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Worm-improved estimators in continuous-time quantum Monte Carlo
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We derive the improved estimators for general interactions and employ these for the continuous-time quantum
Monte Carlo method. Using a worm algorithm we show how measuring higher-ordered correlators leads to an
improved high-frequency behavior in irreducible quantities such as the one-particle self-energy or the irreducible
two-particle vertex for non-density-density interactions. A good knowledge of the asymptotics of the two-particle
vertex is essential for calculating nonlocal electronic correlations using diagrammatic extensions to the dynamical
mean field theory as well as for calculating susceptibilities. We test our algorithm against analytic results for the

multiorbital atomic limit and the Falicov-Kimball model.
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I. INTRODUCTION

The Hubbard model [1] is one of the most fundamental
models for strong electronic correlations. In the limit of infinite
spatial dimensions, an exact mapping onto the Anderson
impurity model (AIM) [2,3] allows for the treatment of local
electronic correlations within the framework of dynamical
mean field theory (DMFT) [4—7]. For finite spatial dimensions,
the aforementioned mapping becomes an approximation; in
particular for low-dimensional systems and in the vicinity of
second-order phase transitions, nonlocal correlations beyond
DMEFT are important.

In order to capture the nonlocal physics (i.e., k-dependent
self-energies, spectral functions, etc.) of such lattice models,
several extensions to DMFT have been proposed. These
extensions can be classified into cluster extensions [8], which
solve a cluster of sites in a DMFT bath and diagrammatic
extensions. While cluster extensions are only capable of
capturing nonlocality up to the size of the cluster, dia-
grammatic extension also allow for treating long correlation
lengths. Prominent representatives include the dynamical
vertex approximation [9], the dual fermion approach [10],
the one-particle irreducible approach [11], and the DMFT to
functional renormalization group [12]. An extensive treatment
of diagrammatic methods and cluster methods for the two-
dimensional Hubbard model can be found elsewhere [13].

At the heart of the diagrammatic methods mentioned above
lies the local two-particle vertex as an input which can
be calculated from the full frequency dependent two-particle
susceptibility of the Anderson impurity model. Likewise
the calculation of ¢g-dependent susceptibilities in DMFT
requires the local vertex or susceptibilities as a starting
point. For model calculations and single-orbital systems,
the exact diagonalization scheme has proven valuable due
to its simplicity, albeit it requires a bath discretization.
For more complex systems (i.e., multiorbital systems and
general interactions) at finite temperature, continuous-time
quantum Monte Carlo methods [14—18] are the state-of-the-art
impurity solvers. These algorithms stochastically sample the
expansion of the imaginary time partition function [19,20]
and are in principle numerically exact, allowing for general
interactions and continuous bath dispersions. When expanding
the hybridization in the impurity-bath hybridization (CT-HYB)
[15,16], this results in the strong-coupling algorithm, which
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has a favorable scaling over the entire range of interaction
strength [21].

While the CT-HYB algorithm tends to perform reasonably
well regarding the low Matsubara frequency behavior of irre-
ducible quantities such as the self-energy, its high-frequency
behavior is usually prone to large statistical fluctuations
[21]. These fluctuations are weaker for the continuous-time
algorithm in its interaction expansion (CT-INT) [14] and in
auxiliary fields (CT-AUX) [17].

Various solutions have been proposed, which can be classi-
fied into algorithm-independent methods and others primarily
applied to CT-HYB. The former are based on high-frequency
expansions of the full and bare Green’s functions [22] resulting
in expressions for the asymptotics of the self-energy [18,23]. In
the context of CT-HYB, proposed methods include noise filters
in the Legendre basis [24] which measures higher-ordered
correlation functions to yield high precision estimates for the
self-energy [25]. The latter ‘improved estimator’ technique
obtains the self-energy by measuring the two-particle Green’s
function with three of the four fermionic operators in second
quantization at equal (imaginary) times. Combining this
quantity with the local interaction yields the self-energy from
the equation of motion of the one-particle Green’s function.

