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Boltzmann approach to high-order transport: The nonlinear and nonlocal responses
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The phenomenological textbook equations for charge and heat transport are extensively used in a number of
fields ranging from semiconductor devices to thermoelectricity. We provide a rigorous derivation of transport
equations by solving the Boltzmann equation in the relaxation-time approximation and show that the currents
can be rigorously represented by an expansion in terms of the “driving forces”. Besides the linear and nonlinear
response to the electric field, the gradient of the chemical potential and temperature, there are also terms that
give the response to the higher-order derivatives of the potentials. These nonlocal responses might play an
important role for some materials and/or under certain conditions, such as extreme miniaturization. Our solution
provides the general solution of the Boltzmann equation in the relaxation-time approximation (or, equivalently,
the particular solution for the specific boundary conditions). It differs from the Hilbert expansion, which provides
only one of infinitely many solutions which may or may not satisfy the required boundary conditions.
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I. INTRODUCTION

The phenomenological transport equations for the charge
and heat currents are at the core of the description of electric
and electronic devices of any type. These equations relate
the local charge and heat current densities, J(r) and J¢(r), to
the local thermodynamic forces given by the gradients of the
electrical potential ¢, chemical potential , and temperature
T. Often, they are written as

2
J(r)=o<E+ %)—OaVT+O[EZ'(E+%>, (1
(24 %) ot
Jer)=0caT|(E4+ — | —(k +0a"T)VT, 2
e

where E = —V ¢ is the local electric field, and the conductivity
o, the Seebeck coefficient ¢, and the thermal conductivity «
are the position-dependent transport coefficients describing
the linear part of the response. In some cases, the experiments
indicate the presence of the nonlinear response, but, of all the
possible terms, we wrote down only the one that is proportional
to the square of the electrochemical force, with o™ as the
transport coefficient.

Within the linear response theory, Onsager [1], Kubo [2],
and Luttinger [3] explained how to relate the coefficients of the
driving fields to microscopic quantities, but the microscopic
content of o™ is less clear. Our aim, within the semiclassical
Boltzmann approach, is to relate o' and similar terms in the
expansion of the current densities to the energy dispersion and
the scattering matrix of the electrons. However, as shown in
detail below, the expansion should contain all the powers of the
thermodynamic forces and their derivatives, i.e., a consistent
theory should include all the driving forces up to a given
order. Beyond the linear order, the current response is usually
very small but, under specific conditions, the nonlinear driving
forces can play a role; for instance, when the forces are large
or when they exhibit large variations across the sample.
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In this paper, we show how to obtain a systematic expansion
of the current densities in terms of the driving forces. We
find that Eqgs. (1) and (2) are incomplete and that nonlocal
terms proportional to the higher-order derivatives of the
potentials, such as VE, Bzu/arz, and 82T/8r2, have to be
included as well. This has an obvious fundamental relevance.
While some nonlocal effects have been studied so far within
different approximations and approaches (as, for instance, the
anomalous skin effect [4,5]), there is no systematic and broad
classification of nonlocal effects, consistent with the definition
of other effects such as conductivity, Seebeck, Hall, and so on.
This consequently leads to neglecting effects which can be
important in the description of devices, as, for, instance the
charge current proportional to VE in charged bulk regions.
However, our results are also of a more direct and specific
interest for the treatment of modern semiconductor devices.
The miniaturization requires ever smaller components, with
smaller and smaller active regions [6-9]. In these regions,
the thermodynamic potentials charge enormously over small
distances and their higher-order derivatives gain in importance.
Thus, even if the prefactors of these terms are very small, their
overall contribution to the total current could be significant and
they could have an impact on the performance of the device.

Similarly, modern thermoelectric devices [10-14], de-
signed so as to optimize the efficiency under given operating
conditions [15-18], are often heterogeneous and have a
nonlinear distribution of temperature and chemical potential.
In that case, additional terms are needed to describe the charge
and energy current densities. An advance along these line
requires a quantum mechanical engineering that is hardly
possible without an insight from theory [19-21].

The theoretical analysis is usually performed in several
steps. First, the electronic structure is calculated by density
functional theory and the transport coefficients are obtained
by the linearized Boltzmann equation [22] because the Kubo
approach is most often too difficult to use for real materials.
Even the Boltzmann approach requires a number of simpli-
fications, as described in the classic textbooks [23,24]. Once
the transport coefficients are known, the currents given by
Egs. (1) and (2) can be substituted in the continuity equations
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for the charge and energy conservation. Given the appropriate
boundary conditions, these equations provide, together with
the Poisson equation for the electric field, the temperature and
electrical and chemical potential at every macroscopic point
of the sample. Thus, one can find the operating conditions,
engineer the right composition of the material, and optimize
the overall efficiency of the device.

Using the semiclassical Boltzmann theory and the
relaxation-time approximation (RTA), the present paper for-
malizes the procedure outlined above and shows how to obtain,
in a systematic and rigorous way, the transport equations and
transport coefficients of inhomogeneous samples. Expanding
the solution of the Boltzmann equation (BE) in terms of
the driving forces, we derive the terms beyond the linear
response, reproduce the terms in Eqs. (1) and (2), and show
that additional terms arise. We also show that the effect of
the microscopic boundary conditions can be neglected when
the size of the system is large with respect to the diffusion
length [ = tvg. Here, 7 is the scattering relaxation time, vy
is the group velocity of the electron wave packet, and we are
referring to the microscopic boundary conditions for the BE,
which define the momentum space distribution of incoming
electrons at the boundary.

From the mathematical point of view, the proposed ex-
pansion has a major advantage over other expansions that
are commonly used for the BE, such as the Hilbert [25]
and Chapman-Enskog expansion [26-29]. These expansions
disregard the boundary conditions, i.e., they expand just one
of infinitely many possible solutions. In general, the solution
generated by these expansions will not satisfy the boundary
conditions of the real problem. The expansion proposed in this
paper yields, within the RTA, the general solution of the BE.
This is then used to find the particular solution satisfying the
required boundary conditions. Thus, we can deal in a consistent
way not only with the response to the higher-order driving
forces, but we can also describe the transport properties in
the vicinity of the boundary (for instance, the anomalous skin
effect [4,5]). For simplicity, the present paper is restricted to
the static case and it addresses in more detail only the former
effects.

