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We propose to calculate spectral functions of quantum impurity models using the time evolving block
decimation (TEBD) for matrix product states. The resolution of the spectral function is improved by a so-called
linear prediction approach. We apply the method as an impurity solver within the dynamical mean-field theory
(DMFT) for the single- and two-band Hubbard model on the Bethe lattice. For the single-band model, we
observe sharp features at the inner edges of the Hubbard bands. A finite-size scaling shows that they remain
present in the thermodynamic limit. We analyze the real time-dependence of the double occupation after adding a
single electron and observe oscillations at the same energy as the sharp feature in the Hubbard band, indicating a
long-lived coherent superposition of states that correspond to the Kondo peak and the side peaks. For a two-band
Hubbard model, we observe an even richer structure in the Hubbard bands, which cannot be related to a multiplet
structure of the impurity, in addition to sharp excitations at the band edges of a type similar to the single-band
case.
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I. INTRODUCTION

The field of strongly correlated materials has experienced
vast growth during the last three decades. Electronic cor-
relations pose a particular challenge for theory, and many
phenomena such as high-temperature superconductivity have
eluded a proper understanding to this day. A correlation
phenomenon that is nontrivial but nonetheless fully understood
is the Kondo effect [1,2]. The Kondo model and its cousin,
the Anderson impurity model, are not only relevant for its
original purpose, i.e., for magnetic impurities in solids, but
also for quantum dots [3] and even for bulk materials. For
the latter, dynamical mean-field theory (DMFT) [4–6] maps
a bulk lattice model onto the self-consistent solution of an
Anderson impurity model and includes in this way a major
part of electronic correlations, namely the local ones.

Strong electronic correlations make the computational cost
of directly solving the Schrödinger equation prohibitively
large, and advanced numerical methods, often approximate
ones, are in many cases the only viable option. At the forefront
of these methods lie the quantum Monte-Carlo (QMC)
technique [7,8], the numerical renormalization group [2,9],
the density matrix renormalization group (DMRG) [10–12],
cluster approaches like cluster perturbation theory [13] and
the variational cluster approach [14] and DMFT [4–6]. All
these methods have their strengths and weaknesses. QMC
gives formally the exact solution, but is in practice plagued
by statistical errors and the sign problem. The NRG excels
at capturing the low-energy physics but has a hard time to

resolve high-energy features in the spectrum and is restricted
to impurity problems. The DMRG can treat both the low-
and high-energy scale on equal footing, but is best suited for
one-dimensional (1d) models. Methods for higher dimensional
(d > 1) problems are scarce. One of the most promising
among these is the DMFT [5], which becomes exact in the
limit d → ∞ [4] and which yields an approximation for
the finite dimensional lattice. The key quantity of DMFT is
the local lattice spectral functionA(ω) which is calculated
self-consistently. The framework of DMFT is readily estab-
lished [5], but the actual solution of the DMFT equations is
complicated: it involves the calculation of the spectral function
of an interacting impurity system which even for single-band
models is highly nontrivial, and the complexity grows quickly
with the number of considered bands (i.e., impurity orbitals).
Many different approaches have been proposed to tackle the
problem. The most common ones are QMC [8,15–19], exact
diagonalization (ED) [20–23], and NRG [24–26]. QMC can
efficiently handle multiple bands, but when formulated in
imaginary time, it lacks high resolution of the spectral function.
This is mainly attributable to the ill-conditioned analytic
continuation from imaginary to real frequencies. Based on
the work in Refs. [27,28], the QMC method has recently been
extended to the calculation of real-frequency spectra using
bold line methods [29,30] (see Refs. [31,32] and references
therein). The analytic continuation is then traded for the
introduction of a sign problem. ED naturally works with real
energies, but it is severely limited by the number of possible
sites. This again reduces the spectral resolution considerably.
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Recently, two extensions to the ED method have been put
forward [22,23], which increase the possible resolution of the
spectral function [33]. The NRG on the other hand, being
designed for impurity problems, achieves very good spectral
resolution at small energies. However, due to a necessarily
logarithmic discretization [9] of the bath density of states
(DOS), high-energy features of the bath are increasingly hard
to resolve, which is also likely to affect the fixed point of the
DMFT iteration. In addition, NRG has an intrinsic exponential
growth of complexity with the number of bands of the
underlying lattice model. More than two bands [25,34] or three
bands [35] have so far been unfeasible. The DMRG on the other
hand offers several ways to be used as an impurity solver within
the DMFT. One possible way is to employ the dynamical
DMRG (DDMRG) [36,37] to obtain the DMFT spectral
function [38–41], whereas other approaches use a continued
fraction expansion of the Greens function [42,43]. The broad
application of DDMRG as an impurity solver is though
hindered by the fact that one has to perform a separate DMRG
run for each frequency and to perform the inversion of an
ill-conditioned system of linear equations, which can become
very time consuming. Recently, the Chebyshev expansion
technique [44,45] has been proposed by some of us [46] as
an impurity solver for DMFT. Advantages are that it works at
zero temperature, that no inversion problem has to be solved,
and that the spectral function can be calculated with uniform
resolution and high precision for all ω in a single run. This
reduces computational costs considerably, but on the other
hand it is not straightforward to parallelize the method. In
the present work we propose to employ the time evolving
block decimation (TEBD) [47,48] for matrix product states
(MPS) [12,49] to compute the spectral function. We combine
it with a so-called linear prediction technique [46,50,51] to
improve on the spectral resolution. Our method shares the
advantages of the Chebyshev approach, but it can be carried out
without the need of explicitly adding states. By employing a
Suzuki-Trotter decomposition, it can easily be parallelized and
is therefore both a very precise and very efficient method. We
note that the numerical costs of the Chebyshev technique and
time evolution both scale as (dχ )3, where d is the local Hilbert
space dimension and χ is the matrix dimension employed.
The prefactor, however, depends strongly on the parameters
used in the two approaches. For a recent improvement of
the Chebyshev technique, see Ref. [52]. For the case of the
single-band Hubbard model, the run time of the time evolution
method in our implementation was smaller by roughly an order
of magnitude. We apply it as a DMFT impurity solver for the
single and the two-band Hubbard model on the z → ∞ Bethe
lattice.