Problems in the high-frequency asymptotics are known to
exist, not only for the self-energy, but also for the irreducible
two-particle vertex. High precision estimates can be obtained
by measuring a three-particle Green’s function with three of the
six fermionic operators at equal times, which so far, however,
has only been applied for density-density like interactions
[25,26]. Here the CT-HYB algorithm further simplifies into its
segment representation [15]. When allowing for non-density-
density interactions it becomes much more challenging to
calculate higher-ordered correlation functions and one needs
to extend CT-HYB by a worm algorithm.

Previously the worm algorithm was proposed for
continuous-time Monte Carlo impurity solvers [27,28]. Here
essentially both the partition function and the Green’s function
are expanded in the interaction or the hybridization. The
resulting configuration space is enlarged by the different
Green’s function spaces considered. The concept originates
from diagrammatic Monte Carlo solvers for bosonic Green’s
functions [20,29]; it was later introduced to the CT-INT
algorithm [27] and the CT-HYB algorithm [28].

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.94.125153

P. GUNACKER et al.

In this paper we generalize the worm algorithm in its
hybridization expansion to measure the improved estimators
for the self-energy and ultimately the connected part of the two-
particle Green’s function. In Sec. II we introduce our notation
and recapitulate the concept of one-particle and two-particle
irreducibility and the related Dyson equation or Bethe-Salpeter
equation, respectively. Here we also define combined orbital-
spin-time indices and channel decompositions. In Sec. III we
derive the improved estimators by considering the equation
of motion of the one- and two-particle Green’s function,
employing the path integral formalism [30,31] instead of the
Hamiltonian formalism [25]. In Sec. IV we briefly review
the concepts of worm sampling in the context of CT-HYB
and introduce the Monte Carlo update procedures for the
improved estimator worm spaces. In Sec. V we compare the
one- and two-particle irreducible quantities (self-energy and
irreducible two-particle vertex) with the multiorbital atomic
limit for non-density-density interactions. We further consider
the Falicov-Kimball (FK) model as a nontrivial system with
respect to the CT-HYB algorithm. In particular we also
calculate the so-called ‘fc’ components of the two-particle
Green’s function (a propagator describing the interaction
between the itinerant and the frozen spin of the FK model ).
Section VI gives a brief summary of the algorithm and results.

II. IRREDUCIBILITY AND NOTATION

Let us first set the stage, briefly introduce our notation and
channel decomposition, and summarize the most important
relations between the functions considered in our paper. On
the one-particle level we deal with the interacting Green’s
G 4», the noninteracting one G, as well as the self-energy %,
which are related through the Dyson equation

Gap = gab + gacEchdb- (1)

We use Latin indices from here on to describe a combined
index collecting imaginary times t,, orbitals «, (denoted by
Greek indices), and spins o, = {1, |} into a multi-index a =
(«,04,1,) or, alternatively, fermionic Matsubara frequencies v,
instead of imaginary times t,. We further assume the Einstein
summation convention for generalized (Latin) indices, which
translates to summation over orbital (Greek) indices and spin
indices as well as integration over 7 € [0, 8).

At the two-particle level the irreducible vertex function in-
cludes all diagrams which are two-particle irreducible, that is,
diagrams which cannot be separated by cutting two fermionic
lines. When cutting two fermionic lines, resulting diagrams
can be classified in the particle-particle (pp), the particle-hole
(ph), and the transverse particle-hole (ph) channel, following
the notation of Ref. [32]. Let us recall that the Bethe-Salpeter
equation connects the full two-particle vertex F and the
irreducible two-particle vertex I'” in a channel € {pp,ph,ph}:

Fabea = Uppea + Uiper Ges G ph Fgneas 2)

where the last term generates the two-particle reducible
contributions in a channel r. The above equation couples
various spin components of the irreducible vertex I'". When
assuming SU(2) symmetry, one can decouple the above
equation by introducing different spin-superpositions. In this
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FIG. 1. Diagrammatic representation of the two-particle Green’s
function G® in terms of the disconnected contribution G%* and the
connected contribution G*°™. The alternative partitioning splits the
two-particle Green’s function into a generalized susceptibility x with
a bubble term x©.

work we consider the density channel (d) and the magnetic
channel (m), which are given by (the same holds for F')

Fgﬁyg = Faaﬁdytré(r + Faaﬁay(—tr)é(—(r) (3)

