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We present an efficient implementation of the parquet formalism that respects the asymptotic structure of
the vertex functions at both single- and two-particle levels in momentum and frequency space. We identify
the two-particle reducible vertex as the core function that is essential for the construction of the other vertex
functions. This observation stimulates us to consider a two-level parameter reduction for this function to simplify
the solution of the parquet equations. The resulting functions, which depend on fewer arguments, are coined
“kernel functions.” With the use of the kernel functions, the open boundary of various vertex functions in
Matsubara-frequency space can be faithfully satisfied. We justify our implementation by accurately reproducing
the dynamical mean-field theory results from momentum-independent parquet calculations. The high-frequency
asymptotics of the single-particle self-energy and the two-particle vertex are correctly reproduced, which turns
out to be essential for the self-consistent determination of the parquet solutions. The current implementation is
also feasible for the dynamical vertex approximation.
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I. INTRODUCTION

Strong electronic correlations have led to arguably some of
the most fascinating and least understood phenomena in solid-
state physics, including the breakdown of Landau’s [1,2] Fermi
liquid theory and high-temperature superconductivity [3].
However, solving the correlated electron problem poses a great
challenge to theoretical physics, since the competition between
interaction and kinetic energy prohibits a simple perturbative
treatment of such many-body systems. The minimal model
covering this competition between localizing and delocalizing
electrons is the Hubbard model [4]. Only in the special
cases in which one energy scale dominates are weak- [5–10]
or strong-coupling [11–13] perturbative treatments actually
reliable.

Many of these perturbative approximations are functional-
derivable, which is a key criterion that Baym and Kadanoff [14]
discovered for a many-body theory to be conservative. They
found that for any functional that is derivable with respect
to the single-particle propagator, the resulting self-energy
function and the Green’s function satisfy the continuity
equations. The central object in these conservative theories is
the single-particle self-energy, which, in the Baym-Kadanoff
formalism, can be calculated self-consistently. An alternative
to the Baym-Kadanoff formalism, which is self-consistent
also at the two-particle level, was developed by Landau,
Dominicis, and Martin [15–17], and it is referred to as the
parquet formalism. The central object in this theory is the
two-particle vertex functions, from which the single-particle
self-energy can be self-consistently calculated. The parquet
formalism has built-in self-consistency at both the single- and
two-particle levels, which by construction can be better than
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the Baym-Kadanoff theorem in this respect. However, unlike
the Baym-Kadanoff theorem, the parquet equations do not
explicitly guarantee that the conservation laws, such as the
continuity equations, will be satisfied.

The generalization of the self-consistency from the single-
particle to the two-particle level is essential to describe the
behavior of individual particles and their collective excitations
on an equal footing. One example of such complexity is the
spin-fluctuation-mediated pairing interaction in the cuprate
superconductors [18,19]. To explain how two individual
particles form a Cooper pair in the particle-particle channel,
one must have knowledge of the spin fluctuations in the
particle-hole channel. In this problem, both the single-particle
delocalization and the two-particle excitations need to be
determined simultaneously, which calls for a theory with
self-consistency at both the single- and the two-particle
level. However, this is not limited to this particular example.
In general, for any collective order that arises from the
competition between different fluctuations and low-energy
excitations, one needs a theory such as the parquet formalism,
which satisfies the self-consistency at both the single- and
the two-particle level. However, the application of the parquet
equations has been limited thus far to only a few cases [20–28].
The main reason why the parquet equations are not widely
applied is their numerical feasibility. The two-particle vertex
depends on three independent arguments, each of which
consists of both momentum and frequency. Even in the SU(2)
symmetric case, solving the four coupled parquet equations
for a reasonably large system at low temperature is still
numerically very challenging. Here, the difficulty concerns
not only the storage of the large two-particle vertices, but
also how to actually preserve the asymptotic structure of
the single-particle self-energy and the two-particle vertices
simultaneously during the calculation. Due to the fact that the
parquet self-consistency is performed on both the single- and
the two-particle level, the truncation of the two-particle vertex
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structures will unavoidably result in a wrong evaluation of
the single-particle self-energy, and vice versa. In a consistent
solution of the parquet equations, the correct self-energy as
well as all vertex functions should be simultaneously obtained
at convergence.

In this paper, we present an efficient implementation of
the parquet equations that satisfies a number of important
conditions. The primary goal of our implementation is to
correctly reproduce the asymptotics for the single-particle
self-energy and the two-particle vertex functions at each
self-consistent step by employing a precise inner and an
asymptotic outer frequency window, which ensures that the
converged solutions are consistent and asymptotically correct.

The paper is organized as follows: For completeness,
we introduce the necessary notations for the single- and
two-particle vertex in Appendix. We also briefly derive the
corresponding formalism for the parquet equations and the
self-energy in this notation. Those readers who are familiar
with the parquet formalism and are only interested in its
detailed implementation can safely skip this part. In Sec. II,
which is the main part of this paper, we present our philosophy
for solving the parquet equations. In accordance with previous
findings [29], we identify the dominant structures in the
two-particle vertex. We reduce their complexity by focusing
only on the parts that are reducible in a specific channel,
motivating our two-level kernel approximation. In Sec. III, we
solve the Anderson impurity model and a 2 × 2 cluster within
the full parquet and the dynamical vertex approximation,
respectively. For the former, we have the exact results from
the dynamical mean-field theory (DMFT) [30], which in
turn justifies our implementation of the parquet equations.
An excellent agreement is achieved at both the single- and
two-particle levels. A summary and outlook are provided in
Sec. IV.

II. SOLUTION OF THE PARQUET EQUATIONS

The parquet equation is a classification of the full vertex F

into the (two-particle) fully irreducible contributions � and the
reducible contributions in the particle-hole (�), the transversal
particle-hole (followed by symmetry), and the particle-particle
channel (�). Employing SU(2) symmetry, one can decouple
their spin components into the density (d)/magnetic (m)
and singlet (s)/triplet (t) channel, respectively. In these four
channels, the parquet equation reads

F
k,k′
d/m(q) = �

k,k′
d/m(q) + �

k,k′
d/m(q) + c

d/m

1 �
k,k+q

d (k′ − k)

+ c
d/m

2 �k,k+q
m (k′ − k)

+ c
d/m

3 �k,k′
s (k + k′ + q)

+ c
d/m

4 �k,k′
t (k + k′ + q), (1a)

F
k,k′
s/t (q) = �

k,k′
s/t (q) + �

k,k′
s/t (q) + c

s/t

1 �
k,q−k′
d (k′ − k)

+ c
s/t

2 �k,q−k′
m (k′ − k) + c

s/t

3 �
k,k′
d (q − k − k′)

+ c
s/t

4 �k,k′
m (q − k − k′). (1b)

k = (k,iν) is a compound index consisting of wave vector k
and Matsubara frequency iν. The coefficients c

d/m/s/t

1···4 take
different values in the four different channels. We only briefly
list here the necessary equations for the convenience of the
discussions in the main part of the paper; more detailed
notations and derivations can be found in Appendix. In Eq. (1),
the reducible contributions are given by the Bethe-Salpeter
equation (BSE) in the four channels formally as �/� =
�GGF [Eq. (A6)]. Here, � is the irreducible vertex in the
given channel, which contains the reducible contributions from
the other channels and the fully irreducible �; see Eqs. (A10)
and (A13). The self-consistency at the single- and two-particle
level are synchronized by means of the self-energy, which
depends on the resulting two-particle vertex as shown in the
Schwinger-Dyson equation of motion (A15).

