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Local n-particle vertex functions represent the crucial ingredient for diagrammatic extensions of dynamical
mean field theory (DMFT). Hitherto their application has been restricted—with a few exceptions—to the n =
2-particle vertex while higher-order vertices have been neglected. In this paper we derive a general analytical
expression for the local n-particle (one-particle-reducible) vertex of the Falicov-Kimball model (FKM). We
observe that the magnitude of such vertex functions itself strongly increases with the number of particles n. On
the other hand, their effect on generic Feynman diagrams remains rather moderate due to the damping effect of the
Green’s functions present in such diagrams. Nevertheless, they yield important contributions to the self-energy
corrections calculated in diagrammatic extensions of DMFT as we explicitly demonstrate using the example of
dual-fermion calculations for the two-dimensional FKM at quarter filling of the stationary f electrons. Here
corrections to the self-energy obtained from the three-particle vertex are indeed comparable in magnitude to
corresponding corrections stemming from the two-particle vertex.
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I. INTRODUCTION

With the establishment of dynamical mean field theory
(DMFT) [1–5] as a state-of-the-art method for calculating
strongly correlated electron models [5] and materials [6,7],
the scientific frontier moved on to extensions of DMFT that
include the important local correlations of DMFT but also non-
local correlations beyond. One route to this end is cluster ex-
tensions where a finite cluster of sites is surrounded by a DMFT
bath [8–11]. More recently, diagrammatic extensions have
been proposed as a vivid alternative [12–15,17]. These have
in particular the advantage that long-range and short-range
correlations beyond local ones of DMFT are treated on an equal
footing, and that realistic materials calculations [18] are pos-
sible. Note that the numerical effort of cluster extensions gen-
erally grows exponentially with the number of sites times the
number of orbitals, which severely restricts their application.

Several closely related diagrammatic extensions of DMFT
have been proposed: the dynamical vertex approximation
(D�A) [12–14], the dual-fermion (DF) [15], the dual-boson
[16], and the nonlocal expansion schemes [19], the one-
particle-irreducible approach (1PI) [20], the merger of DMFT
with the functional renormalization group (DMF2RG) [21],
the triply and quadruply irreducible local expansions [22,23],
and DMFT+fluctuation exchange (FLEX) [24]. All these
approaches start from the local but fully frequency-dependent
vertex, and diagrammatically construct nonlocal correlations
beyond DMFT from it. Particular highlights achieved by
applying these novel approaches are the calculation of the
critical [27,28] and quantum-critical [29] exponents of the
Hubbard model and those of the Falicov-Kimball model
[30], as well as establishing the insulating nature of the
paramagnetic phase in the half-filled Hubbard model on a
square lattice at arbitrarily small interactions [31].

The DF and 1PI approaches constitute a systematic
expansion of the self-energy of the system in local one-, two-,
and more-particle correlation (vertex) functions which is, in
principle, exact when including all n-particle vertices as well
as all diagrams built from these. In practice, these approaches

are truncated at the two-particle vertex level which constitutes
the most fundamental approximation regarding these methods
[32].

The main reason for this truncation is that the complexity
and numerical effort is already at the edge of what is possible
for the n = 2 particle vertex, for which the full dependence
on three frequencies needs to be taken into account [41]. At
least this is true for the Hubbard model within DMFT, where
arguably the most efficient way to calculate the corresponding
local two-particle vertex is by means of quantum Monte
Carlo simulations [42–44] with worm sampling [45] and
improved estimators [46]. While individual contributions of
the local three-particle vertex of the DMFT Hubbard or
impurity model have been calculated this way [46], obtaining
its full dependence on five frequencies exceeds presently
available resources regarding both computational time and
memory. From this two-particle vertex Feynman diagrams are
constructed and yield nonlocal correlations beyond DMFT.

The Falicov-Kimball model (FKM) [47] has a much simpler
structure than the Hubbard model. In contrast to the latter it
describes only one species of itinerant electrons that interact
with the other, localized species. Because of this localization,
one can consider the FKM as a model for (annealed) disorder
instead of interaction. Because of its simpler structure the
FKM has a long tradition of (semi)analytical calculations
that are not possible for the Hubbard model. The FKM has
been commonly utilized as a test bed for new approaches
and concepts. Indeed the FKM can be solved analytically
in DMFT [48,49], including charge density wave ordering
[50] and transport properties [51]. Vertex corrections to the
conductivity [52,53] and Anderson localization [54] have been
discussed, and the FKM has been studied in DF [30] and 1PI
[55].

The analytical calculation of the local two-particle vertex of
the FKM [49,55,56] shows a much simpler, reduced frequency
structure in comparison to the Hubbard model [41]. That is,
the two-particle vertex has only two contributions since no
energy can be transferred to the localized electrons: (i) an
ω �= 0 (ω: transferred bosonic frequency) contribution where
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the two fermionic frequencies have to be the same ν = ν ′ [49]
and (ii) an ω = 0 contribution [55,56].

In this paper, we analytically calculate the full n-particle
vertex of the FKM for arbitrary n and analyze its magnitude
as a function of n. This is a very relevant issue since the
typical truncation of the self-energy diagrams in the DF and
1PI theories at the two-particle vertex level relies on the
“smallness” of higher-order vertex functions. We exemplarily
investigate the importance of such higher-order vertices in the
DF theory by including the n = 3 particle vertex in the DF
correction to the DMFT self-energy. While at half filling this
three-particle vertex vanishes, it yields a sizable contribution
to the nonlocal DF correction of the DMFT self-energy in the
case of quarter filling, indicating that in a general situation
some caution has to be taken when cutting the DF expansion
at the two-particle vertex level.

The outline of our paper is the following: In Sec. II, we
derive the analytical formula for the n-particle connected
Green’s and vertex functions of the FKM within DMFT.
To this end, we first calculate in Sec. II A the n-particle
Green’s function, from which we remove all disconnected
contributions in Secs. II B and II C. In Sec. III we analyze
how the prefactor of the n-particle vertex grows with n and
provide an analytic estimate for its asymptotic behavior. From
this we deduce in Sec. IV the magnitude of the contribution of
such vertices in generic self-energy diagrams of DF and 1PI.
In Sec. V we then calculate some selected correction terms for
the DF self-energy stemming from the n = 3 particle vertex
and compare these to the usual corrections from two-particle
vertex functions only. Finally, Sec. VI is devoted to a summary
of our main results and an outlook.