F;nﬁyts = Faaﬂoyo&a - Faaﬂcy(fa)S(fa)s (4’)

where we have omitted the explicit time depen-
dence. Considering SU(2) symmetry the spin components
I's(—o)-0)0 = I';=5) can be included in the above due to
crossing symmetry. This channel decomposition allows us to
write the Bethe-Salpeter equation in a decoupled form (which
is very similar to the Dyson equation for the self-energy):

i = KR V)
again assuming the time-dependence implicitly. Here, x
and x© denote the susceptibility with and without vertex
corrections, respectively. The irreducible vertex I'" resulting
from the inversion of the Bethe-Salpeter equation shows
various divergence lines in the metallic phase, which relate
to the breakdown of perturbative physics. Divergence lines
have been discovered in the Hubbard model [33] and the
FK model [34]. Recently a more detailed discussion of the
physical implications of these divergence lines was given [35].
The following calculations were carried out away from any
divergence lines.

Figure 1 illustrates the diagrammatic relation between the
two-particle Green’s function G?, the susceptibility, and the
two-particle vertex F. While usually a definition in terms
of a generalized susceptibility x with a bubble term x©
is favorable for the Bethe-Salpeter equation (5), we employ
an alternative partitioning into a connected part G°°™ and
a disconnected part GY*¢ (see Fig. 1), as this will become
relevant in the derivation later.

III. IMPROVED ESTIMATORS

The improved estimators to the self-energy and the irre-
ducible vertex have been already derived for density-density-
type interactions in Ref. [25]. Here, we give a derivation
for general interactions which is state-of-the-art for CT-HYB
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nowadays. Unlike the original derivation starting from the
Hamiltonian, we use the path integral formalism, loosely
following Ref. [31] for brevity. The partition function of the
AIM is given as

Z = / Dld.d] e-Siddl, ©)

where d,d are the fermionic Grassmann fields of the impurity
electrons. The action S of the AIM, where the noninteracting
bath fermions have been integrated out, then reads

S=-T[ddl+ VId.dl = —d.G,, dy + 3 Uucadadpdad.,

@)
where T'[d,d] is the kinetic part and V [d,d] the interaction part
of the action; ga—b‘ = —0/0;, — €a» — Ay is the noninteracting

Green’s function. The hybridization function Ay, the on-site
energies €., and the local orbital-dependent interaction U,pcq
are, in terms of the combined orbital-spin-time index, defined
as

Aab = Aaal,ﬁa,,(‘ca - Tb)
€ap ‘= eaa“ﬂrrbs(fa - rb) (8)

Uabcd = UaﬂyB(S(fl,adaahoc(S(Ta - Tb)(s(ta - Tc)a(fa - Td),

where «,fB,... are the orbitals of the combined indices
a,b, .... Weremind the reader that the summation convention
over repeated (Latin) indices requires the summation over
orbital (Greek) indices, spin indices, as well as integration
over T € [0,8). Using Egs. (6) and (7) we can write the one-
and two-particle impurity Green’s function as

1 - 7 -
Gy = —E/D[d,d] e SAlg, g, )
1 _ .
Gopea = 7 / Dld.d] e 5" d,d\yd.d,. (10)

In order to derive the improved estimators of the self-energy
and the vertex function, we formulate the identity (master
equation)

G I -
“ | Dld,d]—eSYIF[d.d] = 0, 11
Z/ d.d15 e [d.d] (11)

where F[d,d] is an arbitrary function in d and d and S[d,d]
is defined by Eq. (7). This identity holds true because the
integral of the derivative of a Grassmann field vanishes due
to the invariance of the path integral under infinitesimal
transformations of this field. A more general discussion of
path integrals in a similar framework is found elsewhere
[36]. Computing the derivative, we find the Schwinger-Dyson
equation in the path integral formalism as [31]

1 - : )
Z f Dld,dle 3 q, Fld,d]

- Gae /D[J,d]e_s[d'd]<MF[c?,d] — M).
Z 3dg 8de

12)
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FIG. 2. Top: diagrammatic representation of the one-particle
improved estimator (X G)E,L) [Eq. (15)]. Bottom: diagrammatic repre-
sentation of the two-particle improved estimator H';., [Eq. (21), the
last part of Eq. (19)]. The local interaction is represented explicitly

by a wiggly line.

