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Continuous-time quantum Monte Carlo calculation of multiorbital vertex asymptotics
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We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex
function for a multiorbital impurity model. These relate the asymptotics for a general local interaction to
equal-time two-particle Green’s functions, which we sample using continuous-time quantum Monte Carlo
simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the
three t2g orbitals of SrVO3 within dynamical mean-field theory (DMFT). We demonstrate how the knowledge
of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates
finite-box-size effects. The proposed method benefits the calculation of nonlocal susceptibilities in DMFT and
diagrammatic extensions of DMFT.
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I. INTRODUCTION

Strong electronic correlations are driving various proper-
ties of heavy fermion compounds, including Mott metal-to-
insulator transitions [1,2], magnetic phase transitions [3,4],
and quantum critical points [5,6]. While Mott transitions
can be described in terms of one-particle spectral functions
only, the physics of the latter two is related to two-particle
susceptibilities. Indeed, charge and magnetic susceptibilities
are of primary interest when theoretical results are compared
to experiments, but their computation in interacting systems is
in general very costly [7].

Typically, the Hubbard model [8] is employed when investi-
gating strong electronic correlations from the theoretical side.
This model has been solved successfully within the dynamical
mean-field theory (DMFT) [9–12], which corresponds to a
purely local self-energy. For determining this local self-energy,
DMFT maps the Hubbard model onto an auxiliary single-
impurity Anderson model (AIM) [13], which can be solved
numerically. Nowadays, a vast amount of impurity solvers
exist, each having its particular strengths and weaknesses
[14–20]. A noteworthy group of impurity solvers includes the
continuous-time quantum Monte Carlo (CT-QMC) methods,
which can treat impurities with many degrees of freedom,
general interactions, and continuous bath dispersions [21–25].
These algorithms are capable of calculating finite-temperature
correlation functions (i.e., one- and two-particle Green’s
functions), which directly relate to the aforementioned sus-
ceptibilities and to vertex functions, respectively.

While DMFT is exact in infinite spatial dimensions, the
theory is often used as an approximation for finite-dimensional
systems. In this case, correlations that are nonlocal in space
may emerge. There are several approaches which contain
the local DMFT correlations but extend it for also including
nonlocal ones. The extensions of DMFT are grouped into
cluster methods, which enlarge the AIM to multiple impurities
or, alternatively, methods which diagrammatically improve
upon DMFT. Promising diagrammatic extensions in this
context include the dynamic vertex approximation (D�A)
[26], the dual fermion method (DF) [27], the one-particle
irreducible approach (1PI) [28], the DMFT to functional
renormalization group (DMF2RG) [29], and the quadruply
irreducible local expansion (QUADRILEX) [30]. Although
these methods follow in general quite different philosophies,

they all rely on the knowledge of the local two-particle
susceptibility or vertex function. These vertex functions have
two incoming and two outgoing lines so that they depend on
three frequencies (exploiting energy conservation) and two
spin combinations (exploiting SU(2) symmetry [31]). For
multiorbital calculations there are, on top of this, various
combinations of the orbital degrees of freedom.

Albeit in principle straightforward, it is a very challenging
task to extract the local multiorbital two-particle susceptibility
of the AIM within large frequency boxes. This can be
traced back to the high computational resources in comput-
ing, storing, and processing the two-particle object. Only
recently the local two-particle correlation function with its
complete frequency structure was obtained for SrVO3 with
SU(2)-symmetric interaction [32]. In order to overcome this
limitation, contemporary attempts include approximating the
asymptotic frequency behavior. The two main pieces of work in
this direction are: (i) extracting the high-frequency asymptotics
of the local two-particle vertex function �ph that is irreducible
in the particle-hole channel by approximating it by a certain
subclass of single-frequency susceptibility functions [33], and
(ii) extracting the complete high-frequency asymptotics of the
full vertex F through all asymptotically contributing diagrams
within the so-called kernel approximations, which include one-
and two-frequency kernel functions [34,35]. While (ii) is not
limited to a specific subclass of diagrams (i.e., particle-hole,
particle-particle...) and yields the full asymptotics of the
vertex, the derivation currently exists only for the single-orbital
case. Approach (i), on the other hand, was implemented for
multiorbital systems in Ref. [33] and successfully applied
for calculating the ω = 0 susceptibility in DMFT, but not
for generalized susceptibilities or diagrammatic extensions
of DMFT. For calculating �ph, Ref. [33] also introduced an
efficient implementation of the inversion of the Bethe-Salpeter
equation. This has been extended to arbitrary channels and
ω �= 0 in Ref. [36].

In this paper we will follow approach (ii) in order to
avoid divergences in the local two-particle irreducible vertex
function [37,38] and further to include all local physics by
considering all relevant diagrams. Since the kernel approx-
imations are originally formulated for the vertex function
instead of the susceptibility or correlation function, in this
work we outline how to extract the kernel approximations
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from the correlation functions. Prior to this work, the kernel
functions were approximated from the local two-particle
vertex function itself by scanning the asymptotic region and
employing this information for the functional renormalization
group (fRG) flow [35] and for the self-consistent solution of
the parquet equations [34]. This approach is not suitable for
quantum Monte Carlo algorithms due to the intrinsic statistical
uncertainty. Here, we demonstrate a method which directly
allows us to measure the correlation functions related to the
kernel functions with impurity solvers, such as CT-QMC or,
in principle, any other type of impurity solver that is based
on a Green’s function formalism. We further extend the kernel
approximations by deriving the expressions for multiorbital
systems with general local interactions.

Let us emphasize that the hybridization expansion
(CT-HYB) [23] is the method of choice when dealing with the
multiorbital AIM at finite temperature and non-density-density
interaction. We use a worm algorithm recently introduced to
CT-HYB [39,40] to measure one- and two-time two-particle
correlation functions, which are then transformed into the
kernel functions. Combining the sampling power of CT-HYB
with the improvements due to the asymptotical structure
allows us to access the local physics of multiorbital systems
and especially of materials with strongly reduced statistical
uncertainty [41].

