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Motivated by recent experiments on volborthite single crystals showing a wide 1
3
-magnetization plateau,

we perform microscopic modeling by means of density functional theory (DFT) with the single-crystal
structural data as a starting point. Using DFTþU, we find four leading magnetic exchanges: antiferro-
magnetic J and J2, as well as ferromagnetic J0 and J1. Simulations of the derived spin Hamiltonian show
good agreement with the experimental low-field magnetic susceptibility and high-field magnetization data.
The 1

3
-plateau phase pertains to polarized magnetic trimers formed by strong J bonds. An effective J → ∞

model shows a tendency towards condensation of magnon bound states preceding the plateau phase.

DOI: 10.1103/PhysRevLett.117.037206

The perplexing connection between quantum magnetism
and topological states of matter renewed interest in
frustrated spin systems [1]. A prime example is the S¼ 1

2

antiferromagnetic kagome Heisenberg model (KHM),
whose ground state (GS) can be a gapped topological spin
liquid, as suggested by large-scale density-matrix renorm-
alization group (DMRG) simulations [2,3]. Although
DMRG results were recently corroborated by nuclear
magnetic resonance (NMR) measurements on herbertsmi-
thite [4], alternative methods vouch for a gapless spin liquid
[5,6] and the discussion is still not settled.
One of the remarkable properties of the KHM is the

presence of field-induced gapped phases that manifest
themselves as magnetization plateaus [7–9]. A key ingre-
dient thereof is closed hexagonal loops of the kagome
lattice that underlie the formation of valence-bond solid
states [8]. By far the widest is the 1

3
-magnetization plateau,

whose structure is well described by singlets residing on
closed hexagons, and polarized spins (Fig. 1, left) [7–10].
Despite the considerable progress in understanding

both quantum and topological aspects of the KHM, most
theoretical findings still await their experimental verifica-
tion. The reason is the scarceness of material realizations:
only a handful of candidate KHM materials is known to
date. A prominent example is herbertsmithite, where S ¼ 1

2

spins localized on Cu2þ form a regular kagome lattice [12].
Other candidate materials feature exchange couplings
beyond the KHM as kapellasite [13–18], haydeeite
[13,17–20], francisite [21], or barlowite [22,23].
The natural mineral volborthite Cu3V2O7ðOHÞ2 · 2H2O

was considered a promising KHM material [24,25],
until it was noticed that the local environment of two

crystallographically distinct Cu sites hints at different
magnetically active orbitals [26]. Density functional theory
(DFT) calculations show that this has dramatic implications
for the spin physics, giving rise to coupled frustrated
chains (CFCs) with ferromagnetic (FM) nearest-neighbor
and antiferromagnetic (AF) second-neighbor exchanges,
and interstitial spins that are AF coupled to the two
neighboring chains [11]. However, detailed structural
studies reveal that below ∼300 K all Cu atoms have the
dx2−y2 as the magnetically active orbital [27], questioning
the applicability of the CFC model for volborthite.
Furthermore, the CFC model features the 1

3
-magnetization

plateau with a semiclassical “up-up-down” structure
(Fig. 1, middle), which was never observed in powder
samples [28,29]. Recent magnetization measurements on
single crystals overturned the experimental situation: a
broad 1

3
-magnetization plateau sets in at Hc1 ≃ 26 T and

continues up to at least 74 T [30].
Puzzled by the remarkable difference between the single-

crystal and powder data, we adopt the structural model

FIG. 1. The structure of the 1
3
-magnetization plateau in the

kagome model (KHM), coupled frustrated chains (CFC) model
from Ref. [11], and the J-J0-J1-J2 model.
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from Ref. [30] and perform DFT and DFTþ U calcula-
tions. We find a microscopic model which is even more
involved than CFC: besides sizable J1 and J2 forming
frustrated spin chains, the coupling between the chain and
the interstitial Cu atoms is now facilitated by two inequi-
valent exchanges, a sizable AF J and a much weaker FM J0.
Because of the dominance of J, the magnetic planes break
up into magnetic trimers (Fig. 2). By using exact diago-
nalization (ED) of the spin Hamiltonian, we demonstrate
that this model agrees with the experimental magnetization
data and explains the nature of the plateau phase

