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We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte
Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum-dependent,
but it can be parametrized via the noninteracting energy-momentum dispersion εk, except for pseudogap features
right at the Fermi edge. That is, it can be written as �(εk,ω), with two energylike parameters (ε, ω) instead of
three (kx , ky , and ω). The self-energy has two rather broad and weakly dispersing high-energy features and a
sharp ω = εk feature at high temperatures, which turns to ω = −εk at low temperatures. Altogether this yields a
Z- and reversed-Z-like structure, respectively, for the imaginary part of �(εk,ω). We attribute the change of the
low-energy structure to antiferromagnetic spin fluctuations.
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I. INTRODUCTION

The calculation of strongly correlated electron systems
remains one of the biggest challenges to theoretical solid-
state physics. These correlations originate from the Coulomb
repulsion between the electrons, and they strongly modify their
propagation, which is described by the single-particle Green’s
function. Compared to the noninteracting case, the propagation
is dressed by the frequency- and momentum-dependent self-
energy, �(k,ω). Thus, knowledge of the self-energy gives
direct access to all single-particle properties. It allows us,
in principle, also to calculate multiparticle propagators via
derivatives of the self-energy with respect to appropriate source
fields [1,2].

Understanding the frequency and momentum structure of
�(k,ω) and a generic parametrization thereof is hence a key to
understanding correlated systems on the whole. The standard
model for electrons in a solid, i.e., Landau’s Fermi liquid
theory [3], corresponds to a Taylor expansion of �(k,ω)
around the Fermi energy ω = εF and around the Fermi surface
k ∈ FS. It simplifies the self-energy to its linear terms with
respect to ω − εF and the perpendicular component of the k
deviation from the Fermi surface. This linearization allows for
describing the one-particle physics at low energies of almost
all metals; Mott insulators [4–6], on the other hand, have a
diverging self-energy around ω = εF , while non-Fermi-liquids
deviate from a linear dependence in ω − εF despite being
metallic [7,8]. A hallmark of a strongly correlated Fermi liquid
is also a kink in �(ω) [9,10] at the Kondo temperature of the
lattice [11]. This kink separates a first linear (Fermi liquid)
behavior of �(ω) from a second one at larger ω, where one
still has quite coherent quasiparticle-like excitations.

These examples already point to the importance of the ω

dependence in our present understanding of the self-energy of
strongly correlated electrons. Much less is known regarding its
generic k dependence. This imbalance is particularly obvious
in dynamical mean-field theory (DMFT) [12,13], which
neglects the k dependence altogether and considers solely
�(ω). The fact that DMFT is exact in infinite dimensions [14]
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and a good approximation for electronic correlations in three
dimensions, at least at elevated temperatures, justifies this
imbalance in many situations. It is well known, however, that
the k dependence of �(k,ω) is generally important in two- or
one-dimensional systems.

In certain situations, the self-energy can be separated into a
frequency-dependent local and a static momentum-dependent
contribution [15], �(k,ω) = �loc(ω) + �′(k), which is partic-
ularly appealing when these two contributions are calculated
by different methods such as DMFT and GW , respec-
tively [16–18]. In general, however, as shown in different
diagrammatic extensions [19–21], the nonlocal part of the
self-energy is frequency-dependent, i.e., �(k,ω) = �loc(ω) +
�′(k,ω).

In this paper, we show that a simpler form of the k
dependence, �(k,ω) ≈ �(εk,ω), is possible to a large extent.
That is, �(k,ω) depends on k only through the corresponding
noninteracting energy εk instead of the full d-dimensional
k vector. Such a form is obviously correct (at least) for
one-dimensional systems with nearest-neighbor hopping, i.e.,
monotonic εk within the reduced Brillouin zone (BZ), as
well as in infinite dimensions where �(k,ω) ≡ �(ω). In two
dimensions, this means that � only depends on two variables
(ε and ω) instead of three (kx , ky , and ω). Even in this most am-
bitious case, our cutting-edge Blankenbecler-Sugar-Scalapino
quantum Monte Carlo (BSS-QMC) simulations [22] and
dynamical vertex approximation (D�A) [23,24] calculations
collapse by-and-large onto a single εk dependence in addition
to the ω dependence. An important exception is the so-called
pseudogap phase in which the self-energy has, as a matter of
course, different values at the Fermi surface in the nodal and
antinodal direction. In the pseudogap phase, angle-resolved
photoemission spectroscopy (ARPES) data show spectral
weight in the nodal but not in the antinodal direction. But even
in this phase, the single εk parametrization is restored soon
when going away from the Fermi surface. Limitations also
arise in the case of strongly asymmetric lattices with different
hopping in the x and y directions.

In the following, we present the one-band Hubbard model
and the employed methods in Sec. II. In Secs. III A and III D,
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the collapse of the self-energy onto the single εk dependence
is shown numerically by BSS-QMC and D�A, respectively.
A simple parametrization of the ω and εk dependence of the
self-energy is provided in Sec. III B. This also allows us to gain,
in Sec. III C, a better understanding of the essential features
of the self-energy and its global structure in the (ε,ω) space.
Section III E discusses the case of an asymmetric lattice, and
Sec. III F examines the doped Hubbard model. Finally, Sec. IV
provides a summary and an outlook.