In Sec. II we present the theoretical foundation required for
a rigorous definition of the multiorbital kernel approximations.
Starting from the two-particle Green’s function, we define
the correlation functions, the susceptibilities, and the vertex
functions. We further define the concepts of reducibility
and irreducibility of two-particle quantities, respectively. We
show the local formulation of the parquet equations and the
necessary frequency representations. In order to establish the
connection between correlation functions and kernel approx-
imations, we define in Sec. III the equal-time susceptibilities
and the corresponding multiorbital kernel approximations. We
further define the parametrization of the asymptotical structure
and its connection to the full vertex function. We briefly present
what modifications of the worm algorithm are necessary in
Sec. IV, analyze the numerical effort, and present a summary
of the steps needed to calculate the kernel functions. In Sec. V
we apply the method to the single-orbital Hubbard model and
benchmark our approach against results obtained from exact
diagonalization. In a second step, we show results for the multi-
orbital case by calculating the asymptotical structure of SrVO3

and outline the improvement with respect to the direct mea-
surement of the two-particle correlation function. In Sec. VI we
summarize our method in terms of its strengths and its prospec-
tive applications. Our frequency conventions and additional
derivations for the atomic limit are given in the Appendix.

II. HAMILTONIAN AND THEORETICAL BACKGROUND

In this paper, we consider the multiorbital AIM (which in
DMFT is calculated self-consistently [2,12]):

H = 1

4

∑
ijkl

Uijkld
†
i d

†
j dldk +

∑
i

ε̃id
†
i di +

∑
Ki

εKic
†
KicKi

+
∑
Kij

[
V

ij

K c
†
Kidj + (

V
ji

K

)∗
d
†
i cKj

]
. (1)

Here, di (d†
i ) is the annihilation (creation) operator of a

fermion with spin-orbital flavor i, cKi (c†Ki) is the annihilation
(creation) operator of an electron with impurity flavor i in
the noninteracting bath, and K sums over the remaining bath
degrees of freedom (e.g., the momentum k). The local impurity
is described by a local one-particle potential ε̃i (e.g., the crystal
field), the fully antisymmetrized interaction matrix Uijkl , the
bath dispersion εKi , and the hybridization strength V

ij

K .
The n-particle Green’s function of a local impurity in

imaginary time reads

Gi1i2...i2n−1i2n
(τ1,τ2, . . . ,τ2n−1,τ2n)

= (−1)n
〈
Tτdi1

(τ1)d†
i2

(τ2) . . . di2n−1
(τ2n−1)d†

i2n
(τ2n)

〉
, (2)

where di(τi) (d†
i (τi)) are now the imaginary-time-dependent

annihilation (creation) operators at (imaginary) time τi .
Further, Tτ is the imaginary-time ordering operator, and
〈. . .〉 = (TreβH . . .)/Z the thermal expectation value at tem-
perature T (β = 1/T ), where Z is the partition function.
Expanding Eq. (2) into a perturbation series and decomposing
it according to Wick’s theorem yields all possible connected
and disconnected Feynman diagrams. Distinguishing between
disconnected and connected diagrams allows us to classify
the n-particle Green’s function into the 2n-point correlation
function and the subset of connected diagrams into n-particle
vertex function.

At the two-particle level the Green’s function decomposes
into two disconnected parts, usually referred to as straight and
cross terms, and a fully connected part:

Gijkl(τ1,τ2,τ3,τ4)

= Gij (τ1,τ2)Gkl(τ3,τ4)

−Gil(τ1,τ4)Gkj (τ2,τ3) + χ c
ijkl(τ1,τ2,τ3,τ4)︸ ︷︷ ︸

≡χijkl

. (3)

The cross term and the connected diagrams are further grouped
into the generalized four-point susceptibility χijkl . The two-
particle vertex function Fmnop now follows from the subset of
connected diagrams by amputating the outer legs (one-particle
Green’s functions):

χ c
ijkl(τ1,τ2,τ3,τ4) = −

∑∫
Gim(τ1,τ5)Gnj (τ6,τ2)Fmnop

× (τ5,τ6,τ7,τ8)Gko(τ3,τ7)Gpl(τ8,τ4),

(4)

where we integrate/sum over all internal imaginary-time/spin-
orbital degrees of freedom. That is, the n-particle vertex
functions are defined without outer legs, whereas n-particle
Green’s functions and 2n-point susceptibilities are defined
with outer legs attached.

For any two-particle object considered in the following it
is often useful to consider the Matsubara frequency represen-
tation, instead of the imaginary-time representation:

Aν1ν2ν3ν4
ijkl =

∫ β

0
dτ1dτ2dτ3dτ4

× ei(ν1τ1−ν2τ2+ν3τ3−ν4τ4)Aijkl(τ1,τ2,τ3,τ4), (5)
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FIG. 1. Decomposition of the two-particle Green’s function into
disconnected parts and a connected part.

where A ∈ {G,χ,F } and νi = (2n + 1)π/β are the discrete
fermionic Matsubara frequencies. The decomposition of the
correlation function into disconnected parts and a fully
connected part in Matsubara frequencies is illustrated in Fig. 1.
The back-transform is defined as

Aijkl(τ1,τ2,τ3,τ4)

= 1

β4

∑
ν1,ν2,ν3,ν4

e−i(ν1τ1−ν2τ2+ν3τ3−ν4τ4)Aν1ν2ν3ν4
ijkl . (6)

When setting a single time argument to zero, only the fre-
quency summation (without the exponential function) remains.
This already implies that contracting two legs by a Matsubara
frequency sum relates to setting the respective time differences
to zero (which usually appear in mixed bosonic-fermionic
frequency representations), thus resulting in an equal-time
object.

The time-translational symmetry inherent to the n-particle
Green’s function in imaginary time converts to an energy
conservation in Matsubara frequency space:

ν1 + ν3 = ν2 + ν4. (7)

Consequently, it is sometimes more useful to assume a
mixed bosonic-fermionic frequency representation with two
fermionic and one bosonic frequency. Each reducible channel
introduced in the next section has its own natural frequency
representation. The mapping between the four-frequency
notation and the three-frequency notation that is natural in
each channel is given in the Appendix A.

When considering vertex functions in terms of Feynman
diagrams it is useful to define the concept of reducibility. Here,
n = 1,2-particle irreducible means that the vertex cannot be
separated into two or more parts by cutting n Green’s function
lines. At the one-particle level, the one-particle irreducible
vertex can be obtained from the Dyson equation and is usually
referred to as self-energy 
. At the two-particle level, it is
necessary to consider reducibility more carefully. The two-
particle vertex function F is one-particle irreducible; however,
it is not two-particle irreducible.

