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Effective magnetic correlations in hole-doped graphene nanoflakes
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The magnetic properties of zigzag graphene nanoflakes (ZGNFs) are investigated within the framework of
inhomogeneous dynamical mean-field theory. At half-filling and for realistic values of the local interaction, the
ZGNF is in a fully compensated antiferromagnetic (AF) state, which is found to be robust against temperature
fluctuations. Introducing charge carriers in the AF background drives the ZGNF metallic and stabilizes a magnetic
state with a net uncompensated moment at low temperatures. The change in magnetism is ascribed to the
delocalization of the doped holes in the proximity of the edges, which mediate ferromagnetic correlations
between the localized magnetic moments. Depending on the hole concentration, the magnetic transition may
display a pronounced hysteresis over a wide range of temperatures, indicating the coexistence of magnetic states
with different symmetries. This suggests the possibility of achieving electrostatic control of the magnetic state
of ZGNFs to realize a switchable spintronic device.
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I. INTRODUCTION

Graphene is widely regarded as a promising material
for nanoelectronics [1]. The high electron mobility of the
delocalized π electrons in graphene results in excellent electric
and thermal transport properties, leading to the belief that
graphene holds the potential to outperform Si for realiza-
tion of high-speed and high-frequency response transistors
and large-scale integrated circuits with a low environmental
impact. In this respect, the semimetallic nature of graphene
is not ideal for electronic applications and represents the
main limitation to the realization of a graphene transistor.
This issue can be overcome when considering nanostructured
subunits of graphene: zero-dimensional graphene nanoflake
(GNFs) and their one-dimensional counterparts, graphene
nanoribbons (GNRs), which display a semiconducting gap
strongly dependent on the system’s size [1,2]. Particularly
interesting is the role of the topology of the edge termination
of graphene nanostructures in the stabilization of a magnetic
state. Graphene zigzag (ZZ) edges have a defined chirality and
consist of atoms belonging to the same triangular sublattice
of graphene, while in armchair (AC) edges atoms of both
sublattices are always paired. The imbalance at the ZZ edges is
believed to be the origin of magnetism. This feature raised the
interest in graphene applications also in the field of spintronics.

Recent experimental evidence [3–6] supports the idea that
magnetism can be intrinsic in graphene nanostructures, and
exceptionally high Néel temperatures up to room temperature
have been reported [6]. In general, the experimental observa-
tion of magnetic states in graphene nanostructures remains
scarce and controversial, and one of the main difficulties
in the realization of long-range magnetic structures resides
in the growth and in the intrinsic irregularity of the sample
edges [5]. However, in the last few years, we have witnessed
important advances in the synthesis and in the characterization
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of graphene nanostructures, e.g., at the interface with boron
nitride [7,8], and the fingerprints of atomically precise edges
have been uniquely identified in the Raman spectra of GNRs
[9], paving the path toward graphene nanoelectronics.

From the theoretical point of view there is a substantial
agreement on the phenomenon of edge magnetism within the
framework of density functional theory (DFT) [10–14] and
the mean-field approximation of the Hubbard model [15–17].
In particular, it has been proposed that the magnetic states of
graphene nanostructures can be exploited for the realization
of spintronic devices, e.g., spin filters [12,13,18,19] and
logic gates [16,20] with graphene functional blocks. Recent
investigations [14,21] suggested that the magnetic ordering of
the ZZ edges in GNFs can be tuned by carrier doping. The
presence of delocalized charge carriers entails ferromagnetic
(FM) correlations, giving rise to a complex magnetic phase
diagram. Indeed, it has been shown that the correlations
between spatially separated magnetic impurities adsorbed on
graphene can be interpreted in terms of a Rudermann-Kasuya-
Kittel-Yoshida (RKKY) exchange interaction mediated by the
π electrons of the graphene substrate [22–26].

Besides a few relevant exceptions [21,22,27–30], the role
of electronic correlations beyond mean-field theory (MFT)
in graphene nanostructures remains widely unexplored. This
calls for a better theoretical understanding of the effects
of electronic correlations on the magnetic properties and
the interplay between charge and spin degrees of freedom
in the presence of ZZ edges. We address this question
in the framework of inhomogeneous dynamical mean-field
theory (DMFT) [31], which is able to describe the interplay
between the low-energy coherent excitations, arising due to
the delocalization of the charge carriers on the lattice, and the
incoherent high-energy excitations, related to the formation of
the fluctuating local moment due to the Coulomb interaction.

The paper is organized as follows. In Sec. II A we discuss a
Hubbard-model description of GNFs, while in Secs. II B and
II C we show how DMFT allows us to investigate the magnetic
properties of GNFs in the presence of electronic correlations.
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In Sec. III we present our numerical results. We focus on the
case of a hexagonal ZGNF and discuss the onset of magnetism
at half-filling as well as the interplay between charge and spin
degrees of freedom at finite doping. Finally, Sec. IV provides
our conclusion and outlook.

II. MODEL AND METHODS

A. Low-energy π -electrons Hamiltonian for GNFs

In graphene, the in-plane C-C bonds are formed due to
an sp2 hybridization between carbon s, px , and py atomic
orbitals, while the pz orbitals are perpendicular to the sp2

bonds and form π orbitals that extend over the plane. Hence,
in order to describe a GNF we can consider the following
Hubbard Hamiltonian as an effective low-energy model for
the delocalized π electrons on a finite-size honeycomb lattice
with N sites:

H = −
∑
ijσ

tij c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ + U

∑
i

ni↑ni↓. (1)

In this notation, the operator c
(†)
iσ annihilates (creates) a π elec-

tron at site i with spin σ and niσ = c
†
iσ ciσ is the corresponding

number operator; tij are the tight-binding hopping parameters,
μ is the chemical potential, and U denotes the local Coulomb
repulsion.

