the local trace. We observe
that the Green’s function estimators of partition function
sampling fail completely in this case due to the absence of the
hybridization function. In the second scenario (ii), we keep
V fixed and increase the Coulomb repulsion U → ∞. While
the Green’s function estimator of partition function sampling
is still capable of producing results for large U due to the
presence of the hybridization function, we observe systematic
deviations of the error bars around τ = β/2.

A. Atomic limit V → 0

The one-particle Green’s function G(1) and the two-particle
Green’s function G(2) are known analytically in the atomic
limit. On the other hand, estimators of the type Eq. (5) fail
completely since the impurity is no longer coupled to the
bath. That is, measuring the Green’s functions by cutting
hybridization lines in CT-HYB is no longer possible due to the
absence of the hybridization function. The worm algorithm, on
the other hand, is not limited by the hybridization function, as
operators are inserted locally. As a result, the worm algorithm
is capable of reproducing the atomic limit.

While sampling the atomic limit with QMC algorithms is
mainly of academic interest, we can use the analytic results
for benchmarking. Figure 6 shows the Green’s function in the
atomic limit, i.e., for an isolated impurity, comparing the worm
algorithm and the analytic expression.
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FIG. 6. (Color online) One-particle Green’s function G(1)(iν) in
discrete Matsubara frequencies iν for the atomic limit of the single-
orbital AIM at inverse temperature β = 5/D, Coulomb repulsion
U = 1.0D, and μ = 0.5D (half filling). The balancing parameter
was set to η(1) = 0.7. In the absence of any hybridization function,
the worm algorithm (green triangles) is able to reproduce the analytic
result (red line). Conventional CT-HYB is not possible.
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FIG. 7. (Color online) Same as Fig. 6 but now for the two-particle
Green’s function G

(2)
↑↑↓↓(iν,π/β,0) slice for which a balancing

parameter η(2) = 0.155 has been employed.

Let us now turn our focus towards two-particle quantities.
The measurement of four worm operators in imaginary time
is Fourier transformed into Matsubara frequencies using the
particle-hole convention. The two-particle Green’s function
G(2)(iν,iν ′,iω) in the particle-hole convention is a function of
two fermionic Matsubara frequencies iν,iν ′ and one bosonic
Matsubara frequency iω. In order to quantify results, we
analyze slices of the full two-particle Green’s function by
setting the second fermionic frequency to ν ′ = π/β and the
bosonic frequency to ω = 0. For comparison, we construct
the analytic atomic limit results of the two-particle Green’s
function from the expressions of the reducible vertex [37,38].
A more complete discussion of the general properties of two-
particle quantities can be found elsewhere [37]. Figure 7 shows
the G

(2)
↑↑↓↓(iν,π/β,0) slice measured using worm sampling and

compared to the analytic result.
We conclude that the absence of the hybridization function

in the atomic limit results in a complete breakdown of the
one- and two-particle Green’s function estimator in partition
function sampling. In contrast, worm sampling works very
well and correctly reproduces the analytic result for the atomic
limit.

B. Strong interaction limit U → ∞
In principle, CT-QMC algorithms are used for intermediate

parameter ranges but not the atomic limit itself. However, the
strongly insulating case with high values of U is of interest.
While here a hybridization function is still present for a finite
bandwidth, the local time evolution suppresses most of the
hopping from and onto the impurity.

Figure 8 shows the one-particle Green’s function G(1)(τ )
with error bars on a logarithmic scale. Both approaches,
partition function and worm sampling, essentially agree for
the Green’s function. However, the error bars of partition
function sampling vanish for intermediate τ values. This is
clearly an artifact, since the error bars should be comparable
along the whole range of τ values, as it is the case in worm
sampling. The origin for this shortcoming is that hybridization
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FIG. 8. (Color online) One-particle Green’s function G(1)(τ ) in
imaginary time for the single-orbital AIM with semielliptic conduc-
tion electron density of states of half bandwidth D, U = 5.0D and
μ = 2.6D (out of half filling). The balancing parameter was set to
η(1) = 1.4. While the error bars of the Green’s function calculated
by partition function sampling vanish between τ ∈ [5,45] (red line),
the error bars of the Green’s function in worm sampling have a
comparable magnitude for all values of τ .

pairs for intermediate τ values are no longer inserted but are
just measured by cutting hybridization lines between operators
of two operator pairs. While the effect on the Green’s function
itself is still small, it already produces wrong error bars
and hence maximum entropy spectra. Small errors may also
propagate and become enlarged through DMFT iterations.

We hence conclude that the worm algorithm not only
correctly reproduces the atomic limit but also works properly
for large U , including error bars. As such, the worm algorithm
provides an improvement to the conventional CT-HYB algo-
rithm in the strong coupling limit. It also correctly reproduces
the noninteracting limit, making it, in principle, numerically
exact over the complete parameter range.