The (local) Parquet equations [42–44] decompose the
two-particle vertex function F into irreducible and reducible
components:

Fijkl = �ijkl + �
ph

ijkl + �
ph

ijkl + �
pp

ijkl, (8)

where � is the fully two-particle irreducible vertex function,
and �ph,�ph,�pp are the two-particle reducible vertex in the
particle-hole (ph), the particle-hole transversal (ph), and the
particle-particle (pp) channel. In Eq. (8) we have omitted

d

b

a

c

Uabcd

FIG. 2. Diagram of the bare local interaction U . The bare vertex
does not contain any Green’s function, and the (amputated) legs drawn
in gray indicate the direction of the incoming/outgoing particles
and their spin-orbital flavor a,b,c,d (the Matsubara frequencies are
suppressed for simplicity).

the time/frequency dependence of each quantity. The subset
of two-particle irreducible diagrams in a given channel 
 =
{ph,ph,pp} is acquired by subtracting the reducible diagrams
from the full vertex F , i.e.,

�

ijkl = Fijkl − �


ijkl . (9)

Constructing the reducible vertex functions as ladders leads to
the Bethe-Salpeter equation

�
 = F −
∫

�
(GG)
F. (10)

The asymptotic form of the two-particle irreducible vertex in
the ph channel is calculated elsewhere [33]; here we focus on
the full vertex F .

III. ASYMPTOTICAL STRUCTURE OF
THE LOCAL VERTEX

A. Motivation

In the following we derive the high-frequency asymptotics
of the full two-particle vertex function F . Alternatively, and
in a very similar manner, one may derive the asymptotical
behavior of the two-particle Green’s function or the general-
ized susceptibility. The former, however, is superior, because
contrary to the susceptibility, the vertex can be parameterized
very efficiently in its high-frequency region.

In order to describe this high-frequency asymptotics, we
reiterate that outside of the low-frequency region only one
contribution, the constant background, originates from the
two-particle irreducible vertex � [31,35]. The remaining
high-frequency structures are contained in the vertices �


reducible in channel 
 and can be parameterized through much
simpler one- and two-frequency objects, coined kernel-1 and
kernel-2 functions [31,35]. The constant background can be
identified as the bare vertex Uabcd shown in Fig. 2, which is
the lowest-order term in the diagrammatic series for the full
vertex.

Next, we have the kernel-1 diagrams that only depend on
one bosonic frequency and are depicted in Fig. 3. Here, two
pairs of (incoming or outgoing) lines enter at the respective
same interaction U . In this case the vertex depends only
on the total transferred frequency at these interactions (it
is the same bosonic frequency for both pairs because of
energy conservation) [31,35]. There are three diagrams in
Fig. 3, and hence there are three kernel-1 contributions, each
of which depends on a single bosonic frequency. Switching
from Matsubara frequencies to imaginary times, as defined
in Eq. (6), it turns out that the dependence on frequency
differences corresponds to diagrams with pairwise equal times.
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FIG. 3. Vertex diagrams that depend on only one bosonic fre-
quency, in ph channel (top left), ph channel (right), and pp channel
(bottom left). Frequencies are given in the channel-specific notation
(see Appendix A).

That is, the diagrams shown in Fig. 3 correspond to the
summation of all terms with two equal-time pairs.

For the kernel-2 diagrams of Fig. 4, we have only one
pair of external legs that enter at the same U . Hence such
diagrams depend on the transferred bosonic frequency at this U

and (because of energy conservation) one additional fermionic
frequency of the unpaired legs. This corresponds to one equal-
time pair in Fourier space. All the diagrams of Figs. 3 and 4
are two-particle reducible, and thus the asymptotic form of the
full vertex F consists, apart from the constant background U ,
only of reducible terms �


asympt.

B. Equal-time two-particle Green’s functions

We now have to find a way to extract the aforementioned
asymptotics from Green’s-function-like quantities, which are
accessible in impurity solvers such as CT-QMC.

ν′−ω
c

ν′ d

Ujcid
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b i

j
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ν − ω
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Fabij

ν′
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ν′ − ω
c
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ν1

ν1−ω

Faijd
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i c

j
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ω−ν1
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Faicj

FIG. 4. Vertex diagrams that depend on one bosonic and one
fermionic frequency, in ph channel (top left), ph channel (right),
and pp channel (bottom left). Frequencies are given in the channel-
specific notation (see Appendix A).

Considering the full Green’s function Gijkl(τ1,τ2,τ3,τ4), we
need to form two equal-time pairs for the diagrams of Fig. 3
to arrive at a function of two time arguments or one-frequency
difference. There are three distinct ways to achieve this:

τ1 = τ2 ≡ τ, τ3 = τ4 ≡ τ ′, (11)

τ1 = τ3 ≡ τ, τ2 = τ4 ≡ τ ′, (12)

τ1 = τ4 ≡ τ, τ2 = τ3 ≡ τ ′, (13)

which relate to the ph, pp, and ph channel. The “two-legged”
two-particle Green’s function for the ph channel, defined in
(11), is

G
ph,ν1−ν2
ijkl =

∫
dτdτ ′ei(ν1−ν2)(τ−τ ′)〈Tτdi(τ )d†

j (τ )dk(τ ′)d†
l (τ ′)〉,

(14)

and for the pp channel, we get

G
pp,ν1+ν3
ijkl =

∫
dτdτ ′ei(ν1+ν3)(τ−τ ′)〈Tτdi(τ )d†

j (τ ′)dk(τ )d†
l (τ ′)〉.