II. MODEL AND METHODS

In this paper, we consider the single-band Hubbard model
on a square lattice to gain insight into the εk dependence of
the self-energy and for the parametrization thereof. A similar
analysis to what will be shown in the rest of this work can
be applied to other correlated models straightforwardly. The
single-band Hubbard model consists of two competing terms,
i.e., the kinetic energy and the interaction, which describe the
two most fundamental processes as well as the most essential
energy scales of this model. Due to the competition of these
two terms, more energy scales can emerge, such as the spin
fluctuations appearing at low temperatures characterized by
the energy scale J ∼ 4t2/U . The self-energy, as a measure
of correlations, is certainly expected to contain these energy
scales. Thus, a better understanding of the self-energy structure
can help to understand them, as well as their competitions. In
addition to the trivial energy scales characterized by t and U ,
one aim of this work is to identify the emerging energy scale,
such as J , from the self-energy of this model.

The single-band Hubbard model is given by

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) − μ

∑
i

ni + U
∑

i

ni↑ni↓,

(1)
where 〈i,j 〉 restricts the single-particle hopping to nearest-
neighbor sites i and j ; c

†
iσ and cjσ denote the corresponding

creation and annihilation operators with spin σ , respectively.
In the case in which site i is occupied by a spin-up electron,
an energy barrier of Coulomb repulsion U has to be overcome
for a spin-down electron to hop onto it, and vice versa.

Despite the simplicity of this model, solving it imposes a
great challenge to theory, especially in two dimensions. In this
work, we will consider the Hubbard model in Eq. (1) on a
square lattice at half-filling and solve it with two complemen-
tary approaches, i.e., BSS-QMC [22] and the D�A [23]. Let
us note that cluster extensions of DMFT can also incorporate
k dependences of the self-energy, and they have been used
intensively for the two-dimensional (2D) Hubbard model
[25–30]. For further methods and comparisons, see
Refs. [31,32]. The BSS-QMC is numerically exact for a given
cluster size used in the calculations. Thus, all short-range
correlations inside the cluster can be faithfully described.
In contrast, in D�A both short- and long-range correlations
are included, as it works in the thermodynamic limit of the
problem. However, D�A relies on the approximation that
the irreducible vertex is local. Thus, BSS-QMC and D�A
are complementary to each other with respect to correlation
lengths, which implies that an agreement between both
methods rules out significant finite-size effects [33].

In the following, we briefly review the basic idea of these
two approaches. For readers who are familiar already with their
methodologies, the rest of this section can be safely skipped.

A. BSS-QMC

The BSS-QMC algorithm is based on two important trans-
formations, the Suzuki-Trotter decomposition [34,35] and the
discrete Hubbard-Stratonovich transformation [36–38]. With
the aid of the former, the kinetic K (t) and interaction V (U )
terms of Eq. (1) can be separated in the partition function by

e−β(K+V) = [e−�τKe−�τV ]L + O[(�τ )2β], (2)

where �τ = β/L is the discretized imaginary time. The
second term is neglected in BSS-QMC, which represents the
only error (besides the statistical error of the stochastic sam-
pling) of this method. This error can, however, be addressed
by extrapolating �τ → 0, which is done in practice via a
multigrid procedure [39,40].

The kinetic-energy term, K, is quadratic in terms of
fermionic operators, and its exponential can be easily cal-
culated. In contrast, the interaction term V is quartic. One
can transform it to a quadratic dependence on the fermionic
operator through the Hubbard-Stratonovich transformation at
the cost of introducing a discrete Ising variable s = ±1 via

e−U�τni↑ni↓ = 1

2

∑
s=±1

∏
σ=↑,↓

e−c
†
iσ (σsλ+ U�τ

2 )ciσ , (3)

where λ = acosh(|U |�τ/2).
With both the kinetic and the potential terms in their

quadratic forms, the partition function can be simply written
as a product of two determinant matrices,

Z =
[
e−U�τ/4

2

]NL

Tr{si } det[M↑(s)] det[M↓(s)], (4)

where s = (s1,s2, . . . ,sL) and

Mσ (s) = I + BL,σ (sL)BL−1,σ (sL−1) · · · B1,σ (s1). (5)

Here, the matrix Bl,σ (sl) is defined from the quadratic
forms of the kinetic and potential energies Bl,σ (sl) =
e−�τ K̃e−�τ (σslλ/�τ+U/2), where K̃ denotes the kinetic energy
matrix. With the partition function in Eq. (4), other ther-
modynamic observables, such as the single-particle Green’s
function, can be readily obtained. It requires a Monte Carlo
sampling over the Ising field s. For more details of the
BSS-QMC, we refer the reader to the review works [41,42].
In this work, we will take the self-energy calculated from
BSS-QMC as a reference and analyze its momentum-energy
structure to gain insight and to derive a parametrization of it.