II. MODELS

A. One-band Hubbard model

In this work, we address the computation of the local Greens
function of the Hubbard model on the z → ∞ Bethe lattice
using DMFT. In the limit of no interaction, the model has a
semicircular density of states (DOS) with a bandwidth of 2D.
The central ingredient in DMFT is the iterative calculation
of the spectral function Aσ,imp(ω) = 〈�0| c0σ δ(ω − H )c†0σ +
c
†
0σ δ(ω − H )c0σ |�0〉 of an impurity model. We consider the

single-impurity Anderson model (SIAM)

H = εf

∑
σ

n0σ + Un0↓n0↑ +
∑

κ �=0,σ

εκnκσ

+
∑

κ �=0,σ

Vκc
†
0σ cκσ + H.c., (1)

where c0σ ,c
†
0σ are fermionic annihilation and creation op-

erators of spin σ at the impurity site, U and εf are the
interaction and the local potential of the underlying lattice
model, i.e., the single-band Hubbard model, and εκ and Vκ are
variational parameters which are optimized during the DMFT
cycles (see below). We assume a spin-symmetric coupling Vκ

and bath-dispersion εκ , and work at particle-hole symmetry
εf = −U

2 , in which case Aσ,imp(ω) is independent of spin.
We thus omit the spin variable henceforth and simply write
Aimp(ω).

Greens and spectral functions can be calculated from the
real time evolution and subsequent Fourier transformation of

Aimp(t) = 1

2π
〈�0| {c0(t),c†0(0)} |�0〉 (2)

to

Aimp(ω) = 1√
2π

∫ ∞

−∞
dte−iωtAimp(t). (3)

Here, c0(t) is given in the Heisenberg picture, and |�0〉 is
a nondegenerate ground state at zero energy. Due to the
hermiticity of H , the function Aimp(ω) is real and normalized
to unity. One way to obtain Aimp(ω) is to calculate the two
quantities

G>(t) ≡ 〈�0| c0e
−iH t c

†
0 |�0〉 ,

(4)
G<(t) ≡ 〈�0| c†0eiHtc0 |�0〉 ,

for −∞ < t < ∞ and Fourier transform them. Using

(G<(t))∗ = G<(−t),
(5)

G>(t) = (G<(t))∗,

where the second line is valid only at particle-hole symmetry,
the spectral function can be expressed as

Aimp(ω) = 1

(2π )3/2

∫ ∞

−∞
dt

(
G<(t) + G<(−t)

)
e−iωt

= 2

(2π )3/2

∫ ∞

−∞
dt�(G<(t))e−iωt . (6)

To obtain the spectral function at particle-hole symmetry, we
thus only need to calculate G>(t) for t > 0, as the real part of
G>(t) is even in t .

B. Two-band Hubbard model

The most promising feature of the method is its applicability
to multi-band systems. We will demonstrate this by applying
it as an impurity solver for the symmetric two-band Hubbard
model [25,53–55] on the Bethe lattice. Under the assumption
that the bath is spin symmetric, the resulting effective impurity
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model assumes the form H = Hloc + Hbath with

Hloc =
∑
mσ

εmnmσ + U

2

∑
mσ

nmσnmσ̄ + U ′

2

∑
mσ

nmσnm̄σ̄

+ (U ′ − J )

2

∑
mσ

nmσnm̄σ

− J (c†00↑c00↓c
†
10↓c10↑ + H.c.)

− J (c†00↑c
†
00↓c10↑c10↓ + h.c.), (7a)

Hbath =
∑
mκσ

(Vmκc
†
m0σ cmκσ + H.c.) +

∑
mκσ

εmκnmκσ (7b)

with U ′ = U − 2J , and we choose J = U/4 throughout.
Here, cm0σ is a fermionic annihilation operator of the correlated
orbital m ∈ {0,1} at the impurity site, nmσ are the correspond-
ing particle number operators, and cmκσ and nmκσ are the
bath-electron annihilation and particle number operators for
κ � 1, respectively. Symbols σ̄ and m̄ denote complementary
variables, e.g., if σ = +1/2, then σ̄ = −1/2, and similar for
m. Note that we use a fully rotational invariant interaction with
all spin-flip and pair-hopping terms included.