(15)

While the above functions have to be measured separately,
the third, related to the ph channel, can be obtained from the
first by the crossing relation (see Ref. [32] for an illustration)

G
ph

ijkl = −G
ph

ilkj (16)

and depends on the frequency difference ν1 − ν4.
From the six ways to form one equal-time pair as needed

for the diagrams of Fig. 4, it is sufficient to consider only
the following three, with the others related by time-reversal
symmetry:

τ1 ≡ τ, τ2 ≡ τ ′, τ3 = τ4 ≡ τ ′′, (17)

τ1 ≡ τ, τ3 ≡ τ ′, τ2 = τ4 ≡ τ ′′, (18)

τ1 ≡ τ, τ4 ≡ τ ′, τ2 = τ3 ≡ τ ′′. (19)

Here, Eqs. (17)–(19) are related, as before, to the ph, pp, and
ph channel. The “three-legged” two-particle Green’s function
in the ph channel corresponding to Eq. (17) follows as

G
ph,ν1,ν1−ν2
ijkl =

∫
dτdτ ′dτ ′′ei[ν1(τ−τ ′)+(ν1−ν2)(τ ′−τ ′′)]

×〈Tτdi(τ )d†
j (τ ′)dk(τ ′′)d†

l (τ ′′)〉, (20)

and in the pp channel [Eq. (18)] it is

G
pp,ν1,ν1+ν3
ijkl =

∫
dτdτ ′dτ ′′ei[ν1(τ−τ ′)+(ν1+ν3)(τ ′−τ ′′)]

×〈Tτdi(τ )d†
j (τ ′′)dk(τ ′)d†

l (τ ′′)〉. (21)

Again, the Green’s function in the ph channel can be obtained
by the crossing relation Eq. (16); the frequency arguments
are then ν1 and ν1 − ν4. Please note that ν1 − ν2, ν1 + ν3,
and ν1 − ν4 are referred to as the channel-specific bosonic
Matsubara frequencies ωph, ωpp, and ωph, respectively. A full
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table with channel-specific frequency notations is given in
Appendix A.

C. Subtraction of disconnected parts

We have seen in Eq. (3) and Fig. 1 that the full two-particle
Green’s function, as measured in CT-QMC, contains one
connected and also two disconnected parts. Hence, in order
to arrive at the two- and three-legged diagrams of Figs. 3 and
4, it is necessary to eliminate the disconnected terms. In the
following we will assume the one-particle Green’s function
to be flavor diagonal such that Gij (τ1,τ2) ≡ Gi(τ1,τ2)δij . We
recover the physical single-frequency susceptibility in the
particle-hole channel by subtracting the constant “straight
term”,

χ
ph,ω

ijkl = G
ph,ω

ijkl − (1 − ni)(1 − nk)δω0δij δkl, (22)

whereas the particle-particle susceptibility is already given by

χ
pp,ω

ijkl = G
pp,ω

ijkl . (23)

We will now turn to the three-legged Green’s functions,
where we are again interested only in the connected part
corresponding to Fig. 4. For the particle-hole channel we find

χ
c,ph,νω

ijkl = G
ph,νω

ijkl − Gν
i

[
(nk − 1)δij δklδω0 − Gν−ω

k δilδjk

]
,

(24)

and for the particle-particle channel,

χ
c,pp,νω

ijkl = G
pp,νω

ijkl − (δij δkl − δilδjk)Gν
i G

ω−ν
k . (25)

As usual, the corresponding expressions for the transverse
particle-hole channel can be obtained by applying the crossing
relation Eq. (16).

D. Kernel functions

After the subtraction of the disconnected parts from the two-
particle Green functions, the next step is to contract the equal-
time legs with interaction vertices. The two-legged objects
have two pairs of equal times and therefore need two distinct
bare vertices to contract their legs and obtain the kernel-1
functions K (1),
:

K
(1),ph,ω

abcd = −
∑
ijkl

Uajbi χ
ph,ω

ijkl Ulckd , (26)

K
(1),ph,ω

abcd = −
∑
ijkl

Ualid χ
ph,ω

ijkl Ujcbk, (27)

K
(1),pp,ω

abcd = −
∑
ijkl

Uacki

2
χ

pp,ω

ijkl

Uljbd

2
. (28)

This corresponds precisely to the diagrams shown in Fig. 3.
For the kernel-2 approximations, the procedure is a bit

more involved. After the bare vertex contraction, we need
to amputate the remaining legs. Thus the kernel-2 functions
K (2),
 in all three channels are

K
(2),ph,νω

abcd =
∑
ij

−χ
c,ph,νω

abji

Gν
aG

ν−ω
b

Uicjd − K
(1),ph,ω

abcd , (29)

K
(2),ph,νω

abcd =
∑
ij

−χ
c,ph,νω

aijd

Gν
aG

ν−ω
d

Uicbj − K
(1),ph,ω

abcd , (30)

K
(2),pp,νω

abcd =
∑
ij

−χ
c,pp,νω

aicj

Gν
aG

ν−ω
c

Ujibd

2
− K

(1),pp,ω

abcd , (31)

where we had to subtract the kernel-1 functions in order to
avoid double counting of diagrams. Now we have six functions
going to zero for high frequencies ν or ω, from which we can
compile the asymptotic vertex.

E. Asymptotic form of the full vertex

According to the (local) parquet equation, the full vertex
Fabcd can be decomposed into a fully irreducible and several
reducible parts:

Fνν ′ω
abcd = �νν ′ω

abcd + �
ph,νν ′ω
abcd + �

ph,νν ′ω
abcd + �

pp,νν ′ω
abcd . (32)

We are now able to construct the asymptotic form of the
reducible vertices � using [35]

�
asympt,
,νν ′ω
abcd = K

(1),
,ω
abcd + K

(2),
,νω
abcd + K

(2),
,ν ′ω
abcd , (33)

where the functions K (2),
 are found to be equal to K (2),
 due
to time-reversal symmetry. Therefore summing up all K (i),
,
we get the asymptotic form of the full vertex:

F
asympt
abcd (ν
,ν

′

,ω
) − Uabcd

= K
(1),ph,ωph

abcd + K
(2),ph,νphωph

abcd + K
(2),ph,ν ′

phωph

abcd

+K
(1),ph,ωph

abcd + K
(2),ph,νphωph

abcd + K
(2),ph,ν ′

ph
ωph

abcd

+K
(1),pp,ωpp

abcd + K
(2),pp,νppωpp

abcd + K
(2),pp,ν ′

ppωpp

abcd . (34)

In this way we are now able to build arbitrarily large
vertices in any frequency notation, which leads to significant
improvements of further calculations.

IV. IMPLEMENTATION

A. Worm sampling

For the calculation of the equal-time two-particle Green’s
functions we employ the hybridization expansion (CT-HYB)
[23] due to its favorable scaling at finite temperature and
its ability to treat general local interactions efficiently. The
traditional formulation of the CT-HYB algorithm assumes
importance sampling and explores the phase space of the
partition function Z. One- and two-particle Green’s function
are then obtained by “removing” hybridization lines. For
non-density-density interactions, this is in general not possible.
Instead, we hence use a worm algorithm recently introduced
to CT-HYB [39,40] and measure equal-time two-particle
correlation functions, which are then transformed into the
kernel functions (26)–(31) in a postprocessing step.