The derivative of the interaction part in (12) is given by
avid,d] 1

od, = EUfghi(afed_g —df80)didy =: Ulegnid,ydidy,
(13)

where the square brackets [...] denotes the antisymmetrization
over the indices (including a factor %).

By choosing F[d,d] properly we can generate improved
estimators up to an arbitrary order of Green’s functions. The
important cases of the self-energy and two-particle vertex
function are discussed in the next two sections.

A. Self-energy

In order to obtain an estimator for the self-energy we set
Fld,d] = dj in Eq. (12), recovering the one-particle Green’s
function (9) on the left hand side and the following right hand
side

G s o
Gar = G — / DI, dle SN yidydididy. (14)

Comparing this with the Dyson equation (1) we find
1 - 7 - -
(XG)er = —— / Dld,dle” " MW eqmidydidydy. — (15)

The diagrammatic representation of this one-particle improved
estimator is given in Fig. 2 (top). Let us now recall the explicit
indices from the combined Latin indices and rewrite the path
integral in second quantization as a thermal expectation value

(EG)om,ﬂ(r(f - T/)
= —(T; Utayppe A1) d (1) dy , {T) dJ (7)), (16)

where we have introduced the time-ordering symbol 7; and
switched from fermionic Grassmann variables d,d to creation
and annihilation operators d f,d . In making the imaginary time
index explicit, we find that the spontaneous nature of the
interaction contracts three operators to a single (imaginary)
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time. In terms of computational complexity the calculation of
the one-particle improved estimator is thus comparable to the
one-particle Green’s function.

B. Vertex function

In order to obtain an estimator for the vertex function we
set F[d,d] = —dyd.d; in Eq. (12), so that the left-hand side
becomes the two-particle Green’s function (10):

Gabcd = gachd - gadGbc

Gae f DId,dle N, o idodidndydedy. (17)

7

We multiply the above with g;l.l from the left and apply the
Dyson equation ga—,.l = G;jl + Xy
-1 Bje -
(Gaj + %4j)Gavea = 8j6Gea — 8;aGpe + A Dld,d]

X C_S[J‘d] U[gg]hid_gd,' dh C?bdcd_d . (18)

In the following we multiply with G j, from the left and finally
rearrange the terms
Gabcd - Gathd + Gadth
Gae 3 —S[d
/ Dld,d]e” 51
Z

X U[gg]hicigdidhd_bdcgd. (19)

= _(G 2)ae Gepea +

We can identify the left-hand side with the connected part
G of the two-particle Green’s function, see Fig. 1. The
diagrammatic representation of the two-particle improved
estimator is given in Fig. 2 (bottom). We observe that we
are required to obtain the one-particle estimator (GX) apart
from sampling the two-particle improved estimator. The final
result yields

oot = —(G2)aeGeped + GaeHebea- (20)

For the two-particle improved estimator we recover the explicit
indices from the combined Latin indices and rewrite the
remaining path integral of Eq. (19) as a thermal expectation
value in second quantization

Haaa,ﬂa,,.yal 804 (Ta s Ths Tes Td)
= <Tr U[oze]g“ ndAng(rﬂ )dAngﬂ(ra) (i(ge(ra)
x Al (1) d o (t) A, (Ta) ) 1)

Again, by making the imaginary time index explicit, we find
that three operators are contracted to a single time, whereas the
other three operator have each a different time argument. In
terms of computational complexity the two-particle improved
estimator is hence comparable to the two-particle Green’s
function.

IV. WORM SAMPLING

The expectation values in Egs. (16) and (21) are al-
ready in the correct form required by the worm sampling
algorithm of CT-HYB. We will further assume a diagonal
hybridization function Ags go' = Ago,a08apdso’ in order to
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FIG. 3. Schematic representation of the extended configuration
space including the partition function space Cz (red), the Green’s
function spaces Cgay and Cge) (green), and the improved estimator
spaces Cisyn and Cye (blue). Worm spaces are only linked to
one another over the partition function space with the balancing
parameters 7);.

allow for a well-behaved sign in the CT-HYB algorithm. For
diagonal hybridization, all one-particle quantities have a single
spin-orbit degree of freedom, i.e., Guo go’ = Guo 000050
Consequently, (XG) = (GX).