The paper is organized as follows. Section II introduces
the Boltzmann and Poisson equations and the relaxation-time
approximation, which leads to two further equations required
by the energy and particle conservation. For a given bound-
ary condition, these four coupled equations determine the
electron distribution function, the temperature, the chemical
potential, and the electrical field everywhere in the sample.
Supplementarily, we show in Appendix A the equivalence
of the equations for the charge and energy conservation
to the continuity equations for the charge and heat current
densities. In Sec. III, rather than solving all these equations
simultaneously, we focus on the Boltzmann equation treating
the temperature, chemical, and electrical potential as arbitrary
known functions. The central part of the paper is the expansion
of these arbitrary functions in Taylor series, which generates an
expansion of the nonequilibrium electron distribution function
in terms of the driving forces. The coefficients in that expansion
satisfy coupled differential equations, as shown in Sec. III A.
The problem of setting up the proper boundary conditions
and solving these equations is discussed in Sec. III B. The
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major advantage of our expansion over the Hilbert expansion
is explained in Appendix B. In Sec. IV, we show that for
macroscopic samples, a further approximation can be done
which leads to major simplifications (this approximation is
equivalent to neglecting the effects that are relevant only
close to the surface). In Sec. V, we derive the generalized
transport equations for the heat and charge currents in the bulk
and find additional terms. Section VI provides one example
which shows the influence of the thermodynamic forces on
the behavior of materials: we analyze the depletion region in
a metal-semiconductor junction. Section VII briefly discusses
and summarizes our results.

II. TRANSPORT EQUATIONS

Bloch’s quantum extension of the Boltzmann’s theory
derives the transport properties of a degenerate electron gas
from the distribution function g(¢,r,k), where r and k are the
coordinates of an electron at time ¢ in the real and momentum
space, respectively. For electrons moving in the presence of
scalar and vector potentials V (r,7) and A(r,?), and confined to
a single band, the distribution function satisfies the Boltzmann
equation [22,23] (we neglect, for simplicity, the anomalous
contribution to the velocity, which can easily be included in
the BE [30,31]),

8g ng
24+ —=—".V,
8t+ h &
e dA V& dg
|V, V+ — — — x (V. xA) |- Vyg=(|—=>] .
+h|: ' * ot h X( e )i| k8 (dt>col
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Here, £ = £(k) is the energy dispersion provided by the
band structure calculations, ¢ < 0 is the electron charge, &
is the Planck constant, and (dg/dt),, is the collision integral
which describes the change of the distribution function due to
the electron-electron (e-e) and, possibly, the electron-phonon
(e-ph) scatterings. The extension to a multiband system is
straightforward and it amounts to a summation over a band
index [23,24]. The charge and current densities defined by
g(t,r, k) have to be compatible with the electrodynamic poten-
tials V(r,t) and A(r,t), as required by the Maxwell equations.
The exact solution of the Boltzmann-Maxwell system of
equations satisfies all the conservation laws compatible with
the invariance of the Hamiltonian with respect to the symmetry
operations [32] and it determines completely the transport
properties of the system. Unfortunately, except in the most
simple cases, the presence of the collision integral makes the
exact solution inaccessible.

In many applications, for example, when engineering an
optimal material for a thermoelectric device, one tries to infer
the transport properties from the available band structure data,
neglecting the details of the relaxation mechanisms. In that
case, the standard approach is to assume that the scattering
drives the system towards equilibrium and to replace the
collision integral by a simple expression,

g\ . _8—%0 @
dt col T ’
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where go(T,u,€) is the unperturbed local distribution func-
tion defined by local temperature 7(r) and local chemical
potential w(r). The assumption that the main effect of the
scattering processes is the restoration of local thermodynamic
equilibrium on the time scale given by t defines the RTA of
the Boltzmann equation [24]. Since we are interested in the
transport properties of an electron fluid, we choose

0@ K) = frp(T®).u1).EK) = ———o.  (5)

1+e kpT(r)

where k g is the Boltzmann constant and frp is the Fermi-Dirac
distribution.

In what follows, we consider the transport properties in a
stationary state, such that dg/dr = 0, and solve rigorously the
static Boltzmann equation using the RTA. We take into account
the electric field E(r) = —V V(r) but neglect, for simplicity,
the magnetic field. Thus, we replace the integrodifferential
equation (3) by a generalized drift-reaction (convection-
reaction) equation,

8 — fro(T (), u(r),E(K))
T

1 e

Vi€l Vg — —-E-Vyg=—

7 k r8 7 k8
(6)

The relaxation time t is treated either as a free parameter,
which provides the best fit to the experimental data, or it is
calculated in the perturbation theory [23].

Unlike the exact solution of Eq. (3), the solution of Eq. (6)
does not automatically satisfy the fundamental conservation
laws, such as the particle number and the energy conservation.
To make the RTA physically acceptable, we enforce the local
particle and energy conservation by constraining the functions
T = T(r)and p = u(r). The conservation of the local particle
density n(r) = f g(r.k)d’k follows from the requirement

/ g(r Kd’k = / Fro(T @), u(),ENk, (7

while the conservation of the total-energy density of interacting
electrons is enforced by the equation

/ £00) g(rk)d*k = / £ fro(TOUDERD.. ()

If the electrons scatter on some additional degrees of freedom,
like phonons, the scattering process changes their energy by
A€, p, which has to be added to the right-hand side of Eq. (8).
The consistency of the charge density and the electrical field
is enforced by the Poisson equation,

en(r) + pion(r)
€0 ’

VE(r,t) = ©)
where p;,, (1) is the background charge that ensures the overall
charge neutrality. The self-consistent solution of Egs. (6)—(9)
provides g(r,k), E(r), T(r), and wu(r) at every point in the
sample.

As shown in Appendix A, the conservation of charge and
energy implies the continuity equations for the charge and
energy current densities. In a stationary state (and in the
absence of electron-phonon scatterings), the current densities
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satisfy
VvV .-Jir) =0, (10)

V-Je(r) =W, )

where the charge and energy current densities are
J@x) = % / Vi€ g(r.K)dk, (12)

Je(r) = % f Vi€ € g(r.k)d’k, (13)

and W is the work done by the applied electric field per unit
time,

W(r) = %/Vk8~E(r) srK)dk=J-E. (14

Thus, finding the electron distribution function in the RTA
implies solving the Boltzmann equation (6) for g(r,k), together
with the continuity equations (10) and (11) and the Poisson
equation (9). Equivalently, one can solve the Boltzmann
equation (6) for g(r,k) and Egs. (9)—(13) for five unknown
quantities J(r),J¢(r), T (r), u(r), and E(r).