II. ANALYTIC DERIVATION OF THE n-PARTICLE
VERTEX IN THE FKM

The Hamiltonian of the spinless (one-band) Falicov-
Kimball model reads

Ĥ = −t
∑
〈ij〉

ĉ
†
i ĉj + U

∑
i

ĉ
†
i ĉi f̂

†
i f̂i

−μc

∑
i

ĉ
†
i ĉi − μf

∑
i

f̂
†
i f̂i , (1)

where ĉ
(†)
i annihilates (creates) an itinerant c electron and,

correspondingly, f̂
(†)
i annihilates (creates) a localized f

electron at the lattice site i; t represents the hopping amplitude
for a mobile electron between nearest-neighbor sites 〈ij 〉. The
two electron species interact with each other via a purely local
(Hubbard-like) interaction parametrized by the interaction
strength U ; μc and μf denote the chemical potentials for the
itinerant and localized electrons, respectively, which determine
the density of the corresponding particles. Throughout the
paper all energies will be measured in terms of 4t representing
the half bandwidth for the FKM on a 2d square lattice;
T = 1/β is the temperature.

In the following we will consider the DMFT solution of
model (1) and derive analytical expressions for the corre-
sponding local (connected) n-particle DMFT vertex function
for arbitrary n. To this end we systematically subtract all
disconnected contributions from the full n-particle Green’s

function G(n). As we will show, this is achieved by a two-step
procedure where (i) all diagrams which can be written as
a product of a one-particle Green’s function G(1) and a
remainder are eliminated from G(n). Subsequently we (ii)
remove in the second step all disconnected products among
purely higher-particle Green’s functions (G(2),G(3), . . .). This
yields—after amputating the outer legs via dividing by the
corresponding one-particle Green’s functions G(1)—the final
result for the n-particle local DMFT vertex function for the
FKM.

Let us stress that all results and derivations presented in
this section are independent of the underlying lattice type
(e.g., square, cubic, Bethe, etc.). The density of itinerant and
localized electrons only enters through the local one-particle
Green’s function.

A. Calculation of DMFT n-particle Green’s functions

Let us start our considerations by recalling that the (local)
single-particle-impurity Green’s function for c electrons of the
FKM in the framework of DMFT is just given as [49]

G(ν) = p1
1

iν + μc − �(ν) − U︸ ︷︷ ︸
≡∼

G(ν)

+ p2
1

iν + μc − �(ν)︸ ︷︷ ︸
≡G∼(ν)

, (2)

where ν = πT (2nν + 1), nν ∈ Z, is a fermionic Matsubara
frequency and �(ν) denotes the hybridization function of
DMFT, encoding the dispersion relation of the system and
uniquely defining the local DMFT problem. G∼ (ν) represents
the (noninteracting) single-particle Green’s function for the
itinerant c electrons if no localized f electron is present at the
impurity site;

∼
G(ν) corresponds to the same (noninteracting)

Green’s function but in the presence of a localized electron
which, however, just increases the energy level for the itinerant
one by U . Here, the weight p1 = 〈f̂ †f̂ 〉 corresponds to the
density of localized electrons at each lattice site (i.e., to the
probability for finding such an electron at the given site) and
p2 = 1 − p1. In other words, the local DMFT single-particle
Green’s function for the itinerant electrons is given just by the
weighted average of two noninteracting Green’s functions that
correspond to the presence or absence of a localized electron
on the DMFT impurity. The localized electron merely acts as
a scattering potential for the itinerant particles.

We start our derivation by calculating the n-particle Green’s
function on the DMFT impurity, and recall that it is defined as

G(n)(τ1,τ2, . . . ,τ2n) = (−1)n〈T[ĉ(τ1)ĉ†(τ2)ĉ(τ3)

× ĉ†(τ4) . . . ĉ(τ2n−1)ĉ†(τ2n)]〉. (3)

Here, 〈 . . .〉 denotes the thermal average, and T is the Wick
operator ordering the (imaginary) times τ1 . . . τ2n. For the
Fourier transform, we chose the following convention, for
convenience in later steps of the derivation [25]:

G(n)(ν1,ν2, . . . ,νn; νn+1,νn+2, . . . ,ν2n)

= 1

βn

∫ β

0
dτ1 . . .

∫ β

0
dτ2nG

(n)(τ1,τ2, . . . ,τ2n)

× e−i(ν1τ2+ν2τ4+...+νnτ2n−νn+1τ1...−ν2nτ2n−1). (4)
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Because of the noninteracting-like nature of the FKM, we can
determine the n-particle Green’s functions quite straightfor-
wardly. To this end, we do not need to calculate the sum of all
possible n-particle diagrams for the c-f interaction U directly.
Instead we can express the local G(n) as an average of two
noninteracting n-particle Green’s functions, corresponding to
the presence or absence of an f electron which acts as a local
disorder potential. As we have two noninteracting Green’s
functions, we can simply apply Wick’s theorem. This yields
all possible products of one-particle Green’s functions G∼ or∼
G, with or without a localized electron on the impurity; see
Eq. (2). The resulting, averaged Green’s function

G(n)(ν1,ν2, . . . ,νn; νn+1,νn+2, . . . ,ν2n)

= δν1...νn

νn+1...ν2n
[p1(

∼
G(ν1)

∼
G(ν2) . . .

∼
G(νn))

+p2(G∼ (ν1)G∼ (ν2) . . . G∼ (νn))] (5)

contains all connected as well as disconnected diagrams. Here
ν1,ν2, . . . ,νn correspond to the (n) frequencies of the incoming
and νn+1,νn+2, . . . ,ν2n to the (n) frequencies of the outgoing
particles. δν1...νn

νn+1...ν2n
denotes a generalized Kronecker delta

which guarantees energy (frequency) conservation: It is 1 if
the entering frequencies are an even permutation of the leaving
ones, −1 if they are an odd permutation, and 0 otherwise.
Moreover, it will be 0 if an incoming/outgoing frequency
appears more than once. Note that δν1...νn

νn+1...ν2n
generates n!

summands that correspond to the n! Wick contractions.
The following parts of the derivation of the n-particle vertex

are technical in nature. Readers interested in the analytical
expressions for and the impact of higher-order vertices, but
not the technical details of their derivation, can safely skip the
rest of this section. The final result of our derivation is given
in Eq. (21).