The information on the spatial arrangement of the C atoms
in the nanostructure is contained in the real-space hopping
matrix, including also the topology of the edges (either ZZ or
AC). Here, we restrict ourselves to the case of the hexagonal
ZGNF shown in Fig. 1, while spatial symmetries are discussed
in detail in Sec. II C. We assume a homogeneous hopping
tij = t , where the nearest-neighbor (NN) hopping amplitude

FIG. 1. Schematic of the hexagonal ZGNF considered. The
Nineq = 6 inequivalent C atoms are distinguished into bulk (C1,...,4

b )
and edge (C1,2

e ) atoms for each sublatticeA (red circles) and sublattice
B (cyan circles). The rotational symmetry C3 sends all inequivalent
atoms to their equivalent atoms on the same sublattice, indicated by
dashed circles.

t ≡ 1 sets the energy scale of the system, and we neglect
hopping processes beyond NN. Recently, Kretinin et al. [33]
experimentally estimated the value of the next-NN hopping
parameter in graphene to be t ′/t ≈ 0.1. While the presence of
t ′ has important consequences such as breaking the particle-
hole symmetry of the Hamiltonian, it was concluded that the
asymmetry leads to relatively weak effects in the optical,
as well as in the electronic, and presumably spin transport
properties of monolayer graphene [33]. A configuration with
spatially uniform hopping parameters is representative of the
case where all the dangling C-C bonds at the ZZ edges are
passivated, e.g., with hydrogen atoms. Within DFT it was
shown that passivation quenches the edge magnetic moments
significantly, while the lack of passivation changes the sp2

hybridization between C atoms and induces sizable lattice
distortions, mostly at the edges but also in the bulk [14].
A full structure relaxation allows one to derive the DFT
tight-binding parameters, i.e., the hopping amplitudes and
the local crystal fields of the distorted structure. However,
according to the numerical results, in both the neutral and
the hole-doped cases (and in contrast to the electron-doped
one), the ZGNF does not display sizable lattice distortions,
and the doped charges are distributed symmetrically over the
edges [14]. In the following analysis we focus on hole-doped
ZGNFs in order to study the interplay between charge and spin
degrees of freedom in the stabilization of different magnetic
phases. Hence, we disregard the effects of lattice distortions, as
we do not expect any qualitative change in the results obtained.
Finally, we consider a local Coulomb interaction U between
the delocalized π electrons. Recently, both local and nonlocal
Coulomb repulsion terms have been estimated to be sizable
in graphene [34], justifying the necessity of treating graphene
beyond the tight-binding or mean-field approximation. Indeed,
electronic correlations, as well as the interplay between local
and nonlocal repulsive interactions, are expected to play an
important role in the stabilization of different magnetic orders
in graphene nanostructures [21]. In the following we focus on
the dynamical correlation effects driven by the local repulsion
U within the framework of DMFT [31]. Unless specified
otherwise, we choose a typical value of U = 3.75t , in line with
recent estimates for graphene [34,35]. Nonlocal interaction
could be taken into account within DMFT by including in
Hamiltonian (1) a mean-field term, Vij

∑
σ niσ (〈nj↑〉 + 〈nj↓〉).

However, the presence of nonlocal repulsion favors charge
modulation on the lattice [21] and possibly leads to the
proliferation of ordered states, which makes this extension
beyond the scope of the present work.

B. Real-space dynamical mean-field theory
with magnetic symmetry breaking

DMFT is a well-established theoretical tool to take
into account local electronic correlations nonperturba-
tively. Numerous extensions of DMFT have also been
proposed in which the self-energy is local albeit site
dependent, allowing one to deal with inhomogeneous
[36–39] and nanoscopic [40–45] systems, where in general the
translational symmetry is broken along one or more directions
in space. Nonlocal electronic correlations beyond mean field
are in general expected to be important in low-dimensional
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systems. However, by means of comparative studies [45] with
diagrammatic [46] extensions of DMFT built on the local
two-particle vertex function [47], it has been demonstrated
that sometimes reasonable insights into the electronic and
transport properties of correlated nanostructures [40,42,45] are
already gained at the DMFT level. In the following we briefly
recall how DMFT is implemented for an inhomogeneous finite
system, and we discuss how to handle magnetic phases within
this framework. In the case of a finite system, one can map
each site i = 1, . . . ,N of the original many-body problem onto
an auxiliary Anderson impurity model (AIM) embedded in a
self-consistent bath determined by the rest of the system. The
auxiliary AIM for the ith site is defined by the spin-dependent
local dynamical Weiss field G0iσ (ω) in terms of the local
element of the real-space Green’s function Gijσ (ω) of the
whole system and the local self-energy �iσ (ω) as

G−1
0iσ (ω) = G−1

iiσ (ω) + �iσ (ω). (2)

In general, the local problems defined by G−1
0iσ (ω) are in-

equivalent, and each of them can be solved numerically,
yielding a local dynamical self-energy �i(ω) which carries
a spatial dependence on the site index i. However, one can
exploit any spatial symmetry of the original system and reduce
the numerical effort by solving, eventually, only a subset
of Nineq � N inequivalent local problems. This reduces the
complexity of the problem from exponential in N to linear in
Nineq. The knowledge of all (inequivalent) �i(ω) allows one
to compute the Green’s function of the whole system from the
real-space Dyson equation

G−1
ijσ (ω) = (ω + μ)δij − tij − �iσ (ω)δij , (3)

where the self-energy matrix contains only the local, site-
dependent elements. Nonlocal correlations between different
sites are neglected. From the Green’s function one can define
a new set of auxiliary AIMs and iterate the above process
self-consistently until convergence.

In order to study the emergence of magnetism, we lift the
local SU(2) spin rotational symmetry of the auxiliary AIM and
allow the impurity solver to access solutions with a finite on-
site magnetization 〈Sz

i 〉 = 〈ni↑ − ni↓〉 (here we consider only
solutions with magnetization in the z direction). This is done
locally for each site i using a symmetry-broken Weiss field
G0iσ as initial input for the DMFT. In this respect, the separate
treatment of the different spin directions is the only essential
modification of the general self-consistent scheme of real-
space DMFT, and in particular the self-consistent equations,
whatever is the magnetic phase to be investigated, as opposed
to the standard implementation of symmetry-broken solutions
within DMFT [31]. The landscape of the possible magnetic
phases that can be explored within this approach depends on
the set of spatial symmetries enforced in the calculation and
on the specific choice of the initial symmetry-breaking.