In general, the above equations have infinitely many solu-
tions and the physically relevant one is defined by the specific
boundary conditions which provide g(rp,k) = gp(rp,k) at
every point rp of the boundary. Note the difference between
these detailed, microscopic boundary conditions and the
one which specifies just the macroscopic quantities, such
as temperature and electrical and chemical potentials, at
the interfaces. The microscopic boundary conditions for the
Boltzmann equation specify the momentum distribution of
the electrons coming from the neighboring material and also
take into account the reflection and scattering of the incoming
electrons at the interface. In addition to the temperature
of the injection, they should provide, for example, detailed
information on the band structure of the neighboring material,
the k-dependent injection probability or reflectivity. The
construction of boundary conditions that determine a specific
physical situation at the interface is a nontrivial problem, which
is not addressed further in this work. In the following, we
simply assume the boundary conditions to be known.

III. EXPANSION OF THE BOLTZMANN DISTRIBUTION
FUNCTION IN TERMS OF THE GENERALIZED FORCES

Although the Boltzmann equation simplifies considerably
within the RTA, solving Eq. (6) for g(r,k), together with
Egs. (7)—(9) for T(r), u(r), and E(r), is still a formidable
task. To solve it, we integrate Eq. (6) for completely arbitrary
functions u(-), T(-), and E(-), using an expansion of g(r,k)
in terms of the forces that arise out of equilibrium and to
which the system responds by setting up the currents. Such
approximations, based on physical arguments and irreversible
thermodynamics, are often used but, here, we present a
systematic expansion which clarifies the range of validity of the
textbook solutions and identifies the different driving forces.

For a given microscopic boundary condition (BC), the
solution of Eq. (6) has a unique value at every point {r,k}
of the phase space, so that g(r,K) is a functional g defined on
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functions w(-), T'(-), and E(-), and the BC themselves. That is,
g(rvk) = gF[r’kﬂT()aM()vE()aBC] (15)

Assuming u(-), T(-), and E(-) are analytic functions, we
expand them into Taylor series around point r and treat g(r,k),
without any loss of information [33], not as a functional but as
a function of infinitely many variables,
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is interested in the charge transport close to the interface, say,
to model the Kapitza resistance [34], the interface defines
a discontinuity and the Taylor extension cannot be used.
To circumvent that problem, one can split the system into
two halves, i.e., one to the left and one to the right of the
boundary, and use separate Taylor expansions on each side of
the interface. However, solving for such boundary conditions,

including the Kapitza resistance, becomes cumbersome.
To proceed, we introduce the vector é ={£1,6,&, ...},
where E] =T, Ez k 53 T, §4 M, 55 E 56 VT etc.
P 2 P The components &;, for i > 5, describe the driving forces to
9 T(r),a gr) 0 Egr) ..,BC). which the system responds. This notation indicates that even
or or though g(& ) is defined on an infinite-dimensional vector space,
(16) only the values assumed by g(é ) on a small subspace of the
whole definition space are physically relevant. In particular, we
are interested in g(§ ) on the hypersurface defined by & =,
=Kk & =T(r), & =), & =E), §=VT(r), & =

V u(r), etc.

Next, we expand g(E ) in a Taylor series around the point
50 {£1,6,,83,£4,0,0,0, .. .},1.e., weexpand g(é ) with respect
to the variables &; around Sl = 0, forall i > 5. Thus, we write

grk)y=¢g <l‘,k, T (r), pu(r),E(r), VT (r),V u(r),

x VE(r),

)

(Operator V denotes V, whenever the function operated on
depends solely on the position r and no ambiguity can arise.)
Obviously, analytic functions 7(-),u(-),E(-) are completely
defined by their values and the values of all their derivatives
at any point of the sample. For example, w(-) is determined
everywhere in its region of definition, if we provide, at point
r, the values u(r), V u(r), 8%u(r)/ar?, 33 u(r)/dr3, etc. If one

|
3E) = ¢VE1,5,86,5] + 68'5)[6),62,63,64] & + 58155)[£1,62,63,64] 6 + 5871[£1,62,63,64] &

+ 885181, 60,83, 84] £2 4 8815181, 60, 83, 84] Es + 8815511, 62, 83,841 &2 + 88155[£,,6,63,84] EsEs + -+, (17)

where the coefficients §glA71[&,,&,&5,&] depend on the first four variables and the boundary conditions. (The explicit
dependence on the boundary conditions has been omitted, for brevity.) In terms of the physically more transparent symbols, we
have

g(r.k) = g¥r kT (), u)] + 8™ [k, T(x), u(®I1E®) + - - + 8¢V [r k., T(r), u(r)] VT (r)
+ 8¢V Mk, T (1), ()] V (r) + 8¢5, K, T(0), ()] (B + - - - + 80T/ 1k, T (1), 10(r)] 92T (x) /x> +
+ 88! @ T/ I K T (1), u(r)] (32T (r)/0r)? + 8¢V [ k, T (x), u()] E@)V T(x) + - - - (18)

where the (still unknown) coefficients 5g!*1, 5gV71, 5glV/, etc. describe the change in the distribution function due to the
applied forces E, VT, V u, etc. These coefficients can be computed by substltutlng g(&€), given by Eq. (18), into the Boltzmann
equation (6) and collecting the terms to order E(r), VT (r), V u(r), 82T(r)/ or2, E(r)?, Er)VT(r), E(r)VE(r), etc. The first
term in Eq. (6) yields (we only show the first few terms)

Veg(rk) = Vo {gr k7). u(0)] + 8™ [r.k, T (x), w(0)]E®) + 8¢ ek, T (0), u(0)] VT (r) + 8V e K, T (r), ju(r)] V u(r)
+8g™ ek, T (), w(0)] [EM) + 8™V [r k, T (1), u(0)] [E@)]V 1t + - - }

ag"r K, T, g r k, T,
g [r M]VT+ g r M]VM
oT o
38g™[r Kk, T, 38g™[r Kk, T,
gl Mevr 4 908 [r ]
aT I
sgV Tk, T, 8¢V K, T, 3°T
gV r ] g [r 'u]VT Vo488V ek, T, ]
oT or?
958V [r k. T, ] 958"V Ik, T, u] ’
(V)
o oT
98g™[r k, T, 98g™[r Kk, T,
g ek Toply g 9987 0K T p
oT o
b (19)
where the effect of V., operating on composite functions in the first equation, is computed using the usual rules for the derivatives

of the composite function, while Vg [r,k, T, ], etc. in the second equation denotes the derivative of gl'[r,k, T, 1] with respect
to the first variable only.

= Vg r k. 7,ul +
+ V.88 r,k, T, E + EVyu +8¢™[rk T,u] VE

9
+ V3¢V e kK, T, u] VT + (VT)? +

a
+ V. 8gVH ek, T, ] Vi + VT Vu+8gVHr kT u]

+ V8¢ [k, T, 1] E? + E2Vu + 28" [r.k,T.u]EVE
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The terms obtained by substituting Eq. (18) in the second and the third term of the Boltzmann equation (6) are easily written
down and are not reported separately. The sum of all three terms can be written as

— frp(T, 1, 5)) (
T

1
= (EVkS . Vrg[o] —|—

3gl0!