Given the fully irreducible vertex �, the par-
quet formalism provides a set of five exact equations
[(1), (A6), (A10)/(A13), (A15), (A16)] which can be solved for
the five unknowns (F,�/�,�,G,�) (where the former three
equations and vertices consist of four channels each). Hence,
if we know the exact �, we can calculate all physical, one-
and two-particle, quantities exactly. However, since the exact
� of the Hubbard model is not known, we need to make
approximations. In the parquet approximation (PA) [6,31],
� ∼ U is taken; a more sophisticated approximation that takes
into account all local fully irreducible diagrams is referred to
as the dynamical vertex approximation [32,33].

In this paper, we mainly discuss two problems that are
practically unavoidable in solving the parquet equations, which
are of critical importance for keeping the self-consistency in
the single- and two-particle levels simultaneously.

The first problem arises due to the finite numbers of
Matsubara frequencies that are available in the calculations.
Each vertex in the parquet equation depends on three in-
dependent arguments k, k′, and q, which take arbitrary
values in (−∞,∞). In practice, a finite cutoff a has to be
introduced. A consequence of this cutoff is that after each
self-consistency step, the interval on which the vertex is known
shrinks. This can be seen as follows: take Eq. (1a) as an
example and suppose k, k′, and q take values in [−a,a]. For
calculating the the right-hand side of (1a), we would need the
solutions of �

k,k+q

d/m (k′ − k) in [−2a,2a], and �
k,k′
s/t (k + k′ − q)

in [−3a,3a]. Assuming that �
k,k′
d/m(q) and �

k,k′
s/t (q) are only

available in [−a,a], Fk,k′
d/m(q) can then be calculated only in the

smaller interval [−a/3,a/3]. Such a boundary issue only exists
in the Matsubara frequency space. In momentum space, the
periodic boundary condition can be applied whenever k′ − k
or k + k′ + q exceed the finite parameter range. However,
none of the vertex functions is periodically dependent on the
Matsubara frequencies iν, iν ′, and iω [27]. As a result, there
exist two different parameter spaces for the vertex functions,
i.e., in the bigger space ([−a,a]), �

k,k′
d/m(q) and �

k,k′
s/t (q) are

known, while through the parquet equations F
k,k′
d/m/s/t (q) can

be determined only in a smaller parameter space ([−a/3,a/3]).
The second problem is related to the finite frequency

parameter range as well. To evaluate the self-energy function
in Eq. (A15), a sum over the two internal arguments k′ and q

has to be carried out. An example of the vertex functions
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FIG. 1. (a) The green dots are the full vertex F
k,k′
d (q) for a fixed

value of q calculated from the DMFT (CT-INT) at βt = 2 and U/t =
4 on a square lattice. The bottom shows the intensity of F

k,k′
d (q),

which illustrates three major structures of the vertex functions. These
structures are the background, diagonal, and secondary diagonal
components, as illustrated in (b).

F
ν,ν ′
d (ω) is shown in Fig. 1. As was already observed in

Ref. [29,34], F
ν,ν ′
d (ω) has structures that span the whole

Matsubara frequency space. In particular, they do not decay at
the boundary of any given parameter box. Thus, a sum over
a finite parameter range corresponds to a truncation of these
vertex functions at the boundary, which can lead to a wrong
evaluation of the self-energy function.

In this paper, we propose a feasible scheme to solve
these two problems, improving upon the Matsubara-frequency
periodization employed hitherto [27]. Our idea is based
on the observation of the central role that the reducible
vertex functions play in the parquet equations, which will be
explained in the following.

A. Two-level kernel approximations

To satisfy the crossing symmetry explicitly in every self-
consistency step, we evaluate the full vertex Fd/m/s/t directly
from the parquet equations [27]. Figure 1 displays F

k,k′
d (q) as

a function of k and k′ for a fixed q. The left plot is obtained
from a DMFT calculation with the interaction-expansion
continuous-time quantum Monte Carlo (CT-INT) [35,36] as
an impurity solver, thus it represents a numerically exact (up
to the statistical errors of the CT-INT) evaluation of the full
two-particle vertex for the DMFT impurity. We will calculate
this vertex in the parquet theory as well; see Sec. III. A detailed
analysis of the two-particle vertex function can be found in
Refs. [29,34]. In the following, we will use the exact results
from DMFT as a reference to further show that, among the
various two-particle vertex functions, the reducible vertex,
which plays the central role in our implementation of the
parquet equations, is the most important.

The right plot shows a schematic representation of the major
structures of the left one. The full vertex Fd/m/s/t can be
decomposed into three main parts, i.e., the background, the
diagonal, and the secondary diagonal component. Figure 1
clearly shows that the boundary of the vertex function is
not periodic in frequency space, instead all three components
extend to infinite values of k and k′. Due to the restricted
parameter space available in practical calculations, one has to
be careful with the boundary effect on these vertex functions.

The background is contributed by �
k,k′
d/m/s/t (q), which is the

input for the parquet equation, and it is further supplemented by
the reducible vertex functions �

k,k′
d/m(q),�k,k′

s/t (q). The diagonal
and the secondary diagonal components are predominant for
F

k,k′
d/m/s/t (q) with k = k′ and k = −k′ − q in the d/m channel,

and for k = k′ − q in the s/t channel, respectively. The
diagonal and secondary diagonal components are generated,
in the parquet equations, by the reducible vertex �

k,k+q

d/m (k′ −
k),�k,k′

s/t (k + k′ + q) in the d/m channel and �
k,q−k′
d/m (k′ −

k),�k,k′
d/m(q − k − k′) in the s/t channel; see Eq. (1). We note

that the above analysis on the complete vertex F
k,k′
d/m/s/t (q) is

not specific to the Hubbard model. In principle, it is general
to any single-band model for fermions that preserves SU(2)
symmetry. Among the various terms in the parquet equations,
the background given by �

k,k′
d/m/s/t (q) is model-dependent, i.e.,

its asymptotic can be different for different models, while the
main and secondary diagonal structures are fully determined
by the parquet equations, which are general. As a result, our
approximation to the reducible vertex function, which will be
discussed in the rest of this work, can in principle be applied
to other models as well.