Worm sampling stands in contrast to partition function
sampling as we no longer explore the phase space CZ of
the partition function but rather an extended phase space CW

for an extended partition function W = Z + ηZG, where ZG

is the partition function of an exemplary worm space and η

the relative balancing factor. While we sample configurations,
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which do not represent the denominator of the expectation
value, we profit due to more flexibility in defining the estimator.
The exact procedure on how to define equal-time Green’s
function estimators can be found in previous works [40]. By
adding the local creation and annihilation operators of the
estimators to the local trace of the infinite perturbation series in
the hybridization expansion, one effectively switches to worm
space. We redefine the single-frequency expectation values in
Eqs. (14) and (15) in terms of worm estimators:

G

,ω
C1,


= 〈sgn × eiω(τ−τ ′)〉MC, (35)

where C1,
 are the configuration spaces of the particle-hole and
particle-particle single-frequency estimator and “sgn” denotes
the sign of the configuration. Further, the two-frequency
expectation values in Eqs. (20) and (21) follow as

G

,νω
C2,


= 〈sgn × ei(ν(τ−τ ′)+ω(τ ′−τ ′′))〉MC, (36)

where C2,
 are the configuration spaces of the particle-hole
and particle-particle two-frequency estimator. We emphasize
that the measured quantities still need to be normalized with
respect to the partition function.

Apart from the above estimators assuming δ-like bins, we
have further implemented estimators considering the entire
configuration as suggested in Ref. [45]. At this point we note
that for density-density interactions the worm algorithm is not
necessary. Instead, an implementation of the estimators in a
segment algorithm is more feasible. In another context, the
three-legged estimator was already defined for the segment
representation [46].

B. Numerical effort

In terms of the numerical effort of calculating the vertex
asymptotics we benefit twofold. First, the asymptotics scale
quadratically in the number of frequencies ∼#w2, whereas
the calculation of the full two-particle object scales cubically
∼#w3. In the asymptotical region, the three-dimensional
Fourier transform is thus replaced by a two-dimensional
transform. By sampling a two-dimensional phase space instead
of a three-dimensional one, we effectively collect more data
points for each imaginary time bin which reduces the noise.
Secondly, the nonasymptotic region needs to be calculated
on a much smaller grid, that is, the prefactor of the full vertex
measurement is greatly reduced. Besides saving computational
time, calculating the asymptotics also saves storage, which for
M-orbital vertices is ∼#w3M4, so that storing the vertex easily
requires giga- and terabytes.

Due to the parametrization of the vertex function we can
introduce cutoffs, as already suggested elsewhere [33]. While
this effect is hardly captured in terms of numerical efficiency,
this allows us to extend the asymptotic structure to arbitrary
box sizes. As a consequence, box summations do not suffer
from finite size box effects.

C. Work flow

Having explained the calculation of Green’s functions in
QMC, we consider it useful to summarize the whole work
flow at this point:

(1) QMC calculation of Gν
i , Gνν ′ω

ijkl , G
ph/pp,ω

ijkl , G
ph/pp,νω

ijkl ,
ni [Eqs. (14), (15), (20), (21)].

(2) Subtraction of disconnected terms to obtain susceptibil-
ities χ

ph/pp,ω

ijkl and connected diagrams χ
c,ph/pp,νω

ijkl [Eqs. (22)–
(25)].

(3) Amputation of legs from χ
c,ph/pp,νω

ijkl [contained in
Eqs. (29)–(31)].

(4) U-matrix contractions [Eqs. (26)–(31) → kernel-1
functions ready at this point].

(5) Subtraction of kernel-1 functions from the connected
diagrams in order to get the kernel-2 functions [contained in
Eqs. (29)–(31)].

(6) Construction of F asympt from the kernel functions
[Eq. (34)].

(7) Combination of full F and F asympt.

We note, however, that it is recommendable for most
applications to store only the kernel functions permanently
and construct the asymptotically extended vertex “on the fly”
during a calculation in which it is used.

V. RESULTS

A. Single-orbital Hubbard model

The Hubbard model is an often employed model for
strongly correlated electrons on a lattice. Its Hamiltonian
consists of a hopping term, capturing the kinetic energy
of the electrons, and a local interaction term that models
their on-site Coulomb repulsion. Formally, the kinetic term
is related to a tight-binding model, and the local interaction
has the same form as for the AIM Eq. (1). For the single-
orbital case with next-neighbor hopping only, the Hamiltonian
reads

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑
i

c
†
i↑c

†
i↓ci↓ci↑, (37)

where t is the hopping parameter and U the Hubbard
interaction. Indices i and j denote lattice sites here, and σ

stands for the spin projection.
For a three-dimensional simple cubic lattice, the hopping

term determines the bandwidth of the system as W = 12t and
the standard deviation as D/2 = √

6t [4,6]. Thereafter, all
energies concerning the Hubbard model will be measured in
units of D ≡ 1. The model studied here is characterized by an
interaction strength of U = 2D at an inverse temperature of
β = 8/D.

DMFT [9–12] provides a possibility to solve the Hubbard
model in the limit of infinite dimensions by self-consistently
mapping it onto an auxiliary AIM. In finite dimensions, this
corresponds to approximating the self-energy to be purely
local. There exists a variety of solvers for the impurity prob-
lem; we employ CT-QMC using the W2DYNAMICS package
[47,48].

Whereas QMC in principle provides a numerically exact
solution, it suffers from statistical uncertainty, making it
reasonable to benchmark against exact diagonalization (ED)
[19]. To this end, we solve by QMC the impurity prob-
lem specified by the bath parameters of a converged ED
calculation [6].
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FIG. 5. Local full vertex F for the half-filled Hubbard model in
DMFT for U = 2D and β = 8/D. Upper row: Fd in the the density
channel. Lower row: Fm in the magnetic channel. First column: F

extracted from an improved-estimator CT-QMC measurement with
full frequency dependence. Second column: F from QMC, combined
with asymptotics according to Eq. (40) with l = 10. Third column: F

obtained with ED for comparison. We use the particle-hole frequency
representation (see Appendix A) and fix ωph = 15 2π

β
.