B. D�A

D�A takes a different strategy. It is one of several recent
diagrammatic extensions of DMFT [19–21,23,24,43–47] that
start from a local two-particle vertex and generate local and
nonlocal correlations from it. D�A assumes the irreducible
vertex to be local, starting either from the irreducible vertex
in a given, e.g., particle-hole channel [23,24] or the fully
irreducible vertex [48,49]. In the former case, local and
nonlocal correlations are generated by the Bethe-Salpeter
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equation [23,24]; in the latter case, this is done by the parquet
equation [48,49]. Here, we follow the implementation [24]
that first calculates the local particle-hole-irreducible vertex
�s(c),ir(ν,ν ′,ω) in the spin (charge) channel from a converged
DMFT solution. From this local irreducible vertex, the full
vertex (or the susceptibility) is calculated through the Bethe-
Salpeter ladder, including a Moriyaesque λ correction to
mimic self-consistency effects. The full vertex also includes
the corresponding transversal particle-hole ladder diagrams,
which do not need to be calculated explicitly since they
follow by crossing symmetry from the particle-hole ladder
diagrams. The full vertex, in turn, allows us to calculate the
self-energy through the exact Heisenberg equation of motion,
which is also known as the Schwinger-Dyson equation. For
a pedagogical introduction, we refer the reader to Ref. [50].
Here, we only recall the most important ladder D�A equations,
cf. Refs. [23,24,51].

The q-dependent susceptibility χqω is calculated from the
Bethe-Salpeter equation as

χs(c)
qω = [(

φs(c)
qω

)−1 ∓ U + λs(c)
]−1

, (6)

where λs(c) is the Moriyaesque λ correction in the spin (charge)
channel (it is actually relevant only in the spin-channel here),
and φ

s(c)
qω = ∑

νν ′ �
νν ′ω
s(c),q is obtained from the local irreducible

vertex �1 through the Bethe-Salpeter equation as

�νν ′ω
s(c),q = [(

χν ′
0,qω

)−1
δνν

′ − �νν ′ω
s(c),ir ± U

]−1
. (7)

Here, χν ′
0,qω = −T

∑
k Gk,ν ′Gk+q,ν ′+ω is the particle-hole

bubble susceptibility, Gk,ν = [iν − εk + μ − �loc(ν)]−1 is the
(k-dependent) DMFT Green’s function, �loc(ν) is the DMFT
self-energy, and T = 1/β the temperature.

The Schwinger-Dyson equation for the k- and ω-dependent
self-energy reads [24]

�(k,ν) = 1

2
Un + 1

2
T U

∑
ω,q

[
3γ νω

s,q − γ νω
c,q − 2

+ 3Uγ νω
s,q χs

qω + Uγ νω
c,qχc

qω

+
∑
ν ′

χν ′
0,qω

(
�νν ′ω

c,loc − �νν ′ω
s,loc

)]
Gk+q,ν+ω, (8)

where γ νω
s(c),q = (χν

0,qω)−1 ∑
ν ′ �

νν ′ω
s(c),q, and n is the particle num-

ber. The prefactors 3 and 1 for the s(pin) and c(harge) γs(c),q
already include the particle-hole-transversal ladder, which for
the one-band Hubbard model only enters for the spin channel.
The local �νν ′ω

s,loc terms subtract those diagrams contained in
both the particle-hole and particle-hole transversal channels.
This ladder D�A neglects the particle-particle channel, which
is of less relevance in the spin-fluctuation-dominated range of
the phase diagram, at least close to the Fermi energy [48].

III. RESULTS

By carefully examining the structure of the self-energy
calculated by the BSS-QMC and the D�A, we want to

1For the properties of the local vertices, see Refs. [66,67].
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FIG. 1. Imaginary part of the self-energy �(k,iωn) from BSS-
QMC for U = 4t and βt = 5.6 at (a) the first three Matsubara
frequencies and kx = 0; (b) at the first Matsubara frequency along
the (brightness-coded) five momentum paths shown in the inset. The
red points in (b) correspond to the nodal and antinodal point, which
are emphasized alike in the inset by the red diagonal arrow.

show in the following that a simplified k dependence of
the self-energy—via the noninteracting dispersion εk—can be
achieved. To see the advantage of such a parametrization, let us
first examine the self-energy in the full momentum-frequency
space, i.e., as a function of kx , ky , and ωn. Initially, we
restrict ourselves to the case of isotropic hopping on a square
lattice and half-filling; for generalizations, see Secs. III E
and III F, respectively. Results for the intermediate coupling
U = 4t are collected in Fig. 1. In this coupling regime and
at a temperature of βt = 5.6, the system is in the regime
where the pseudogap opens. At lower temperatures, the
paramagnetic phase becomes insulating [33] and eventually
also antiferromagnetic at T = 0.

The upper panel, Fig. 1(a), shows the imaginary part of
the self-energy at k = (0,ky) for the first three Matsubara
frequencies as a function of ky . The variations along this
high-symmetry cut through the BZ are seen to be quite
significant, by a factor of about 10 at ω0 (circles) and still
by a factor of about 2 at ω2 (diamonds). Evidently, DMFT
would be completely inadequate in this respect. Only at
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-1

-0.8

-0.6

-0.4

-0.2

0
Im

Σ 
[ k

,iω
n

]

ω0
ω1
ω2

(a)

-0.4

-0.2

0

0.2

0.4

-4 -3 -2 -1 0 1 2 3 4

R
e

Σ 
[ k

,iω
n

]

εk

(b)

FIG. 2. Imaginary (a) and real (b) part of the self-energy �(k,iωn)
vs the noninteracting dispersion εk from BSS-QMC at U = 4t and
βt = 5.6. Different (kx,ky) points with the same εk collapse onto a
single curve.

large frequencies does the self-energy become asymptotically
momentum-independent: �(k,iωn)

ωn→∞−→ U 2/(4iωn).
As seen in Fig. 1(b), the self-energy at �(k,ω0) varies

strongly also along the other momentum paths indicated in
the inset of Fig. 1, without an obvious structure (except for the
evident mirror symmetry line kx = ky). This dependence is not
particularly smooth, on the scale of our momentum grid. This
indicates that approximations of the self-energy by piecewise
constant patches, as usually employed in the dynamical
cluster approximation (DCA) [30] (on much coarser grids),
may be problematic for small cluster sizes. Instead, accurate
approximation schemes would have to incorporate insight
in the momentum structure of � [or use expansions of the
self-energy that are not stepwise constant, such as the cumulant
expansion (see Refs. [52–57])].