Equation (5) corresponds to the full local DMFT n-particle
Green’s function and, hence, contains contributions from
disconnected as well as from fully connected diagrams. To
extract the latter—and from this the n-particle vertex—we
have to remove all disconnected contributions from Eq. (5).
At first glance, the most direct way to achieve this seems to
be simply to subtract all terms of the form G(m1) . . . G(mk )

with
∑k

l=1 ml = n for all possible partitions ml and all
possible frequency assignments for a given partition. Such
a procedure, however, would lead to a massive overcounting
of subtraction terms as one can easily see from the following
argument: Consider for instance the contributions G(1)G(n−1)

and G(2)G(n−2) which certainly have to be subtracted from
G(n). However, the first term G(n−1) includes a contribution
G(1)G(n−2) and the second term G(2) contains G(1)G(1) so that
it becomes obvious that the expression G(1)G(1)G(n−2) appears
in both subtraction terms. This indeed leads to the above-
mentioned overcounting problem when naively removing such
contributions.

In the following, we will, hence, take another path trying
to avoid the above-mentioned “oversubtraction.” To this end,
let us first consider the following algebraic identities for
G(ν),

∼
G(ν), and G∼ (ν):

∼
G(ν) = p1

∼
G(ν) + p2

∼
G(ν) + p2G∼ (ν) − p2G∼ (ν)

= G(1)(ν) + p2[
∼
G(ν) − G∼ (ν)], (6)

G∼ (ν) = p1G∼ (ν) + p2G∼ (ν) + p1
∼
G(ν) − p1

∼
G(ν)

= G(1)(ν) − p1[
∼
G(ν) − G∼ (ν)]. (7)

Substituting these relations into Eq. (5) recasts the expression
of the n-particle Green’s function and yields 2 (from the
original two terms) times 2n (number of possible combinations
of terms from the binomials) terms of the structure

(
∼
G − G∼ )

′′l′′ G(1)
′′n−l′′

, (8)

which have to be summed up. Note that the expression for
a summand as given in Eq. (8) represents a pure symbolic
notation with the exponents

′′l′′ and
′′n−l′′ denoting the number

of factors of a given type appearing in a single term, without
explicitly specifying which frequencies (ν1,ν2,ν3, . . . ) they
are associated with. Obviously, each such term appears exactly
twice in the sum [corresponding to the original two summands
in Eq. (5)], once with p1(p2)l and once with p2(−p1)l as a
prefactor. Hence, we define the factor Fl (note that this F is
not the full vertex, but a factor that will appear in the formula
for G(n)):

Fl = p1(p2)l + p2(−p1)l , (9)

which is associated with each summand consisting of a product
of l terms of type (

∼
G − G∼ ) and n − l terms of type G(1). This

definition allows us to express G(n) in the following way:

G(n) = δν1...νn

νn+1...ν2n

l=n∑
P,l=0

Fl (
∼
G − G∼ )(νP (1)) . . . (

∼
G − G∼ )(νP (l))

×G(1)(νP (l+1))G
(1) . . . G(1)(νP (n))

1

l!(n − l)!
, (10)

where P denotes all permutations of the numbers i = 1 . . . n.
The factors l! and (n − l)! compensate for overcounting due
to permutations which only exchange frequencies between
the same type [G(1) or (

∼
G − G∼ )] of term. For the sake of a

better readability of the following derivations we introduce
the following (symbolic) shorthand notation for the terms in
the sum of Eq. (10):

G(n) =
n∑

l=0

(
n

l

)
Fl (

∼
G − G∼ )

′′l′′ G(1)
′′n−l′′

, (11)

where the combinatorial factor
(
n

l

)
indicates the summation

over all
(
n

l

)
permutations of the frequencies ν1 . . . νn in

Eq. (10).

B. First part of the diagrammatic decomposition

Equation (11) represent an—up to this point algebraic—
decomposition of the full two-particle Green’s function. Let
us now analyze to which extent the latter already corresponds
to a diagrammatic separation of terms. We first introduce the
concept of one-particle disconnectedness: Diagrams in which a
single Green’s function line (with frequency ν) is disconnected
from the rest will be called one-particle disconnected (1PD) (in
frequency ν) [59]. The form of Eq. (11) suggests that it already
represents a decomposition of G(n) into 1PD diagrams and a
remainder. In fact, the summands for l = 0 . . . n − 1 contain
a product of (n − l) one-particle Green’s functions G(1) and a
not yet interpreted contribution (

∼
G − G∼ )

′′l′′ . Hence, we assume
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FIG. 1. Left: All diagrams where only the frequency ν1 is 1PD.
Right: All the diagrams contributing to the n-particle one-particle-
connected propagator T (n) where frequency ν1 is connected only to
the frequency ν2.

that the terms for l = 1 . . . n − 1 contain all 1PD diagrams
while the remainder l = n is one-particle connected (i.e., it
exhibits no 1PD contributions). The latter will be denoted in
the following as

T (n)(ν1, . . . ,νn,νn+1, . . . ν2n)

= Fn δν1...νn

νn+1...ν2n
(
∼
G(ν1) − G∼ (ν1)) . . . (

∼
G(νn) − G∼ (νn)), (12)

and is illustrated diagrammatically in Fig. 1 (left). We will now
prove the above assumption, i.e., that T (n) indeed corresponds
to the sum of all one-particle-connected diagrams in G(n), by
induction. Let us start from the base case n = 2 for which in
Ref. [55] we have calculated the full vertex. Since for n = 2 all
disconnected diagrams are 1PD, T (2) is the same as the vertex
with external legs (Green’s function lines) and reads (Eq. (6)
of Ref. [55])

T (2)(ν1,ν2; ν3,ν4)

= δν1ν2
ν3ν4

F2(
∼
G(ν1) − G∼ (ν1))(

∼
G(ν2) − G∼ (ν2))

= δν1ν2
ν3ν4

p1p2(
∼
G(ν1) − G∼ (ν1))(

∼
G(ν2) − G∼ (ν2))

= G(1)G(1)FG(1)G(1) (13)

with F defined via the equation

G(2)(ν1,ν2; ν3,ν4)

= δν1ν2
ν3ν4

G(1)(ν1)G(1)(ν2) + G(1)G(1)FG(1)G(1). (14)

The frequency arguments of the expression G(1)G(1)FG(1)G(1)

have been omitted for brevity in both cases. Obviously, Eq. (13)
demonstrates that our induction hypothesis, i.e., that T (n)

corresponds to a sum of all one-particle-connected diagrams,
is correct for n = 2. Moreover, from Eqs. (11) and (12) we
have that

T (n+1) = G(n+1) −
n∑

l=0

(
n + 1

l

)
T (l) G(1)

′′n−l+1′′
. (15)

Note that by the induction hypothesis, T (l) contains all
one-particle-connected diagrams. Hence the term which is
subtracted on the right-hand side of Eq. (15) indeed is identical
to the sum of all 1PD diagrams in G(n+1). Consequently
our induction step shows that T (n+1) does not contain any
1PD diagram. Instead it includes all one-particle-connected
diagrams of G(n+1) which completes our inductive proof.