III. METHODS

A. Dynamical mean-field theory

In this paper, we address the single- and two-band Hubbard
model on the z → ∞ Bethe lattice. This is convenient for two
reasons: (i) the DMFT yields exact results in this case and
(ii) the DMFT self-consistency scheme is especially simple.
The quantity of genuine interest in DMFT is the local lattice
spectral function Alatt (ω) of an interacting, d-dimensional
lattice problem (e.g., the Hubbard model on the Bethe lattice).
At convergence it is identical to the impurity spectral function
Aimp(ω). The basic idea of DMFT is to mimic the effect of the
interacting lattice surrounding a given site by a suitably chosen
bath of free electrons. Interacting lattice site and surrounding
bath yield an impurity problem described by Eq. (1) or (7).
The bath can be represented by the hybridization function

m(ω) = ∑

κ
|Vmκ |2

ω+iη−εmκ
, with an imaginary part 
̃m(ω) ≡

− 1
π
�(
m(ω)) = ∑

κσ |Vmκ |2δ(ω − εmκ ). The general outline
of the DMFT cycle is as follows. For each correlated orbital
m on the impurity site, we initially guess a 
̃n=0

m (ω), where
n is an iteration index. A set of SIAM parameters Vmκ and
εmκ is then obtained by discretizing 
̃n=0

m (ω) as described in
Ref. [9]. We use a discretization scheme linear in energy in
this work. The method can deal with any discretization. After
the discretization the system has a linear chain geometry

H = Hloc +
∑
miσ

(tmiσ c
†
miσ cmi+1σ + H.c.) +

∑
miσ

εmiσ nmiσ

(8)
with only nearest-neighbor hopping tmiσ and local potentials
εmiσ . The number of discretization parameters corresponds to
the chain length N . Using an impurity solver we calculate the
impurity spectral function An

imp,m(ω) of Eq. (8), from which
one obtains the new


̃n+1
m (ω) = D2

4

(
αAn

imp,m(ω) + (1 − α)An−1
imp,m(ω)

)
(9)

with a mixing parameter α ∈ [0,1] (“underrelaxation”) that
can be adjusted for faster convergence. Here, 2D is the
bandwidth of the noninteracting spectral function of the Bethe
lattice. In the following, all results are given in units of D.

̃(ω)n+1

m is then again discretized, and the loop is iterated
upon convergence, i.e., until

An+1
imp,m(ω) = An

imp,m(ω) = Alatt
m (ω) ≡ Am(ω). (10)

For our calculations, we enforce particle-hole and spin sym-
metry, which results in εmiσ = 0 in Eq. (8).

For the two-band Hubbard model, we focus on the sym-
metric model in which at U/D = 0 both bands have the same
bandwidth 2D. For the discretization, we use a symmetric
setup with two DMFT-baths of lengths N1 = N2. Each bath
contains electrons of up and down spin character.

The two-band model has been frequently investigated in the
past [25,34,55]. Like the single-band model it exhibits a MI
transition at a finite Uc/D ≈ 2.2, for J = U/4 [25].

Using the NRG as an impurity solver [25], it has been
observed that a finite J leads to a strong renormalization of
the Kondo temperature and hence affects the MI transition.
Obtaining accurate results, especially for the high energy
features of the Hubbard bands remains a challenging problem.

B. Time evolving block decimation

The essential task of the impurity solver in DMFT is
to calculate the greater (or lesser) Greens function G>(t) =
〈�0| c0e

iHtc
†
0 |�0〉. We achieve this by calculating the ground

state |�0〉 using the DMRG and subsequently employ the
time evolving block decimation (TEBD) [47,48] to evolve
c
†
0 |�0〉 forward in time. We use a second-order Trotter breakup

with 
tD = 0.00625, and in the single-band case measure
G>(tnD) every 25 Trotter steps, thus tnD = 0.15625 n, with
n ∈ {0, . . . ,Nt,max − 1}. For the two-band model, we split the
calculation of the Greens function into two runs, one forward
and one backward in time, which allows us to reach longer
times and/or larger system sizes with a smaller computational
effort [56]. From these runs we calculate the Greens function
on a grid with Nt,max grid-points tnD = 0.375 n, with 
tD =
0.00625. We then apply the linear prediction method (see
below) to extrapolate 10 000 further points. In the single-band
case, we also employ an unfolding procedure [57] to separate
the spin degrees of freedom of the electrons into a left chain
containing up spins and a right chain containing down spins
which is computationally more efficient. In this case, the total
length of the system is 2N , that is, each bath has a length
of N − 1 sites. A decoupling for two and more bands can be
carried out in a similar spirit with multiple chains connected
at the impurity site in a starlike geometry [58] where every
chain carries a band and spin index. For the two-band case
however, we only applied a decoupling of the orbital degrees
of freedom. The impurity orbital is in this case located at the
center of a chain, where the left N1 sites contain the m = 0
bath and impurity orbital, and the right N2 sites the m = 1
bath and impurity orbital. Each of the N1 − 1 and N2 − 1 bath
orbitals contains electrons of up- and down-spin flavour.

In the TEBD, only a limited number χ of the Schmidt
states |λα〉 and Schmidt values λα can be kept at a certain bond
connecting two sites, which is the major approximation of the
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method. The error of a single-time step can be quantified by
the truncated weight [12,48]

εtw = 1 −
dχ∑

α=χ+1

λ2
α (11)

obtained after truncating the state down to a matrix dimension
χ , where d is the local Hilbert space dimension. In our
implementation of the TEBD, after every time step the matrix
dimension is reduced just enough to obtain the prespecified
εtw. Additionally, we set a hard limit for the maximum matrix
dimension of χ = 500 or 750 in the single-band and χ = 800
or 1000 in two-band models.