A. Collapse of k dependence to an εk dependence

Figure 2(a) shows Im �(k,iωn) at the first three Matsubara
frequencies plotted versus the noninteracting single-particle
energy (i.e., band dispersion) εk. Specifically, the circles in
Fig. 2(a) represent all the data of Fig. 1(b) (corresponding to
the lowest Matsubara frequency ω0). Not surprisingly, this data
set is peaked for k at the Fermi edge, εk = 0; this is also true
at the higher frequencies ω1 (triangles) and ω2 (diamonds).
However, it is remarkable that each of these data sets collapse
on a single line with high accuracy, with the exception of only
a very narrow region around εk = 0. Global collapses are also
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FIG. 3. Imaginary (a) and real (b) part of the self-energy �(k,iω0)
from BBS-QMC at U = 4t and βt = 5.6. The different data points
correspond to different lattice sizes and geometries.

seen in the corresponding real parts, shown in Fig. 2(b); here
no low-εk deviations can be seen due to the linearity of Re �

at low εk.
The significant momentum dependence of Im �(k,ω) at

εk = 0, on the other hand, is nothing short of the pseudogap
physics exposed in cluster extensions of DMFT [30,58,59],
recent BSS-QMC [60], and D�A studies [33]: the self-energy
takes different values at the Fermi surface along the nodal
and antinodal directions, with variations of about 20%. In
this respect, the nodal and antinodal points are highlighted in
Fig. 1(b) as well as in the inset thereof. We learn from Fig. 2(a)
that this physics is, however, narrowly confined to momentum
space around the Fermi surface. Note that nodal/antinodal
variations of the gap decay quickly both toward higher and
lower temperatures [60]. In this sense, the parameter choice of
Fig. 2 (U = 4t,βt = 5.6) may be considered a worst case for
parametrizing � via εk.

The collapse of the self-energy �(k,iω0) onto a single εk-
dependent �(εk,iω0) remains unchanged when changing the
cluster size in the BSS-QMC calculations. Figure 3 compares
results obtained for different system sizes and geometries. In
this respect, the self-energy at U = 4t and βt = 5.6 is shown
for two lattice systems with rectangular shape, 4×20 and
8×20, as well as for a system with a regular square shape,
having 16×16 sites. We find that (i) the collapse onto a single
curve (versus εk �= 0) is better for larger systems and (ii) that,
overall, the convergence seems to be quite rapid, which justifies
in a qualitative way that we skipped the interpolation to an
infinite system. The conclusion that our analysis is relevant in
the thermodynamic limit will be further verified in Sec. III D
by comparing BSS-QMC data, as well as the self-energy
parametrization discussed in the next section, with the results
obtained from D�A.

Very importantly, the collapse of data points with respect
to εk is not restricted to certain interaction strengths. The
self-energy in different phases (bad-metallic toward insulating)
characterized by different values of U is shown in Fig. 4.
Compared to the case of U = 4t , where the phase-transition
approximately occurs (see Ref. [60]), the k variations scale
with a factor of 15 for U = 8t and a factor of 0.1 for
U = 2t . Despite the stronger εk dependence at the larger-U
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FIG. 4. Imaginary (a) and real (b) part of the self-energy �(k,iω0)
from BSS-QMC at βt = 5.6 for different U values.

regime, all data still collapse onto a single curve. That is, our
parametrization discussed in the next section can be equally
applied to both the weak- and strong-coupling regime. It is not
perturbative.

B. Parametrization of �

So far, we have discussed self-energies on the imaginary
frequency axis, following a common practice especially within
the QMC community. While such data have the advantages
of direct accessibility from (imaginary-time) QMC data
and easier comparisons with literature data, real-frequency
results are obviously more physically relevant and also more
interesting. Such data, obtained via maximum entropy analytic
continuation [61,62] iωn → ω on the level of the self-energy,
are shown in Fig. 5(a) as a function of εk and ω at βt = 5.6
and U = 4t ; the corresponding Green’s function, obtained
via the Dyson equation, can be seen in Fig. 5(b). Note that
these data (Im �, Im G) are, up to factors −π , spectral
functions that also fully determine the corresponding real parts
via Kramers-Kronig relations. Figures 6(a) and 6(b) show the
same quantities but at a higher temperature βt = 2.