Before we proceed with our decomposition procedure by
removing the remaining disconnected contributions of G(n),

let us point out some properties of the one-particle-connected
n-particle propagator.

(1) For n = 2 and n = 3, T (n) already represents the
fully connected contribution to G(n) as in these cases all
disconnected diagrams are 1PD.

(2) For odd l and half filling (p1 = p2 = 1/2), Fl = 0
and hence T (l) = 0 This also implies that the fully connected
propagator and by extension the vertex have to vanish as will
be discussed in the next section.

C. Second part of the diagrammatic decomposition

While the term T (n) derived in the previous section [see
Eq. (12)] contains no 1PD diagrams, this does not automati-
cally mean that it already corresponds to the fully connected
part of the n-particle Green’s function (as is indeed the case
for n = 2 and n = 3). For instance, G(4) contains—apart
from 1PD parts—a disconnected (but not 1PD) contribution
proportional to T (2)T (2) which is a product of one-particle-
connected diagrams and, hence, still included in T (4) (cf.
Fig. 1).

In order to obtain the fully connected part of G(n), which
we will denote as C(n) in the following, we have to remove
such contributions. This will be conducted in two steps: (i)
We will derive the general functional form for C(n) leaving
the appropriate prefactor still undefined. (ii) The prefactor will
then be determined in the second step by an explicit subtraction
of all disconnected diagrams from T (n).

(i) As for the first step we realize that for n = 2 and n = 3
the fully connected part of G(n) is proportional to T (2) and T (3),
respectively, i.e., to (

∼
G − G∼ )

′′2′′
and (

∼
G − G∼ )

′′3′′
, as we have

discussed above. This suggests the ansatz

C(n)(ν1, . . . ,νn,νn+1, . . . ,ν2n)

= Cn(
∼
G(ν1) − G∼ (ν1)) . . . (

∼
G(νn) − G∼ (νn)), (16)

where we have again suppressed the generalized Kronecker
symbol δν1...νn

νn+1...ν2n
; Cn is a—for the moment—unknown con-

stant. We can now prove the assumption made in ansatz
Eq. (16) for the functional form of the fully connected
n-particle Green’s function by induction. The correctness for
the base clause, i.e., for n = 2, follows from Eq. (13). As an
induction hypothesis we consider that Eq. (16) holds for all
l = 1 . . . n, and prove in the following that it then also holds
for n + 1.

The fully connected n + 1-particle Green’s function
C(n+1) can be obtained from the corresponding one-particle-
connected one T (n+1) (which we derived in the previous
subsection) by removing all disconnected diagrams still
present in this expression. Those disconnected diagrams can be
written (due to the absence of 1PD contributions) as products
of fully connected 1,2, . . . ,n particle Green’s functions, i.e.,
C(m1) . . . C(mk ), where 2 < mi � n − 1 and

∑k
i=1 mi = n + 1.

To obtain all terms that need to be subtracted one has to sum
over all possible Feynman diagrams of this type, i.e., over all
partitions mi of n + 1 and—for each such partition—over all
possible frequency assignments to the single terms C(mi ) in the
product.

The crucial point is now, since by the induction hypothesis
each of the C(mi ) ∼ (

∼
G − G∼ )“mi“, that all the corresponding
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products in the sum are proportional to [
∼
G(ν1) −

G∼ (ν1)] . . . [
∼
G(νn+1) − G∼ (νn+1)], where each of the incoming

frequencies ν1, . . . ,νn+1 is assigned to exactly one of the
factors (

∼
G − G∼ ). The only difference lies in the different pre-

factors of [
∼
G(ν1) − G∼ (ν1)] . . . [

∼
G(νn+1) − G∼ (νn+1)] for

different terms in the sum. Moreover, since also T (n+1) (from
which all these unconnected terms have to be subtracted) has
the same structure [see Eq. (12)], the same must hold for
C(n+1) which concludes our proof.

(ii) Having identified the functional form of C(n) as given in
Eq. (16) we are left with the task of determining the prefactor
Cn. To this end we will present a diagrammatic procedure that
removes systematically all disconnected contributions from
the one-particle-connected part of G(n), i.e., T (n). This will be
achieved by choosing (without loss of generality) one “refer-
ence” frequency, in our case ν1, and classifying all subtracted
(disconnected) diagrams with respect to this frequency.

Let us start with disconnected diagrams where the fre-
quency ν1 is connected only to one other frequency ν2 and the
remaining frequencies ν3,ν4, . . . belong to all possible (one-
particle-connected) (n − 2)-particle diagrams. As was shown
in Sec. II B the latter corresponds exactly to T (n−2)(a3,a4, . . .).
The corresponding subtraction term is depicted in the right
panel of Fig. 1 and reads algebraically

C(2)(ν1,ν2)T (n−2)(ν3,ν4, . . .)

= C2F(n−2)(
∼
G(ν1) − G∼ (ν1))(

∼
G(ν2) − G∼ (ν2))

× (
∼
G(ν3) − G∼ (ν3))(

∼
G(ν4) − G∼ (ν4)) . . . , (17)

where . . . denotes the multiplication with terms of the
type (

∼
G − G∼ ) for all remaining frequencies. In the same

way a disconnected contribution, where the frequency ν1 is
connected only to frequency ν3 (but disconnected from all the
others), has to be removed from T (n) in order to obtain C(n),
i.e., the term C(2)(ν1,ν3)T (n−2)(ν2,ν4, . . .). The corresponding
explicit expression is, however, equivalent to the one on the
right-hand side of Eq. (17). The same obviously holds when
applying the above procedure to all remaining frequencies
ν4, . . . and, hence, the total subtraction term originating from
diagrams where the frequency ν1 is connected to only one other
frequency is given by n − 1 (i.e., the number of frequencies
to which ν1 can be connected) times the expression on the
right-hand side in Eq. (17).