C. Spatial symmetries and magnetic phases
of hexagonal ZGNFs

In the following we discuss in detail the spatial symme-
tries of hexagonal ZGNFs, which we enforce in order to
investigate a landscape of possible magnetic configurations
within the self-consistent DMFT calculations. We consider

the hexagonal ZGNF shown in Fig. 1, which consists of a
bipartite honeycomb lattice with N = 54 C atoms. Exploiting
both the rotational symmetry of the C3v point group and the
sublattice symmetry, one can identify Nineq = 6 inequivalent
C atoms, all belonging to the same triangular sublattice
(e.g., sublattice A). The inequivalent C atoms can be further
distinguished into bulk atoms (denoted C1−4

b ), which have
three in-plane sp2 C-C bonds, and edge atoms (denoted C1,2

e ),
which have two C-C bonds and one dangling/passivated bond.
A ZZ edge of the ZGNF consists of Nedge = 3 C atoms, i.e.,
two (equivalent) C1

e atoms and a C2
e atom, all belonging to

the same sublattice. Neighboring edges consist of C atoms
belonging to different sublattices, and are always connected
by an AC bond between C1

e atoms. Lifting the local SU(2)
spin rotational symmetry would be enough to study, e.g.,
(inhomogeneous) ferromagnetism. However, as the Hubbard
model on a bipartite lattice has a natural tendency toward
a Néel antiferromagnetic (AF) state (close to half-filling), a
natural choice would be to enforce each kind of inequivalent
atom to have opposite magnetization on different sublattices.
However, this assumption would not allow other magnetic
configurations, in particular, ferromagnetism. A more general
description of the magnetic phases requires us instead to
raise the number of inequivalent atoms in the system. Here
we choose to lift the sublattice symmetry, i.e., treat each
inequivalent atom and its counterpart in the other sublattice
independently, thus raising Nineq: 6 → 12. This choice allows
us to stabilize either an AF or a FM state and describe the
competition between the two short-range magnetic orders
emerging from the interplay between charge and spin degrees
of freedom at finite doping.

III. RESULTS AND DISCUSSION

In the following sections we discuss the onset of an AF
insulating state of a ZGNF at half-filling. We also show that
at finite doping there exists another magnetic state underneath
the AF one, in which the magnetic moments at the ZZ edges
are aligned FM. Such a state is unstable with respect to
temperature fluctuations. We discuss the possible origin of the
magnetic transition analyzing the effective magnetic exchange
interaction mediated by the charge carriers.

A. ZGNF at half-filling

At half-filling, which corresponds to an average occupation
of 〈n〉 = 1 electron per site, and for passivated edges (i.e., in the
case of homogeneous hopping parameters), Hamiltonian (1) is
particle-hole symmetric and the density of states of the ZGNF
is symmetric with respect to the chemical potential. Due to the
discreteness of the spectrum, even in the absence of Coulomb
interaction the system is semiconducting, with a charge gap
�0 ≈ 0.7t . The value of �0 depends on the system’s size and
shape, and in particular, it has been shown both experimentally
[48] and theoretically [14,49] that it decreases as 1/L with the
linear size L of the GNF and vanish toward the semimetallic
limit realized in bulk graphene.

We characterize the onset of the AF state at half-filling
and at T = 0 by comparing the results obtained within static
mean-field theory (MFT) and DMFT. In Fig. 2 we show the
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FIG. 2. Onset of AF order at T = 0 within static MFT (cyan
symbols) and DMFT (red symbols). The local ordered magnetic
moment 〈Sz

i 〉 = 〈ni↑ − ni↓〉 for representative bulk C1
b and edge C2

e

atoms displays a clear bulk-edge dichotomy. Inset: DMFT energy
balance between the fully compensated AF and the PM phases. The
total energy difference 〈�E〉 = 〈H 〉AF − 〈H 〉PM is separated into
kinetic 〈�K〉 and potential energy 〈�U〉 contributions.

local magnetic moment 〈Sz
i 〉 = 〈ni↑ − ni↓〉 for representative

atoms in the ZGNF, i.e., for bulk C1
b and edge C2

e atoms,
as a function of the local interaction U/t . It is interesting
to note that the onset of antiferromagnetism happens at a
finite value of U/t and simultaneously for all inequivalent
atoms, even though the size of the ordered moments of C1−4

b

(which are all similar yet not identical) is different from
that of C1

e and C2
e . Hence, we observe a clear dichotomy

between bulk and edge atoms, even in the passivated case,
which persists also when increasing the interaction. The
resulting magnetic state is a fully compensated AF state but
it is different from the conventional Néel state due to the
inhomogeneous spatial distribution of the magnetic moments.
Both static MFT and DMFT show the qualitative trend
discussed above. Unsurprisingly, dynamical quantum effects
suppress the AF phase, pushing the onset interaction toward the
strong-coupling regime, i.e., from the value UAF ≈ 2t obtained
within the static MFT to the value UAF ≈ 3t obtained within
DMFT. Feldner et al. [27] have shown that the static MFT
overestimates both the size of the local magnetic moment and
the spectral gap of half-filled ZGNFs with respect to exact
diagonalization and quantum Monte Carlo simulations. It is
also interesting to note that the relative difference in size
between the magnetic moment of bulk and that of edge atoms
is enhanced within DMFT with respect to the static MFT.
In fact, the spatial variation of the ordered local moment
〈Sz

i 〉 can be traced back to a preformed (disordered) local
moment in the paramagnetic (PM) state 〈pi〉 = 〈(Sz

i )2〉 =
〈ni↑ + ni↓〉 − 2〈ni↑ni↓〉, which already displays the bulk/edge
dichotomy. In the magnetic state the value of 〈pi〉 increases
due to the decrease in double-occupation 〈ni↑ni↓〉, as each site
stays locally half-filled, i.e., 〈ni〉 = 1. In the inset in Fig. 2 we
show the DMFT energy balance as a function of U/t , where the
internal energy difference between the fully compensated AF
and the PM phases, i.e., 〈�E〉 = 〈H 〉AF − 〈H 〉PM is separated
into kinetic 〈�K〉 and potential energy 〈�U 〉 contributions.

For realistic values of the interaction parameter in graphene,
the AF state is stabilized by a potential energy gain 〈�U 〉 < 0
corresponding to the reduction in the double-occupation upon
ordering. The above scenario mirrors the well-known DMFT
picture [50–53] of the AF transition in the bulk Hubbard model,
with its crossover from weak-to-strong coupling physics at
values of U of the order of the bandwidth. This consideration
would put any realistic value of the interaction in ZGNFs
definitely on the weak-coupling (Slater) side. The main
difference here is that the AF phase is not stabilized at arbitrary
weak coupling, but it requires a finite onset interaction UAF

due to the semiconducting nature of the ZGNF at half-filling.
Let us note that the value of the onset interaction depends on
the size of the (correlated) spectral gap � in the PM phase,
which shrinks with the linear size L of the ZGNF [48,49].
Thus ZGNFs of increasing size are expected to become
magnetic at weaker interaction, while for small ZGNFs the
onset interaction UAF is dominated by finite-size effects. With
a further increase in size, the semimetallic nature of graphene
plays a role. In fact, even though � → 0, the lack of perfect
nesting on the honeycomb lattice and the zero density of states
at the Dirac point keep the onset interaction finite. Theoretical
estimates of the onset interaction range from UAF ≈ 3.8t

to UAF ≈ 4.5t with different numerical techniques [54–57],
which seems to be in agreement with the experimental absence
of antiferromagnetism in graphene monolayers.