Let us now discuss the structures seen in Figs. 5(a) and 6(a).
Both share a common feature, namely broad bands at high
frequencies (both positive and negative), which are nearly
dispersionless, i.e., with maxima fixed at |ω| ≈ 4. However,
at a given εk these two dispersionless branches do not have
the same weight. That is, with increasing εk (for εk > 0),
spectral weight from the upper band (ω � 2) is shifted toward
the lower band (ω � −2), and vice versa for εk < 0. In

FIG. 5. Imaginary part of the self-energy �(ε,ω) and of the
Green’s function G(ε,ω) at U = 4t and βt = 5.6. Parts (a) and (b)
contain the BSS-QMC data. Parts (c) and (d) represent continuous
parametrizations, denoted in Eq. (9) and Table I.

addition to this high-energy structure, a strong low-energy
feature with negative slope is seen at the lower temperature,
in the pseudogap phase in Fig. 5(a) (precisely at ω = −εk).
Overall, this implies a reversed-Z-shaped spectral distribution
of the self-energy [63]. Its low-energy part splits the (Green’s
function) spectral density at ω ≈ 0, εk ≈ 0, i.e., it introduces
the pseudogap [see Fig. 5(b)].

Consequently, it is clear that the overall structure must
be different at higher energies, above the pseudogap phase.
However, it is surprising that the diagonal with negative unit
slope, observed before, is completely absent (instead of only
being weakened) in Fig. 6(a) and replaced by another diagonal
with positive unit slope, i.e., with maxima at ω = εk. As seen
in Fig. 6(b), this leads to a (Green’s function) spectral density
that is only broadened in a wide frequency range, but gapless,
i.e., not split at ω ≈ 0.

To faithfully model the structure of the self-energy at
both low and high temperatures, we consider the following
parametrization:

�(ε,ω) = m1

ω + sε + id1/2
+

∑
α=±

m2fα(ε)

ω + hα(ε) + id2/2
, (9)

which is obtained by decomposing the self-energy Fig. 5(a)
[Fig. 6(a)] into three key features (components): the two
horizontal stripes (antisymmetric in ε) and one sharp diagonal

FIG. 6. Same as Fig. 5 but at a higher temperature, βt = 2.
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frequencies at U = 4t and βt = 5.6. Together with the asymptotic
behavior of the Matsubara self-energy, these BSS-QMC data are used
to fix the model parameters in Eq. (9). The fitted parameters can be
found in Table I.

stripe with s = +1 (s = −1). Each component has a density
profile, which is represented by a Lorentzian function with
weight m1(2) and width d1(2). For the horizontal stripes, the
functions fα and hα describe the ε-dependent weight and the
degree of curvature, which are taken as f±(ε) = 1 ± b ε and
h±(ε) = ±5 c±ε

c±ε+1 .
Please note the plus and minus sign (s = ±1) in front of

ε in the first term of Eq. (9). Depending on the temperature,
the physics is quite different, as discussed in Sec. III C. This
is reflected in the two different signs. At low temperature
(model A [63]) we have the plus sign (s = +1), and at high
temperature (model B) we have the minus sign (s = −1) for
the first term of Eq. (9). To fix the parameters, we first require
that the model function in Eq. (9) behaves asymptotically
as U 2/(4ω) for ω → ∞, which reduces the independent
parameters of the model function by 1 (m1 + 2m2 = 4). The
rest of the parameters are then determined by fitting the
Matsubara self-energy with a least-squares approach, as shown
in Fig. 7. In Table I, we list the different parameters of m1, d1,
d2, b, and c for the low- and high-temperature phases of the
Hamiltonian in Eq. (1).

Despite the simple form of Eq. (9), the essential structure
of the self-energy and its temperature evolution can be nicely
reproduced by this parametrization. In Figs. 5(c) and 5(d), the

TABLE I. Different choices of parameters for the two models
derived from Eq. (9). A and B correspond to the two best models
for the self-energy at low (βt = 5.6) and high temperatures (βt = 2),
corresponding to Figs. 5 and 6, respectively.

m1 d1 d2 b c s

Model A 0.6 1.0 3.0 0.12 5.8 +1
Model B 0.4 2.1 3.0 0.12 4.5 −1

self-energy and the corresponding Green’s function calculated
from Eq. (9) are shown and compared to the numerically exact
solution from BSS-QMC on a finite k grid. As we can see,
model A nicely reproduces the three major structures of the
self-energy, including the two horizontal stripes at high energy
and the linear dependence of εk at low energies. As a result,
the Green’s function in model A also nicely reproduces that of
the BSS-QMC shown in Fig. 5(b).

At βt = 2, we adopt the parameter set indicated as model
B in Table I. The comparison of model B with the BSS-QMC
results is shown in Figs. 6(a)–6(d). At this higher temperature,
as clearly seen from the BSS-QMC results, the horizontal
stripes at high energy remain, while the low-energy linear
dependence on εk completely changes its sign as compared
to Fig. 5(a), which applies a strong constraint on our model
function, since a correct parametrization should also faithfully
reproduce the sign change on the εk dependence of the self-
energy at the low-energy regime. From Fig. 6, we see that
model B nicely generates the correct εk dependence, as well
as the two horizontal stripes.

C. Physics associated with the parametrization of �

In the following, we want to show that the observed struc-
ture with weakly temperature-dependent horizontal stripes
and the strongly temperature-dependent linear low-energy
features are natural consequences of the essential particle-hole
excitations and the magnetic correlations of the Hubbard
model on the square lattice. Correctly reproducing those two
physical processes in our self-energy model function is a strong
validation of this parametrization. Our model function can
thus be used to describe the low-energy excitations in both the
charge and the spin sectors of this model.