In order to give an overall impression of the situation,
we show a slice of the full vertex F in Fig. 5. The spin
components F↑↑ ≡ F↑↑↑↑, F↑↓ ≡ F↑↑↓↓, and F↑↓ ≡ F↑↓↓↑
[31] were combined to the density and magnetic channel by

Fd = F↑↑ + F↑↓, (38)

Fm = F↑↑ − F↑↓
SU(2)= F↑↓. (39)

The first column shows vertices calculated by the improved-
estimator method with worm sampling in about 30 000 CPU
hours. In the second column, the data in the asymptotic regions,
defined by

ν1ν2ν3ν4
β4

π4
> l4

∣∣δν1ν2 + δν1ν4 − δν1ν2δν1ν4

∣∣4
, (40)

were replaced according to the method proposed in this article,
with a replacement parameter of l = 10. For comparison,
we show ED results in the third column. The replacement
procedure Eq. (40) is motivated by atomic limit calculations
in Appendix B.

The statistical uncertainty of one- and two-particle Green’s
functions is in principle well controlled by the 1/

√
N scaling

of the Monte Carlo method. The amputation of four outer
legs, however, corresponds to the division by four inverse
one-particle Green’s functions, each asymptotically approach-
ing zero. Eventually, this leads to a strong amplification
of noise in the full vertex function F (first column of
Fig. 5). The equal-time two-particle Green’s functions, on the
other hand, can be measured more accurately due to their
reduced time (frequency) dependence. In order to calculate
the kernel-2 functions, only two legs need to be amputated,
also resulting in a lower noise level (second column of
Fig. 5).
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FIG. 6. Difference of ED vertex and asymptotic vertex in density
(top) and magnetic channel (bottom) for three different bosonic
frequencies ωph = m 2π

β
(columns). The fermionic Matsubara fre-

quencies on the x and y axis are shifted by m as indicated.

We observe a good qualitative agreement of the asymp-
totically improved vertex with ED (third column of Fig. 5).
A more quantitative comparison can be made by directly
investigating the difference of the full vertex F and its purely
asymptotic version. This is shown in Fig. 6, again in the
density and magnetic channels, for three different values of
the bosonic frequency ωph in the particle-hole channel. In
good accordance to the theoretical foundation of the kernel
functions, the magnitude of the difference decreases for high
values of any frequency.

To demonstrate the practical applicability of the vertex
asymptotics, one can calculate, for example, physical suscep-
tibilities,

χ
ph,ω

d/m = 1

β2

∑
νν ′

χ
ph,νν ′ω
d/m . (41)

This is a reasonable test, because the physical susceptibilities
can be computed also directly from the one-frequency Green’s
functions measured in QMC via Eq. (22). In Fig. 7 we observe
two effects brought about by the asymptotics method: The
results obtained by summing over a large frequency box is
slightly smoothed (best visible in the inset). This reduction of
noise can be understood by comparing the first two columns
in Fig. 5, where using the asymptotics of the vertex decreases
the noise.

The second effect of using the asymptotic vertex is even
larger and was our original motivation: the reduction of the
“finite-box effect” that is visible primarily in the density
channel (upper panel of Fig. 7). For high values of the
bosonic frequency argument, the physical susceptibility should
go to zero, as it is the case when it is measured directly
in continuous time (solid line). If it is calculated, however,
by summation over fermionic Matsubara frequencies, the
inevitable truncation leads to a wrong asymptotic behavior.
The deviation can be reduced only by including a larger
frequency box into the summation, which is easily possible
using the vertex asymptotics. In principle there is no restriction
to the box size here, but we find it sufficient to sum over
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FIG. 7. Local susceptibilities χloc(iωn) in density (top) and
magnetic channel (bottom) for the Hubbard model in DMFT at
U = 2D and β = 8/D. The bosonic Matsubara frequencies are
ωn = n 2π

β
. We compare the direct calculation via Eq. (22) (solid

line) to that using the summation Eq. (41) over fermionic Matsubara
frequencies without vertex asymptotics in a small box (x) to that
using vertex asymptotics and hence a large box (+). Inset: Zoom-in
showing the box effect and noise reduction.

1600 × 1600 elements per bosonic frequency, which would
already be infeasible without asymptotics.

B. Multiorbital test case: SrVO3

Since the derivations in the previous sections were done
without restriction to one-band models or density-density
interaction, it is possible to apply the procedure described
above to a more general case. As a suitable material, we chose
SrVO3, which has a long tradition for benchmarking realistic
material calculations using DMFT [49–53]. Its band structure
can be calculated by WIEN2K [54] using the generalized gra-
dient approximation. Subsequently, t2g bands, which cross the
Fermi level, are projected onto maximally localized Wannier
functions by WIEN2WANNIER [55]. For these strongly correlated
t2g bands we consider a SU(2) symmetric Slater-Kanamori
interaction that is parameterized by an intraorbital Hubbard
U , an interorbital U ′, and Hund’s coupling J . Calculations

full QMC
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FIG. 8. Matrix element of the full vertex F
νν′ω15
d,1111 (upper row) and

F
νν′ω15
m,1111 (lower row) for four times at the same t2g orbital. Left column:

F extracted from an improved-estimator CT-QMC measurement
with full frequency dependence. Right column: F , combined with
asymptotics according to Eq. (40) with l = 15. To remove the constant
background, Fd was shifted by Ud = U and Fm by Um = −U .

in constrained local density approximation yield values of
U = 5 eV, J = 0.75 eV, and U ′ = U − 2J = 3.5 eV [49,56].

The following DMFT calculation, as well as the calculation
of the one-, two-, and three-frequency two-particle Green’s
functions, was done by W2DYNAMICS at an inverse temperature
of β = 10 eV−1.

Since we treat SrVO3 as a three-orbital system, the two-
particle objects generally have (2 × 3)4 = 1296 spin-orbital
components, of which due to the structure of the interaction,
however, only 126 are nonvanishing. If we use instead of all
spin components the density and magnetic channels, which
is possible for SU(2) symmetry, the number of nonvanishing
components is reduced to 21 per channel. Furthermore, the
local vertex functions exhibit orbital symmetry that reduces
the number of distinct components to four per channel in our
case of degenerate orbitals.

In Fig. 8 a slice of the vertex with four equal band indices
is shown in the density and magnetic channel: F

νν ′ω15
d/m,1111. As

before, in the left column we show the vertex, as calculated by
amputation of external legs from the susceptibility with full
frequency dependence. This is how the multiorbital vertex was
determined previously in AbinitioD�A calculations [32]. In
the right column, we present the same vertex, but now the data
at asymptotic values of the frequency, given by Eq. (40) with
l = 15, are replaced by the asymptotic vertex. Our approach
reduces the noise considerably and makes multiorbital vertex
calculations much more feasible.