In the next step we will remove all diagrams from
T (n) where the frequency ν1 is connected to two other
frequencies but disconnected from the rest such as
C(3)(ν1,ν2,ν3)T (n−3)(ν4,ν5, . . .). Following the arguments
from the previous paragraph, this yields (n − 1)(n − 2)/2
(corresponding to the number of ways to select 2 frequencies
from a set of n − 1 frequencies) equivalent terms of the form
C3F(n−3)[

∼
G(ν1) − G∼ (ν1)] . . . which have to be removed from

T (n).
Extending the above arguments to one-particle-

disconnected diagrams where a number 1 � l − 1 � n − 3
frequencies are connected to the frequency ν1 and all the
others are disconnected from ν1, we obtain a subtraction
term of the form

(
n−1
l−1

)
ClF(n−l)[

∼
G(ν1) − G∼ (ν1)] . . .. We can,

hence, obtain an explicit expression for C(n)(ν1,ν2,ν3, . . .)
by subtracting all the above-mentioned contributions from
the one-particle-connected function T (n)(ν1,ν2,ν3, . . .) which

yields

Cn(
∼
G(ν1) − G∼ (ν1)) . . .

= Fn(
∼
G(ν1) − G∼ (ν1)) . . .

−
n−2∑
l=2

(
n − 1

l − 1

)
ClFn−l(

∼
G(ν1) − G∼ (ν1)) . . . . (18)

Since the product of (
∼
G − G∼ ) appears for each summand in

this equation it can be removed in each term. This finally yields
the following iterative expression for the prefactor Cn:

Cn = Fn −
n−2∑
l=2

(
n − 1

l − 1

)
ClF(n−l). (19)

After the determination of Cn from the above relations, the
connected n-particle Green’s function is given by Eq. (16).

In a final step we can now calculate the connected n-particle
vertex function F (n) from C(n) by just amputating the external
legs, i.e., via division by the corresponding one-particle
Green’s functions G(1). Defining f (ν),

f (ν) = [
∼
G(ν) − G∼ (ν)]/[G(1)(ν)]2, (20)

the explicit expression for the full n-particle vertex F (n) is
given by

F (n)(ν1, . . . ,νn,νn+1, . . . ,ν2n)

= δν1...νn

νn+1...ν2n
Cnf (ν1) . . . f (νn). (21)

For n = 2 this is equivalent to the corresponding expression
found in Ref. [55].

III. INVESTIGATING THE PROPERTIES OF Cn

In this section we want to analyze the behavior of the
prefactor Cn for increasing n which can be considered as a first
estimate for the “magnitude” of the vertex function of a certain
order n. This is a relevant issue for various diagrammatic
extensions of DMFT such as DF and 1PI which typically
construct nonlocal corrections to the DMFT self-energy from
the two-particle local vertex function assuming that all higher-
order vertices are in some sense “small.” Hence, in order to
obtain an understanding of the magnitude of Cn we iterate
Eq. (18) up to a given order n > 2 starting from the initial
conditions F2 = C2 = p1p2 (recall that p1 denotes the density
of localized f electrons and p2 = 1 − p1). In Figs. 2 and 3
we present our data for Cn and Fn up to n = 10 for half [60]
(p1 = p2 = 0.5) and quarter (p1 = 0.25,p2 = 0.75) filling,
respectively. For these small values of n, the size of Cn is still
moderate. However, when extending the range n up to n = 20
(for half filling) we observe already a much stronger increase
of Cn with n (see inset of Fig. 2). By increasing n further up
to n = 200 (see Fig. 4 for half and Fig. 5 for quarter filling)
we find an extremely strong increase of Cn: In fact, plotting
log |Cn| (rather than Cn itself) we observe an increase even
stronger than linear on this logarithmic scale in Figs. 4 and
5. This indicates that Cn is growing faster than exponentially
with n.

Let us provide an analytical understanding for this nu-
merically observed growth rate of Cn in the simple case of
half filling (p1 = p2 = 1/2) where Cn ≡ 0 for all odd [60]

155130-5



T. RIBIC, G. ROHRINGER, AND K. HELD PHYSICAL REVIEW B 95, 155130 (2017)

FIG. 2. Coefficients Cn (Fn) for the connected (one-particle-
connected) n-particle Green’s function at half filling p1 = p2 = 0.5
for n up to 10. The inset shows the behavior up to n = 20.

n and, hence, the sum in Eq. (18) is restricted to even l.
The binomial coefficient in this relation suggests a factorial
growth of Cn: In fact, considering the last term in this sum
we obtain that Cn ∝ (n − 1)(n − 2)Cn−2. Hence, we expect
that Cn/[(n − 1)(n − 2)Cn−2] of two neighboring (nonzero)
coefficients in the recursion relation of Eq. (18) should be
constant for large values of n, i.e.,

rn = Cn

Cn−2(n − 1)(n − 2)
, (22)

for n → ∞. Figure 6 shows the behavior of rn as a function
of n. We can clearly see that it approaches a constant value
which can be numerically estimated as rn→∞ = ra ≈ −0.1.
Note that the minus sign of this number reflects perfectly the
alternating behavior of the sign of Cn for neighboring (even) n

observed in Fig. 2.
Equation (22) can be now used as an iteration scheme which

allows us to find an (approximate) explicit expression for Cn

at large values of n. It is given by

Cn =
n→∞ K

√
ra

n−2 (n − 1)!, (23)

with some prefactor K (which should be fitted to the large-n
tail of Cn). We next insert the above form of Cn into both sides of

FIG. 3. Same as Fig. 2 but for quarter filling p1 = 0.25.

FIG. 4. Coefficients abs(Cn) [abs(Fn)] for the (one-particle)
connected n-particle vertex at half filling p1 = p2 = 0.5 for even
n up to 200. Note the logarithmic scale.

the recursion relation in Eq. (18) which yields (considering the
simplifications occurring for n → ∞) ra = −1/π2 ∼ −0.1,
coinciding exactly with the numerical prediction.

Equation (23) demonstrates that Cn grows, at half filling,
factorially with n. Let us, however, point out here that the
above considerations and approximations cannot be directly
transferred to situations out of half filling due to the emergence
of quasiperiodic structures in r as can be observed in Fig. 7.