We start from second-order perturbation theory of the self-
energy, which effectively describes the motion of electrons in
the background of particle-hole excitations,

�(k,νn) = − U 2

β2N2

∑
k′,ν ′

n,q,ωn

Gq−k,νn−ωn

×Gq−k′,ω−ν ′
n
Gk′,ν ′

n
. (10)

For the analytic continuation, we utilize the Padé approxima-
tion [64]. Figure 8 shows the corresponding self-energy and
the Green’s function at two different temperatures βt = 1 (left)
and βt = 5.6 (right). At both low and high temperatures, the
self-energy from the second-order perturbation theory displays
the two horizontal stripes at high energies. At high temperature,
the same ω = εk stripe as in Fig. 6(a) shows up. We thus
conclude that the appearance of the horizontal stripe is due to
the particle-hole excitation, which exists at both high and low
temperatures.

In the low-energy regime, the linear dependence of the
self-energy on εk disappears at low temperature, e.g., it can
hardly be seen in Fig. 8 (right). But it is not replaced by
a negative linear dependence of the self-energy on εk, as
observed in Fig. 5(a). This clearly tells us that the negative
linear dependence in Fig. 5(a) is not due to particle-hole
excitations. We find that it is, instead, an indication of the
low-temperature spin-density wave (SDW) of the 2D Hubbard
model in the self-energy function. To see this, we consider
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FIG. 8. Self-energy and the Green’s function calculated from
second-order perturbation theory at βt = 1 (left) and βt = 5.6 (right)
for U = 4t .

a mean-field description of the Hubbard model in Eq. (1) in
the presence of a SDW.2 The Fermi surface of the half-filled
Hubbard model on the square lattice is nesting, which favors
the formation of a SDW with magnetic wave vector Q =
(π,π ). The corresponding magnetic Brillouin zone (MBZ) is
then only half of the original BZ, so that the Hubbard model,
Eq. (1), can be written as

H =
∑
k̃,σ

[εk̃c
†
k̃σ

ck̃σ
+ εk̃+Qc

†
k̃σ

ck̃+Qσ
]

+U
∑
k,k′

c
†
k↑ck+Q↑c

†
k′↓ck′+Q↓, (11)

where the sum over k̃ is restricted to the MBZ, whereas the
sum over k is in the original BZ. After defining a mean-field
order parameter for the SDW,

� = U
∑

k

σc
†
kσ ck+Qσ , (12)

the mean-field Hamiltonian can be written as

H =
∑
k̃,σ

[εk̃c
†
k̃σ

ck̃σ
+ εk̃+Qc

†
k̃σ

ck̃+Qσ
]

−�
∑

k

[c†k↑ck+Q↑ − c
†
k+Q↓ck↓]. (13)

If we restrict the sum over k in the second term to be also inside
the MBZ and consider only one spin component, we have the
following compact form of the mean-field Hamiltonian:

H =
∑

k̃

(c†
k̃
,c

†
k̃+Q

)

(
εk̃ −�

−� εk̃+Q

)(
ck̃

ck̃+Q

)
, (14)

2For a review on phenomenological theories of the pseudogap in
terms of such mean-field descriptions, see Ref. [68].

from which the single-particle Green’s function can be easily
calculated as

Gk̃,ω = ω − εk̃+Q

(ω − εk̃)(ω − εk̃+Q) − �2

= 1

ω − εk̃ − �2

ω−εk̃+Q

. (15)

Thus, the self-energy of the Hubbard model from the SDW
mean-field theory is

�(k̃,ω) = �2

ω − εk̃+Q
= �2

ω + εk̃
, (16)

which leads to the strong negative linear dependence ω =
−εk at low energies. Since second-order perturbation theory
does not include the magnetic correlations of the system,
it is not surprising that, at low temperature, the self-energy
calculated from it does not contain such a negative linear εk̃
dependence. We want to note that, despite the simple form
of our model function in Eq. (9), it correctly describes the
magnetic correlations, which only appear at higher orders of
perturbation theory. Our model function can then be used to
describe the competition between the charge and the spin
degrees of freedom, which becomes important when the
temperature decreases.

In Eq. (16), we have used the fact that εk̃+Q = −εk̃, which
holds for a square lattice where Q ≈ (π,π ). For general
lattices, εk+Q is not uniquely related to εk. One might expect
that this leads to a somewhat more complicated self-energy
parametrization: �(k,ω) → �(εk,εk+Q,ω).

D. Comparison to D�A

The self-energy parametrization proposed in Eq. (9) is
based on the large-scale simulation of the BSS-QMC. By
comparing the results for different sizes of clusters, we have
shown that the collapses of the self-energy onto �(εk,ω) in
BSS-QMC are observed for all sufficiently large cluster sizes.
In this section, we further confirm that our parametrization
of the self-energy via the noninteracting dispersion also holds
in the thermodynamic limit (including spatial correlations on
every length scale). Toward that end, we perform calculations
by means of D�A (introduced in Sec. II B).