(Fig. 1, right). Further insight into the low-field and
low-temperature properties of volborthite is provided by
analyzing effective models of pseudospin-1

2
moments T

living on trimers. Thus, a model based on effective
exchanges J 1, J 2, and J 2

0 supports the presence of a
bond nematic phase due to the condensation of two-
magnon bound states. Finally, we conjecture that powder
samples of volborthite suffer from disorder effects pertain-
ing to the stretching distortion of Cu octahedra.
We start our analysis with a careful consideration of the

crystal structure. Volborthite features a layered structure,
with kagomelike planes that are well separated by water
molecules and nonmagnetic V2O7 groups. Magnetic Cu2þ
atoms within the planes occupy two different sites: Cu(2)
with four short Cu-O bonds forms edge-sharing chains, and
interstitial Cu(1) located in between the chains. Different
structural models in the literature suggest either squeezed
[31] or stretched [32] Cuð1ÞO6 octahedra. The DFT study
of Ref. [11] employed a structure with a squeezed Cu(1)
octahedron. Although such a configuration can be realized
at high temperatures [27], Cuð1ÞO6 octahedra are actually
stretched in the temperature range relevant to magnetism
[27,30]. The respective structural model was never studied
with DFT; hence, we fill this gap with the present study.
For DFT calculations [33], we use the generalized

gradient approximation (GGA) [44] as implemented in
the full-potential code FPLO9.07-41 [45]. We start with a
critical examination of all structural models proposed so
far, by optimizing the H coordinates and comparing the
total energies. In this way, we find that the single crystal
structure of Ref. [30] has the lowest total energy [33]. All
further calculations are done for this structural data set.
To evaluate the magnetic couplings, we project the

relevant GGA bands onto Cu-centered Wannier functions
[33]. The leading transfer integrals t (> 50 meV) of the
resulting one-orbital (dx2−y2) model are provided in Table I.
Their squared values are proportional to the AF super-
exchange, which is usually the leading contribution to the
magnetism. However, such a one-orbital model fully
neglects FM contributions that are particularly strong for
short-range couplings (dCu…Cu ≲ 3 Å). Hence, to evaluate
the exchange integrals that comprise AF and FM

FIG. 2. (a) Microscopic magnetic model of volborthite featur-
ing four relevant exchange couplings: antiferromagnetic J (thick
bars) and J2 (solid curved lines), as well as ferromagnetic J0
(dashed lines) and J1 (wiggly lines). Magnetic trimers formed by
J exchanges are highlighted (shaded ovals). Magnetic Cu atoms
are shown as large spheres within CuO4 squares, nonmagnetic V
atoms are middle-sized spheres within VO4 tetrahedra. (b) The
Cu-O-V-O-Cu superexchange paths in the magnetic trimer.
(c) Magnetic trimers form a basis for (d) the effective model
with ferromagnetic J 1, as well as antiferromagnetic J 2, J 2

0,
and J 3.

TABLE I. Direct Cu…Cu distances dCu…Cu (in Å), transfer integrals t (in meV) and exchange integrals J (in K).
GGAþ U results are provided for three different values of the on-site Coulomb repulsion Ud. The two numbers in
each entry pertain to the two structurally inequivalent layers; this minor layer dependence is ignored in the
subsequent analysis.