At a first glance the strong increase of the magnitude of the
local DMFT vertex functions with the particle number might
indeed invalidate the state-of-the-art diagrammatic extensions
of DMFT such as DF and 1PI in their standard formulation,
where they are restricted to the two-particle vertex level. Two
further aspects, however, have to be considered which put the
above argument in perspective: (i) The alternating behavior
of the sign of Cn (see Figs. 2 and 3) will certainly mitigate a
strong growth of diagrammatic contributions upon increasing
n in the aforementioned methods, and (ii) the larger number of
Green’s function in diagrams with higher-order vertices might
compensate the the increasing size of the vertex functions
itself. The later issue will be discussed in more detail in the
following section.

FIG. 5. Same as Fig. 4, but for quarter filling p1 = 0.25 and also
including odd numbers for n.
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FIG. 6. Ratio rn = Cn/[(n − 1)(n − 2)Cn−2] at half filling p1 =
p2 = 0.5. Note that rn converges towards a negative constant,
implying an alternating sign of Cn (for even n).

IV. ESTIMATE OF HIGHER-ORDER
VERTEX CONTRIBUTIONS

In the following we will estimate how the factorial growth of
the local n-particle vertex of the FKM discussed in the previous
section will affect the magnitude of Feynman diagrams for the
partition function, which are constructed from such vertices
in the framework of diagrammatic extensions of DMFT.
To this end we will evaluate a generic partition function
diagram assuming a general atomic-limit-like form of the
Green’s functions within the dual-fermion framework. Within
dual-fermion theory, the action of the full lattice system is
systematically decoupled into local and nonlocal degrees of
freedom. The starting point is the action of the Falicov-
Kimball model, expressed in the (imaginary) time-dependent
Grassmann fields c(+) and f (+) that correspond to the c(†) and
f (†) of the Hamiltonian (1):

S[c+,c,f +,f ]

=
∑
kν

[−iν + εk − μc]c+
kνckν +

∑
iν

[−iν − μf ]f +
iν fiν

+ U
∑

i

∫ β

0
dτ c+

i (τ )ci(τ )f +
i (τ )fi(τ ). (24)

FIG. 7. Same as Fig. 6, but for p1 = 0.25. Away from half filling,
quasiperiodic structures arise in the ratio.

Here, εk gives the dispersion relation of the noninteracting
system. A hybridization function �ν is added to and subtracted
from the action:

S[c+,c,f +,f ]

=
∑

i

Sloc[c+
i ,ci,f

+
i ,fi] +

∑
kν

[εk − �ν]c+
kνckν . (25)

This hybridization is a quadratic term in the fermionic c(+)

fields and allows us to identify the action of our referential
DMFT problem:

Sloc[c+,c,f +,f ]

=
∑

ν

[−iν + �ν − μc]c+
ν cν +

∑
ν

[−iν − μf ]f +
ν fν

+ U

∫ β

0
dτ c+(τ )c(τ )f +(τ )f (τ ). (26)

The difference between kinetic energy and hybridization
function (εk − �ν) in Eq. (25) couples the different local
DMFT problems. In dual fermion, we next employ a Hubbard-
Stratanovich transformation. This way the problem is recast
into a system of new, fermionic degrees of freedom, the
dual fermions c̃(+). The local problems are then integrated by
solving the associated DMFT problems. Due to the Hubbard-
Stratanovich transformation, the dual fermions couple to the
original c ones. Therefore, upon integrating out the local
problems, one ends up with an infinite series of DMFT
n-particle Green’s functions that are coupled to the dual
fields (up to a multiplicative factor). In writing the solution
to the local problems as an exponential function, the DMFT
vertices formally take the role of a bare interaction for the
dual fermions. Mathematically, we obtain after the Hubbard-
Stratanovich transformation the following action (for a more
detailed derivation see Refs. [15,61,62]):

S [̃c+ ,̃c] =
∑

i

∞∑
n=2

(−1)nF (n)[̃c+
i ,̃ci]

+
∑
kν

[Gk(ν) − Gloc(ν)]−1c̃+
kν c̃kν . (27)

Here, each n-particle vertex F (n) is multiplied by the dual
Grassmann fields associated with the site i and the Mat-
subara frequencies of the entering and leaving fermions of
F (n). Gk(ν) = [iν − εk − �(ν) + μc]−1 is the DMFT lattice
Green’s function. The action (27) can now be evaluated in
terms of Feynman diagrams that consist of n-particle inter-
actions F (n) (hitherto truncated after F (2)) and noninteracting
Green’s functions:

∼G0(k,ν) = 〈̃c+
kν c̃kν〉0 = Gk(ν) − Gloc(ν). (28)

After this synopsis of DF, let us turn back to estimating
typical Feynman diagrammatic contributions. To estimate the
convergence behavior of generic diagrams, we employ an
asymptotic (high-frequency) expression for the dual-fermion
Green’s function,

∼Gapprox(νl) ∝ ε

ν2
l

, (29)
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FIG. 8. An exemplary diagram (“necklace” diagram) contribut-
ing to the partition function, which can be generated within a
diagrammatic extension of DMFT such as DF or 1PI including the
local 4-particle vertex function. Generalizations to corresponding
diagrams with higher-order local vertices are straightforward.

where νl = πT (2l − 1), l ∈ Z. Note that the dual-fermion
Green’s function is the difference of the k-dependent and
a local Green’s function Gk(ν) − Gloc(ν) in action (27) so
that the asymptotic high-frequency behavior is ∼1/ν2

l ; ε is
a characteristic energy scale of the system. The simplest
diagrams for the partition function which can be constructed
from this Green’s function and the n-particle vertex functions
of DMFT are of first order in the n-particle vertex: They can
be obtained by connecting all its entrances and exits pairwise
by n one-particle Green’s functions

∼Gapprox. An example of
such a diagram adopting the n = 4-particle vertex is depicted
in Fig. 8. In the following we will analyze the contribution
of such diagrams to the partition function, which we will
denote as �(n), for large values of n. Note that while the
bare dual propagator does not have a local component, in a
self-consistent dual-fermion formulation, local contributions
can appear due to self-energy corrections. The basic structure
of these terms is given by [26]

�(n) ∼
∑

ν1...ν2n

∼Gapprox(ν1) . . .
∼Gapprox(νn)F (n)(ν1, . . . ,ν2n). (30)

For this sum we have to keep in mind that the vertex F (n)

vanishes if two (incoming) frequency arguments a1 . . . an take
the same value. Consequently the largest contribution in the
frequency sum in Eq. (30) is the one where each of the lowest
n/2 positive and negative Matsubara frequencies ±ν1 . . . ±
νn/2 is attached to exactly one of the n Green’s functions.
Assuming that n is even we can, hence, estimate the dominant
contribution of the diagram in Fig. 8 as

�(n) ∼ Un

n/2∏
l=1

(
ε

ν2
l

ε

ν2
l

)
Cn = β2nεnUn

(2π )2n

n/2∏
l=1

1

(2l − 1)4
Cn,

(31)

where we have replaced the full vertex F (n) just by its prefactor
Cn times Un, which originates from the limiting value of f (a)
for high frequencies. This is justified for a metallic-like Green’s
function since the contribution 1/[G(1)(ν)]2, present in the
definition of F (n) in Eq. (21), is nonzero and remains bounded
for all frequencies.