C. Linear prediction

The so called linear prediction technique [46,50,51,59] is a
very simple and powerful method for the extrapolation of time
series. It amounts to describing the time series as a sum of
many exponentials or, equivalently, the spectrum as a sum of
many Lorentzians. On the basis of Nt,max ≡ 2Nt calculated
data points {xi}, 1 � i � 2Nt at equidistant times ti , one
predicts data points for tn,n > 2Nt as a linear combination
of the first Nt data points:

xn ≈ x̃n ≡ −
Nt∑

j=1

ajxn−j . (12)

One obtains the optimal {aj } by minimization of a cost function

F =
2Nt∑

n=Nt+1

|x̃n − xn|2, (13)

which yields

Ra = −r, Rij =
2Nt∑

n=Nt+1

wnx
∗
n−ixn−j ,

(14)

ri =
2Nt∑

n=Nt+1

wnx
∗
n−ixn,

for 1 � i,j � Nt . Equation (14) is inverted using a pseudo-
inverse with cutoff δ. Data points at Nt + k (k > 0) can then
be predicted from

x̃Nt+k =
Nt∑

n=1

[Mk]1 n xNt+1−n, (15)

with

M =

⎛
⎜⎜⎜⎜⎝

−a1 −a2 −a3 . . . −aNt

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠.

All spectral functions have been obtained by predicting 10 000
further data points on top of Nt,max computed data points. Due
to the exponential dependence of M in Eq. (15), any eigenvalue
λ of M that is larger than unity has to be either renormalized
to unity or set to zero, in order to avoid divergence in the

prediction [46,51]. The interplay of δ and the eigenvalue
rescaling is investigated in more detail in the appendix. There
we show that zeroed eigenvalues yield better results.

The linear prediction algorithm has two parameters Nt,max

(“time window”) and δ (pseudoinverse cutoff). From analysis
of the dependence of the DMFT-fixed point on these param-
eters (see Appendix), we found Nt,max = 350, and δ = 10−6

or smaller, in conjunction with setting large eigenvalues of the
prediction matrix to 0, to yield good results. Unless stated
otherwise, these parameter values were used to obtain the
results in this paper.

IV. RESULTS

To verify our approach we benchmarked our results for
the impurity spectral function of a SIAM with results of the
dynamical DMRG [60], to our knowledge the most precise data
available (see Appendix), and found excellent agreement. In
the following, we present our results for the one and two-band
Hubbard model.

A. One-band Hubbard model

We start by applying our method to DMFT for the single-
band Hubbard model on the Bethe lattice for interaction
strengths U/D = 1.0 and 2.0 in the metallic region and
U/D = 3.2,3.4, and 3.6 in the insulating region. We use
Nt,max = 200. Figures 1(a) and 1(b) show the results for
U/D = 1.0 and 2.0 (red solid lines). At U/D = 2.0, distinct
features at the inner edges of the Hubbard satellites start to
emerge, as has been observed in previous DDMRG [39,40]
and NRG [24] studies, in QMC calculations [30] as well as in
MPS calculations with Chebyshev moments [46], and recently
also in advanced ED calculations [22,23,33]. For comparison,
we show results obtained with the Chebyshev expansion
technique [46] (black dash-dotted lines). They are compatible
with our present results. For values of U/D = 3.2,3.4, and 3.6
we plot results in Fig. 1(c). In contrast to Fig. 1(a) and 1(b), we
use a mixing parameter of α = 0.3 in Fig. 1(c), which yields a
smoother convergence to the insulating solution. If no mixing
is applied, the spectra alternate between an insulating and a
metallic solution with a tiny quasiparticle weight. This effect is
particularly strong at U/D = 3.2 close to the transition and is
also enhanced when increasing Nt,max or decreasing δ, which
we attribute to Trotter and truncation effects in the time series.
We note that in Fig. 1(c) there is some small residual spectral
weight left in the gap region (of the order of 10−3).

B. Sharp peaks in the Hubbard bands

We proceed to study the metallic state in the coexistence
region Uc1/D � U/D � Uc2/D, where Uc1/D ≈ 2.38 and
Uc2/D ≈ 3.0 [39]. For such U/D, the narrowing of the
quasiparticle peak at ω/D = 0 and the appearance of sharp
side peaks in the Hubbard band [22,23,39,40,46] make a
high-resolution calculation of A(ω) a challenging task.

In Fig. 2, we present A(ω) for U/D = 2.4 and a chain
length of N = 150 sites. We clearly observe a separation of
energy scales into a sharp resonance at ω/D = 0 and two
broad Hubbard satellites at ω/D ≈ ±U/2D, decorated with
two sharp features at the inner edges of the Hubbard peaks. The
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FIG. 1. (Color online) (a) and (b) DMFT spectral function of the half-filled Hubbard model on the Bethe lattice for U/D = 1.0,2.0
(N = 120,Nt,max = 200,χ = 500,εtw = 10−10) as obtained from TEBD (red solid line). For comparison we plot results obtained using the
Chebyshev expansion method [46] (black dash-dotted line). (c) DMFT spectral functions in the insulating phase for U/D = 3.2,3.4,3.6. For
better convergence, we used the modified update scheme with α = 0.3 in (c). Other parameters as in (a) and (b).

insets are closeups on the sharp side peak of the left Hubbard
satellite (left) and the quasiparticle peak (right).