In order to show how the fully frequency-dependent vertex
F approaches its asymptotic form, we show in Fig. 9 three
slices of the difference F − Fasympt. Again, a strong decay
can be noticed, albeit slower than in the Hubbard model
studied above. Furthermore, the diagonal defined by νph = νph
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FIG. 9. Difference of F
νν′ω15
d,1111 (top) and F

νν′ω15
m,1111 (bottom) to their

respective purely asymptotic version for different bosonic frequencies
ωm = 2π

β
m.

is considerably more pronounced, a behavior that is to be
expected, however, by atomic limit calculations.

A sample application of the asymptotics is again the
calculation of frequency-summed susceptibilities. In order to
demonstrate the ability of our method to treat pair-hopping and
spin-flip contributions, introduced by the SU(2) symmetric
Kanamori interaction, we show the components χ

d/m,ω

1122 in
Fig. 10. Two important observations can be made in these
plots: First, the noise can be largely reduced in the high-
frequency region, and second, large deviations at ω = 0 can
be eliminated.

VI. CONCLUSION

In this work we establish the link between reduced
frequency (equal-time) two-particle Green’s functions and the
asymptotics of the full vertex function F for the multiorbital
AIM. The former ones are, in principle, accessible by employ-
ing impurity solvers such as CT-QMC. We make use of a worm
algorithm in the hybridization expansion to measure these
equal-time Green’s functions in CT-QMC for multiple orbitals
and general local interactions. From these Green’s functions,
in turn, we calculate the kernel-1 and kernel-2 functions for
the vertex asymptotics. This requires contractions with the bare
interaction and a careful treatment of the disconnected parts.
We benchmark the vertex asymptotics for the single-orbital
Hubbard model in DMFT by comparing our numerical CT-
QMC data to ED results. As a second application, we calculate
the vertex asymptotics for SrVO3 using three t2g orbitals for the
low-energy degrees of freedom. In both cases, we demonstrate
that using the asymptotics yields a much better vertex with
less noise and for an arbitrary large frequency box. The latter
allows us to avoid the errors associated with a finite frequency
box when calculating physical susceptibilities.

Our method allows us to assemble multiorbital vertices in
CT-QMC for arbitrary frequency boxes at a much reduced
computational time and storage. A second advantage is that
we overcome the problem of noisy QMC vertices at larger
frequencies. Our paper is hence a crucial step for making
the (multiorbital) vertex available both for calculating general
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FIG. 10. Local susceptibility χ loc
d/m,1122 of SrVO3 between two

different t2g orbitals in density (top) and magnetic channel (bottom).
Inset: Zoom-in.

DMFT susceptibilities and for diagrammatic extensions to
DMFT.
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APPENDIX A: FREQUENCY MAPPINGS

Two-particle functions have four fermionic frequency
arguments ν1 . . . ν4. Due to energy conservation, one of the
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arguments is redundant and we use one bosonic and two
fermionic frequency arguments instead. Since the mapping
between those two sets of frequencies is ambiguous, there
exist different possibilities that can be associated to the
scattering channels. They are called particle-particle notation
(pp), particle-hole notation (ph), and transverse particle-hole
notation (ph).

We thus introduce, in addition to ν1 . . . ν4, the particle-
particle frequencies νpp, ν ′

pp, and ωpp; the particle-hole
frequencies νph, ν ′

ph, and ωph; and the transverse particle-
hole frequencies νph, ν ′

ph
, and ωph. They are defined in the

following way:

ν1 = νpp = νph = νph, (A1)

ν2 = ωpp − ν ′
pp = νph − ωph = ν ′

ph
, (A2)

ν3 = ωpp − νpp = ν ′
ph − ωph = ν ′

ph
− ωph, (A3)

ν4 = ν ′
pp = ν ′

ph = νph − ωph. (A4)

It is convenient to express all frequencies in all possible
combinations:

νpp = νph = νph, (A5)

ν ′
pp = ν ′

ph = νph − ωph, (A6)

ωpp = νph + ν ′
ph − ωph = νph + ν ′

ph
− ωph, (A7)

ωph = νpp + ν ′
pp − ωpp = νph − ν ′

ph
, (A8)

ν ′
ph

= νph − ωph = ωpp − ν ′
pp, (A9)

ωph = νph − ν ′
ph = νpp − ν ′

pp. (A10)

APPENDIX B: CALCULATIONS IN THE ATOMIC LIMIT

We also validated our approach in the atomic limit, which is
obtained by setting the hybridization to V = 0 in the Anderson
impurity model, i.e.,

H = −μ(n↑ + n↓) + Un↑n↓. (B1)

In this case, expectation values in the grand canonical ensem-
ble with a Boltzmann weight ρ ≈ exp[−βH ] and a chemical
potential μ can be calculated analytically in the Lehmann
basis {|0〉,|↑〉,|↓〉,|↑↓〉}. At half filling, μ = U/2 and thus,
ρ = diag[1,eβμ,eβμ,1]/(2 + 2eβμ). Expectation values can be
calculated as 〈O〉 = Tr[Oρ]. In this way, one can calculate
the full two-particle Green’s function and, subsequently, the
full vertex F [31,58]. In Ref. [35] the kernel functions were

TABLE I. Two-legged two-particle Green’s functions in the
atomic limit, i.e., Eqs. (14) and (15), in particle-particle and particle-
hole channel, respectively. Frequencies are given in the channel-
specific notations, see Appendix A.

G

,ω

σσ ′ pp ph

↑↑ 0 β

2 δω0

↑↓ β

2 f ( U

2 )δω0
β

2 f ( U

2 )δω0

↑↓ − β

2 f ( U

2 )δω0
β

2 f (−U

2 )δω0

TABLE II. Three-time two-particle Green’s functions in the
atomic limit, i.e., Eqs. (20) and (21), in particle-particle and particle-
hole channel. Frequencies are given in the channel-specific notations,
see Appendix A.