1 1 3g[Vu]
—ViE - V8¢V H
+ <}i k rog + = T

— V& +

where ug is the unit vector in the direction of the electric field
and only the linear terms are shown because the structure of the
higher-order terms is obvious. Since 7'(r), u(r), and E(r) are
arbitrary functions, the above equation can only be satisfied if
all the brackets vanish. We therefore have to impose that all
of the expressions within brackets in Eq. (20) have to vanish
separately.

Thus, we reduced the Boltzmann equation to an infinite
sequence of coupled differential equations which describe the
change in the distribution function in response to the driving
forces. Each equation specifies a particular response function
é g[“] [r,K,T, ] (where T and p are treated as variables), which
corresponds to a particular driving force «, and the differential
operator in these equations is operating on the first variable
of 6g“[&1,6,,83,84] only. The solution can be constructed
sequentially, starting from the lowest order and specifying,
for every equation, a particular boundary condition regarding
the variable r. The construction has to ensure that the sum of
all the contributions yields g(r,Kk) which satisfies the boundary
condition imposed on the solution of Eq. (6) (more on this in
Sec. III B).

A. Drift-reaction equations

We now discuss the zeroth- and the first-order distribution
function defined by the expansion (20) and relate them to
what is known from the literature. We also provide a few
typical examples of the higher-order terms. The zeroth-order
distribution function is obtained by setting to zero the first
bracket in Eq. (20), which gives

| O _ frp (T .E
Eng-Vrg[O]-i-g fFf( LE _o. @

where V, g% is again the derivative of gl%[r k,T,u] with
respect to its first variable. The spatial part of Eq. (21) is
a convection-reaction equation and the solution requires the
value of g%r,k, T, 1] on the boundary.

The change in the distribution function due to an applied
electric field E is defined by the equation [see Eq. (20)]

V& e E
2k .Vr(gg[E]_EE Vig® 4 28

™ _ . (22)

Similarly, the response to a thermal force is obtained by
collecting all the first-order terms in V 7', which gives

Vi€ Vi€ gl sV Tl
K VgV Sk 28 o (23)

h 0T T

Vi€ - V.sgV T 4 —

1 dg [0] §olVTI
ViE+ 28 )VT

hooT
)VM + (%ng Vg — %uE Vg & 3gT[El>E +...=0, (20)
(
the response to a diffusion force V u is given by
Vi€ g sgreny VEAT 3™

i ou T

Equations (21)—(24), without the first term, yield the linear
corrections to the Boltzmann distribution function, which is
the same as in most textbooks [23,24]. These approximate
expressions also agree with the results obtained, for instance,
by the Hilbert expansion of Eq. (6) (see Appendix B). At this
stage, it is not obvious that V.8g[*! can be neglected but, in
Sec. IV, we show that the rigorous solution of Egs. (21)—(24)
indeed assumes the textbook form sufficiently far away from
the boundaries.

The higher-order response follows straightforwardly from
the expansion (20) and yields the terms of two basic types.
The first type describes the nonlinear response due to the
higher powers of the gradients of potentials [such as (V )%, E2,
(VT)?, etc.]. Many such terms have previously been discussed
in the literature [23,24]. The second-order response to the
diffusion force, (Vt)?, is defined by the equation

Vié 5gl(Vm’]

2 ng 83g[VM]
V.8 (V)]
[ gt

h I

=0, (25

and the response to (VT)? is similar.

The terms of the second type describe the response to the
higher-order derivatives of the potentials [such as 3%u(r)/or?
or VE, etc.] and all their powers. These terms can be
comparable to the nonlinear terms of the same (and higher)
order. For example, the response to the second derivative of
the chemical potential 32(r)/dr? reads
=y
Vil V.Sg o'

h T

A multidimensional Taylor expansion also generates a large
number of mixed terms. The equations for other higher-
order responses [say, the one proportional to (Vu)® or E?],
the equations for the coefficients depending on the higher
derivatives of the fields [such as 93 u()/ ar’], or all the cross
terms are obtained by straightforward but tedious calculations.

The distribution function is now obtained by successively
solving Egs. (21)—(23), etc. The structure of these equations is
always the same and we can write, in the nth order,

R Y
Gty Ve sovi L 98 o (26)

Ve, 881 [61.862,65.64] + Fo(31) 0815, .. 5g!1)
Solénl
o, 27)
T
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where F,(8g'%! sglel ... 8glé-11) is a known function ob-
tained from the solution of the lower-order equations.

B. Expansion of the boundary conditions

The boundary conditions for Eq. (6), written as g(rg,k) =
gp(rp,Kk), define how the electrons are injected in the region
under consideration. For instance, a surface subject to an elec-
tron flux from vacuum (as in the case of inverse photoemission)
is subject to an electron current with an electronic distribution
at the entrance that depends on the energy distribution of the
injected electrons. Another interesting case is that of a current
flowing from a semiconductor into a metal. The injected
electrons do not have the same energy distribution as in the
case when they are excited by an electric field inside the metal.
In general, from a mathematical point of view, the population
of electrons in the k space can be described at the boundary
r = rp by any function of momentum, not necessarily by the
Fermi-Dirac distribution or the nonequilibrium distribution
which is giving rise to stationary currents.

A unique solution of Egs. (21)-(23), etc. requires a
boundary condition in every order. Since the differential
operator in the drift-reaction equation for 8g!é! is operating on
the first argument of 8g'"1[r k, T, ], the most general form of
the boundary conditions for the drift-reaction equations is

88 g K, T, ] = 8¢5 [rp K, T, a1, (28)

where 8g1[§"] specifies the value of 8g/é! at the boundary for

any given k, 7', and p.

Note that any choice of boundary conditions for the drift-
reaction equations is acceptable, as long as the sum of all
terms in Eq. (18) yields the correct boundary condition for the
solution of the Boltzmann equation (6). That is, the boundary
conditions for the drift-reaction equations have to satisfy the
supplementary condition

25(rp. k) = g’ [rp. K, T(rp), iu(rp)]
+ > 8" s K, T(rp), u(rp)lEn(rs). (29)

As long as Eq. (29) holds, the sum of all terms in Eq. (18)
gives the particular solution of Boltzmann equation (6) which
satisfies the required boundary condition (assuming the series
expansion converges).