It can be shown analytically [61] that the exact value
of πDA(ω = 0) = 2.0 for all values of U/D < Uc/D. This
pinning of the height of the Kondo-resonance is fulfilled to
good accuracy in our simulations. In Fig. 2, we analyze the
convergence of the results with increasing precision of the
MPS calculations. The latter is governed by the truncation
error εtw, related to the MPS matrix dimension χ , which
bounds the number of Schmidt states kept at each bi-partition
during the simulation. Figure 2 shows results for three different
simulations. With increasing precision we initially observe
a sharpening of the Hubbard side-peaks. From the plot,
we conclude that using χ = 500, εtw = 10−10 already yields
converged results. The magnetiztion of our DMRG ground
state is zero to within 10−7 accuracy, which rules out that
these sharp excitations are artifacts from any spurious magnetic

FIG. 2. (Color online) DMFT spectral function for U/D = 2.4,
comparing three different computational parameter sets χ and εtw

(N = 150). The spectral function shows the quasiparticle peak
at ω/D = 0 and two broad Hubbard bands at ω/D ≈ ±U/2D.
Additionally, at the inner edges of the Hubbard band, we observe
a sharp feature. (Insets) Closeups of the sharp peak at the inner side
of the Hubbard bands (left) and the quasiparticle peak (right).

ordering due to the DMRG truncation. A slight decrease of the
quality of the pinning criterion is most likely related to linear
prediction inaccuracies.

A second important parameter is the chain length N , which
is directly related to the number of discretization points of the
bath spectral function. In Fig. 3(a), we present DMFT-spectra
for U/D = 2.4 and different system sizes N = 150, . . . ,240,
with χ = 500 or 750 and εtw = 10−10. With increasing system
size N , we observe a shift of the Hubbard side-peak position
towards smaller |ω/D| (left inset Fig. 3), as well as a reduction
of its height [39,40]. A similar reduction is observed in
the height of the quasiparticle peak (right inset in Fig. 3),
in violation of the pinning criterion. However, the DMFT
self-consistency cycle is stable and still converges, and the
violation does not increase during this cycle. We note that
the spectral height at ω/D = 0 is the quantity, which is most
susceptible to small errors in the large time evolution in our
method, more so than the spectrum at other frequencies.

In Figs. 3(b) to 3(e), we display a finite size scaling of
the side peaks, which demonstrates that they remain present
in the infinite size limit. Figure 3(b) shows a finite size scaling
of the height of the side peak (the exponent 3.2 was found to
map the data to a straight line), and (c) a scaling of its position.
In panel (d), we present a finite size scaling of the minimum to
the left of the left side peak. Finally, panel (e) shows a scaling
of an approximate measure of the area of the side peak, namely
the area between the left side peak and a straight line through
the local minimum, tangent to spectrum at the global minimum
[see dashed black line in the lower Hubbard band of the main
panel in Fig. 3(a)]. Since the height of the central peak is
also size-dependent, the exact properties of the side peaks are
likely to change with higher precision of the calculations. The
important point (further strengthened by a slight curvature of
the data) is that they converge to finite values, i.e. the side
peaks remain present in the thermodynamic limit.

With increasing U/D, the quasiparticle peak is expected to
narrow until it vanishes at Uc2/D ≈ 3.0 [26,40]. In the main
panel of Fig. 4(a), we show results for U/D = 2.8. The right
inset tracks the evolution of the quasiparticle peak for U/D =
2.4, 2.6, and 2.8. As expected, its weight is strongly reduced
upon increasing U/D. The Hubbard side peak (left inset) is
visibly shifted towards smaller |ω/D|, and it becomes sharper.
in agreement with the DDMRG data of Refs. [39,40,46]. In
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FIG. 3. (Color online) (a) Spectral function of converged
DMFT cycles at U/D = 2.4 for different chain lengths N =
150,170,200,240, (χ = 500,750,εtw = 10−10). Insets are closeups
of Hubbard bands (left) and quasiparticle peak (right). (Below) Finite
size scaling with respect to N of (b) the height of the inner side peak,
(c) the position of the inner side peak, (d) minimum of the inner side
peak and (e) area between the dashed black line and inner side peak
in (a).

the NRG study in Ref. [24], the side peak shows narrowing
but shrinks quickly when approaching the transition, while in
the ED study in Ref. [23], data for U/D > 2.5 is not available,
and does not allow a conclusive study of the side peak weight
and height. In the region between the quasiparticle and the
side peaks, we observe a reduction of the spectral weight with
increasing U/D. We note that we also observe the appearance
of a second, smaller side peak close to the first one for U/D =
2.8. The height of this peak is however much larger for smaller
chains (not shown), so that it may be a finite size artifact.

A central object in DMFT is the self-energy �(ω) =
G−1

0 (ω) − G−1(ω). Its imaginary part is related to the lifetime
of single particle excitations. In Fig. 4(b), we show the imag-
inary part of the self-energy for U/D = 2.8,N = 200,δ =
1e − 6,Nt,max = 350,χ = 750. It can be seen clearly that it
is small around the position of the sharp side peaks. Due to the

FIG. 4. (Color online) (a) Spectral function for U/D =
2.8 (N = 200,χ = 750,εtw = 10−10). (Right inset) Increasing
U/D = 2.4,2.6,2.8 we observe a narrowing of the quasiparticle
peak. The sharp peaks at the inner side of the Hubbard bands
get more pronounced and are shifted towards smaller |ω/D|
(left inset). In the region between the quasiparticle peak and
the Hubbard bands, the spectral weight is largely suppressed
leading to the developing of a gap (or actually a pseudo-gap)
with increasing U/D (compare to Fig. 2). (b) Self-energy
−�(�(ω)) (solid blue line) for the single-band Hubbard model at
U/D = 2.8,N = 200,δ = 1e − 6,Nt,max = 350,χ = 750 [as in (a)].
For comparison we also show the spectral function A(ω) (dash-dotted
black line). The inset shows −�(�(ω)) on a larger scale.

not exactly fulfilled pinning, the self-energy is not exactly 0 at
ω = 0.