G
pp,νω

σσ ′

↑↑ 0

↑↓ ν(ν−ω)− U2
4

(ν2+ U2
4 )((ν−ω)2+ U2

4 )
− δω0

β U
2 f ( U

2 )

ν2+ U2
4

↑↓ − ν(ν−ω)− U2
4

(ν2+ U2
4 )((ν−ω)2+ U2

4 )
+ δω0

β U
2 f ( U

2 )

ν2+ U2
4

G
ph,νω

σσ ′

↑↑ ν(ν−ω)− U2
4

(ν2+ U2
4 )((ν−ω)2+ U2

4 )
+ δω0

β

2

U
2 tanh βU

4 +iν

ν2+ U2
4

↑↓ δω0
β

2
− U

2 +iν

ν2+ U2
4

↑↓ ν(ν−ω)− U2
4

(ν2+ U2
4 )((ν−ω)2+ U2

4 )
+ δω0

β U
2 f (− U

2 )

ν2+ U2
4

calculated by taking high-frequency limits (see Eq. (15) in
Ref. [35]).

On the other hand, we can obtain the vertex asymptotics
via the procedure derived in Sec. III of the present paper. To
this end, we first need to calculate the equal-time two-particle
Green’s functions, which are given in Tables I and II, using
the Fermi function f (ε) ≡ 1/(1 + eβε) as an abbreviation.

In the following we will calculate only the ↑↓ components
of the kernel functions in the ph-channel explicitly, but all
components are given in Tables III and IV. First, the single-
frequency susceptibility is recovered from the respective
Green’s function by subtracting the constant density term
βδω0/4:

χ
ph,ω

↑↓ = G
ph,ω

↑↓ − βδω0

4
= −1

4
βδω0

[
f

(
−U

2

)
− f

(
U

2

)]
.

(B2)

Since the single-orbital U matrix has only four nonvanish-
ing components U↑↓↑↓ = U↓↑↓↑ = U and U↑↓↓↑ = U↓↑↑↓ =
−U , the kernel function K

(1),ph,ω

↑↓ is directly related to χ
ph,ω

↓↑
by (26)

K
(1),ph,ω

↑↓ = −U 2χ
ph,ω

↓↑ . (B3)

Table III lists the other kernel-I functions.
In order to extract K

(2),ph,νω

↑↓ from equal-time two-particle
Green’s functions, it is of advantage to rewrite the latter, em-
phasizing their connection to one-particle Green’s functions.

TABLE III. Kernel functions K (1) in particle-particle and particle-
hole channel. Frequencies are given in the channel-specific notations,
see Appendix A.

K (1),
,ω pp ph

↑↑ 0 − βU2

4 δω0

↑↓ − βU2

2 f ( U

2 )δω0
βU2

4 [f (−U

2 ) − f ( U

2 )]δω0

↑↓ βU2

2 f ( U

2 )δω0 − βU2

2 f (−U

2 )δω0
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TABLE IV. Kernel functions K (2) in particle-particle and particle-
hole channel. Frequencies are given in the channel-specific notations,
see Appendix A.

K (2),
,νω pp ph

↑↑ 0 K
(1),ph,ω

↑↑
U2

4ν2

↑↓ U2

4ν(ν−ω) (K (1),pp,ω

↑↓ − U ) U2

4ν(ν−ω) (K (1),ph,ω

↑↓ − U )

↑↓ − U2

4ν(ν−ω) (K (1),pp,ω

↑↓ − U ) U2

4ν(ν−ω) (K (1),ph,ω

↑↓ + U )

Since the U-matrix contraction relates K
(2),ph,νω

↑↓ to G
ph,νω

↑↑
only, we print the ↑↑ component:

G
ph,νω

↑↑ = −1

2
βδω0G

ν − GνGν−ω

+
[

U 2

4ν(ν − ω)
− K

(1),ph,ω

↑↓
U

(
1 + U 2

4ν2

)]
︸ ︷︷ ︸

≡−L
ph,νω

↑↑

GνGν−ω.

(B4)

From this, the kernel part L
ph,νω

↑↑ is obtained by subtracting
the disconnected parts (first line of the right-hand side) and
amputating the legs GνGν−ω. In a final step, the kernel function
K

(2),ph,νω

↑↓ follows as

K
(2),ph,νω

↑↓ = UL
ph,νω

↑↑ − K
(1),ph,ω

↑↓

= U 2

4ν(ν − ω)
(K (1),pp,ω

↑↓ − U ). (B5)

Table IV lists the other kernel-2 functions. Apart from the
different frequency conventions, our formulas agree with the
results reported previously [35].

Using (B3), (B5), and the crossing relation (16) to calculate
the kernel functions in the ph channel, we can now compile the
full asymptotic vertex from its ph, ph, and pp contributions.
This is illustrated in Fig. 11, where each of the pictures
corresponds to one line of the right-hand side of Eq. (34).

Having at our disposal the asymptotic vertex, it is now
possible to calculate how it deviates from the complete vertex,
similarly as it was done with the numerical data of the Hubbard
model and SrVO3 above. Since the explicit analytical form
of the asymptotic vertex is rather lengthy, we print only

FIG. 12. F
asympt,νν′ω10
↑↓ (left) and R

νν′ω10
↑↓ (right) in ph notation at

U = 2 and β = 8.

the difference R = F − F asympt, which is, however, of much
greater interest:

R
ν1ν2ν3ν4
↑↓

= 1

ν1ν2ν3ν4

{
−3U 5

16
+ βU 6

64

[
f

(
−U

2

)
− f

(
U

2

)]
δν1ν2

+ βU 6

32

(
−U

2

)
δν1ν4 − βU 6

32
2f

(
U

2

)
δ−ν1ν3

}
. (B6)

Furthermore, we have

R
ν1ν2ν3ν4
↑↑ = βU 6

64

δν1ν4 − δν1,−ν3

ν1ν2ν3ν4
(B7)

and

R
ν1ν2ν3ν4

↑↓ = −R
ν1ν4ν3ν2
↑↓ (B8)

for the other spin components. Slices of the purely asymptotic
vertex F

asympt
↑↓ and the difference to the full vertex R↑↓ are

shown in Fig. 12. We observe that indeed the differences of
the full and asymptotic vertices go to zero with 1/(ν1ν2ν3ν4)
for all components, meeting our initial requirement. Together
with the δ functions, Eq. (B6) also motivates the asymptotic
replacement condition Eq. (40).

FIG. 11. The ph, ph, and pp parts of the asymptotic vertex F
asympt,νν′ω10
↑↓ − U in ph notation at U = 2 and β = 8.
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