This concludes the construction of the expansion of the
solution of the BE in the RTA. We emphasize that our
expansion of the distribution function takes into account the
boundary conditions. This implies that our solution yields not
just the response to the higher driving forces or the nonlocal
effects in the bulk, but it can also describe the effects caused
by the specific choice of the boundary conditions (for instance,
our solution can be used to discuss the anomalous skin effect).
In Appendix B, we show why this cannot be achieved by other,
often used expansions, as for instance the Hilbert expansion.

IV. SOLUTION OF THE DRIFT-REACTION EQUATION IN
A MACROSCOPIC SAMPLE

In the rest of this paper, we focus on the high-order
responses and nonlocal effects in the bulk, leaving the
description of surface effects to future work (by surface effects,
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we mean the features of the solution that depend on the specific
form of the boundary conditions). We will proceed in two
steps. First we show that due to the dissipative nature of the
scattering term in the RTA, a specific shape of the BC modifies
the solution only close to the boundary. This implies that for a
given functional form of 7'(r), u(r), and E(r), any BC imposed
on the BE leads to the same solution in the bulk.

For a very small device, the full set of the drift-reaction
equations (21)—(23), etc. has to be solved for a given choice
of the boundary conditions, subject to the supplementary
condition (29). This raises the problem of the optimal distribu-
tion of the boundary conditions among various drift-reaction
equations. Similar issues also arise in larger systems close
to the physical boundary. However, these problems are not
addressed here.

To understand the extent in which the details of the BC
affect the solution far away from the boundary, we study the
lowest-order drift-reaction equation (21) in one dimension.
The solution can be written as

_hx
gk, T, 1l = frp(T, 1, E(K) + C(k,T,pw)e &, (30)

where k, T, i are arbitrary and the coefficient C(k,T,u) is de-
fined by the BC at x = 0. Obviously, the effect of the boundary
on the solution g!”'[x,k, T, 1] decreases exponentially with the
distance from the boundary. The characteristic decay length is
given by the mean free path, I = tv;. For x > [, the effect
of the boundary is obliterated by the scattering, so that the
particular value of g%[x k,T, ] at x = 0 becomes irrelevant
at distances which are much larger than the mean free path.
This feature also holds in higher dimensions and for every term
in the expansion.

Therefore, if we are interested only in the bulk solution,
which holds far from the boundary, we are free to choose
the BC as we like; the difference between the true particular
solution and the one obtained for a different BC vanishes far
away from the boundary. This implies that the solution of the
Boltzmann equation in the bulk of the sample is completely
determined by the local temperature, chemical potential, and
electric field, regardless of the microscopic BC.

As regards the response of the entire sample, the larger the
system, the less important the region close to the boundary. In
a macroscopic device, an accurate treatment of microscopic
boundary conditions gives only a very small correction to the
response functions, but it dramatically increases the computa-
tional complexity. Hence, we choose the boundary condition
so as to minimize the computational efforts; for large enough
systems, the error of using such a solution is insignificant. Note
the difference between the microscopic boundary conditions
for the BE and the macroscopic boundary conditions for the
continuity equations providing the thermodynamic variables
T and p. The conservation laws given by Egs. (7) and (8)
require 7' and u to assume the boundary values specified by
the reservoirs. The microscopic boundary conditions, imposed
on the Boltzmann equation, provide information on the state
of the electrons at the boundary.

If we decide to disregard the surface effects, we can choose
the BC for Eq. (21) as g!'[0,k, T, ] = frp(T.u,E(K)), which
yields C(k,T, ) = 0 and makes the function g!” independent
of the variable x. The differential operator in Eq. (21) can now
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be dropped and the solution of the zeroth-order drift-reaction
equation becomes

¢k T,ul = frp(T, 1. E(K)) @31)

everywhere in the sample. This solution deviates from the exact
one only very close to the boundary, where the exponential
term cannot be neglected.

Similarly, if we choose the BC for Eq. (27) as

Sg[s”][rg,k,T,,u] — —tFn((Sg[EO],(Sg[&], o ’(Sg[,én—l])’ (32)

the nth-order solution can be computed analytically and it
will be independent of &;. The set of approximate equations
obtained in such a way coincides with the equations generated
by the Hilbert expansion in the static approximation (see
Appendix B).

The approximate solution of the BE which works very
well for bulk materials is obtained by summing up all
the solutions of the drift-reaction equations. The ensuing
distribution function reads

g(t.k) = fro(T.10,E(K) — % Vi fro (T, E(K) - E
n T € —
hr T

+ EkaFD(TJng(k)) Vi

kaFD(TvM,g(k)) VT

‘L'2

R

2 22y
— =VéV T,u,EK)—
7T VK kSro(T, 1, E(K)) o

a
k5 kaFD(T 1, ERN(V )’

2

2& — -T
CENE Vifrn(Toi, £ T3+

R T
(33)
and it satisfies Eq. (6) but does not satisfy the original BC.
However, the difference with respect to the full solution
is exponentially small as soon as we move away from the
boundary. Note that even though the terms §g'*'[r,k, T, 1] do
not have an explicit r dependence far away from the boundary,
they become position dependent once we substitute, for
T = T(r), » = u(r), and E = E(r), the functions obtained by
self-consistently solving the continuity and Poisson equations
(see Sec. V).

The first few terms in Eq. (33) coincide with the expressions
for the Boltzmann distribution function in the presence of
the well-known driving forces, i.e., we have reproduced,
in a mathematically consistent way, the known textbook
expressions [23,24]. However, we also have additional terms,
such as the last two. These terms, together with similar, higher-
order ones, are easy to overlook in the heuristic derivations
that are often used to justify the first five terms. They only
appear from the second order onwards and, therefore, usually
give small corrections. However, the second-order effects
are not always negligible [for instance, the fifth term in
Eq. (33) is sometimes very important]. The last three terms can
be important in inhomogeneous materials (say, multilayers)
where the concentration and temperature vary rapidly across
the sample. In that case, all the terms of the same order should
be treated on the same footing, i.e., one should not neglect the
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nonlocal forces proportional to the higher-order derivatives of
the temperature, chemical potential, and electric field.

As shown in Appendix B, the expansion obtained by
neglecting the differential operator in Eq. (27) is the same as the
one generated from the time-independent Boltzmann equation
by the Hilbert expansion [25,35], with the Knudsen number
as the expansion parameter. [The Knudsen number is given by
the ratio of the mean free path, or the mean free time between
collision, to some characteristic length (or time) of the system. ]
However, unlike the Hilbert expansion, our method retains
its validity close to the boundary, provided we calculate the
distribution function in each order from the differential drift-
reaction equations (27). In that case, the transport coefficients
are not simply defined by local thermodynamic variables, but
have an explicit position dependence.