Furthermore, we also notice that these two components
only depend significantly on the center-of-mass momentum
and frequency (which is the momentum/frequency in the
brackets); the dependence on the other two arguments (the
superscript momentum/frequency) is much weaker, as will
be shown in the following. Hence, the reducible vertex can
be effectively approximated by single-argument-dependent
functions �̃d/m(q) and �̃s/t (q), which we call kernel functions.
The approximation of replacing the three-argument-dependent
reducible vertex with a single-q-dependent kernel function,
i.e., �

k,k+q

d/m (k′ − k) ≈ �̃d/m(q̃ = k′ − k), etc., is called the
first-level kernel approximation. We name it the “kernel
approximation” because, on the one hand, �̃(q) contains the
most essential, i.e., core or “kernel,” information of �k,k′

(q).
On the other hand, we use this term because, mathematically,
the kernel of our mapping F : q,k,k′ → q defines classes of
equivalent frequency triples, whose reducible vertex �k,k′

(q)
is (approximatively) the same, i.e., �̃(q). The parameter-
reduction of the reducible vertex functions, i.e., the kernel
approximation, will greatly simplify our implementation of the
parquet equations. Let us emphasize that we only employ the
kernel approximation when the Matsubara frequency is outside
the interval [−a,a] in which the vertex is known explicitly.
We also note that a parametrization related to the first-level
kernel approximation is used in a different context: Karrasch
et al. use a sum of single-frequency full vertex functions for
the functional renormalization-group calculations [37], where,
however, this parametrization is employed for all frequencies.

We verify the simple structure of the reducible vertex
functions from a DMFT calculation in Fig. 2(a), where �

k,k′
d (q)

is displayed as a function of k and k′ for a fixed transfer
frequency q = iω = −i40π/β. First of all, we notice that
the overall amplitude of the reducible vertex function for
the given parameters is much smaller than that of the full
vertex shown in Fig. 1 for the same parameters. Compared
to Fig. 1, the reducible vertex can rather be viewed as a flat
plane. Secondly, the detailed structure of the reducible vertex
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FIG. 2. (a) Reducible vertex in the density channel calcu-
lated from the DMFT (CT-INT) for the same parameter as in
Fig. 1. (b) Schematic illustration of our philosophy of the kernel-
approximation(s) for solving the open boundary issue in the parquet
equations; see the main text for more details.

is found to consist of only two main parts, i.e., a constant
background and two crossing stripes. The first-level kernel
approximation discussed above corresponds to considering
only the constant background. In practice, as the first-level
kernel function �̃d/m(q) [�̃s/t (q)], we take for every q the
value of �

k,k′
d/m(q) [�k,k′

s/t (q)] at this q and a k,k′ that is far away
from the diagonal components and the stripes in Fig. 2(b).
There is a certain freedom in this choice that has yet to be
investigated.

For an intuitive understanding of this approximation,
let us examine the first iteration of the PA. Here,
�

k,k′
d/m/s/t (q), F

k,k′
d/m/s/t (q), and �

k,k′
d/m/s/t (q) are simply taken as

(U,−U,2U,0). From Eq. (A6), we learn

�
k,k′
d/m(q) = U 2

βN

∑

k′′
G(k′′)G(k′′ + q),

�k,k′
s (q) = −2U 2

βN

∑

k′′
G(k′′)G(q − k′′), (2)

�k,k′
t (q) = 0,

which depend on q only. For any given q, �
k,k′
d/m(q) and

�
k,k′
s/t (q) are constant for all k and k′. Since in the second

iteration F
k,k′
d/m/s/t (q) and �

k,k′
d/m/s/t (q) are no longer taking

the simple values (U, − U,2U,0), the stripes appear in the
reducible vertex. Although F

k,k′
d/m/s/t (q) and �

k,k′
d/m/s/t (q) contain

structures that strongly deviate from the constant background,
the only structure of the reducible vertex �

k,k′
d/m(q) and �

k,k′
s/t (q)

extending in Matsubara frequency space is the stripes. Other
local structures inside the smaller parameter range (the light-
red region), which can be pronounced in some cases, will be
treated without the kernel approximation. Thus, as the first-
level approximation, the choice of single-q-dependent kernel
functions �̃d/m(q) and �̃s/t (q) is justified as an approximation
for large Matsubara frequencies.

Further improvement of this kernel approximation is pos-
sible. For the second-level kernel approximation, we consider
kernel functions �̃k

d/m(q) and �̃k
s/t (q) depending on two

arguments, which is in line with the analysis of Ref. [29].
The additional dependence on k in the second-level kernel ap-
proximation allows us also to incorporate the crossing stripes

of the reducible vertex functions; see Fig. 2(a). In practice,
we take �

k,k′
d/m(q) and �

k,k′
s/t (q) at one of the edges of the given

parameter range, for instance at k′ = −30 in Fig. 2(a), to be the
new kernel �̃k

d/m(q) ≈ �
k,−30
d/m (q) and �̃k

s/t (q) ≈ �
k,−30
s/t (q).

The kernel function, in the second-level approximation, is then
given as �̃k

d/m(q) + �̃k′
d/m(q) − �̃d/m(q), where �̃d/m(q) is the

first-level kernel function representing the background of the
reducible vertex. A similar expression can be formulated for
the particle-particle channel.

The kernel approximations have strong implications for the
two problems we discussed before. As our numerical study be-
low shows, the open boundary problem of the vertex functions
can be efficiently solved by supplementing the reducible vertex
functions with the corresponding kernel functions whenever
their arguments exceed the parameter space available in the
calculations. Toward that end, we illustrate our philosophy of
the kernel approximation in Fig. 2(b), where we show the two
different parameter spaces discussed in the beginning of this
section as light-blue and light-red squares. Only inside the
smaller parameter space (light-red square) can the full vertex
F

k,k′
d/m/s/t (q) be calculated from the reducible vertex functions

�
k,k′
d/m(q) and �

k,k′
s/t (q). Outside of the light-red region, in the

first-level kernel approximation, the full vertex functions are
calculated from �̃d/m(q) and �̃s/t (q), or in the second-level
kernel approximation from �̃k

d/m(q) + �̃k′
d/m(q) − �̃d/m(q)

and �̃k
s/t (q) + �̃k′

s/t (q) − �̃s/t (q). In this way, F
k,k′
d/m/s/t (q) and

�
k,k′
d/m/s/t (q) can be calculated in the full parameter space

defined in the calculations.

B. High-frequency regulation

To close the self-consistent loop for the parquet equations,
the self-energy also needs to be updated. As explained before,
the sum in Eq. (A15) is performed in a finite interval, which
corresponds to a truncation of the vertex functions at the
boundary. Generally, for a sum in a finite interval (−a,a),
the truncation effect can only be eliminated when a is large
enough so that the quantity to be summed becomes negligibly
small at the boundary. However, this is not the case for the
vertex functions, which extend to infinite values of k and
k′. In this section, we show that, based on the two-level
kernel approximation introduced above, we can write down
auxiliary vertex functions that match the exact complete vertex
F

k,k′
d/m/s/t (q) at and beyond the interval boundary. Thus their

difference becomes zero at the boundary, and they can be
safely summed over in the finite interval. As a principle, such
an auxiliary function has to be free of the boundary issue, as it
is supposed to account for the asymptotics that is not available
in the finite parameter space.