J (GGAþU)

dCu…Cu t Ud ¼ 8.5 eV 9.5 eV 10.5 eV

J 3.053=3.058 −191= − 194 193=205 156=167 127=136
J0 3.016=3.020 −80= − 84 −29= − 22 −30= − 25 −32= − 26
J1 2.922=2.923 −98= − 100 −65= − 65 −76= − 74 −77= − 76
J2 5.842=5.842 64=64 32=31 26=22 22=21
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contributions, we perform DFTþ U calculations for
magnetic supercells and map the total energies onto a
Heisenberg model. These results are summarized in Table I.
Prior to discussing the magnetic model, we should note

that the structural model of Ref. [30] implies the presence
of two similar, albeit symmetrically inequivalent magnetic
layers, with slightly different Cu…Cu distances. Since the
respective transfer (t) and exchange (J) integrals for both
layers are nearly identical (Table I), we can approximately
assume that all layers are equal and halve the number of
independent terms in the model.
The resulting four exchanges, J, J0, J1, and J2, form the

2D microscopic magnetic model depicted in Fig. 2. This
model is topologically equivalent to the CFC model: it
consists of chains with first- (J1) and second-neighbor (J2)
couplings and the interstitial Cu atoms coupled to two
neighboring chains. However, the exchange between the
interstitial spins and the chains is realized by two different
terms: a dominant AF J and much weaker FM J0. This
contrasts with the CFC model, where both exchanges are
equivalent (J ¼ J0).
From the structural considerations, the difference bet-

ween J and J0 may seem bewildering, as Cu…Cu distances
(Table I) and Cu-O-Cu angles (104.6° versus 102.4°) are
very similar. Indeed, for the usual Cu-O-Cu path, the
superexchange would be only marginally different for J
and J0. The difference originates from the long-range
Cu-O-V-O-Cu path [Fig. 2(b)] which provides an addi-
tional contribution to J, but not J0, since the latter lacks a
bridging VO4 tetrahedron. It is known that long-range
superexchange involving empty V d states can facilitate a
sizable magnetic exchange of up to 300 K [46]. Hence, it is
the long-range Cu-O-V-O-Cu superexchange that renders J
much stronger than J0.
A distinct hierarchy of the exchanges J > jJ1j > J2; J0

leads to a simple and instructive physical picture. The
dominant exchange J couples spins into trimers that tile the
magnetic layers. Each trimer is connected to its four nearest
neighbors by FM J0 and J1, and to its two second neighbors
by AF J2 (Fig. 2). In contrast to the CFC model, where
frustration is driven exclusively by J2, the coupled trimer
model has an additional source of frustration: triangular
loops formed by J, J0, and J1. Together with J2, they act
against long-range magnetic ordering.
DFTþU-based numerical estimates for the leading

exchange couplings allow us to address the experimental
data. To simulate the temperature dependence of the
magnetic susceptibility χ, ED of the spin Hamiltonian is
performed on lattices of N ¼ 24 spins, using the approxi-
mate ratios of the exchange integrals J∶J0∶J1∶J2 ¼
1∶ − 0.2∶ − 0.5∶0.2 (Table I). The simulated curves are
fitted to the experiment by treating the overall energy scale
J, the Landé factor g, and the temperature-independent
contribution χ0 as free parameters. In this way, we obtain
a good fit down to 35 K with J ¼ 252 K, g ¼ 2.151, and

χ0 ¼ 1.06 × 10−4 emu=½molCu� (Fig. 3). ED even repro-
duces the broad maximum at 18 K, which stems from
short-range antiferromagnetic correlations. Deviations at
lower temperatures are finite-size effects.
After establishing good agreement with the χðTÞ data,

we employ a larger lattice of N ¼ 36 spins and calculate
the GS magnetization curve, which shows a wide 1

3
-

magnetization plateau between the critical fields Hc1 and
Hc2 (Fig. 3, bottom left). Scaling with J and g from the
χðTÞ fit, without any adjustable parameters, yields Hc1 ¼
22 T in agreement with the experimental Hc1 ¼ 26 T. In
the plateau phase, first- and second-neighbor spin corre-
lations within each trimer amount to hS0 · S1i≡ hS1 ·
S2i ¼ −0.4938 and hS0 · S2i ¼ 0.2470, very close to the
isolated trimer result (− 1