It is interesting to discuss in detail the change in the
low-energy spectral properties of the half-filled ZGNF across
the magnetic transition. In Fig. 3 we show the occupied
portion of the local spin-resolved spectral function A(ω < 0)
for representative bulk C1

b and edge C2
e atoms. Due to the

particle-hole symmetry, in the fully compensated AF state, the
spectral function for spin σ fulfills the relation Aσ (ω > 0) =
Aσ (−ω). We consider a local interaction U = 3.75t , which at
T = 0 lies above but close to the DMFT onset value UAF (see
Fig. 2). In the absence of magnetism, the ZGNF in Fig. 3 is
semiconducting, and the local spectral function (gray-shaded
area) displays a spectral gap � ≈ 0.5t , where the gap is defined
as the distance between the lowest energy peaks around the
Fermi level. We note that the spectral gap � is substantially
reduced by local electronic correlations with respect to the
tight-binding value �0 ≈ 0.7t , as expected in view of similar
observations (within DMFT) in the insulating state of both
bulk crystal [58] and molecules [45]. In the fully compensated
AF phase we plot Aσ (ω) to show that the spin-↑ and spin-↓
spectral functions are inverted for the two sublattices. It is
important to note that both the gap in the PM state � and
the AF gap �AF do not display any spatial dependence on
the ZGNF, despite the local magnetic moments of bulk and
edge C atoms being different. This is shown in Fig. 4, where
we plot the site-resolved spectral functions for all inequivalent
atoms of sublattice A in the PM state (upper panel) and for
both spin-↑ and spin-↓ polarizations in the fully compensated
AF state (lower panel). The dashed vertical line indicates the
position of the lowest energy peak for both spin polarizations.
The right-hand panels also show the corresponding disordered
local moment 〈pi〉 and magnetic moment 〈Sz

i 〉, respectively.
The homogeneity of the spectral gap is the fingerprint of the
separation between low-energy delocalized excitations and
high-energy localized states in strongly correlated systems.
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FIG. 3. Local spin-resolved DMFT spectral function A(ω) for
bulk C1

b (upper panel) and edge C2
e (lower panel) atoms at

U/t = 3.75, 〈n〉 = 1, and T = 0. In the nonmagnetic calculation the
ZGNF is a semiconductor (gray-shaded area), while the magnetic
calculation yields a fully compensated AF insulating state, with
opposite spin polarization in sublattices A (solid red line) and B
(solid cyan line). Inset: Spatial distribution of the magnetic moments
on the ZGNF; the color and the radius of the circles indicate the sign
and the magnitude of 〈Sz

i 〉.

The high-energy properties follow the inhomogeneity dictated
by the geometry or the single-particle potential to minimize
the potential energy, while the low-energy properties, such as
the spectral gap, are more homogeneous, as they are associated
with a delocalized behavior which lowers the kinetic energy
[59]. Concerning the spatial distribution of the magnetic
moments, we can observe a modulation of the local magnetic
moment also within each edge, as 〈Sz

i 〉 is larger away from
the corner, i.e., for C2

e atoms, as the C1
e atoms belonging to

neighboring edges form an AC defect at each corner. While
it has been shown [17,32] that magnetism at ZZ edges is
robust against irregularities of the edge, such as AC defects,
it is also true that the local magnetic moment is reduced, or
even completely absent, at the armchair defects, as shown
clearly, e.g., by Fernández-Rossier and Palacios [15]. Hence,
the trend observed within DMFT for the Nedge = 3 ZGNF (as
well as for larger sizes, as in the case of Nedge = 4 ZGNFs;
not shown) is in agreement with other calculations in the
literature. We can conclude that the linear size of the ZGNF
that we have considered here is suitable to describe both the
finite-size effects, which result in the physics being dominated
by the ZZ edges, and the electronic features that would be
expected in the bulk of an infinitely extended correlated
system.

FIG. 4. Local spin-resolved DMFT spectral function A(ω) for all
inequivalent C atoms in the PM (upper panel) and AF (lower panel)
states at U/t = 3.75, 〈n〉 = 1, and T = 0. The electronic coherence at
low energy results in homogeneous spectral gaps � and �AF (dashed
vertical lines), despite the fact that the disordered 〈pi〉 and ordered
〈Sz

i 〉 local moments (open symbols in right-hand panels) display a
clear bulk-edge dichotomy.

Extending the above analysis to finite temperatures, as
also discussed in detail in the following section, we find the
fully compensated AF state at half-filling to be stable up to
room temperature Troom (see leftmost panel in Fig. 5). This
observation is in agreement with recent experimental evidence
in ZGNRs [6]. Moreover, the properties of the ordered state,
in particular, the local magnetic moments 〈Sz

i 〉, display a
very weak dependence on T , sufficiently below the Neél
temperature TN .

B. Competing magnetic orders upon doping

In the following we explore the interplay between charge
and spin degrees of freedom upon doping. As Hamiltonian (1)
is particle-hole symmetric, hole and electron doping are equiv-
alent in our model calculations. However, this is no longer the
case if particle-hole symmetry is lifted. This is relevant, e.g.,
if one considers also a finite next-nearest-neighbor hopping,
t ′, or takes into account inhomogeneous hopping parameters
and on-site energies due to structural relaxations within DFT.
Recent ab initio calculations showed that hole-doped ZGNFs
display weak lattice distortions and that the doped charges
are distributed symmetrically over the edges, in contrast with
electron-doped ZGNF, which are instead heavily distorted,
resulting also in a reduced symmetry with respect to the C3v

point group [14]. We do not expect a qualitative change in
the general picture even without particle-hole symmetry. In
particular, ferromagnetism may be induced by doped carriers
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FIG. 5. Evolution of the magnetic moments in the ZGNF as a function of the temperature T/t at U/t = 3.75 and different values of doping
δ. As a reference, the temperature scale (in K) is obtained by considering the realistic value t = 2.7 eV for the hopping parameter in graphene.
Upper panels: Local magnetic moment 〈Sz

i 〉 for the edge C2
e atoms in sublattice A (red symbols) and sublattice B (cyan symbols). Lower panels:

Absolute value of the net magnetic moment m (jade triangles) and the staggered magnetization mst (black circles) per atom in the ZGNF. The
dashed line with filled symbols shows the hysteretic behavior of the magnetization.

with either charge. A quantitative difference to be expected is
instead the doping concentration necessary to trigger the FM
transition, which, in general, will be different for electrons
and holes and will be strongly dependent on the details of the
one-body Hamiltonian.