Figure 9 presents the imaginary part of �(εk,iω0) for U =
2t . The light blue data points in the background correspond
to the data at all available k points of the D�A calculation.
Due to a higher resolution in k space for the D�A self-energy,
we have more k points within this method. Those k points,
similar to those of the BSS-QMC calculation (dotted circles),
are represented by dark-blue triangles. The absolute deviations
of the two methods might be due to diagrams beyond ladder
D�A or due to the BSS-QMC coarse-graining. Nevertheless,
the collapse of �(εk,iω0) away from the Fermi energy εk = 0
survives in the thermodynamic limit. That is, the light-blue
triangles essentially collapse onto a single line with only minor
deviations. In particular, the behavior of �(εk,iω0) in D�A
resembles that of BSS-QMC in view of the fact that leaving the
Fermi edge εk = 0, the spread of the data points gets drastically
diminished. Again, the relatively big spread at the Fermi edge
of the D�A self-energy can be explained physically by the
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FIG. 9. Imaginary part of the self-energy �(k,iω0) for U = 2t

and two different temperatures: (a) βt = 5 and (b) βt = 10. The (light
blue) continuum of data points represent all different D�A momenta
for a given εk. For a better comparison of D�A with BSS-QMC, we
highlighted data points in the D�A calculation (dark-blue triangles)
that correspond to the BSS-QMC data (red circles) with similar k
points.

onset of the opening of a pseudogap in this region of the (D�A)
phase diagram [24,33,65]. For U = 2t , the pseudogap phase
is relatively small from T = 0.05t to 0.07t (in our units). That
is, at T = 1

β
= t

5 = 0.2t the pseudogap has not opened yet,
but there is already a large scattering; Im � at (π,0) is already
large [65]. Reducing the temperature to T = 0.1t , the spread at
the Fermi level increases further. However, the collapse away
from the Fermi edge persists [see Fig. 9(b)].

Leaving the vicinity of the Fermi edge by choosing a
finite Matsubara frequency, the collapse becomes even more
drastic, as can be seen in the first row of Fig. 10, where the
imaginary part of �(εk,iωn) is plotted for U = 4t and βt = 2
for the first [Fig. 10(a)] and second [Fig. 10(b)] Matsubara
frequency, respectively. One can observe that especially for
εk → 0, the spread of Im�(εk,iω1) is much smaller than that
of Im�(εk,iω0), again a feature signaling the onset of the
pseudogap phase.3 Additionally, the collapse of the real part
of the self-energy [see the lower row of Fig. 10(b)] supports the
significance of the energy parametrization of the self-energy.

Concluding this comparison, the switch from the finite-size
cluster in BSS-QMC to the thermodynamic limit in D�A does
not seem to have any influence on the qualitative phenomenon
of the collapse of the self-energy parametrization.

E. Anisotropic case

So far, we have considered the Hubbard model on an
isotropic lattice. We found that the two momentum degrees
of freedom appearing (besides the frequency) as variables of
the self-energy can be replaced by one energylike variable
with good accuracy and for almost all k: �(k,ω) ≡ �(εk,ω).
It is easy to see that such a replacement would be exact

3The actual opening of the pseudogap is at T = 0.2t ; at T = 0.1t ,
(π/2,π/2) also becomes gapped for U = 4t (see Ref. [65]).
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FIG. 10. The self-energy for U = 4t , βt = 2, and the first (left)
and second (right) Matsubara frequencies comparing BSS-QMC (red
circles) and D�A (light blue; and dark blue triangles for similar
momenta as the red circles).

(globally) in one dimension (for nearest-neighbor hopping):
then, there is only one momentum variable kx . Since εkx

increases monotonously with kx ∈ [0,π ] (in the case of hop-
ping only between nearest neighbors), and ±kx are equivalent
by symmetry, there exists a unique mapping k ↔ εk in one
dimension (within the reduced BZ).

The question to be addressed in this section is whether
the parametrization of � via εk works also in the crossover
region between these limits. For this purpose, we consider the
anisotropic two-dimensional lattice with a hopping ratio 0 �
α = tx/ty � 1; in order to keep the kinetic energy scale (2t2

x +
2t2

y )1/2 = 2t fixed, we set ty =
√

2t2/(α2 + 1) (and tx = α ty).
Corresponding BSS-QMC results are shown for α = 1

(the isotropic case considered before), α = 0.8, and α = 0.6
in the main panels of Fig. 11. It is immediately seen that
the spread of each data set, associated with an incomplete
collapse, increases rapidly with increasing anisotropy, both
in the real and imaginary parts of the self-energy. Only in the
one-dimensional limit (α = 0), shown in the insets, do the data
fall, again, onto single curves (which are remarkably similar
to their two-dimensional counterparts).

Note that Im� still shows a reasonably good collapse at
α = 0.8 [triangles in Fig. 11(a)], while the deviations from
a common curve are nearly an order of magnitude larger for
Re� [triangles in Fig. 11(b)]. This distinction already hints at
the physical reason why a parametrization of the self-energy
in terms of the free dispersion cannot work in full generality:
In the absence of sufficient symmetries, interactions modify
the Fermi surface (while keeping its volume constant at least
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FIG. 11. Imaginary (a) and real (b) part of the self-energy
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degrees of anisotropies α. Green and red lines are guides to the eye
only, not fits to the parametrization model as in the other figures.

in the Fermi liquid regime). This direction-dependent shift is
encoded, to first order, in Re�(k,ω)|εk=0,ω=0, which would
vanish exactly in a parametrization via εk.