Inserting now the asymptotic form of Cn as given in
Eq. (23) into Eq. (31) yields (after some simple algebraic
manipulations)

�(n) ∼ K(Uβ2ε)n
√

ra
n−2

π2n

[(n/2 − 1)!]4

[(n − 1)!]3 . (32)

The application of Stirling’s formula allows us to get rid of the
factorial expressions:

�(n) ∝ 4K(Uβ2ε)n
√

ra
n−2

(2π )2n

1

nn−1en
. (33)

This shows that even though the prefactor of Cn is growing
postexponentially, the corresponding contribution to the parti-
tion function gets damped and is decaying. The sum over n of
the terms Eq. (33) is even absolutely convergent.

Note however that our approximation is only valid for the
case T � D, with D being the bandwidth of the system, as
it relies on the asymptotic values of the vertex and Green’s
function being reached. Certainly, the limit T → 0 cannot
be taken. On one hand, this would violate our assumption
that the first summand in terms of frequencies gives the
dominant contribution to the sum; on the other hand the specific
approximation employed for the Green’s functions is bound to
introduce divergencies in such a case.

Finally, a remark is in order about other types of diagrams
for the partition function than the ones discussed above. To this
end let us consider, e.g., a diagram where a second n-particle
vertex is inserted. This leads to a factor C2

n rather than Cn.
However, also the number of the Green’s functions in the
diagram is doubled and, hence, the corresponding diagram
behaves like the square of our evaluated value. In general, we
can state that the diagram depicted in Fig. 8 and corresponding
higher-order diagrams represent somewhat the “worst-case”
regarding the convergence with large n. Hence, although the
above calculation has been done for the rather specific case of
the FKM using the vertex of the half-filled system, it might
be seen as a justification of the general restriction of the DF
expansion to the lowest-order vertex functions. This, however,
does not guarantee that contributions for low n > 2 are fully
negligible, as we will demonstrate in the following section by
including an n = 3-particle diagram for the calculation of DF
self-energy corrections in the FK model.

V. NUMERICAL RESULTS FOR THIRD-ORDER
TERMS WITHIN DUAL-FERMION THEORY

In this section we present numerical results for the non-
local corrections to the DMFT self-energy constructed from
two- and three-particle local DMFT vertices within the DF
approach. To this end we have considered the FKM at quarter
f filling (p1 = 0.25) for the parameters U = 1, μc = 0.2,
and a temperature of 0.05. For these parameters, we have
a c-electron filling of 〈c†c〉 ≈ 0.53 within DMFT. We now
explicitly calculate the diagrams with a three-particle vertex
that is depicted in Fig. 9. This contribution is beyond DMFT
and beyond standard DF which is truncated at the two-particle
vertex level. In the diagram Fig. 9, four of the six outer legs
of the local DMFT three-particle vertex F (3) of the FKM are
connected with a ladder built from two-particle vertices as

155130-8



LOCAL CORRELATION FUNCTIONS OF ARBITRARY . . . PHYSICAL REVIEW B 95, 155130 (2017)

FIG. 9. Diagrammatic representation of correction to the dual �

due to a 3-particle vertex.

depicted in Fig. 9. Since F (3) is purely local the corresponding
self-energy correction will be also k-independent, similar to
the local correction term appearing within a 1PI calculation.
The latter, in fact, represents just the contribution of Fig. 9
where instead of the full F (3) its one-particle-reducible part is
considered (see Ref. [20]).

Unlike the 1PI-case however, the correction Fig. 9 to
the local self-energy applies to the dual fermions. This dual
self-energy has to be mapped to the real-fermion self-energy
[15]. This mapping intermixes different contributions to the
dual self-energy and affects the self-energy of the real fermions
for different k points in slightly different ways. In the
following we will however concentrate on the self-energy
in the dual space only, since only in dual space we can
clearly distinguish contributions from the three-particle vertex
and the standard ladder diagrams. The standard dual fermion
self-energy [15,61,62] as shown in Fig. 10 is given by

�DF(k) = −
∑
k1,q

F (2) νν1ω
∼G(k1)

∼G(k1 + q)Fk1,k,q

DF

∼G(k + q).

(34)

Here,
∼G(k) = GDMFT

k − Gloc(ν) [Gloc(ν) = ∑
k GDMFT

k ] is the
dual-fermion Green’s function which is given by the nonlocal
part of the DMFT lattice Green’s function GDMFT

k [15,55], and
k = (ν,k) is a compound momentum and frequency index.
F (2) is the local two-particle vertex which only depends on
the frequency components, written in ph notation; FDF is the
full momentum and frequency dependent vertex of the dual
fermions, approximated diagrammatically as a ladder built
from F (2); see below.

The explicit form of the dual self-energy corrections
generated by the diagram with a three-particle vertex F (3) in

FIG. 10. Diagrammatic representation of the (local) dual � on
the two-particle level.

Fig. 9 is, on the other hand, given by

�3
DF(k) = −1

4

∑
k1,k2,q

F (3)(ν,ν1,ν2 + ω,ν,ν1 + ω,ν2)

× ∼G(k1)
∼G(k1 + q)Fk1,k2,q

DF

∼G(k2)
∼G(k2 + q). (35)

For F (3) we will adopt the expression derived previously in
Eq. (21) for n = 3. The factor in front of the sum in Eq. (35)
accounts for the overcounting due to the exchangeability of
the lines entering and leaving the two-particle vertex.