The basic idea of worm sampling is to extend the configura-
tion space to include the worm spaces of interest. With respect
to G°"™ in Eq. (20) this results in an enlarged configuration
space

C=Cz@Csn ®Cs0 ®Cixyn ®Cho, 22)

where C; is the partition function space extended by the
worm spaces as illustrated in Fig. 3. For more details and an
introduction to worm sampling, see Ref. [28]. To distinguish
the worm spaces further, we will refer to Ccm and Cgo as
Green’s function spaces and to Cgxy» and Cye as improved
estimator spaces.

In order to jump between partition function space and worm
spaces we introduce worm insertion and removal operators.
While in principle jumping directly between worm spaces is
possible, we only allow for worm spaces to be connected via
the partition function space Cz. More specifically, a direct
connection between the Green’s function space Cge and the
improved estimator space Cgx)n can be established by shift
moves which set the three worm operators connected by the
interaction U to an equal time. However, we will not follow
this route, as not all components present in Cge are necessarily
present in Cgxyo» due to the interaction term Uyg,s. Directly
connecting Cgm and Cgo results in severe ergodicity problems
due to quantum number rejects. For Slater-Kanamori-like
interactions, this approach does not recover spin-flip and
pair-hopping terms as already discussed in Ref. [28].

We introduce the partition function of the extended config-
uration space as

W=2Z+mZco+mZco +n3Zczyw + naZpo. (23)

Here, the balancing parameters n; sample each fraction of the
extended configuration space with equal likelihood.
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A. Reducing the extended configuration space

Looking at the generalized partition function W (23) and
the extended configuration space C (22), we observe that
keeping track of the different worm spaces becomes quite
involved. Following Ref. [25], we can define the one-particle
Green'’s function G with respect to the one-particle improved
estimator G X and the noninteracting Green’s function G by
employing the Dyson equation

GY = Gue (50 + (TG . (24)
—— —_—
=A)

For the connected part resulting from the two-particle im-

proved estimator in (20) we substitute Gapcd = Gopey + G

J
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and find
conn -1 is
thed = (8ae +(GD)) ™ (—(CD)ae Gy + Gue Hobea)
= (AD) (= (CD)0eGE, + GueHepea),  (25)

where G%¢ can be calculated using the one-particle Green’s
function defined in (24). With the above rewriting we effec-
tively reduce the worm spaces from four to two. That is,
we only sample the improved estimator spaces C(gxyn and
Cno® and do not need to consider the Green’s function spaces
explicitly.

B. Worm insertion and removal steps in improved
estimator space

The Metropolis acceptance rate of the one-particle im-
proved estimator introduced in (16) is given by

. Uray1seWioc(m + 4,Ti, 5 0T 5 Tas T

a(Cz = Cgsyy) = min 1y et SERALED (26)
ab [wioe (.74, ., T3,)

where in this work 7 is the number of operators in the local trace at times t;, . .. 7;,, and wj,, is the local part of the configuration

weight. In principle it is possible to move the interaction term Uy, s of the Metropolis acceptance rate into the Monte Carlo
estimator during the measurement. In this case, however, one needs to sample different components of the implicit summation
over the three equal time operators explicitly, while otherwise it is possible to define a new operator, which sums up all components
beforehand.

Similar to the Metropolis acceptance rate of the one-particle improved estimator, the acceptance rate of the two-particle

improved estimator introduced in (21) is given by

|U[a€]mwloc(lfl + 6,‘L’i1 e

a(Cz = Chouwa) = min|:1,174 X

We emphasize that the underlying idea of worm sampling in
CT-HYB is to continue the sampling of operators connected
to hybridization lines inside the worm spaces. Similar as the
series expansion of the partition function with respect to the
hybridization, one may think of a hybridization expansion of
the observable in question but now with the additional external
worm operators that are not connected by hybridization
lines. In the worm algorithm this series is then sampled
stochastically just as one would sample the partition function.
Merely inserting and removing worm operators without further
sampling results in a nonergodic sampling procedure, as some
diagrams cannot be generated in this way [28].