Charge carries can be introduced in the ZGNF, e.g., by using
a gate electrode or by chemical substitution with carboxyl
(COOH) or hydroxyl (OH) groups, which should not disrupt
the sp2 hybridization at the edges [60]. The most interesting
result is that the fully compensated AF state is unstable upon
doping, due to the emergence of ferromagnetic correlations
between spins at the ZZ edges. We show that at finite
doping and below a critical temperature Tc it is energetically
favorable for the local magnetic moment 〈Sz

i 〉 of the C2
e atoms

to be aligned ferromagnetically both within the same edge
and between neighboring edges, while bulk C atoms tend
to maintain an AF pattern. The resulting magnetic state is
characterized by an uncompensated net magnetic moment and
a finite staggered magnetization. In the following we denote it
the ferrimagnetic (FI) state, although we stress that the ZGNF
does not display a proper FI order. A similar behavior upon
doping was recently observed for the same ZGNF within DFT
calculations at T = 0 [14].

The upper panels in Fig. 5 show the temperature evolution
of the local magnetic moment 〈Sz

i 〉 for the edge C2
e atoms of

sublattices A and B. We provide also reference values of T

(in K) obtained with a typical value t ≈ 2.7 eV for the hopping
integral in bulk graphene. The doping is denoted δ, the integer
number of holes in the ZGNF, so that nominal filling of the
ZGNF is n = (N − δ)/N . For all cases we considered, the
magnetic state in the high-T regime is the fully compensated
AF state. The orientation of the magnetic moment is opposite

for atoms in different sublattices, giving rise, globally, to
a staggered magnetization mst = 1

N

∑N
i=1〈Sz

i 〉i . Away from
half-filling and below a doping-dependent temperature Tc(δ)
the system also develops a finite net magnetic moment
m = 1

N

∑N
i=1〈Sz

i 〉 (uniform magnetization), which coexists
with a finite mst, giving rise to an FI state. The results for the
absolute value of the magnetic moments m and mst are shown
in the lower panels in Fig. 5 for each δ. At half-filling the fully
compensated AF state is characterized by a Néel temperature
TN ≈ Troom and does not display any tendency toward the FI
state down to the lowest T explored. While the mean-field
character of the spatial fluctuations within DMFT is known to
overestimate the ordering temperature [61,62], the observation
of a sizable TN for edge magnetism is in agreement with recent
experimental evidence in ZGNRs [6]. The annealing procedure
at δ 
= 0 shows that the ZGNF is driven away from a fully
compensated AF state upon lowering T by breaking the spin
inversion symmetry between the A and the B sublattices. In
the case of one hole, i.e., δ = 1 (second panel from left in
Fig. 5), the local magnetic moment 〈Sz

i 〉 for the C2
e atoms

increases, as is to be expected, upon lowering T until the
sublattice symmetry is broken at Tc/t ≈ 0.008 (Tc ≈ 100 K).
Below Tc, the staggered magnetization mst decreases and the
ZGNF develops a net magnetic moment m 
= 0. The major
contribution to m (and to the decrease in mst) is given by
the asymmetry that develops between the magnetic moments
of the C2

e atoms in the two sublattices. Let us stress once
again that the magnetic transition happens spontaneously upon
annealing, as the symmetries of the ZGNF enforced in the
numerical calculation allow both the AF and the FM solutions,
as well as the coexistence of the two orders. The situation
is substantially different at higher hole concentrations. At
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δ = 2 (third panel from left in Fig. 5) the ZGNF displays a
sudden change in the magnetic configuration at Tc/t ≈ 0.02
(Tc ≈ 140 K) from a high-T , fully compensated AF state to
a low-T FI state. In the FI state all the inequivalent C2

e spins
are aligned ferromagnetically, although they are not equal in
size due to the breaking of the sublattice symmetry. The trend
of the data at low T suggests that the sublattice asymmetry
could possibly disappear in the limit T → 0. Away from the
transition, the properties of the ZGNF are nearly independent
of T up to a sharp drop above Troom. A similar behavior is
found at δ = 3 (rightmost panel in Fig. 5). We can estimate the
transition temperature to Tc ≈ 100 K, which turns out to be
lower than the one for δ = 2. Interestingly, the effect in the bulk
atoms in the ZGNF is weaker, although a clear discontinuity
in the T dependence of the local magnetic moment can be
observed for δ = 2 and δ = 3 (not shown).

At δ 
= 0 the magnetization also displays a hysteretic
behavior. The hysteresis is evident especially for δ = 2 and
δ = 3, where it extends over a wide range of T and indicates
the coexistence of short-range AF and FM orders. We note
that both the local magnetic moments 〈Sz

i 〉 decrease upon
doping. While this is expected within DMFT, it is instead
absent in reference T = 0 DFT calculations, where the spin
density at the edges is the same in both the AF and the FI
states [14].

It is interesting to relate the changes in the local magnetic
moments at the ZZ edges across the AF-to-FI transition to the
changes in the low-energy excitation in the spectral functions.
To this end, we focus on the edge C2

e atoms of sublatticesA and
B. The corresponding local spin-resolved spectral functions
A(ω) in the PM and the magnetic (AF or FI) states are
shown in Figs. 6 and 7 at δ = 2 and δ = 3, respectively. A
common feature of doped ZGNFs is the metallic character of
the spectrum due to the redistribution of spectral weight in
the site-resolved A(ω) with respect to half-filling (compare
with Fig. 3). We observe a resonance at the Fermi level,
associated with the delocalization of the electrodoped charge
carriers on the lattice. The low-energy coherent excitations
at δ 
= 0 coexist with the incoherent high-energy excitations
(Hubbard bands) related to the formation of the fluctuating
local moment due to the Coulomb interaction. In the magnetic
state above Tc(δ) analysis of the spectral functions in (the upper
panels in) Figs. 6 and 7 clearly indicates the AF alignment of
the C2

e atoms in the different sublattices. Below Tc (lower
panels) a redistribution of the low-energy spectral weight
splits the spin-↑ and spin-↓ spectral functions with respect
to the Fermi level, showing a tendency toward an insulating
state. The splitting is the same for sublattices A and B. As
a consequence the local magnetic moments of the edge C2

e

atoms in the two sublattices are aligned ferromagnetically.
For δ = 2 the sublattice asymmetry is evident, while for
δ = 3 it is minimal. The spatial distribution of the magnetic
moments above and below Tc and the corresponding change
in the magnetic pattern for both values of δ are shown in the
respective insets.