Let us now consider the definition of the generalized
susceptibility

∼χν1,ν2
0,q =

∑
k1

∼G(ν1,k1)
∼G(ν2,k1 + q) (36)

and the particle-hole ladder with the local F (2) as a building
block which yields

Fν,ν ′,ω
q = F (2) ν,ν ′,ω −

∑
ν1

F (2) ν,ν1,ω ∼χν1,ν1+ω
0,q F ν1,ν

′,ω
q . (37)

Considering that the contributions from the diagrams built
employing the particle-hole ladder and the transversal particle-
hole ladder to the dual self-energy are equal, we can replace
F DF → (2Fq − F (2)), where a double-counted term had to be
compensated for [55].

Altogether this gives the following explicit expression for
Eq. (35):

�3(ν) = −1

2

∑
ν1,ν2,ω,q

F (3)(ν,ν1,ν2 + ω,ν,ν1 + ω,ν2)

× ∼χν1,ν1+ω
0,q

(
Fν1,ν2,ω

q − 1

2
F (2) ν1,ν2,ω

)
∼χν2,ν2+ω

0,q .

(38)

Utilizing the frequency structure, especially the factorization
of the local three-particle vertex F (3), we can now express the
self-energy correction in terms of two auxiliary matrices:

X(ν1,ν2) = f (ν1)f (ν2)
∑

q

∼χν1,ν1
0,q

×
(

Fν1,ν2,0
q − 1

2
F

ν1,ν2,0
loc

)
∼χν2,ν2

0,q , (39)

Y (ν1,ν2) = −f (ν1)f (ν2)
∑

q

∼χν1,ν2
0,q

×
(

Fν1,ν1,ν2−ν1
q − 1

2
F

ν1,ν2,ν2−ν1
loc

)
∼χν1,ν2

0,q . (40)

For calculating the self-energy corrections, all admissible
values of ν1 and ν2 have to be summed over

�3(ν) = C3f (ν)
∑

ν1,ν2|ν �=ν1 �=ν2 �=ν

[X(ν1,ν2) + Y (ν1,ν2)]. (41)

Figure 11 presents different correction terms within 1PI
and DF. The DMFT self-energy shows the usual behavior,
with a Hartree term proportional to p1U as the asymptotic
value. The mathematical expressions for the correction to the
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FIG. 11. Upper left: Self-energy � in DMFT for the square lattice FKM at quarter filling p1 = 0.25, U = 1, and T = 0.05. Upper right:
Contribution of the local diagrams based on the 3-particle vertex in Fig. 9 (denoted as �3) and the comparison to the local 1PI correction
(�loc

1PI) in a standard calculation based on the 2-particle vertex. Lower panels: Standard DF correction to the self-energy (�DF ) for four different
k points as calculated from the two-particle vertex. Note that the correction term from the 3-particle vertex is of similar magnitude as the
contributions from the conventional 2-particle vertex in DF; the DF self-energies are those for the dual, not the real fermions.

DMFT self-energy within 1PI (upper right panel) and the
dual self-energy within DF on the two-particle vertex level
(lower panels) are very similar. In fact they only differ by
the propagator used to close a loop in the respective diagram.
Note, however, that the dual self-energy shown in Fig. 11 has
to be mapped back to extract the real self-energy. Hence, some
care needs to be taken when comparing the two quantities. The
additional contribution within 1PI leads to a local correction
term for the self-energy on the level of two-particle vertices.
Diagrammatically, 1PI is known to introduce corrections to the
self-energy, that within DF stem from one-particle reducible
contributions to the three-particle vertex, already from the
two-particle vertex [20,63].

Against this background, we compare in Fig. 11 (upper right
panel) the contributions based on the three-particle vertices
within DF theory to the local 1PI contribution calculated from
the two-particle vertex, which already includes some of the
contributions of the former. The big difference between Re�3

DF
and Re�loc

1PI stems from the renormalization of the Hartree
term in third-order DF. Apart from this Hartree contribution,
the two contributions are comparable, albeit, of course, they
differ quantitatively since the third-order DF includes further
diagrams.

The conventional corrections to the dual self-energy stem-
ming from the two-particle vertex are shown in Fig. 11 (lower
panels). These corrections are k-dependent, and we selected
four k points of high symmetry: (0,0),(0,π ),(π/2,π/2), and
(π,π ). The corrections are of the same order of magnitude
for all four k points. Most important for our estimate is that
the corrections due to the three-particle vertex �3

DF are of the
same order of magnitude as �DF. Thus, a truncation of the DF
approach on the two-particle level does not seem justified for
this set of parameters.

VI. CONCLUSION

We have derived analytical expressions for the local n-
particle Green’s function of the FKM within DMFT and from
this, by removing all disconnected Feynman diagrams, for
the full n-particle vertex. This main result of our paper can
be found in Eq. (21). While it was known before that the
n = 3-particle vertex vanishes at half filling, we show that this
is indeed the case for all odd n, whereas it is finite for even
n. Our analysis of the prefactor for the vertex reveals that it
grows postexponentially, which is partially compensated by a
fluctuating sign of this prefactor.

The calculated local vertex serves as a starting point for
diagrammatic extensions of DMFT such as the DF, D�A, and
1PI approaches. The latter two require the fully irreducible
and the one-particle-irreducible vertices, respectively, whereas
the DF approach is based on the full vertex which we calcu-
lated. Hitherto, these approaches have been restricted to the
n = 2-particle vertex level which is an important approxima-
tion of these diagrammatic extensions.

Our calculation of the local vertex for arbitrary n now
allows us to go beyond this level and estimate the impact
of terms containing higher-order vertices. For general n, we
find—at least for selected diagrams—that the series should be
absolutely convergent despite the divergence of the prefactor
of the vertex for n → ∞.

In addition, we estimate the importance of the three-particle
vertex for the dual-fermion self-energy by calculating numer-
ically the contribution of a selected diagram that includes the
three-particle vertex (Fig. 9). We find that this three-particle
vertex contribution is of the same magnitude as the standard
DF self-energy calculated from the two-particle vertex only.
This implies that the conventional truncation of dual-fermion
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expansions on the two-particle level can have a relevant impact
on the numerical results.

On the other hand, Gukelberger et al. [57] found a good
agreement between DF truncated at the two-particle-vertex
level and diagrammatic determinant Monte Carlo for the
Hubbard model with particle-hole symmetry. This is, at
first sight, a contradiction. Let us note however that, for
the FKM, the three-particle vertex vanishes at particle-hole
symmetry. This calls for a numerical calculation of the three-
particle vertex for the Hubbard model, which constitutes a
challenging task. It might be feasible thanks to recent improve-
ments of CTQMC calculations using improved estimators

[46], and might possibly allow for resolving this apparent
discrepancy.
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