2
and 1

4
, respectively [33]). Hence,

the 1
3
-plateau phase can be approximated by a product of

polarized spin trimers formed by strong J bonds (Fig. 1,
right), and thus is very different from the plateau phases
of the KHM (Fig. 1, left) and the CFC model (Fig. 1,
middle). The plateau stretches up to a remarkably high
Hc2 ≃ 225 T, at which the spin trimers break up, allowing
the magnetization to triple.
ED-simulated spin correlations indicate that the simplest

effective model—the isolated trimer model—already cap-
tures the nature of this plateau phase. On general grounds,
we can expect the isolated trimer model to be valid
only at high temperatures. However, it provides a surpris-
ingly good fit for magnetic susceptibility down to 60 K
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FIG. 3. Top: Magnetic susceptibility of the microscopic spin
Hamiltonian calculated by ED on a N ¼ 24 site lattice compared
to experiment (Ref. [47]) and an isolated trimer model. Bottom
left: GS magnetization curve simulated on a lattice of N ¼ 36
spins for the same model. Insets are magnifications of the
respective data. Bottom right: GS magnetization of the full
effective model [33] with N ¼ 24, 26, and 30 pseudospins
compared to experiment (Ref. [30]).
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(Fig. 3, top), i.e., at a much weaker energy scale than the
leading exchange J ≃ 250 K (Fig. 3). This motivates us to
treat the intertrimer couplings perturbatively and derive a
more elaborate effective model valid at low temperatures
and in low fields (T, gμBH=kB ≪ J).
To this end, we adopt the lowest-energy doublet of each

trimer at H ¼ 0 as the basis for a pseudospin-1
2
operator Ti.

The 1
3
-plateau phase corresponds to the full polarization of

pseudospin-1
2
moments (meff

sat ¼ msat=3). Degenerate pertur-
bation theory to second order in the intertrimer couplings
yields an effective Heisenberg model on a triangular lattice
with spatially anisotropic nearest-neighbor couplings J 1 ¼
−34.9 K and J 2 ¼ 36.5 K and much weaker longer-range
couplings such as J 0

2 ¼ 6.8 K and J 3 ¼ 4.6 K shown in
Fig. 2(d) [33]. The competition between FM J 1 and AF J 2

underlies the frustrated nature of the effective model. Larger
finite lattices available to ED of the effective model allow us
to amend the critical field Hc1 estimate compared to the full
microscopic model (Fig. 3, bottom left) and reproduce a
pronounced change in theMðHÞ slope (Fig. 3, bottom right),
which agrees with the experimental kink at ∼22 T [30].
Effective models provide important insights into the

nature of field-induced states. Recent NMR experiments on
single crystals revealed the emergence of the incommen-
surate collinear spin-density-wave (SDW) phase “II”
(H < 23 T) and the “N” phase preceding the plateau
(23 T < H < 26 T) [30]. We first address the nature of
the latter phase, by treating the fully polarized pseudospin
state (the 1=3-plateau state of volborthite) as the vacuum
and analyzing the magnon instabilities to it.
To this end, we resort to a model with three leading

effective couplings J 1, J 2, and J 0
2. This model is

equivalent to the frustrated FM square lattice model, where
a bond nematic order emerges owing to condensation of
two-magnon bound states (bimagnons) for J 2 ¼ J 0

2 ≳
0.4jJ 1j [48]. Here we take the approximate ratio
J 2=jJ 1j ¼ 1 of the perturbative estimates, and study the
influence of J 0

2 on the ground state. We find that the bond
nematic order is robust for J 0

2=jJ 1j≳ 0.3 [33], as signaled

by the occurrence of bimagnon condensation at Hð2Þ
c1 , at

which the plateau state is already destabilized, but before

single-magnon condensation sets in at Hð1Þ
c1 [Fig. 4(a)]. The

bond nematic phase shows no long-range magnetic order
besides the field-induced moment, but it is characterized by
a bond order with an alternating sign of directors Dij ≡
hTx

i T
x
j − Ty

i T
y
ji residing on J 1 bonds [Fig. 4(b)] [49]. This

phase is a viable candidate for the experimentally observed
“N” phase, whose NMR spectra are not explained by
simple magnetic orders [30].
While bimagnons are stable in a wide region of the