In order to understand the nature of the magnetic corre-
lations at the ZZ edges we analyze the spatial distributions
of the holes upon doping. In the upper panel in Fig. 8 we
show the local hole density for the bulk C1

b and edge C2
e

atoms as a function of the average electron density 〈n〉 in

FIG. 6. Local spin-resolved DMFT spectral function A(ω) for
the edge C2

e atoms at U/t = 3.75 and δ = 2. Upper panel: fully
compensated AF state at T/t = 0.010 (T ≈ 160 K). Lower panel: FI
state at T/t = 0.005 (T ≈ 80 K). Color coding reads as in Fig. 3 for
both panels and the inset.

FIG. 7. As Fig. 6, but for δ = 3, showing an FM alignment of the
C2

e magnetic moments below Tc.
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FIG. 8. Distribution and influence of doped holes as a function
of the average electron density in the ZGNF 〈n〉 at U/t = 3.75 and
T/t = 0.005 (T ≈ 80 K). Upper panel: Local hole density 〈1 − ni〉
for the bulk C1

b and the edge C2
e atoms in the PM state. Insets:

Spatial distribution of the holes in the ZGNF. Middle panel: Average
fluctuating local moment 〈p〉. Dashed lines separating the shaded
area correspond to the free and fully localized limits (see text for
details). Lower panel: Absolute value of the net magnetic moment m

and staggered magnetization mst.

the ZGNF. The holes are found to be localized mostly at the
ZZ edges, and the ratio of the hole concentration at the edge to
that in the bulk increases with doping. However, the average
hole concentration on the lattice obtained within DMFT is
less heterogeneous than in reference DFT calculations [14]
due to the effects of the hole-hole repulsion at the edges.
The hole concentration in Fig. 8 is shown for T/t = 0.005
(T ≈ 80 K), which is below Tc(δ) for all δ 
= 0, but the spatial
distribution of the holes on the lattice is very weakly dependent
on T (not shown). We also find that there is no sizable
redistribution of the holes on the lattice between the PM and
the magnetically ordered states, except for a slight asymmetry
due to the sublattice symmetry breaking in the FI state. In the
other two panels in Fig. 8, we show the evolution with doping
of the average fluctuating local moment 〈p〉 = 1

N

∑
i〈pi〉

in relation to the magnetization m and mst in the ordered
state. Upon magnetic ordering, the value of 〈p〉 increases
due to the reduction in double-occupations. At half-filling this
corresponds to the gain in potential energy shown in the inset in
Fig. 2. We note that 〈p〉 is weakly dependent on the doping. If
we compare it with the value 〈p〉 in the uncorrelated (free) and
the fully localized cases, where the local double-occupations
are 〈ni↑ni↓〉 = 0.25 and 〈ni↑ni↓〉 = 0, respectively. We can

conclude that 〈p〉 gets closer to the localized limit upon doping.
At the same time the magnetization mst is strongly suppressed
in favor of an uncompensated magnetic moment m as FM
correlations tend to align the magnetic moment at the ZZ
edges. The net magnetic moment as a function of the doping
m(δ) displays a dome shape, peaked at an optimal value of
δ ≈ 2, which develops upon the lowering of T . Within the
usual DMFT picture, the presence of a sizable preformed
local moment, while the magnetic order is capped by a lower
coherence energy scale, would indicate the realization of a
strong-coupling scenario [50,51]. This suggests a crossover
from weak- to strong-coupling magnetism in ZGNF upon dop-
ing away from half-filling. Based on these observations we can
argue that the delocalized holes mediate an effective magnetic
exchange interaction, which is dynamically generated between
the magnetic moments localized at the edges. This mechanism
ultimately leads to the change in the magnetic structure in
the doped ZGNF. This highly nontrivial physics can indeed
be captured by DMFT because it is able to describe both
the coherent and the incoherent excitations as well as their
interplay. Evidence in support of this claim is presented in
Sec. III C, where we evaluate the effective magnetic exchange
interaction.

C. Effective magnetic interactions

In the following we analyze the effective magnetic in-
teractions generated by the interplay of the local repulsion
U and the delocalization of electrons and holes in the
ZGNF, which we argue to be the mechanism behind the
stabilization of the FI state. Within the local self-energy
approximation (as in DMFT), an estimate of the effective
magnetic exchange interaction parameters Jij can be obtained,
following Katsnelson and Lichtenstein [63], as

Jij = −
∫ ∞

∞
dω�s

i (ω)G↑
ij (ω)�s

j (ω)G↓
ji(ω)f (ω), (4)

where f (ω) = (eβ(ω−μ) + 1)
−1

is the Fermi distribution
function at the inverse temperature β = 1/T , while �s

i =
(�↑

i − �
↓
i )/2 is the asymmetric spin combination of the local

(dynamical) self-energy, and Gσ
ij is the real-space nonlocal

Green’s function connecting sites i and j , with spin σ .
Diagrammatically, the effective exchange Jij can be thought
as the frequency convolution of the bubble term χ0

ij of the
nonlocal susceptibility, with the nonlocal Green’s function as
the fermionic lines of the bubble and �s

i playing the role of
the local vertex. Let us stress that the coupling Jij = 0 in the
PM state (where �

↑
i = �

↓
i ) and it should not be interpreted as

the magnetic coupling of an effective spin lattice Hamiltonian
(e.g., of the Heisenberg model), as it carries a temperature
and doping dependence through both the Green’s function
and the self-energy. Rather, Eq. (4) resembles the typical
expression [22,26] used to evaluate the RKKY exchange
coupling between magnetic adatoms, JRKKY ∝ J 2χ0

ij , where J

couples the impurity spin with the spin density on the substrate,
and χ0

ij is the static spin susceptibility of the conduction
electrons, which mediate the effective magnetic interaction.
In analogy, we have that �s

i is associated with the presence
of localized magnetic moments and the effective exchange
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FIG. 9. Effective magnetic exchange Jij between all NN pairs
and edge C2

e atom pairs for different dopings. The color and the
intensity of the links denote the nature and the strength of the magnetic
interaction: from AF (red) to FM (blue). Data are normalized to
the strongest Jij for better visibility, while numerical values of the
couplings are listed in Table I as a reference. Upper panels: AF state,
at T/t = 0.010 (T ≈ 80 K). Lower panels: FI state, at T/t = 0.005
(T ≈ 160 K).

between them is mediated by the doped holes delocalized on
the lattice.