We propose the following auxiliary function for the full ver-
tex in the density channel (very similar asymptotic functions
can be readily formulated for other channels):

F̃
k,k′
d (q) = U + �̃d (q) − 1

2 �̃d (k′ − k) − 3
2 �̃m(k′ − k)

+ 1
2 �̃s(k + k′ + q) + 3

2 �̃t (k + k′ + q). (3)

In terms of Fig. 2(b), this is equivalent to calculating F
k,k′
d (q)

from the (approximate) kernel functions in both the smaller
and larger intervals. Here, for a simple demonstration, Eq. (3)
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is constructed from the first-level kernel functions. Similarly,
one can also construct this function by using the second-level
kernel functions. The resulting auxiliary functions F̃

k,k′
d (q)

will then become a better approximation to the exact complete
vertex F

k,k′
d (q).

Instead of using Eq. (A15), with the help of this auxiliary
vertex function we now calculate the self-energy as

�(k) = �̃(k) − UT 2

4N

∑

k′,q

G(k + q)G(k′ + q)G(k′)

×[
�F

k,k′
d (q) − �Fk,k′

m (q)
]

−UT 2

4N

∑

k′,q

G(q − k′)G(q − k)G(k′)

×[
�Fk,k′

s (q) + �Fk,k′
t (q)

]
. (4)

Here, �F
k,k′
d/m/s/t (q) = F

k,k′
d/m/s/t (q) − F̃

k,k′
d/m/s/t (q), and �̃(k) is

the self-energy calculated from the kernel functions in all
channels.

To faithfully account for full vertex functions at arbitrary
k, k′, and q in (−∞,∞), we further split �̃(k) into �̃1(k)
and �̃2(k), where �̃1(k) contains only the contribution from
the (U, − U,2U,0) components, while �̃2(k) contains the rest
of the auxiliary functions [see Eq. (3)]. �̃1(k) can then be
efficiently calculated as follows:

�̃1(k) = −U 2T 2

2N

∑

k′,q

[G(k + q)G(k′ + q)G(k′)

+G(q − k′)G(q − k)G(k′)]

= −U 2FFT −1[G2(r)G(−r)]. (5)

Here, G(r) is the Fourier component of G(k), and FFT −1

is the (fast) Fourier transformation between these (in this
transformation, the antiperiodic boundary condition in the
imaginary-time space has been taken into account). Thus,
�̃1(k) incorporates the contribution from the lowest-order
complete vertex function, i.e., the bare Coulomb interaction,
for all frequencies and momentum variables. �̃1(k) is merely
the self-energy from the second-order Feynman diagram. As
for �̃2(k), we perform the direct sum over k′ and q in a much
larger parameter space, which is possible thanks to the kernel
approximation. In practice, we usually take this space two or
three times larger than the bigger parameter space used for
calculating the various vertex functions [the light-blue region
in Fig. 2(b)].

The full vertex does not decay asymptotically but extends
with finite values to the largest k, k′, and q. However, due
to the three single-particle propagators G in Eq. (A15), the
product GGGF still goes to zero asymptotically for large
k, k′, and q. While it is usually difficult for the full vertex
functions to work in a large parameter space in practice, this
is not a problem for the kernel functions, which depend only
on one or two arguments. Thus, the evaluation of �̃2(k) can
be carried out in a much larger parameter space. We note
that the high-frequency regulation explained above is very
important for �̃(k) to reproduce the asymptotic tail of the
self-energy function in frequency space correctly, which is

crucial for maintaining the correct high-frequency behavior of
the two-particle vertex functions, and vice versa.

III. RESULTS

A. Validation against DMFT at half-filling

In this section, we present numerical results to justify
our implementation of the parquet equations and to validate
the accuracy of the kernel approximation. Toward that end,
we consider the Hubbard model on a 2D square lattice
with nearest-neighbor hopping t and interaction U at inverse
temperature β. We solve this model using both the DMFT
methodology and the parquet equations at a single-momentum
point. Unless mentioned otherwise, the results presented in this
section represent the solutions with the second-level kernel
function and the high-frequency regulation for the self-energy
asymptotics introduced in the previous section.

More specifically, we use CT-INT as an impurity solver
for the DMFT equations, yielding both the single-particle
self-energy and the two-particle vertex function, in a nu-
merically precise way. The DMFT solution provides an
unbiased reference for benchmarking our implementation of
the parquet equations. For a fair comparison, we take the
converged DMFT Weiss function G(iνn) as input for the
parquet equations. For the other input, i.e., the fully irreducible
vertex function �

k,k′
d/m/s/t (q), we take two different values:

In one calculation, we take the lowest-order approximation
�

k,k′
d/m/s/t (q) ≈ (U,−U,2U,0), which corresponds to the PA

for the DMFT impurity model. In the other (full parquet)
calculation, we take the CT-INT calculated �

k,k′
d/m/s/t (q) as

input. Since (in contrast to D�A) we do not include a
k dependence here, this calculation exactly reproduces the
DMFT results for F and � if the parquet equations are solved
on an infinite frequency interval and if statistical errors in
CT-INT are negligible. For the given finite frequency interval,
this is hence a test for the accuracy of the proposed kernel
approximation.

We show the corresponding full parquet self-energy in
Fig. 3 as empty circles. It nicely reproduces the DMFT
solution (empty squares), validating the accuracy of the kernel
approximation. Also, the PA solution (open triangles) agrees
well with the DMFT, except for a small deviation at the first two
Matsubara frequencies. In particular, the high-frequency tail of
the self-energy is nicely reproduced by both parquet solutions.
This is an essential check for the algorithm. As explained
before, a direct truncation of the vertex at the boundary of the
available parameter space will lead to the wrong solution of
the self-energy, which is mainly reflected in the violation of
the high-frequency behavior.

Such a violation is a rather common issue appearing in
most of the diagrammatic approaches when evaluating the
self-energy with only a finite numbers of Matsubara frequency.
To achieve a correct high-frequency tail in the self-energy,
a few hundred or even more Matsubara frequencies usually
have to be adopted in these approaches [10,18], which is
significantly larger than the number taken in our parquet
calculations for similar parameters. That is, in all calculations
presented in this paper, no more than 60 Matsubara frequencies
in each argument are taken, which significantly reduces the
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FIG. 3. Single-particle self-energy obtained from the parquet
equations in the PA and the (local) full parquet calculation employing
the kernel approximation. The latter reproduces the DMFT solution
with high precision, but the PA also shows quite good agreement,
except for the lowest two Matsubara frequencies. The parameters for
the 2D Hubbard model in DMFT are β = 1,U = 4 (here and in the
following, t ≡ 1). In the parquet equation, 60 Matsubara frequencies
have been taken into account in the inner interval of Fig. 2(b), with
the kernel approximation being employed in the outer interval.

demand on the memory for storing all vertex functions. Cor-
rectly reproducing the high-frequency tail with significantly
fewer Matsubara frequencies is one of the highlights of our
algorithm.