VI. TWO-PARTICLE GREEN’S FUNCTION

In the previous section we have discussed how Green’s
function estimators in partition function sampling lead to
systematic errors in the absence of a hybridization function.
This is true for any type of hybridization function. Another
problem arises when dealing with spin-orbital diagonal hy-
bridization functions. Such a diagonal hybridization is exact in
high-symmetry cases and is a widely employed approximation
in other systems, because it mitigates the sign problem
and allows for speedups due to the block diagonalization
of matrices [39,40]. The CT-HYB algorithm is then only
inserting operator pairs within the hybridization expansion
where creation and annihilation operators have the same
spin-orbit flavor. In conventional CT-HYB partition function
space sampling, Green’s function estimator are measured
by removing these hybridization lines. That is, one can
only measure Green’s functions, which can be built from
hybridization pairs with the same spin-orbit flavor. While the
one-particle Green’s function in general fulfills this criteria
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FIG. 9. (Color online) Two-particle spin-flip Green’s function
G

(2)
1↑1↓2↓2↑(iν,π/β,0) vs iν for the atomic limit of the two-orbital

AIM at β = 5/D, U = 1.0D, J = 0.4D, U ′ = 0.2D, and μ = 0.5D

(half filling). The balancing parameter was set to η(2) = 0.09. In the
absence of any hybridization function, the worm algorithm (green
triangles) is able to reproduce the analytic result (red line).

and can be measured with such estimators (note that the
flavor-off-diagonal one-particle Green’s function vanishes
for flavor-diagonal hybridization), this is not true for all
components of the two-particle Green’s function.

Especially the spin-flip and pair-hopping terms of the
two-particle Green’s function are not accessible in this way.
This is another systematic weakness of conventional CT-HYB
partition function sampling. The worm sampling algorithm, on
the other hand, does not suffer from this shortcoming. This is
because four arbitrary operators can be inserted into the trace.
Their spin-orbit flavor can be chosen freely without the need
to connect these via the hybridization function.

In order to analyze the spin-flip and pair-hopping terms of
worm sampling, we again look at the atomic limit. We choose
the two-orbital AIM with semielliptic conduction electron
density of states and Slater-Kanamori interaction [40,41].
This local interaction includes an intraorbital repulsion U ,
SU(2)-symmetric Hund’s exchange and pair-hopping terms J ,
and interorbital interaction U ′ = U − 2J . Figures 9 and 10
show the spin-flip term and the pair-hopping susceptibility in
the atomic limit. Again, we observe that worm sampling is
able to reproduce the analytic expression.

So far we have presented results only for the spin-flip
and pair-hopping term using worm sampling in the absence
of a hybridization. While this atomic limit is very useful
for benchmarking purposes, we are ultimately interested
in intermediate parameters where CT-QMC algorithms are
predominantly used, especially for calculating multiorbital
systems. In order to further verify our results, we exploit the
SU(2) symmetry of Slater-Kanamori–like interaction, where
〈Sz(τ )Sz(0)〉 = 〈Sx(τ )Sx(0)〉 holds.

Using partition function sampling, we can calculate the
spin susceptibility in z direction in a straightforward manner.
Note that we can express Sz(τ ) = ni

↑(τ ) − ni
↓(τ ) in terms

of density operators so that 〈Sz(τ )Sz(0)〉 can eventually be
sampled by removing diagonal hybridization functions in
partition function sampling.
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FIG. 10. (Color online) Same as Fig. 9 but for the pair-hopping
Green’s function G

(2)
1↑2↑1↓2↓(iν,π/β,0).

This is not possible for 〈Sx(τ )Sx(0)〉, which is expressed
in terms of spin-flip two-particle Green’s functions. While
this cannot be calculated in conventional partition function
sampling, we can do so by using worm sampling. Instead of
looking at the imaginary-time-resolved spin susceptibility, we
verify the SU(2) symmetry for the local spin susceptibility
in terms of its Fourier transform to Matsubara frequencies
χloc(iω) = ∫ β

0 dτe−iωτ 〈Sz(x)(τ )Sz(x)(0)〉.
Figure 11 shows the spin susceptibilities for the two-

orbital AIM on a Bethe lattice. The worm sampling estimate
for the SxSx susceptibility in x direction agrees with the
SzSz susceptibility in z direction, which can be calculated
both by worm and partition function sampling. This further
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FIG. 11. (Color online) Local spin susceptibility Reχloc(iω) of
the two-orbital AIM as a function of the bosonic Matsubara frequency
iω. Parameters: identical semielliptic bands of half bandwidth D,
β = 5/D, U = 1.0D, J = 0.4D, U ′ = 0.2D, and μ = 0.5D (half
filling). The balancing parameter was set to η(2) = 0.08. The SU(2)
symmetry is conserved, as the SxSx susceptibility of the worm
algorithm (green error bars) agrees well with the SzSz susceptibility
of partition function sampling (red line) and the worm algorithm (blue
error bars).
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demonstrates the power of worm sampling to calculate general
Green’s functions and susceptibilities.

VII. CONCLUSION

In this work we have demonstrated how worm sampling
provides a solution to some systematic failures of conventional
CT-HYB algorithms. By inserting operators explicitly into the
local trace, we decouple the Green’s function measurement
from the hybridization function. This allows us to measure
the one-particle and the two-particle Green’s functions in
situations where the hybridization function is vanishing. Fur-
thermore, we are able to generate off-diagonal components of
the two-particle Green’s function (spin-flip and pair-hopping
terms). We have verified the algorithm by testing the atomic
limit and showing the SU(2) symmetry for a two-orbital Bethe
model. The worm algorithm supplements the hybridization

expansion CT-QMC solver with a numerically exact procedure
for estimating two-particle correlation functions.
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