C. Time dependencies on the impurity site and connection
to side peaks

The appearance of sharp peaks at the inner edge of the
Hubbard band has been observed in previous studies in
the metallic [22,23,39,40,46] as well as in the insulating
phase [30,33], but has so far eluded a convincing explanation.
It has been speculated [40] to be an antibound state of the
Fermi-liquid quasiparticle with a collective spin excitation
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FIG. 5. (Color online) Time-dependent probability of finding the
impurity in either the doubly occupied state (blue solid), the singly
occupied state (green solid), or in the empty state (red solid) after
adding an electron on the impurity at time tD = 0, for U/D = 2.8
(N = 150,χ = 500,εtw = 10−10). (Inset) Magnification.

of polaronic character. The existence of collective spin
excitations on the other hand requires the presence of spatial
correlations, which are not included in single-site DMFT.
One of the great advantages of our approach is the direct
accessibility of time dependent properties of the impurity after
the insertion of an electron at tD = 0. In Fig. 5, we plot the
time dependent probabilities (at DMFT self-consistency) of
finding the impurity in one of the singly occupied states, P1 =
〈ψ(t)| n↑ |ψ(t)〉 + 〈ψ(t)| n↓ |ψ〉 − 2 〈ψ(t)| n↑n↓ |ψ(t)〉, dou-
bly occupied, P↑↓ = 〈ψ(t)| n↑n↓ |ψ(t)〉, or empty, P0 = 1 −
P1 − P↑↓, with |ψ(t)〉 = exp (−itH )c†0↑ |�0〉, at U/D = 2.8
and after having inserted a down-electron at tD = 0 at the
impurity [for ease of comparison we plot (1 − P1)]. For small
tD, we observe a fast decay of the initially high double
occupation and a corresponding increase of single occupations.
At short times (up to tD ≈ 15), we observe strongly damped
oscillations corresponding to the Hubbard band, which has
a very large imaginary part of the self-energy. For times
tD � 25, P↑↓ begins to oscillate at a different frequency
ω/D = 0.63 ± 0.02. The energy of this oscillations matches
the energy of the side-peak at ω/D � 0.6 almost perfectly.

P0 on the other hand rises from exactly 0 to a small finite
value, of about the same magnitude as P↑↓ (see Fig. 5) and
shows oscillations with the same frequency as P↑↓ but shifted
almost exactly by a phase of π as compared to P↑↓. The
oscillation in 1 − P1 are essentially in phase with those of P↑↓.

In Fig. 6, we show the time dependence of P↑↓ for different
values of U/D = 2.4, 2.6, and 2.8. The inset shows a zoom on
the side peak of the corresponding spectral functions πDA(ω).
Vertical lines are drawn at the beating frequencies appearing at
times tD � 25. We see that the frequencies of the oscillations
closely follow the energies of the Hubbard side peaks. We note
that for U/D = 1.0, where the spectra are almost featureless,
the time dependent occupations show no such long-lived
oscillations.

FIG. 6. (Color online) Time-dependent probability of finding the
impurity in the doubly occupied state for different values of
U/D = 2.4,2.6, and 2.8 (N = 150,χ = 500,εtw = 10−10). (Inset)
Magnification of the peaks in the lower Hubbard band. Vertical lines
are drawn at the oscillations frequencies of P↑↓ for tD � 25.

Figure 7 shows an analysis similar to Fig. 5, but in the
insulating phase for U/D = 3.4. In this case we solely observe
oscillations corresponding to the Hubbard bands; a long-lived
oscillation is not present, which means that in frequency space
only the metallic solution has a sharp feature, in agreement
with our DMFT spectra above.

Quite generally, an oscillation can be associated with a
superposition of two eigenstates with an energy difference
corresponding to the oscillation frequency. Adding an electron
at time tD = 0 to the strongly correlated ground state of the
one-band Hubbard model means, if Fourier transformed to
energies, that we will obtain a superposition of eigenstates
from all energies. At different energies above the Fermi energy,
we have three distinct features: the central resonance around

FIG. 7. (Color online) Same as Fig. 5, but now for U/D = 3.4
in the insulating phase. Oscillations corresponding to the Hubbard
satellites are still visible. They are strongly damped and disappear
after about four cycles. Other parameters as in Fig. 1(c).
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FIG. 8. (Color online) (a) DMFT spectral function for a two-band Hubbard model on the Bethe lattice for U/D = 1.6 and J = U/4. We test
the numerical accuracy by using two different bath chain-lengths, N1 = N2 = 90,120, and linear prediction windows, Nt,max = 107,147 [63]
(other parameters: χ = 800,1000 and εtw = 10−10,δ = 10−6). (b) Comparison of the DMFT spectral function obtained from TEBD [blue solid,
parameters same as in (a) for N1 = N2 = 120] with QMC + Maxent (red dash-dotted line) and QMC + Padé (black dashed). QMC data are
obtained for βD = 500.

ω/D = 0, the sharp side peak at ω/D ≈ 0.63 and the broad
upper Hubbard band. Unless matrix elements vanish, we
will hence have a superposition of states belonging to these
energies. Due to the large imaginary part of the self-energy of
the Hubbard band (see above), this part of the superposition
will decohere on short time scales. After this short time, we
will remain in a long lived superposition of states belonging
to two sharp features, the central Kondo peak and the sharp
resonance at the inner side of the Hubbard bands. This leads to
the observed oscillations and the frequencies in Figs. 5 and 6.