Thus, the analysis of this paper seems to apply directly
only to the case of very weak (or very strong) anisotropies.
It remains to be seen whether the results of a parametrization
such as that performed in Sec. III C could be useful also in
the cases in which the true self-energy does not have this form
(as for α = 0.6) or if the analysis can be extended in order to
incorporate Fermi surface deformation.

F. Doping

So far, we have considered the Hubbard model at half-filling
(n = 1). Similar insights with respect to the structure of the
self-energy would be even more welcome for doped systems,
as these are directly relevant for high-temperature super-
conductivity, i.e., physically even more interesting, and also
particularly challenging. However, as BSS-QMC simulations
then suffer from the notorious “minus-sign” problem, due to
the lack of particle-hole symmetry, the numerical effort is
much greater (at fixed statistical error). Consequently, we need
to reduce the lattice size to 8×8 in our calculations. We should
stress, as a caveat, that the resulting reduction in the number
of inequivalent k points implies a much sparser ε grid, which
makes it more difficult to check for a collapse of � versus εk.

Away from half-filling (n �= 1), the self-energy becomes
asymmetric with respect to εk = 0, as shown in Fig. 12 for the
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FIG. 12. Imaginary (a) and real (b) part of the self-energy
�(k,iω0) from BSS-QMC at U = 4t , βt = 3.6, and L = 8×8 for
doped systems.

isotropic 2D case. In this figure, we show the (a) imaginary
and the (b) real part of the self-energy at five different doping
levels characterized by the different values of the electronic
density n. Symbols in Fig. 12 correspond to the BSS-QMC
data, and the dotted and dashed lines are obtained by fitting
these data with model A in Table I.

The first observation for the doped case is that the spread
of the self-energy (in the imaginary part) remains at εk =
0 and quickly disappears by increasing doping. Thus, for a
given doping level the self-energy again collapses onto a single
curve, which makes a parametrization possible, as in the half-
filled case. Note that in order to fit the data in Fig. 12, in
addition to model A, we added a constant (with imaginary and
real parts) and we took a different fit model for εk > 0 and
εk < 0. This way, model A still nicely describes the curvature
of the BSS-QMC self-energy.

For the doped case, we observe deviations from model A

[in its original form presented in Eq. (9)], but the general form
�(k,ω) → �(εk,ω) still holds. Again (as in the anisotropic
case), the deviations from a smooth dependence of � on
εk can be understood as resulting from deformations of the
Fermi surface.

IV. CONCLUSION AND OUTLOOK

Despite the fundamental importance of the self-energy
�(k,ω) within the Hubbard model, little was known about
its momentum-frequency structure in the most interesting and
challenging cases of d = 2 and 3 spatial dimensions. One
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complicating factor in earlier analyses was certainly the high
dimensionality (d + 1) of the momentum-frequency parameter
space, making a full global visualization impossible already in
two spatial dimensions.

This situation is changed by our finding that the momentum
dependence of the self-energy reduces, with remarkably high
precision and scope, to a dependence on the noninteracting
energy εk at each point in momentum space, i.e., �(k,ω) →
�(ε,ω) on a square lattice, where ε = εk. Thereby, we could
not only fully visualize the numerically obtained self-energy
in the density plots of Figs. 5(a) and 6(a) at temperatures
in and above the pseudogap phase, respectively (note that
these spectral data also determine Re �), but we could also
derive complete parametrizations that highlight the interesting
physics previously hidden in this system. We could trace
back the strong reversed-Z-shaped low-T structure to the
generation of (self-energy) spectral density at ω = εk+Q =
−εk by antiferromagnetic fluctuations. For other lattices,
εk+Q �= −εk, suggesting a parametrization �(εk,εk+Q,ω).

Given this explanation, one might have expected the spec-
tral features to decay only weakly toward higher temperatures,
similarly to the nearest-neighbor spin correlation function.
However, the higher-T results completely lack any (lower-
energy) features at ω = −εk, and they show instead significant
contributions at ω = εk, leading to an overall Z-shaped
structure that appears also in second-order perturbation theory.

Note that our ansatz for the self-energy is the most general
one consistent with the functional form of the Green’s function
G ≡ G(εk,ω) that is valid also within DMFT. However, it is
clear that DMFT taps only a very limited subspace of this class
of Green’s functions.

Limitations of the ansatz � ≡ �(εk,ω) become apparent
both directly at the Fermi surface in the pseudogap phase and,
more globally, in the case of strongly anisotropic lattices. In the

former case, the breakdown is inevitable, since an anisotropic
gap cannot possibly be described by a self-energy that is
constant along the Fermi surface (at each fixed frequency).
This also holds at temperatures somewhat above the pseudogap
phase, where the scattering rates at the nodal and antinodal
point of the Fermi surface are very different. In the latter
case, the physics behind the deviation is the deformation of
the Fermi surface. For the doped square lattice, the general
form �(k,ω) → �(εk,ω) is still applicable, albeit our model
parametrization does not work any longer.

Another fascinating feature of our ansatz is that it allows for
a direct comparison of self-energies associated with systems
of different spatial dimensionality (such as those shown in
the insets of Fig. 11), as the parameter space is always
two-dimensional. In fact, it is reasonable to assume that the
analysis of this paper would work even better (with even
greater reductions of the complexity) for cubic lattices, i.e.,
in three dimensions. However, a reliable verification would
require quite large lattices (at still high numerical precision),
and it was, therefore, beyond the scope of this work.
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