At a lower temperature β = 2, the full parquet calculation
still yields results that agree very well with the DMFT solution,
as shown in Fig. 4. The PA results, on the other hand, deviate
more strongly from the DMFT at low frequencies. This is
expected since approximating the fully irreducible vertex by
the bare Coulomb interaction is correct only asymptotically
for small U . As discussed before, the difference between the
PA and the full parquet solutions results from the different
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FIG. 4. Same as Fig. 3 but for U = 4 and β = 2. The inset shows
the convergence of Im�(iνn) with the increase of the frequency cutoff
in �d/m/s/t ; see the main text for more details.
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FIG. 5. Two-particle full vertex functions in the four channels as
calculated from the parquet equations taking the fully local irreducible
vertex from DMFT as an input. The parameters are the same as in
Fig. 3.

values for the fully irreducible vertex function �
k,k′
d/m/s/t (q)

used in the calculations. More specifically, in the full parquet
calculation, we take �

k,k′
d/m/s/t (q) obtained from the DMFT

(CT-INT) with 30 Matsubara frequencies for each argument,
i.e., k, k′, and q are in [−n�,n�] = [−14,15], and then we
extend �

k,k′
d/m/s/t (q) to [−30,30] by supplementing it with the

lowest-order values of these vertices, i.e., (U, − U,2U,0). In
the PA calculations, we take �

k,k′
d/m/s/t (q) as (U, − U,2U,0)

everywhere in [−30,30]. To see the convergence of the full
parquet calculation with respect to n�, the inset of Fig. 4 shows
solutions of the full parquet calculation for three different
cutoffs n�. We find a converged solution for n� � 5. As is
known, to obtain the fully irreducible vertex �k,k′

(q) with
large frequency cutoff is numerically very challenging. The
inset of Fig. 4 shows that a relatively small value of cutoff
n� is sufficient to converge the solution (if there exists a
convergence) to the correct values.

Such excellent agreement is not only achieved for the self-
energy. We also find that the full parquet equations give almost
identical two-particle vertex functions in all channels (Fig. 5)
when compared to the DMFT. In Fig. 6, we calculate their rel-
ative difference

∑
ν,ν ′ |�F

ν,ν ′
d/m/s/t (ω)|/| ∑ν,ν ′ |F DMFT,ν,ν ′

d/m/s/t (ω)|
by summing up the two fermionic frequencies ν,ν ′, and
we show it as a function of the transfer frequency ωn.
Here, �F

ν,ν ′
d/m/s/t (ω) = F

PARQUET,ν,ν ′
d/m/s/t (ω) − F

DMFT,ν,ν ′
d/m/s/t (ω). The

overall amplitude of their differences is small, and the biggest
deviation appears at ωn = 0. This is expected as, in the
reducible vertex, for any ν and ν ′ the largest absolute value is
at ωn = 0. It is then easier for an error of the reducible vertex at
ωn = 0 to propagate to the complete vertex F

ν,ν ′
d/m/s/t (ωn). In the
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FIG. 6. The relative error of the complete vertices in Fig. 5 with
respect to those calculated in DMFT using CT-INT. The relative error
is summed up for the two fermionic frequencies and is shown as a
function of the transfer frequency ωn; see the text for more details.
Note that this relative error is also subject to the propagation of the
statistical error of CT-INT.

triplet channel, we also notice that the relative error is large at
larger frequencies, too. This is due to the statistical error of the
CT-INT and the extrapolation error in the fully localized vertex
function �

ν,ν ′
t (ω), which was only calculated up to |ωn| = 15

in the CT-INT. Let us emphasize that the two-particle vertex
F

k,k′
d/m/s/t (q) at larger frequencies is calculated from the kernel

approximation. The small error in this regime, especially in
the density, magnetic, and singlet channels, shows that the
kernel approximation correctly reproduces the asymptotics of
the two-particle vertex functions.

The agreement in both the single- and two-particle quan-
tities clearly demonstrates that our implementation of the
parquet equations fully respects the self-consistency at both
the singe- and two-particle levels. It should be noted that
the availability of the two-particle vertex function as output
is one of the striking features of the parquet theory. The
two-particle vertex functions play a crucial role in various
diagrammatic approaches [32,38–44] that construct nonlocal
correlations starting from a local DMFT [30] solution. In the
dual-fermion (DF) [39–41] functional renormalization-group
enhanced DMFT (DMF2RG) [45], the nonlocal expansion
(NLE) [44] and the three-leg vertex (TRILEX) [46] approaches
to the full vertex functions F

k,k′
d/m/s/t (q) are used to restore the

nonlocal dependence in the self-energy. In ladder D�A [32,38]
and the one-particle irreducible (1PI) approach [43], the
channel-dependent irreducible vertex functions �

k,k′
d/m/s/t (q) are

the building blocks for the nonlocal self-energy diagrams.
Full parquet D�A [28] starts, as we do here, with the most
compact and local object, i.e., the fully irreducible vertex
�

k,k′
d/m/s/t (q). To obtain these necessary vertex functions is

not a trivial task. Exact numerical methods, such as quantum
Monte Carlo (QMC) or exact diagonalization (ED), are usually
employed. We have shown in this paper that, in addition
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FIG. 7. With the kernel approximation and high-frequency regu-
lation, the convergence at U = 6 and 8 can also be achieved in the
PA. Here the inverse temperature is the same as in Fig. 4.

to these approaches, the parquet equations provide another
tool that is more flexible than the QMC and ED in many
situations, as it can be applied to cases out of half-filling,
cluster systems, multiorbital materials, etc. We believe that
our implementation of the parquet equations paves the way for
other many-body methods [39–41,44,45] that are based on the
two-particle vertex.

Another feature of our parquet implementation is the
improved convergence of the algorithm. As displayed in
Fig. 7, with the kernel approximation, U = 6 and 8 can
also be converged, which is difficult to achieve in other
implementations [26,27]. The improved convergence is mainly
due to the correct understanding of the vertex structure and the
subsequently proposed kernel approximation. In implementa-
tions without auxiliary high-frequency functions, one has to
enlarge the frequency range to achieve a better convergence.
However, the rapid growth in the memory demand usually
forbids one to do so. Comparing Fig. 7 with Fig. 4 immediately
implies that, with the increase of interaction strength, the
deviations of the PA from the DMFT become more and
more pronounced. The parquet approximation works better
in the weak-coupling regime. This is corrected when the full
parquet calculations are performed. However, we noticed that
the convergence in the full parquet calculation is generally
slower than in the PA, and for these values of interactions, i.e.,
U = 6,8 and even larger, we did not achieve the convergence
in the full parquet calculations, which is mainly due to the
almost singular value of �

k,k′
d/m/s/t (q) occurring at larger values

of U [47].