D. Two-band Hubbard model

Finally, we present results of calculations for the two-band
Hubbard model on the Bethe lattice with Hamiltonian (7). At
half-filling, this model is know to become a Mott-Hubbard
insulator, as soon as the interactions are large enough. It is
important to note that the Hund coupling J is crucial to reach
the insulating phase, and increasing J lowers the critical value
Uc2 substantially [62].

In order to check if our computational parameters in the
two-band case allow for the occurrence of the sharp features in
the Hubbard satellites, we first performed a test using U ′/D =
0,J/D = 0, in which case the two-band problem decouples
into two independent SIAMs. Indeed, using a value of U close
enough to the transition we can still resolve the sharp features
(not shown), meaning that the accuracy of the method is high
enough also for the two-band case.

In Fig. 8(a), we now show results for for an interaction
strength U/D = 1.6 and Hund’s coupling J = U/4, which
is close to the Mott phase [25]. We compare two different
chain lengths and two different Nt,max [63] in order to get an
estimate of the accuracy of our results. The spectra are almost
converged in the system size and show structure within the
Hubbard bands.

Figure 8(b) compares our results with ones we obtained
using a continuous-time QMC method to solve the two-orbital
impurity problem. For the QMC, we employed a hybridization
expansion algorithm in matrix form as implemented in
the TRIQS package [17,18,64]. This allows us to perform

calculations for the full rotationally invariant Hamiltonian
Eq. (7) at low temperatures, βD = 500. The imaginary-time
spectra of QMC have been continued to the real frequency
axis using a stochastic maximum-entropy method [65] and
alternatively Padé approximants. The qualitative agreement of
the position of the Hubbard bands is satisfactory. The features
in the Hubbard satellites, which are seen in the TEBD results,
however, are absent in both analytically continued spectra.
(When the separation of these features becomes larger one
can, however, resolve the transitions from different atomic
states in the analytic continuation [66].)

In the atomic limit U/D → ∞, a simple analysis shows
that the system has only a single one-particle excitation at
ω = ±(U + J )/2 for two electrons per site. The structure in
the Hubbard bands thus originates from admixtures to the
ground state with three and one electrons on a site.

In Fig. 9, we plot the spectral function of the two-band
Hubbard model for U/D = 1.8,J = U/4 (green solid line),
which is already quite close the MI transition. In this case, the
Hubbard satellites acquire an even richer structure than in the
single-band case: as in the latter, we observe the emergence
of very sharp features at the inner edges of the Hubbard
bands. This suggest that this may be a generic property of the
Hubbard model and, to our best knowledge, is the first evidence
of these in a multiorbital Hubbard model. Additionally, at
higher energies, we observe less pronounced features, which
are probably related to the Hund’s coupling J/D.

In Fig. 10, we show results for U/D = 2.2,J = U/4 (N1 =
N2 = 90, see caption for other parameters), which is already
in the insulating phase of the system. Substructures in the
Hubbard band are visible, though much less pronounced than
on the metallic side of the transition. This is in agreement
with the fact that the atomic limit of the system shows no
splitting (see above). The position of the Hubbard peaks is
also already quite well described by the atomic excitations
ω = ±(U + J )/2. Importantly, we do not observe any sharp
features at the band edges. We note that in this parameter
regime calculations are less costly and convergence is much
faster than for the metallic case close to the transition.
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FIG. 9. (Color online) DMFT spectral function for the two-band
Hubbard model at U/D = 1.8,J = U/4 (green solid line) and
U/D = 1.6,J = U/4 (blue dash-dotted line, same as in Fig. 8),
for N1 = N2 = 120,Nt,max = 147,χ = 1000,εtw = 10−10,δ = 10−6,
and α = 0.6. We measure the Greens function every 60 steps, with a
Trotter breakup of 
tD = 0.00625.

V. CONCLUSIONS

We applied the time evolving block decimation (TEBD)
algorithm to construct an impurity solver for dynamical mean-
field theory for the single- and two-band Hubbard models on
the z → ∞ Bethe lattice. Our method is parallelizable [67]
and scalable to multiband impurity systems. It works directly
at zero temperature and real frequency, without the need for

FIG. 10. (Color online) Spectral function of the two-band Hub-
bard model at U/D = 2.2,J = U/4, N1 = N2 = 90,Nt,max =
107,χ = 800,δ = 10−6,εtw = 10−10. The system is in the insulating
phase. Substructures in the Hubbard band are still visible, though less
pronounced. We do not observe any sharp features. Also note that the
high-energy tails show slower decay as compared to the single-band
case.

analytic continuation and it produces very accurate results as
an impurity solver with high resolution at all frequencies. We
applied our method to DMFT for the single-band Hubbard
model, where we confirm the existence of a sharp feature
at the inner edges of the Hubbard bands. Our results are
comparable to the ones obtained in Refs. [39,40], but contrast
with ED [23] and NRG [24] results, where this feature is barely
present at higher values of U/D. We find a shift of the peak
position as a function of U/D. The flexibility and speed of our
method allows for accurate parameter studies and real-time
dynamics. With respect to the latter we found that adding
an electron instantaneously on a lattice results in long-time
oscillations of the double, single, and zero occupation on
this site. We interpret these long-time oscillations as being
caused by a superposition of the central Kondo resonance and
the sharp side feature in the Hubbard bands. Furthermore,
we also applied the method to the two-band Hubbard model
on the Bethe lattice. As we approach the phase transition
from the metallic side, we observe the developing of rich
structures in the Hubbard bands, which are not resolved by our
QMC. In particular, we observe the emergence of sharp side
peaks, similar to the one-band case. This suggests that these
features are a generic property also of multi-orbital Hubbard
models close to metal- to Mott-insulator phase transitions.
We note that this method is also well suited for applications
within nonequilibrium DMFT [68] and nonequilibrium master
equation approaches [69].
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APPENDIX