V. MACROSCOPIC TRANSPORT EQUATIONS

In the previous section, we derived an approximate solution
of the Boltzmann equation (6) for arbitrary functions 7'(r),
wu(r), and E(r). Substituting that solution in equations for the
charge and energy conservation, Eqgs. (7) and (8), and using
the Poisson equation (9), we can find the physical functions
T(r), u(r), and E(r).

Substituting the power series for g(r,k) in Eqs. (12) and
(13) yields the transport equations

3= I gl UL UL VR (34

Jo = IV 4 gVl 4 B L JUET gV E L (39)

where J! is the charge current density due to the driving force

SO!:
el = e( / —Bg[“](r,k>d3k>sa =Njk,  (30)
JEX] is the corresponding energy current density,

I = ( f E—— 6g[°”<r K)d’k )sa Né&, (37

and N and N¢ are the transport coefficients associated with
the force &,. Since the charge and energy conservation imply
the continuity equations for the charge and energy currents,
we can equivalently obtain 7'(r), u(r), and E(r) by solving the
continuity equations V - J(r) = 0and V - J¢(r) = J(r) - E(r),
together with the Poisson equation and the transport equations,
Egs. (34) and (35).

The above current densities and transport coefficients
reproduce all the standard results for the response due to
the known driving forces. For instance, the current which is
first order in the electric field JI¥! = o E has the conductivity
coefficient

7 &?
o=——
K2

Vi€ Vi frp dk, (38)
which is the textbook result. The same agreement is found
for the Seebeck coefficient S and the thermal conductivity
k. We now report a few higher-order terms generated by the
expansion of the distribution function given by Eq. (18). The
current due to the second power of the electric field is J (%) —
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oEIE2, where the conductivity coefficient,

fFD

3.2
o= EF 2T s (39)

/ka Vi€ Vi€

describes the Boltzmann expression for the nonhnear response
to an electric field. The current driven by VE(r) is JIVEl =
o!VEIVE, with the conductivity coefficient

fFD

2.2
[VE]_gI

Vi€ Vi€ Vi€ d’k,  (40)

~ ~ 272 TIEE] [ﬁ] 2 /502
while the current driven by 0-7' /or“is J' o> ' = o' o '9°T /01,
with the thermal conductivity coefficient

22T £ —
L= B = / ¢ TR EVE VLE Sh. @1)

T
The other contributions to the currents, with the corresponding
transport coefficients, can be calculated in the same way.
The first few terms for the bulk current density read

af FD
o

1 . oF
J= o(E + szc) +aVT +o™IE + —— (V)
G[VE] 82
+ol"PIVE+ T— Lt 42)

where the first term describes the response to an electrochem-
ical force, the second term describes the Seebeck effect due
to the thermal gradient, and the third and fourth terms give
the second-order response to the gradients of the electrical
and chemical potentials, while the remaining terms describe
the nonlocal response. A similar expression can be written
for the heat current. Thus, our expansion supplements the
well-known steady-state macroscopic transport equations with
additional terms, which are due to the higher powers of
the thermodynamic forces and their spatial derivatives. The
difference with respect to the usual textbook equations is the
appearance of additional, higher-order terms.

The current in Eq. (42) does not have the zeroth-order term
since it can be proven to vanish because of the periodicity of the
band structure and the fact that the integrand for the zeroth-
order current is an exact differential. Let us also note that
even-order contributions to the current densities are obtained
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by integrating the odd powers of the velocity. Such terms can be
finite if inversion and time-reversal symmetry are broken, e.g.,
for a ferromagnet and a lattice without inversion symmetry.
Otherwise, £4(—k) = £ (k) so that there is no charge current,
but possibly a spin current if inversion symmetry is broken.

VI. EXAMPLE: DEPLETION REGION
IN SEMICONDUCTORS

To show the impact of the additional terms on the behavior
of real devices, we now consider an example involving the
terms proportional to 3u/dr> and VE. These terms are
proportional to 72, so ¢!VEl is usually small, but if the
scattering lifetime is long or the derivatives of the potential
are large, their contribution can be important. Taking the case
that is familiar to most readers, we examine the width and the
shape of the depletion region in a metal-semiconductor (M-S)
junction, shown in Fig. 1(a). We are only interested in the
qualitative features due to the additional terms, revealed by
our treatment, so we neglect several effects that are relevant
for real junctions, such as finite jumps in temperature and
chemical potential or the formation of defects.

Let us, first, recapitulate the textbook approach to isother-
mal M-S junctions, ignoring the heat transport [36]. The
junction is described by two equations:

w'(x)

Jzumm{mm—

€E'(x) = p(u(x)0), (44)

:| = const., 43)

where the first one is the transport equation (42) and the
second one is the Poisson equation [Eq. (9)]. As shown below,
the conductivity o and the charge p depend explicitly on
the chemical potential, so that the solution of these coupled
equations yields, for a constant current density J, the spatial
profile of the electric field and the chemical potential. The
conductivity is calculated from Eq. (38) and to obtain an
explicit expression for o (x) and p(x), we consider an n-type
semiconductor with a parabolic band, £(k) = R2k2 /2m. We
also assume that the chemical potential is below the bottom
of the conduction band and approximate the Fermi-Dirac

Aple-AV (mV)

/40
0

/l

X (nm)

x (nm)

FIG. 1. (a) Geometry of the metal-semiconductor junction and the direction of positive current. The interface is at x = 0. (b) Modification
of the bottom of the band structure as in Eq. (51). (c) Position-dependent chemical potential calculated for different currents at 7 = 300 K for
the band structure with a finite §, but using the textbook transport equations, i.e., setting 'V® = 0 in the complete set of equations. The results
depend on the value of the current running through the device (see the inset, which also provides the color code for the currents). (d) Same
as (c), but calculated with the correct transport equations, including the additional term o'V¥. The insets in (¢) and (d) provide the current vs

voltage characteristic of the semiconductor layer.
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distribution by frp =~ exp[(nx — £)/kpT]. The conductivity
and the charge p [see Eq. (A1)] assume the simple form

o = opetsT, (45)

0 = pp — poe*sT, (46)

where oy and pg are given by the expressions

A/ 27'[]{3 Tm
po= (47)

e? [2mkgT
oy = —|—
h m

(48)

and pp is the dopant charge density. Thus, we obtain the
textbook equations for the charge transport in semiconductors,

J = opels |:E(x) _HK (x)}, (49)
e
’ 1)
€oE'(x) = pp — poe’sT, (50)

which have to be solved for the appropriate boundary con-
ditions. For a complete description, we also need similar
equations for the metal part of the junction (with the ap-
propriate expressions for the conductivity and the charge)
and, then, we have to link the two regions. The requirement
is that the chemical potential and the electric field (or the
electric displacement field, when the semiconductor and the
metal have different dielectric constants) are continuous across
the interface (again, we neglect the surface discontinuities in
the potentials). However, if the metal is highly conductive
and has a high density of states at the Fermi energy, it is
sufficient to solve Eqgs. (49) and (50) with the boundary
conditions ©(0) = Ep,, and w(4o0) = kT In(pp/po). That
is, we require that the chemical potential at the interface is set
by the Fermi level £, of the metal and that there is no net
charge far away from the interface.