C. Worm measurement

The measurement of observables in worm spaces is trivially
determined by recording imaginary time bins during the Monte
Carlo sampling ({...)mc) for a given spin-orbital component
and only needs to be corrected in its normalization and sign
(sgn), see Ref. [28] for further technical details:

Gz

Com)

(t = 1) = —(sgn(Uwioc) 8(tr — t))me,  (28)
or equivalently in Matsubara frequencies:

G

Cex)

(iv) = (sgn(Uwiee) € ye.  (29)

Tiys TasTheTesTa) | ﬂ6:|. o

|wloc(l’l,l','l, . ,‘C,'n)|

(

Similarly, the two-particle improved estimator in the particle-
hole convention is measured as

2 10,00 i 0)=(sgn(U wiee) 02 (5= iotrim) o

(30)

It is important to note that the sign of the configuration now
includes an additional sign from the interaction term U,g,s,
which was introduced to the Metropolis acceptance rate in
(26) and (27). We point out that the sign problem of the worm
algorithm is identical to the sign problem of the hybridization
expansion itself. That is, the average sign in the denominator of
the estimators originates from the normalization with respect to
the partition function, i.e., being a consequence of the average
sign of partition function space.

While Eq. (28) may be binned in imaginary time 7, and
afterwards Fourier transformed to Matsubara frequencies iv,
the unbinned Fourier transform in Eq. (29) is possible as
well. In the case of the two-particle quantities a binning
procedure becomes much more involved as one needs to
generate a grid which further resolves the sign changes due to
anticommutating operators. Thus, employing a nonequispaced
fast Fourier transform algorithm [37] in Eq. (30) is preferable.

The correct normalization of observables measured in any
of the worm spaces is given by

1 N,
Ay = —=
ni Nz

(Al (€29}
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where (A) is the expectation value of the operators
GV,G?P,(GX)V or H? with physical normalization and
(A)c, is the corresponding expectation value with its worm
space normalization. Further, N¢, is the number of steps taken
in the configuration space C4, and N is the number of steps
taken in partition function space Cy.

V. RESULTS
A. Atomic limit

The atomic limit is defined for an arbitrary lattice, where
the hopping of electrons between different sites vanishes. This
is equivalent to the AIM where the hybridization function A;;
vanishes for all spin-orbit components. Up to this point we
have not specified the local interaction. We will investigate an
SU(2)-symmetric Slater-Kanamori interaction given by [38]

I'Iloc = Z UﬁaTﬁ(xi
o

+ D WU haohip-o) + (U = Nitagipo]

a>p,0

At gt a4t at g 4
-2 J(daidmdmdw +dgpdg dyydy) + HC)
o
(32)

where Ay, := dJ d,, denotes the density operator. We have
made the sums explicit here in order to represent Ugg, s by the
interorbital repulsion U, the intraorbital repulsion U’, and the
interaction due to Hund’s coupling by J.

The Slater-Kanamori interaction contains spin-flip and
pair-hopping terms, which translate to further nonvanishing
components in the two-particle Green’s function and improved
estimators. These components are not accessible through the
removal of hybridization lines, as in the case of the traditional
CT-HYB approach. Worm sampling allows us to calculate
all correlation functions independent of the details of the
interaction Ugg, s and the hybridization A,;. As a result, the
above algorithm is especially suited for material calculations
with less symmetries in the interaction (e.g., the full Coulomb
interaction). Due to the computational effort involved when
calculating two-particle quantities, however, multiorbital cal-
culations usually assume SU(2)-symmetric interactions and
employ the PS quantum number [39] and diagonal hybridiza-
tion functions in order to avoid any sign problems.

Here we consider the half-filled two-orbital atomic limit.
The interaction parameters are set to U = 1.0 (setting our unit
of energy), U’ = 0.5, and J = 0.25. The half-filling condition
for the Slater-Kanamori interaction is given by u = %U —

%J , such that u = 0.875. The inverse temperature was set to
B =10.