1. Benchmark

We tested the validity and precision of our method as
an impurity solver for the case of the single impurity
Anderson model at parameters for which results are avail-
able from the most precise technique to date, namely the
dynamical DMRG [36,39,40,46]. We used a semicircular
bath DOS ρ(ω) = 2

πD

√
D2 − ω2 and a hybridization strength

� = πV 2ρ(0) = 0.5 (corresponding to a uniform hybridiza-
tion V = 0.5) [9], at an interaction strength of U/� =
6.0. Spectra are found in Fig. 11. We note that DDMRG
involves separate calculations at each frequency and a de-
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FIG. 11. (Color online) Comparison of TEBD-computed spec-
tral function with results obtained from Dynamical DMRG cal-
culations [46,60] for a single impurity Anderson model with
U/� = 6.0 and a hybridization strength � = πV 2ρ(0) = 0.5
(N = 120,χ = 500,εtw = 10−10).

convolution of the resulting spectra. The agreement is almost
perfect.

2. Parameter studies for prediction

Here we present more detailed results on the influence
of the prediction parameters δ and the number of measured
data points Nt,max. In Fig. 12, we show a DMFT-spectrum
with U/D = 2.8,N = 120,χ = 500,Nt,max = 350,δ = 10−4

and large eigenvalues normalized to unity (black solid line).

FIG. 12. (Color online) Influence of linear prediction parameters
on spectral functions. We show results obtained with different
pseudoinverse cutoffs δ and different treatment of large eigenvalues.
The linear prediction was done on data obtained from a converged
DMFT run with δ = 10−4 and large eigenvalues normalized to unity
(black solid line). Parameters are U/D = 2.8,N = 120,Nt,max =
350,χ = 500 and εtw = 10−8. δ was varied after the DMFT had
converged. Results at δ < 10−6 are the same as for δ = 10−6.

FIG. 13. (Color online) DMFT spectral function of the one-band
Hubbard model for U/D = 2.8, comparing different linear prediction
windows Nt,max = 350,400,450 (other parameters: N = 150, χ =
500, εtw = 10−10, δ = 10−6). Large eigenvalues of the linear predic-
tion matrix were set to 0. (Insets) Zooms onto the Hubbard side peak
(left) and the quasiparticle peak (right).

It is instructive to take these converged results and from the
data of the last iteration calculate the spectral function with
different pseudo-inverse cutoffs δ and different treatment of
large eigenvalues. We see that setting eigenvalues to unity
tends to produce an overshoot at ω/D = 0, whereas results
with zeroed eigenvalues are stable and converged at δ � 10−6.
This behavior remains the same when doing full DMFT cycles.
For eigenvalues rescaled to unity, we also observe that for small
δ < 10−6 the prediction can pick up errors due to truncation

FIG. 14. (Color online) Time dependence of G>(tD) for U/D =
2.8,N = 200,Nt,max = 350,δ = 10−6,χ = 750 (see Fig. 4) as ob-
tained from the MPS calculation. The data show oscillations asso-
ciated with the side peak in the Hubbard satellites. The inset shows
the results obtained after performing linear prediction on the data in
the main figure.
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and the Trotter breakup, leading to artificial structures in the
spectral functions. We conclude that converged results can best
be obtained by setting large eigenvalues to zero and choosing
δ � 10−6.

In Fig. 13, we analyze the effect of Nt,max on the fixed
point of the DMFT iterations for U/D = 2.8,χ = 500 and
εtw = 10−10. We take N = 150, large enough to use different
Nt,max without getting reflections from the boundaries of the
system, which would spoil the linear prediction. We observe a
very slight nonmonotonic behavior of the Hubbard side peak
height as well as the peak position (left inset). The quasiparticle
peak height shows the same nonmonotonic behavior (right
inset). We attribute this behavior to truncation and Trotter
effects, which become stronger for increasing Nt,max, also
confirmed by tiny artificial structures in the pseudo-gap region
for Nt,max = 450. The dependence of the fixed point on
Nt,max is very small. Using a large Nt,max = 450 does not

improve systematically on the results, hence for computational
efficiency we use Nt,max = 350 in the main paper.

3. Time dependence of G>(t D)

We complement the time-dependent analysis of local
observables by showing the evolution of the time-dependent
Greens function, from which the spectral function A(ω) is
obtained by Fourier transformation to the frequency domain.
In Fig. 14, we show the time dependence of the bigger Greens
function G>(tD) for U/D = 2.8 [parameters the same as in
Fig. 4)]. The main figure shows the MPS results, which nicely
display the beating related to the side peak in the Hubbard
bands. The inset shows the time series obtained from linear
prediction, all the way to the long-time limit used in the Fourier
transformation.
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[27] L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403

(2008).
[28] P. Werner, T. Oka, and A. J. Millis, Phys. Rev. B 79, 035320

(2009).
[29] N. Prokofev and B. Svistunov, Phys. Rev. Lett. 99, 250201

(2007).
[30] E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 82,

075109 (2010).
[31] G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev.

Lett. 112, 146802 (2014).
[32] G. Cohen, D. R. Reichman, A. J. Millis, and E. Gull, Phy. Rev.

B 89, 115139 (2014).
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