B. Validation against DMFT away from half-filling

The parquet formula decouples the complete two-particle
vertex functions according to its reducibility in different
channels. As a result, the parquet formula entangles particle-
particle and particle-hole channels. Both, the full two-particle
vertex functions and the single-particle self-energy are subject
to contributions from both particle-hole and particle-particle
fluctuations. At half-filling, the particle-hole, especially the
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magnetic channel, is the channel displaying the strongest
fluctuations. Thus, the low-energy physics at half-filling
is dominated mainly by magnetic fluctuations from the
particle-hole excitations. Here we further benchmark our
kernel approximation for the hole-doped case, where the
magnetic fluctuations are suppressed while the charge and
pairing fluctuations are enhanced. The doped single-band
Hubbard model is very appealing due to the interest in the
pseudogap of unconventional superconductors. In the normal
phase of cuprate superconductors, it is believed that due to
the strong competition between particle-hole and particle-
particle fluctuations, a pseudogap forms as a precursor of the
superconducting gap below the transition temperature.

As the parquet formulation equally describes particle-
particle and particle-hole fluctuations, the doped Hubbard
model is indeed a good testing case for our implementation.
In Fig. 8, we show the results for βt = 10 and U/t = 4.0, and
we compare the parquet approximation (red square), the full
parquet (blue circle) calculations, and the numerically exact
DMFT solutions (green triangle). The particle concentration
is taken as 〈n〉 = 0.8. To keep 〈n〉 fixed in the self-consistent
parquet calculations, we adjust the chemical potential μ in each
self-consistency iteration. Compared to the results presented
in the previous section, the temperature is much lower and
the doping level is close to the optimal doping for cuprate
superconductivity.

In the doped case, the real part of the self-energy becomes
nonzero. For this effective single impurity problem, the static
part of the self-energy is completely given by the Hartree
contribution, which accounts for the hole doping. As is clearly
displayed in Fig. 8, the asymptotics of both real and imaginary
parts of the self-energy from the parquet approximation and
the full parquet solutions agree well with that of the DMFT. In
the low-frequency regime, the imaginary part of the parquet
approximation and the full parquet solutions is similar to the
DMFT exact solution, while in the real part the discrepancy

between the parquet approximation and the DMFT is nicely
improved by the full parquet solution with a local fully
irreducible vertex as an input. Such an improvement is also
seen for real frequencies [see Figs. 8(b) and 8(c)], where the
low-frequency part of the DMFT solution is nicely reproduced
by the full parquet results, while the parquet approximation
solution deviates slightly from the other two. Here, of course,
the Padé fit leads to some numerical noise.

As already noted before, in the full parquet calculations
we take the fully irreducible vertex function �ν,ν ′

(ω) obtained
from DMFT (QMC) as input. In this low-temperature study,
we have �ν,ν ′

(ω) only in a limited parameter space ν,ν ′ ∈
[−8.48 : 8.48] and ω ∈ [−8.8 : 8.8], which corresponds to
a Matsubara frequency index in [−14 : 15]. Increasing the
number of Matsubara frequencies in DMFT (QMC) is basi-
cally hindered by a fundamental problem of QMC, i.e., the
statistical error of the two-particle vertex functions at larger
frequencies. The inversion of the Bethe-Salpeter equation in
DMFT (QMC) becomes unstable in this case. The problem of a
limited number of Matsubara frequencies available in �ν,ν ′

(ω)
is more serious in this study than in the high-temperature cases
studied before. This numerical noise may be the source of the
discrepancies in the imaginary part. Let us note that for this set
of parameters, it is not even necessary to work with the �ν,ν ′

(ω)
calculated by means of QMC. As one can see from Fig. 8, the
parquet approximation with �

ν,ν ′
d/m/s/t (ω) = (U, − U,2U,0)

behaves reasonably at both high and low frequencies. By
doping, electronic correlations are reduced so that the parquet
approximation, which works better at weak coupling, becomes
more justified. Of course, a better estimation of �ν,ν ′

(ω) can
further improve the parquet approximation.

C. Dynamical vertex approximation

In this section, we go beyond the DMFT solution of the
Hubbard model discussed in the preceding section, where
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for a 2 × 2 momentum patch. F

k,k′
d/m/s/t (q) is shown as a function of k

and k′ for fixed q = 0.

the parquet equations are solved without k dependence (for
a single k point). Instead, we solve the parquet equations
for a 2 × 2 patch-grid in momentum space using the local
fully irreducible vertex as an input. This is the parquet D�A,
which includes nonlocal correlations beyond DMFT [28].
Figure 9 shows the nonlocal, full vertex functions at β = 2
and U = 4 (t ≡ 1) as functions of k and k′ with q = 0. In
each compound index k, there are four different momenta,
which results in 64 momentum patches for each vertex
function. Figure 9 shows the 16 patches for q = 0. It is
obvious from Fig. 9 that the full vertex shows a strong
momentum dependence that is also very channel-dependent.
While we only show results here for a 2 × 2 patch-grid, solving
the parquet equations for larger clusters is possible due to
the economic use of memory in our kernel approximation.
We found our implementation to be feasible also for calcu-
lations on 4 × 4 clusters. Further algorithmic improvements
regarding parallelization and memory management should
allow for even larger cluster sizes.

IV. SUMMARY AND OUTLOOK

In this paper, we have proposed an implementation of the
parquet equations and applied it to the one-band Hubbard
model in DMFT and D�A. We found that it is crucial to respect
the correct structure of the vertex functions to simultaneously
maintain the self-consistency at both single- and two-particle
levels. Among the various two-particle vertex functions, the
reducible vertex in each channel plays an important role in the
parquet equations in the sense that it generates the major struc-
ture of the other vertex functions. This important observation

motivates us to propose a two-level kernel approximation on
the reducible vertex �

k,k′
d/m(q) and �

k,k′
s/t (q), which effectively

reduces its three-argument dependence to a one-/two-argument
dependence. Employing this two-level kernel approximation
in a larger frequency interval greatly simplifies the calculation.
In particular, it faithfully respects the open boundary condition
of the vertex functions in Matsubara frequency space. Based on
the kernel function, we also proposed an auxiliary function to
carefully incorporate the high-frequency information missing
in the finite sum evaluation of the self-energy.