Figure 4 shows the imaginary part of the self-energy in
fermionic Matsubara frequencies. Both the improved estimator
(ZG)D(iv) and the Green’s function GV(iv) were obtained
using worm sampling with comparable computational effort.
We observe large fluctuations in the high-frequency region
when calculating the self-energy from the Dyson equation.
Calculating the self-energy from the improved estimator
instead, yields a much better high-frequency behavior in Fig. 4.
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FIG. 4. Imaginary part of the self-energy X vs Matsubara fre-
quencies i v in the atomic limit with two half-filled orbitals, U = 1.0,
U’ = 0.5, and J = 0.25. The self-energy obtained from the Dyson
equation (red) shows much larger fluctuations in the high-frequency
region compared to the self-energy obtained from the improved
estimators (green). Error bars are calculated from 40 bootstrap
samples. Inset: Comparing the second moment of the self-energy
from the improved estimator (green) and the Dyson equation (red) by
multiplication with the Matsubara frequency with the measurement
via the one- and two-particle density matrix (blue) [23].

The contrasting high-frequency behavior is a consequence
of a different propagation of statistical uncertainties. Em-
pirically, we find roughly constant error bars for both the
one-particle Green’s function GV(iv) and the one-particle
improved estimator (£G)"(iv) over the entire frequency
range. Performing a formal error propagation for the self-
energy through the Dyson equation, we find the statistical
fluctuations of the self-energy diverge quadratically for large
frequencies. This is consistent with the red curve in Fig. 5. If
we instead consider the error propagation for the self-energy

0.4

0.35 improved ———

dyson

o(S(iv))

0.05

0
—-200 —150 —100 -50 0 50 100 150 200

FIG. 5. Error of the self-energy ¥ vs Matsubara frequencies iv
in the atomic limit for the data given in Fig. 4. The uncertainties
resulting from the Dyson equation (red) follow a quadratic scaling,
while the uncertainties obtained from the improved estimator (green)
follow a weak linear scaling.
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FIG. 6. Fermionic cut through the two-particle vertex function in
the density (left) and magnetic (right) channel for the same parameters
as in Fig. 4. The vertex obtained from a straight-forward calculation
of the two-particle Green’s function (red) displays larger fluctuations
in the high-frequency region than the result obtained from the two-
particle improved estimator (green). Error bars are calculated from
four independent inversions. The analytic result (blue) is shown for
comparison.

assuming instead the improved estimator £ G simply being
multiplied by G~! from the right, we find a linear scaling of
the statistical uncertainties over the frequency range.

Figure 6 shows the irreducible two-particle vertex function
in the density and magnetic channel, in comparison with
the exact solution [32,40]. To this end the connected Green
function (20) was calculated from this the susceptibility
and finally the irreducible vertex through the Bethe-Salpeter
equation (5). A much better high-frequency behavior in
the two-particle improved estimator here allows for a more
stable inversion of the Bethe-Salpeter equation. This better
high-frequency behavior is obtained by using the improved
estimator which hence dramatically reduces the error of the
vertex in Fig. 6.

At the one-particle level we could explain the high-
frequency fluctuations by replacing the Dyson equation with
the Schwinger-Dyson equation in a formal error propagation.
At the two-particle level there is no corresponding substitution
for the Bethe-Salpeter equation. Hence, a similar formal
argument is not available. Nonetheless we observe that also in
this case the improved estimator reduces the error considerably
in Fig. 6.

B. Falicov-Kimball (FK) model

The FK model [41] can be seen as a nontrivial extension to
the atomic limit, where one spin is frozen (vanishing hopping),
while the other spin is itinerant (nonvanishing hopping). The
Hamiltonian of the single-orbital spin-less FK model reads

He = —t Y cle;+U Y élaflfi
ij i

—u Y el —er > fl A (33)
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FIG. 7. Imaginary part of the self-energy X vs Matsubara
frequencies iv for the FK model at U = 1.0, g = 20, u = 0.2, and
€ = —0.038114 (ny = 0.25). The self-energy obtained from the
improved estimators (green) is in good agreement with the exact
self-energy obtained from the RLM (blue). Error bars are calculated
from 40 bootstrap samples. Inset: Comparing the second moment of
the self-energy from the improved estimator (green) by multiplication
with the Matsubara frequency with the analytical calculation (blue).

where ¢t denotes the hopping amplitude from site j to i
of itinerant ¢ electrons and U the local Coulomb repulsion
between an itinerant c electron and a frozen f electron. Further,
w1 and €, are local potentials of the itinerant and localized
electrons. In the context of DMFT, the FK model maps onto
the self-consistent solution of the resonant level model (RLM)
[42], which is Eq. (33) with U and € restricted to a single
site. Aside from an analytic expression for the c-electron
self-energy, in general the propagators (Green’s functions) of
the ¢ electrons are also analytically accessible. Propagators
involving the f electrons on the other hand are much more
difficult to obtain. More detailed information about the FK
model can be found in Ref. [43].