The expression for Jij in Eq. (4) yields the effective
magnetic exchange for any pair (i,j ) in the ZGNF. However, in
order to highlight the microscopic mechanism behind the AF-
to-FI magnetic transition, we focus on the magnetic exchange
parameters between all NN atom pairs and all edge C2

e atom
pairs. In Fig. 9 we show a graphical representation on the
ZGNF of the values obtained for relevant magnetic exchange

parameters Jij . We show the data as a function of doping
and for two values of temperature, T/t = 0.010 (T ≈ 160 K)
and T/t = 0.005 (T ≈ 80 K), which are representative of the
high-T (AF) and low-T (FI) magnetic states discussed above.
At half-filling, we find all magnetic interactions Jij > 0 (i.e.,
AF in nature). The short-range and, in particular, the NN
interactions JNN are stronger at the edges with respect to the
bulk. The values of Jij are rapidly suppressed with distance
|i − j |, and in particular, long-range interactions between
different edges are negligibly weak with respect to JNN within a
given edge. The magnetic properties at half-filling are weakly
dependent on T (below TN ) and this is reflected also in the
magnetic couplings. At finite doping and above Tc we find
JNN > 0 and quantitatively similar to the values at δ = 0 for all
values of doping. However, the presence of delocalized charge
carriers mediates sizable long-range magnetic interactions.
Some of the long-range interactions connecting edge C2

e atoms,
indicated as J1, J2, and J3 in Table I, are found to be negative
(i.e., FM in nature) at finite doping. Eventually, the presence
of Jij < 0 drives the onset of the FI state as T → Tc(δ).
Interestingly, below Tc(δ) the change in the magnetic structure
at δ 
= 0 is reflected also in a change in the effective exchange
interactions. The results are clearer for δ = 2 and δ = 3, where
an exact correspondence can be found between the JNN shown
in Fig. 9 and the relative orientation of the corresponding pair
of magnetic moments shown, e.g., in the insets in Figs. 6 and
7, respectively. The behavior of long-range interactions is less
obvious and better illustrated in Fig. 10, in which we compare
the doping dependence of both representative JNN and the
J1−3 magnetic exchange interactions above and below Tc. In
general, JNN values become weaker upon doping, with some of
them (in particular, at the ZZ edges) becoming FM at δ = 2 and
δ = 3 below Tc. Instead, long-range interactions are enhanced
at δ = 1 with respect to the half-filling case but are suppressed
upon further increase in the doping. The interactions J1 and
J3, which connect edge C2

e atoms of different sublattices, are
usually larger than J2 and display an oscillatory behavior,
changing sign as a function of the doping. In particular, the FM
nature of J1 < 0 and J3 < 0 above Tc reveals the tendency of

TABLE I. Relevant effective magnetic interaction parameters Jij /t [10−4]. The long-range interactions J1, J2, and J3 denote exchange
between edge C2

e atoms belonging to neighboring, next-nearest neighboring, and opposite edges of the ZGNF, respectively. While J1 and J3

always connect C2
e atoms on different sublattices, J2 connects C2

e atoms on the same sublattice and assumes different values if the sublattice
symmetry is broken. Nearest-neighbor interactions JNN denote exchange between C1

b pairs, C1
e pairs, or C4

b -C2
e pairs. The latter assumes

different values if the sublattice symmetry is broken. The above magnetic exchanges are also indicated graphically on the ZGNF in Fig. 9, for
the sake of clarity.

T/t = 0.005 (T ≈ 80 K) T/t = 0.010 (T ≈ 160 K)

JAB
1 JAA

2 J BB
2 JAB

3 JAB
1 JAA

2 J BB
2 JAB

3

δ = 0 0.38(5) 0.01(6) 0.01(6) 0.04(5) 0.38(4) 0.01(6) 0.01(6) 0.04(5)
δ = 1 −0.34(9) 0.26(5) 0.17(1) −1.08(5) −0.21(9) 0.14(3) 0.14(5) −0.75(7)
δ = 2 0.05(9) 0.02(4) 0.02(5) 0.09(1) −0.05(0) 0.00(6) 0.01(8) −0.08(6)
δ = 3 0.03(9) −0.01(1) 0.01(5) −0.00(6) −0.01(4) −0.00(1) −0.00(1) −0.00(1)

JAB
NN C1

b -C1
b JAB

NN C1
e -C1

e JAB
NN C4

b -C2
e J BA

NN C4
b -C2

e JAB
NN C1

b -C1
b JAB

NN C1
e -C1

e JAB
NN C4

b -C2
e J BA

NN C4
b -C2

e

δ = 0 1.00(4) 5.52(4) 2.70(2) 2.70(9) 1.01(3) 5.47(1) 2.68(4) 2.69(3)

δ = 1 0.26(2) 2.05(4) 0.77(0) 1.03(1) 0.27(0) 2.01(2) 0.91(6) 0.91(0)
δ = 2 0.00(3) 0.02(5) 0.22(9) −0.08(1) 0.02(6) 0.26(8) 0.13(7) 0.07(6)
δ = 3 −0.00(1) −0.00(6) −0.02(0) 0.04(0) 0.00(7) 0.07(2) 0.02(7) 0.03(1)
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FIG. 10. Effective parameters for relevant magnetic interactions
Jij as a function of the doping δ. Dashed and solid lines (guides
for the eye) with open symbols correspond to T/t = 0.010 (T > Tc)
and T/t = 0.005 (T < Tc), respectively. Upper panels: Long-range
interactions J1, J2, and J3. Lower panels: JNN interactions between
C1

e -C1
e and C4

b -C2
e pairs. The corresponding values are listed in

Table I.

magnetic moments at the ZZ edges to align ferromagnetically
and can be interpreted as the microscopic mechanism driving
the system across the AF-to-FI transition. Below Tc, we find
J1−3 > 0 for δ = 2 and δ = 3 and we interpret this as a
signature of the competition between the AF and the FI states.
Evidence of the coexistence and the cooperation of AF and
FM correlations in determining the magnetic state of doped
triangular- and linear-chain ZGNFs was already discussed by
Chacko et al. [21] within exact diagonalization calculations.
This hints at the generality of the above scenario in graphene
nanostructures, which is not limited to a particular shape but
seems to be a general feature related to the presence of ZZ
edges. Note, however, that the values of the FM Jij couplings
extracted in the calculations are relatively weak compared to
the AF JNN and the temperature scale Tc at which FI magnetic
order sets in. This suggests that also the geometry of the ZGNF
plays an important role, assisting the exchange couplings in
the formation of the FI state.