J 1-J 2-J 0
2 model, longer-range effective couplings such as

J 3 tend to destabilize bimagnons. However, a slight tuning
of the microscopic model (e.g., increasing of jJ0j) can
counteract this effect, thereby recovering the nematic phase

[33]. Long-range effective couplings are also sensitive to
weak long-range exchanges neglected in the full micro-
scopic model. In the absence of experimental estimates for
these small exchanges, the J 1-J 2-J 0

2 effective model is an
adequate approximation, which allows us to study the
nature of the field-induced phases in volborthite.
Below 23 T, NMR spectra indicate the onset of an

incommensurate collinear phase II [30]. Unfortunately,
incommensurate spin correlations produce irregular
finite-size effects that impede an ED simulation. Yet, on
a qualitative level, further truncation of the model to the
effective couplings J 1 and J 2 leads to an anisotropic
triangular model, for which a field-theory analysis predicts
the SDW order for m≲ 2

3
meff

sat ¼ 2
9
msat [50].

Next, we go a step beyond the Heisenberg model and
consider antisymmetric Dzyaloshinskii-Moriya (DM) com-
ponents for the leading couplings J and J1. By performing
noncollinear DFTþU calculations with VASP [51], we obtain

jD1j=J1 ≃ 0.12 with ~D1 nearly orthogonal to the frustrated

chains. DMvectors ~Dwithin the trimers are nearly orthogonal
to the respective interatomic vectors and amount to jDj=J ≃
0.09 [33]. We analyzed the influence ofD for isolated dimers
with ED and found a minute change in spin correlations in the
plateau state, which amounts to 2% at most. However, these
DM interactions are the leading anisotropy at low fields, and
can give rise to the two consecutive transitions to the
incommensurate phase I (T < 1 K, H < 4 T) [27].
Finally, we address the intriguing question why the 1

3
plateau has not been observed in powder samples. We
remind the reader that the trimers are underlain by the
stretching distortion of Cuð1ÞO6 octahedra, which selects
two out of four neighboring VO4 octahedra for the J
superexchange pathway [Fig. 2(b)]. In single crystals, the
distortion axes are fixed, and the trimers form an ordered
parquetlike pattern. Powder samples, on the other hand, are
more prone to a random choice of the distortion axis.
A single defect of this type permutes J and J0, ruining the
trimer picture locally. This tentative scenario explains
the absence of a plateau and the strong dependence on
the sample quality in the powder magnetization data.
In summary, the stretching distortion of the magnetic

Cuð1ÞO6 octahedra in volborthite leads to the model of

FIG. 4. (a) The behavior of one- and two-magnon gaps in
the 1

3
-plateau phase, which gives rise to a bond nematic phase.

(b) Schematic picture of the bond nematic phase in the effective
model. Orientation of dark ellipses represents the sign of directors
Dij on J 1 bonds [49].
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coupled trimers, very different from the anisotropic kagome
and coupled frustrated chain models discussed in earlier
studies. Based on DFT calculations and ED simulations,
we conclude that (i) the microscopic magnetic model
of volborthite contains four exchanges with a ratio
J∶J0∶J1∶J2 ¼ 1∶ − 0.2∶ − 0.5∶0.2 and J ¼ 252 K, (ii) the
1
3
-magnetization plateau can be understood as a product of
nearly independent polarized trimers, and (iii) the effective
J 1-J 2-J 0

2 model shows indications for a bond nematic
phase which precedes the onset of the plateau.
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Note added.—A recent NMR study [52] supports our bond
nematic phase scenario below the 1

3
plateau.
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