In terms of the CT-HYB algorithm, the FK model is specif-
ically challenging, because the traditional formulation of the
algorithm is not capable of directly measuring the propagators
for any f electrons due to the vanishing hybridization function.
The worm algorithm allows for sampling and measuring the
f electrons and is thus the natural formulation of a FK solver
in the context of CT-HYB.

In the following we investigate a two-dimensional FK
model out of half filling with inverse temperature g = 20,
interaction parameter U = 1.0 and chemical potential p =
0.2, where the half bandwidth D =1 of the conduction
electrons sets our unit of energy. In order to fix the f
occupation to ny = 0.25 (in terms of the RLM p; = 0.25)
we adjust the f-electron energy level to €, = —0.038114.

Figure 7 shows the self-energy of the ¢ electrons for the
FK model obtained from DMFT and the improved estimators.
The CT-HYB data have fluctuations in the high-frequency
region, but these are well behaved. This in principle allows
us to combine the low-frequency region of the improved
estimators with the asymptotic high energy behavior which
can be obtained through analytic equations from the density.
The latter in turn can be calculated during the same run.
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FIG. 8. Real and imaginary part of the connected part of the Green
function, Gf;‘;‘)‘, for different bosonic frequencies n,, = 0,2,4,6 and
the same parameters as in Fig. 7. All Matsubara frequencies are given

in terms of their (integer) index.

When comparing the connected part of the two-particle
Green’s function for the ¢ electrons G(' we find a good
agreement of our CT-HYB improved estimator with the exact
result [34] (not shown).

Figure 8 shows our CT-HYB results for the connected part
G (e of the FK model, which cannot be obtained analytically
in a straightforward way. We observe typical “cross” and
“plus” structures in the real and imaginary part. Sign changes
in the connected part can be observed. These structures shift

PHYSICAL REVIEW B 94, 125153 (2016)

and broaden with increasing bosonic frequency. Outside these
structures the connected part vanishes.

The validity of the fc component of the two-particle
Green’s function is indicated, albeit implicitly, since the
calculation of the equal-time (or equivalently frequency-
summed) component enters the equation of motion for the
self-energy of the ¢ electrons, which we found to agree with the
analytical result in Fig. 7. A correct self-energy hence implies
that the fc component of the two-particle Green’s function is
equally correct. Please note that calculating the fc component
of the irreducible two-particle vertex is more involved as
the FK model violates the SU(2) symmetry. Thus, a channel
decomposition is no longer possible and the Bethe-Salpeter
equation (2) does not decouple anymore, mixing fc and ff
components of the irreducible vertices.

VI. CONCLUSION

In this paper we have presented a generalization of the im-
proved estimator scheme for the CT-HYB algorithm. We make
use of the recently introduced worm algorithm in CT-HYB
to sample the necessary equal-time correlators. This allows
us to treat general interactions beyond the density-density
type. We demonstrate that the improved estimator scheme has,
compared to the direct calculation, a superior convergence
in the high-frequency region for the self-energy and the
irreducible two-particle vertex function. The atomic limit
for a two-orbital model with non-density-density interaction
is used to validate our numerical CT-HYB results against
analytical expressions. We demonstrate the necessity of the
worm algorithm to numerically calculate all propagators of the
FK model. Specifically, results for the density and magnetic
channel of the irreducible two-particle vertex are supplied,
which can be used as an input for diagrammatic methods
beyond DMFT as well as to calculate g-dependent susceptibil-
ities within DMFT. We strongly emphasize that the improved
estimators formulated in terms of the worm algorithm will
greatly enhance multiorbital material calculations employing
non-density-density interactions.
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