IV. SUMMARY AND OUTLOOK

In this work we have investigated the magnetic properties
of a doped ZGNF within the framework of inhomogeneous
DMFT. For a half-filled nanoflake we analyze the onset of
magnetism as a function of the local interaction U . We
identify a dichotomy between bulk and edge C atoms, which
persists from weak to strong coupling. Above a threshold
value of U , the ground state of the ZGNF is in a fully
compensated AF state. The analysis of the energy balance
underlying the magnetic state suggests that, for realistic values
of the interaction, at half-filling the AF state is stabilized by
a potential energy gain characteristic of the weak-coupling

mechanism. The results obtained are in qualitative agreement
with static MFT and DFT calculations but show that quantum
fluctuations suppress, as expected, the AF ordering with
respect to mean-field approximations.

Upon introducing charge carriers we observe melting of
the AF state. Below a doping-dependent ordering temperature
Tc(δ) it is possible to stabilize a short-range FI order, in
which the magnetic moments at the ZZ edges are aligned
ferromagnetically. In the FI state the ZGNF displays a net
ferromagnetic moment which coexists with a finite staggered
magnetization. We interpret the change in the magnetic
configuration in terms of an effective magnetic exchange
between the ordered spins, mediated by the charge carriers
localized in the proximity of the edges.

The possibility of driving FM correlations upon doping
has been discussed in the framework of DFT [14] and exact
diagonalization [21]. The overall agreement with these studies
indicates that a reasonable description of the magnetic phases
can already be obtained within a mean-field description of
long-range correlations. In this framework, DMFT has allowed
us to accurately capture the interplay between the incoherent
excitations that form the fluctuating local moment and the
coherent low-energy excitations that screen this local moment
on longer time scales and mediate the magnetic exchanges
which stabilize the ordered state. Moreover, the possibility of
describing both the temperature and the doping dependence of
the effective exchange couplings sheds some light on the onset
of FI short-range order and the strong competition between AF
and FM correlations in ZGNFs.

Evidently, any change in the magnetism and in the low-
energy spectral properties will have important consequences
for the transport through ZGNFs. Hence, the above analysis
indicates electrostatic control of the magnetization of doped
ZGNF as a promising route towards the future conception and
realization of carbon-based spintronic devices.
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APPENDIX: DETAILS OF THE
NUMERICAL SIMULATIONS

In the following we discuss the technical details of the
magnetic real-space DMFT calculations and the annealing
procedure used to obtain the temperature evolution of the
magnetic properties of the ZGNF. The auxiliary AIMs of
the real-space DMFT algorithm are solved with a Lánczos
exact diagonalization impurity solver [64,65] which is able
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to accurately describe the physics both at T = 0 and at
finite T . We employ a typical discretization of the Hilbert
space of ns = 1 + nb = 9 sites, with nb being the number
of bath sites connected to the impurity. In specific cases
we also perform calculations up to ns = 12 sites, finding
no qualitative difference in the physical observables. The
reliability of the finite-temperature results obtained with the
Lánczos exact diagonalization impurity solver was tested
against the continuous-time quantum Monte Carlo impurity
solver implemented in the w2dynamics package [66], showing
quantitative agreement of the physical observables.

In order to get a magnetic solution within real-space
DMFT, we lift the local SU(2) spin rotational symmetry of
each auxiliary AIM. The symmetry is manually broken at
the beginning of the self-consistency cycle by applying a
symmetry-breaking feld ηiσ to the spin-dependent DMFT bath
G0iσ (ω). In the case of an AF state, the symmetry-breaking field
takes the form

ηiσ =
{
η(δσ↑ − δσ↓) if i ∈ A,

η(δσ↓ − δσ↑) if i ∈ B,
(A1)

where δ is the Kronecker symbol, and we typically set the
parameter η = 0.05t > 0. The field in Eq. (A1) corresponds to
a staggered perturbation in real space with the same symmetry
as the fully compensated AF state.

At half-filling the system is unstable toward antifer-
romagnetism and the convergence of the DMFT self-
consistency is smooth down to T = 0. At finite doping
(δ 
= 0), instead, besides the solution of the inhomoge-
neous real-space DMFT equations, also the chemical po-
tential μ(n) corresponding to the electron concentration

n = ∑
iσ 〈niσ 〉 must be determined. The search for μ(n)

involves a complex root-finding within the self-consistent
procedure, which makes the convergence of DMFT numer-
ically unstable for arbitrary values of T and δ. The difficulty
of the root-finding is also enhanced due to the discreteness
of the energy spectrum for a nanoscopic system. However,
motivated by physical observations, it is possible to obtain a
reliable self-consistent solution of the DMFT equations over
a wide range of T and δ by following an annealing procedure.
Indeed, at high T , AF short-range magnetic correlations are
dominant, as evidenced by the values of the effective magnetic
exchange Jij listed in Table I. The AF correlations stabilize a
fully compensated AF state, also at δ 
= 0. A staggered spatial
order of the magnetic moments can be easily obtained at high
T with the natural choice in Eq. (A1) for ηiσ , mainly for
two reasons: (i) the magnetic ground state displays a spatial
distribution of the magnetic moments that closely resembles
the initial state given by the symmetry-breaking field ηiσ ; and
(ii) the temperature-broadening soothes the complexity of the
root-finding in the case of a discrete energy spectrum. Once
a high-T calculation has converged, the chemical potential
μ, the spin-dependent Weiss fields G0iσ (ω), and the list of
Lánczos states for each inequivalent atom are used as input
for the calculation at lower T . As the input Weiss field for the
next calculation is already symmetry-broken, the annealing
procedure is continued without imposing a symmetry-breaking
field η. In this way, we are able to observe a spontaneous
transition from the AF to the FI state in the low-T regime.
In analogy, a reverse annealing procedure is followed starting
from a converged low-T calculation, in order to reveal the
hysteretic behavior of the magnetic moments at δ 
= 0.
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