We showed that the two-level kernel approximation and the
high-frequency regulation are efficient for solving the parquet
equations. For the single-impurity Anderson model, a very
impressive agreement with the DMFT can be achieved that
validates our approach. We also demonstrate that the PA works
quite well as long as U is not too large. Let us note that
the kernel approximation and the high-frequency regulation
also improve the convergence, which further enhances the
applicability of this approach. The calculated two-particle
vertex functions can be used as a starting point by other
many-body approaches, such as the ladder-D�A, the 1PI
approach, DMF2RG, DF, NLE, and TRILEX.

The proposed two-level kernel approximations and the
high-frequency regulations are compatible with the PA and
the full parquet D�A, which we were able to perform in
two dimensions. Physically, the advantage over previously
employed ladder D�A [48,49] is that in the full parquet
D�A the particle-particle (Cooper) channel is also included.
This allows us to study spin-fluctuation mediated supercon-
ductivity [18,19] and instabilities toward stripe phases [50].
Let us note that nonlocal interactions can also be included
straightforwardly. For example, it is possible to study an
extended Hubbard model with nearest-neighbor interaction
and the competition between the long-range magnetic and
charge instabilities.
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APPENDIX: FORMULATION OF THE
PARQUET EQUATIONS

In this appendix, we present the necessary notations that
are used in this paper. Based on these notations, the parquet
equations are derived under SU(2) symmetry. The complete
derivation of the parquet formulation concerns two parts: the
coupled equations for the two-particle vertex functions in all
channels, and the one-particle self-energy.

Throughout this paper, we considered the half-filled single-
band Hubbard model on a square lattice and used its DMFT
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LI, WENTZELL, PUDLEINER, THUNSTRÖM, AND HELD PHYSICAL REVIEW B 93, 165103 (2016)

solution as a benchmark for testing the numerical feasibility
of our approach. The Hubbard Hamiltonian reads

H =
∑

k,σ

εkc
†
k,σ ck,σ + U

∑

i

ni↑ni↓. (A1)

Here, k represents a momentum vector in the two-dimensional
(2D) square lattice, εk = −2t(cos kx + cos ky),c†k,σ (ck,σ ) cre-
ates (annihilates) an electron with momentum k and spin
σ ∈ {↑ , ↓}, and niσ ≡ c

†
i,σ ci,σ is the number operator on

lattice site i.

1. Notations

First, we introduce the definition for the two-particle
susceptibility χ , from which other vertex functions can be
derived. The particle-hole and particle-particle susceptibilities
are defined as

χ
k,k′
ph,σσ ′(q) =

∑

ijkl

e−ikri ei(k+q)rj e−i(k′+q)rk eik′rl

×〈Tτ c
†
σ (ri)cσ (rj )c†σ ′(rk)cσ ′(rl)〉, (A2a)

χ
k,k′
pp,σσ ′(q) =

∑

ijkl

e−ikri ei(q−k′)rj e−i(q−k)rk eik′rl

×〈Tτ c
†
σ (ri)cσ (rj )c†σ ′(rk)cσ ′(rl)〉. (A2b)

Here, r = (r,τ ) with lattice site r and imaginary time τ,k =
(k,iν) with wave vector k and Matsubara frequency iν,
and q = (q,iω) with the transfer momentum and bosonic
frequency.

∑
ijkl will be understood as T

∑
ri ···rl

∫ β

0 dτi · · · dτl ,
where T is the temperature. Note that the particle-hole and
particle-particle excitations are encoded in the same four-point
correlator in the above equation, thus χ

k,k′
ph,σσ ′(q) and χ

k,k′
pp,σσ ′(q)

are not independent but relate to each other by means of
a frequency shift. That is, they are related to each other as
χ

k,k′
pp,σσ ′(q) = χ

k,k′
ph,σσ ′(q − k − k′). The same relation also holds

for the complete vertex F and the fully irreducible vertex �.
From the susceptibilities χ

k,k′
ph,σσ ′(q) and χ

k,k′
pp,σσ ′(q), the

complete (full) vertex functions F
k,k′
ph,σσ ′(q) and F

k,k′
pp,σσ ′(q) can

be easily obtained as

F
k,k′
ph,σσ ′(q) = −χ

k,k′
ph,σσ ′(q) − χ

0,kk′
ph,σσ ′(q)

Gk
σG

k+q
σ Gk′

σ ′G
k′+q

σ ′
, (A3a)

F
k,k′
pp,σσ ′(q) = −χ

k,k′
pp,σσ ′(q) − χ

0,kk′
pp,σσ ′(q)

Gk
σG

q−k′
σ Gk′

σ ′G
q−k

σ ′
, (A3b)

with the bare bubble susceptibilities χ
0,kk′
ph,σσ ′(q) =

β

N
[Gk

σGk′
σ ′δq,0 − Gk

σG
k+q
σ δk,k′δσσ ′] and χ

0,kk′
pp,σσ ′(q) =

β

N
[Gk

σGk′
σ ′δk,q−k′ − Gk

σG
q−k
σ δk,k′δσσ ′]. Under the SU(2)

symmetry, the full vertex functions (including also the other
vertex functions) with different spin configurations can be
cast into a more compact form in the density (d), magnetic
(m), singlet (s), and triplet (t) channels; see Fig. 10:

F
k,k′
d/m(q) = F

k,k′
ph,↑↑(q) ± F

k,k′
ph,↑↓(q), (A4a)

F
k,k′
t/s (q) = F

k,k′
pp,↑↓(q) ± F

k,k′

pp,↑↓(q). (A4b)

Fd/m

k

k+q k'+q 

k'

Fs/t

k

k'q-k

q-k' 

FIG. 10. Graphical representation of the vertex functions in the
particle-hole (d/m) and the particle-particle (s/t) channels, which
apply to all the vertices in this work.

In each channel, the full vertex function can be further
decomposed into the two-particle irreducible vertex (�d/m/s/t )
and the reducible vertex (�d/m,�t/s) through the Bethe-
Salpeter equation (BSE), which has been thoroughly discussed
in many works; see, e.g., [6,34]. Here, we will only recall
the BSE formulas as used in the derivation of the parquet
equations:

F
k,k′
d/m(q) = �

k,k′
d/m(q) + �

k,k′
d/m(q), (A5a)

F
k,k′
t/s (q) = �

k,k′
t/s (q) + �

k,k′
t/s (q), (A5b)

where the reducible vertex functions depend on the irreducible
and full vertex as follows:

�
k,k′
d/m(q) = T

N

∑

k′′
�

k,k′′
d/m(q)G(k′′)G(k′′ + q)Fk′′,k′

d/m (q), (A6a)

�
k,k′
t/s (q) = ± T

2N

∑

k′′
�

k,k′′
t/s (q)G(k′′)G(q − k′′)Fk′′,k′

t/s (q).