We consider a low-symmetry material with the dispersion
(close to the band minimum) given by
B (k* + 5 k3)

2m ’
where k is the magnitude of the crystal momentum Kk, &, its the
x component, and § measures the asymmetry. The modification
of band structure is depicted in Fig. 1(b). The difference with
respect to the parabolic dispersion is that £(k) now has a finite
third derivative at the minimum. As an example, we take a
semiconductor similar to silicon (m = 0.1m,, where m, is the
electron mass, and 7 = 10 fs) but with an asymmetry § =
5.25 10\, doped with 3.6 x 10?? carriers/m>, and attach it to a
metal with Fermi level at —155 meV below the semiconductor
conduction band.

The solution of Egs. (49) and (50) provides the spatial
profile of the electric field and the chemical potential. The
results are shown in Fig. 1(c) for various operating conditions.
The black line represents an open circuit (no current flowing)
and shows the formation of the depletion region. As the
current increases, the depletion region either expands, for
negative currents, or shrinks, for positive ones. The inset
shows a typical current-voltage characteristic of a metal-

k) = (51)
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semiconductor junction, i.e., it shows the dependence of the
electrochemical potential in the semiconductor, u(+400)/e —
V(400) — [u(0)/e — V(0)], on the current running through
the junction.

‘We now compare this textbook solution with the case when
the response of a semiconductor in the presence of additional
driving forces 8% /dr? and VE. It is easy to prove that

u
oM =g MefsT, (52)

where o)"" is a constant, and that o'¥® vanishes for cen-

trosymmetric materials (§ = 0). That is, the shape of the
conductivity and charge is still given by Egs. (45) and (46),
but the proportionality constants are now more complex.
The macroscopic transport equation, including the additional
terms, reads

J = opets” (E - i) + oy et (E - “—>, (53)
e e

while the Poisson equation is unchanged. As before, we also
have to consider the transport equations in the metal and
ensure that the electric field (or electric displacement field
if the semiconductor and the metal have different dielectric
constants), the chemical potential, and its first derivative are
continuous across the interface.

In the absence of the gradient of the electrochemical
potential, we can set o *' = 0 and reduce Eq. (53) to Eq. (49).
When o' # 0, the order of the differential equation rises
and the boundary condition for the derivative is needed. We
require that the first derivative has the same value as in the
case o) "' = 0 and report the solution of Eqgs. (53) and (50) in
Fig. 1(c). The comparison of Figs. 1(c) and 1(d) shows that
in the absence of the current, the textbook equations and the
complete transport equations lead to the same result [the black
curves in Figs. 1(c) and 1(d) are the same], as can be deduced
from Eq. (53) for J = 0. However, for J # 0, the dimension
and shape of the depletion region are modified by the additional
terms, i.e., the linear response theory differs considerably from
the full description of the device. For negative currents, the
depletion region given by the nonlinear description is wider
than the textbook one, while for positive currents, the depletion
region is reduced.

The above concepts can have a straightforward experi-
mental verification in the case of a perfectly symmetrical
metal-semiconductor-metal device, when the semiconductor
has both inversion and time-reversal symmetries broken. The
standard transport equations predict that when the current is
flowing in the positive direction, the voltage drop is exactly
the opposite to the one when the direction of the current is
reversed. Thus, the standard equations predict that the two
running conditions are perfectly symmetric. However, if the
terms proportional to the derivative of the electric field and
the second derivative of the chemical potential are taken into
account, we expect the asymmetric behavior, as can be verified
by applying the transformation x — —x to Egs. (49) and (53).

We have provided just one example of the possible effects
due to the additional terms obtained by the expansion of the
Boltzmann distribution function. But the range of applicability
and the relevance of that expansion is much wider and we
expect that other terms will also become important.
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VII. DISCUSSION AND CONCLUSIONS

In summary, our starting point is the stationary Boltzmann
equation, in its most general form, subject to specific mi-
croscopic boundary conditions. To obtain the solution, we
carefully define the relaxation-time approximation (RTA) and
relate, for a given spatial profiles of temperature 7 (r), chemical
potential wu(r), and electric field E(r), the Boltzmann distribu-
tion function to the relaxation time. We then show that to obtain
the physically meaningful results, E(r) has to satisfy the Pois-
son equation, while 7'(r) and w(r) have to satisfy the charge
and energy conservations. Thus, together with the Boltzmann
equation, we now have to self-consistently solve three addi-
tional equations. The initial problem for g(r,K) has, apparently,
been turned into a more complicated one, where g(r,K) is a
functional defined on the functions 7'(r), u(r), and E(r).

We now focus on the strategy for solving the Boltzmann
equation within the RTA, by assuming that 7(r), u(r), and
E(r), are analytic functions. Representing these functions by
their respective Taylor series [33], we can write g(r,k) as a
function of infinitely many variables,

grk)=g [r,k» T (r),u(r), E(r), VT (r),V u(r),

92T (r) 9*u(r) 9*E(r)
orz " or2 7 or?
The general solution of the Boltzmann equation is ob-
tained by expanding the distribution function with respect
to all its variables, except the first five, i.e., r,k,V(r),T(r),
and w(r), and writing g(r,kK) as a multivariable power
series. Since the expansion variables are completely arbi-
trary, substituting g(r,k) in the Boltzmann equation yields
an infinite number of coupled differential equations for
the expansion coefficients. Integrating these equations for
a particular set of microscopic boundary conditions yields
g(r,k) as a power series in terms of the expansion vari-
ables E(r),VT(r),V u(r),VZV(r), V2T (r),VZu(r), . ... Sub-
stituting g(r,K) in the expressions for the charge and energy
current densities, we obtain an expansion of J(r) and J¢(r)
in terms of their respective driving forces. The coefficients of
the driving forces define the generalized transport coefficients.
The physically relevant functions J(r), J¢(r), n(r), T(r), and
E(r) are obtained at every macroscopic point of the sample by
self-consistently solving the transport equations, the charge
and energy continuity equations, and the Poisson equation.
We also show under which conditions the surface effects can
be neglected and the distribution function of a macroscopic

sample assumes a simple, textbook form.