(A6b)

2. Derivation of the parquet equations

With the above notations and definitions, we now proceed
to derive the parquet equations. The irreducible vertex �d/m/s/t

is only irreducible in a given channel, while it becomes
reducible in other channels. �d/m/s/t , as the most fundamental
one among all vertex functions, is fully irreducible in all
channels. Given �d/m/s/t , the full vertex Fd/m/s/t , the channel-
dependent irreducible vertex �d/m/s/t , and the reducible
vertices �d/m,�s/t can be readily calculated from the parquet
equation, as represented graphically in Fig. 11. The parquet
equation is merely a classification of diagrams in terms of
their two-particle irreducibility. Mathematically, by taking the
spin dependence of each diagram into account, we obtain the
parquet equation in the particle-hole channel as

�
k,k′
ph,↑↑(q) = �

k,k′
ph,↑↑(q) + �

k,k′

ph,↑↑(q) − �
k,k+q

pp,↑↑(k + k′ + q),

(A7a)

�
k,k′
ph,↑↓(q) = �

k,k′
ph,↑↓(q) + �

k,k′

ph,↑↓(q) − �
k,k+q

pp,↑↓(k + k′ + q).

(A7b)

After applying the crossing relations [34]

�
k,k′

ph,↑↑(q) = −�
k,k+q

ph,↑↑(k′ − k), (A8a)

�
k,k′

ph,↑↓(q) = −�k,k+q
m (k′ − k), (A8b)
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= +Λ

Γ

F

Γ

p

ppph

Γph ph

=Γpp Λpp -

Γph

-

phF

phF

- Γph phF

FIG. 11. Coupled diagrams for the parquet equations in the
particle-hole and particle-particle channels. Here the corresponding
diagrams in the particle-hole transverse channel have been omitted, as
they do not lead to independent contributions to the parquet equations
and can be derived from the particle-hole channel.

�
k,k′
pp,↑↑(q) = �k,k′

t (q) = −�
k,q−k′
t (q), (A8c)

�
k,k′

pp,↑↓(q) = −�
k,q−k′
pp,↑↓ (q) (A8d)

to Eqs. (A7a) and (A7b), we have

�
k,k′
ph,↑↑(q) = �

k,k′
ph,↑↑(q) − �

k,k+q

ph,↑↑(k′ − k)

+�k,k′
t (k + k′ + q), (A9a)

�
k,k′
ph,↑↓(q) = �

k,k′
ph,↑↓(q) − �k,k+q

m (k′ − k)

+�
k,k′
pp,↑↓(k + k′ + q), (A9b)

which can be equivalently written in the density and magnetic
channels as

�
k,k′
d (q) = �

k,k′
d (q) − 1

2�
k,k+q

d (k′ − k) − 3
2�k,k+q

m (k′ − k)

+ 1
2�k,k′

s (k + k′ + q) + 3
2�k,k′

t (k + k′ + q),

(A10a)

�k,k′
m (q) = �k,k′

m (q) − 1
2�

k,k+q

d (k′ − k) + 1
2�k,k+q

m (k′ − k)

− 1
2�k,k′

s (k + k′ + q) + 1
2�k,k′

t (k + k′ + q).

(A10b)

Similarly, for the particle-particle channel in Fig. 11, the
equations read

�
k,k′
pp,↑↓(q) = �

k,k′
pp,↑↓(q) − �

k,q−k′

ph,↑↓ (k′ − k) − �
k,q−k′

ph,↑↓ (k′ − k),

(A11a)

�
k,k′

pp,↑↓(q) = �
k,k′

pp,↑↓(q) − �
k,q−k′
ph,↑↓ (k′ − k) − �

k,q−k′

ph,↑↓ (k′ − k).

(A11b)

To simply these equations, we need again Eq. (A8b) and the
following relation:

�
k,k′

ph,↑↓(q) = −�
k,k+q

ph,↑↓(k′ − k), (A12a)

�
k,k′

ph,↑↓(q) = �k,k′
m (q). (A12b)

FIG. 12. The Feynman diagram for the self-energy, which con-
tains contributions from both the particle-hole and the particle-
particle channel.

The parquet equations for the particle-particle channel are then
found to be

�k,k′
s (q) = �k,k′

s (q) + 1
2�

k,q−k′
d (k′ − k) − 3

2�k,q−k′
m (k′ − k)

+ 1
2�

k,k′
d (q − k − k′) − 3

2�k,k′
m (q − k − k′),

(A13a)

�k,k′
t (q) = �k,k′

t (q) − 1
2�

k,q−k′
d (k′ − k) − 1

2�k,q−k′
m (k′ − k)

+ 1
2�

k,k′
d (q − k − k′) + 1

2�k,k′
m (q − k − k′).

(A13b)

3. Crossing symmetry

An important symmetry that the parquet equations satisfy
but that is violated in the Baym-Kadanoff formalism is the
crossing symmetry, which for the full vertex reads

F
k,k′
d (q) = 1

2Fk,k′
s (k + k′ + q) + 3

2Fk,k′
t (k + k′ + q),

F k,k′
m (q) = − 1

2Fk,k′
s (k + k′ + q) + 1

2Fk,k′
t (k + k′ + q),

F k,k′
s (q) = 1

2F
k,k′
d (q − k − k′) − 3

2Fk,k′
m (q − k − k′),

F k,k′
t (q) = 1

2F
k,k′
d (q − k − k′) + 1

2Fk,k′
m (q − k − k′).

(A14)

These equations can be easily verified in the parquet equa-
tion (1) by substituting Eqs. (A10) and (A13) into Eq. (A5).
A correct solution of the parquet equations certainly should
respect this symmetry. It has been understood that the above
crossing symmetry can be explicitly enforced at each self-
consistent step by solving the parquet equations for the full
vertex Fd/m/s/t , i.e., Eq. (1), instead of those for �d/m/s/t [27].
We note that a similar crossing symmetry also applies to the
fully irreducible vertex �d/m/s/t .

4. Self-energy from the full vertex

To close the self-consistent loop in the parquet theory, we
also need to connect the two-particle full vertex functions
Fd/m/s/t with the single-particle self-energy �(k), which is
graphically shown in Fig. 12. This connection can be derived
through the Heisenberg equation of motion and is also known
as the Schwinger-Dyson equation.
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In this context, it reads

�(k) = −UT 2

4N

∑

k′,q

G(k + q)G(k′ + q)G(k′)

× [
F

k,k′
d (q) − Fk,k′

m (q)
]

− UT 2

4N

∑

k′,q

G(q − k′)G(q − k)G(k′)

× [
Fk,k′

s (q) + Fk,k′
t (q)

]
. (A15)

Here, the sum over k′ and q should be done over all Matsubara
frequencies. In principle, the Hartree and Fock terms need to be
added to Eq. (A15), but they are not relevant for the one-band
Hubbard model in the paramagnetic phase.

From � in turn, the Green function is obtained through the
Dyson equation, which for the sake of completeness reads

G(k) = [iω − εk − �(k)]−1. (A16)

This Green function enters Eq. (A6), which closes the set of
equations in the parquet formalism.
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