The above procedure elucidates the commonly used deriva-
tion of transport equations and exposes various approximations
employed in that derivation. In addition, it reveals contri-
butions to the response functions which are proportional
to the higher powers of the forces and their higher-order
derivatives. The ensuing corrections to the charge and energy
currents are usually small, which explains the success of
the phenomenological transport theory in Egs. (1) and (2).
Howeyver, in certain situations, the additional terms lead to
qualitatively different phenomena. For example, they can
become important for heterogeneous devices, for materials
in which the transport properties are strongly temperature and

x VE(r), ,....BCI.
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potential dependent, for systems driven out of equilibrium by
large thermodynamic forces (e.g., large temperature differ-
ences), or when the thermodynamic potentials vary strongly
over small distances. Unlike the second-order response to the
thermodynamic forces, such as the one due to E2, (Vu)?, or
(VT)?, here we discuss the response to the spatial derivatives
of these forces, such as VE, V2 W, or V2T . Since the magnitude
of the additional higher-order terms is comparable to the
already known ones, all the terms of the same order should
be treated on the same footing. In other words, a consistent
semiclassical description of transport phenomena should not
just consider the higher powers of the thermodynamic forces,
but should also take into account the driving forces which are
proportional to the higher-order derivatives of temperature,
chemical potential, and electric field.

The expansion of the distribution function described in this
paper respects the microscopic boundary conditions of the
Boltzmann equation. Thus, it can be used to treat, on the same
footing, not just the higher-order and nonlocal effects in the
bulk, but also the multitude of surface effects. Our expansion in
terms of the driving forces provides a substantial improvement
over the Hilbert expansion or similar expansions of the solution
of the Boltzmann equation, which do not take into account
the microscopic boundary conditions and therefore yield the
solution which is valid only in the bulk.
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APPENDIX A: CONTINUITY EQUATIONS

The particle continuity equation is obtained by integrating
Eq. (3) over the whole k space. The first term of Eq. (3)
becomes the time evolution of the local total number of
particles, defined as

n(t,r) = /g(t,r,k)d3k. (A1)
In the second term of Eq. (3), the divergence with respect to
spacial coordinates can be brought out of the k-space integral,
leading to the spatial divergence of the particle current
written as
Vié
Jtr) =e / Tk g(t.r.K)d’k. (A2)
The third term of Eq. (3) can be proven to integrate to zero.
The part multiplying the electric field E=VV 4 0A/0¢
vanishes due to a corollary of the divergence theorem in the
k space and the periodicity of all the involved functions in k
space. The part multiplying the magnetic field, B=V x A,
requires the use of the identity Vi - (V& x B) = 0 and then
the same considerations above.
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The integral of the scattering term on the right-hand side
of Eq. (3) depends on its precise expression. We assume the
RTA in Eq. (4). As already mentioned in Sec. II, the value
of the integral will depend on the local temperature 7'(r)
and chemical potential u(r), as well as the local electron
distribution g(z,r,K) and, in general, can be different from
zero. This would imply that some particles are either destroyed
or created during the scattering. It is indeed to prevent this
unphysical effect that we imposed the constraint in Eq. (7),
for the RTA to make sense. Using Eq. (7), the conservation
equation reduces to

d V&
E/g(t,r,k)cﬁk—{—V-/Tkg(t,r,k)d3k=0, (A3)

which states that the variation in the local number of particles n
has to be equal to the divergence of the particle current density
J(r).

Similarly the energy continuity equation can be obtained by
multiplying Eq. (3) by the particle energy £(k) and integrating
over the whole k space. The first term will give the change in
the energy density, €(¢,r) = f EKk) g(t,r,k)d3k. The second
yields the divergence of the energy current density, J.(¢,r) =
[ € g VkE/I d°k. The third term in this case does not vanish,
but is the work made by the electrical field on the system
W(t,r)=e/h [EE- Vg d’k leading to the Joule heating.
Again we use the RTA for the scattering term. Its integral
is now constrained by Eq. (8) [eventually with the effect of
phonons included, as explained in the text below Eq. (8)]. We
therefore obtain

9 \%
E/Eg(t,r,k)d3k+V -fSTkEg(t,r,k)d3k

A€, _
+%/Vk5.vvgd3kzﬂ,
T

(A4)
where we have integrated by parts the Joule heating term and
used again the periodicity of all the involved functions in k
space. The equation implies that any change in the local total
energy € is caused by the divergence of the energy current J.
and the work W done on the charged particles by the electric
field and the energy dissipated into phonons Ae,_ ;.

APPENDIX B: COMPARISON WITH
HILBERT EXPANSION

Some of the results derived in this paper can also be obtained
from the Hilbert expansion for the Boltzmann equation in the
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relaxation-time approximation. However, as shown below, our
approach overcomes one fundamental limitation of the Hilbert
expansion, which critically limits its range of applicability (as
well as its use in the longstanding mathematical problem of
the proof of the existence of the solution of the Boltzmann
equation in the presence of the boundary conditions).

By adapting the Hilbert expansion to the present case, we
look for the solution of Eq. (6) in the form

gr k) = gl k), (BI)
i=0

where here the relaxation time t plays the role of the Knudsen
parameter. Substituting the above series in the Boltzmann
equation and collecting all the terms of the same order in
T gives the result

¢ k) = frp(T(r),m(r),EK)),

1 e
k) = — Vi€ - Vgl + E- Vigh,

1 e
k) = —= Vi€ - Vgl + E- Vigh,
S= e (B2)

Successively substituting the lower-order corrections into the
higher-order ones, we find that the distribution function defined
by Eq. (B2) is equivalent to the one given by Eq. (33).
Note that the expansion in Eq. (B1) does not take into
account the boundary conditions, so that it provides just one
of the infinitely many solutions of the Boltzmann equation.
In fact, the result given by Eqgs. (B2) or (33) corresponds to
a specific choice of the boundary conditions, as discussed
in Sec. IV. Hence, the solution obtained by the Hilbert
expansion does not, in general, satisfy the imposed boundary
conditions.

This shows the most important difference between the
approach taken in this work and the one taken by Hilbert
expansion. Each term in the expansion defined by Eq. (18)
of this work satisfies one of the differential equations given
by Egs. (21)—(26), and the sum of all these terms provides a
particular solution of the Boltzmann equation that complies
with the imposed boundary conditions. Thus, the expansion
in terms of the driving forces presented in this work is much
more powerful than the Hilbert expansion.
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