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Role of three-particle vertex within dual fermion calculations
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We investigate the influence of self-energy diagrams beyond the two-particle vertex level within dual fermion
theory. Specifically, we calculate the local three-particle vertex and construct from it selected dual fermion
self-energy corrections to dynamical mean field theory. For the two-dimensional Hubbard model, the thus
obtained self-energy corrections are small in the parameter space where dual fermion corrections based on the
two-particle vertex only are small. However, in other parts of the parameter space, they are of a similar magnitude
and qualitatively different from standard dual fermion theory. The high-frequency behavior of the self-energy
correction is, surprisingly, even dominated by corrections stemming from the three-particle vertex.
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I. INTRODUCTION

Strongly correlated electron systems pose some of the
greatest challenges in modern solid-state theory. The interplay
between the interaction that is diagonal in real space and the
kinetic energy that is diagonal in momentum space causes
some fascinating, albeit hard to describe physical phenomena.
Analytical solutions to interacting lattice fermion systems are
scarce and numerical treatments have to face the exponential
growth of the Hilbert space with the number of lattice sites.
Quantum Monte Carlo methods, for their part, suffer from the
fermionic sign problem. In this situation, dynamical mean field
theory (DMFT) [1–3] has become a standard method for the
treatment of correlation effects in fermionic lattice systems. By
considering local correlations only, DMFT self-consistently
maps the lattice problem onto a single-site Anderson impurity
model. This model can be solved reliably by a variety of
algorithms. Often continuous-time quantum Monte Carlo (CT-
QMC) simulations [4–7] are employed to this end because of
their robustness, versatility, and the ability to treat continuous
baths.

Nevertheless, DMFT is limited to local correlation effects
by construction. Hence, more recently, diagrammatic exten-
sions of DMFT have been at the focus of intense research
efforts. These methods aim to utilize the well-established local
quantities derived from DMFT as a starting point but add, on
top of these, nonlocal correlations by means of Feynman dia-
grams. Examples of such diagrammatic extensions of DMFT
are the dynamical vertex approximation (D�A) [8,9], the
dual fermion (DF)[10] theory, and the one-particle-irreducible
approach (1PI) [11] to mention just some of them; for a
review, see Ref. [12]. A common feature of all diagrammatic
extensions is that they build upon the local (two- and more-
particle) vertex and use it to construct nonlocal correlations
in one- and two-particle quantities. These approaches allow
one to describe physical phenomena beyond the realm of
DMFT, such as the formation of a pseudogap [10,13–17] and
(quantum) critical exponents [18–21].

The mentioned diagrammatic extensions (D�A, DF, and
1PI) should, in principle, include local vertex functions up to
infinite order in the particle number. However, hitherto the ap-
plication of these theories has been mostly restricted to the two-
particle level. On the one hand, it was argued that most of the

relevant physics such as spin fluctuations should already be
included in diagrams generated from the two-particle vertex
(indeed, in weak coupling perturbation theory this physics is
generated from similar diagrams with the bare two-particle
interaction instead of the vertex). On the other hand, a very
practical reason for the truncation at the level of the two-
particle vertex exists: three-particle vertices are numerically
very expensive to calculate and only recently enhanced
computer resources and improved algorithms made such cal-
culations feasible. Furthermore, three-particle diagrammatics
is much more complicated to treat (also combinatorically) than
two-particle diagrammatics.

To the best of our knowledge, there are only two previous
papers that include higher-order vertices within the DF frame-
work. Reference [22] found only weak effects of selected low-
order diagrams on the leading eigenvalue of the Bethe-Salpeter
equation in the dual ph channel for the Hubbard model. In
contrast, Ref. [23] identified strong self-energy corrections
due to the three-particle vertex in the Falicov-Kimball model.

It is the aim of this paper to further elucidate and to
estimate the influence of higher order vertex correlations on the
self-energy within DF. To this end, we calculate local three-
particle vertices using CT-QMC. From these, we evaluate a
simple self-energy diagram and investigate its contribution in
comparison to DMFT, the dynamical cluster approximation
(DCA), standard DF, 1PI, and D�A.

The study is conducted for the Hubbard model with nearest-
neighbor hopping t and interaction U on a square lattice, which
is described by the Hamiltonian

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓. (1)

Here, 〈ij 〉 denotes the summation over pairs of nearest-
neighbor sites i and j , and c

(†)
iσ annihilates (creates) an electron

on site i with spin σ . In the following, the half-bandwidth (4t)
is chosen as the unit of energy, i.e., 4t ≡ 1.

The outline of the paper is as follows. Section II is devoted
to the calculation of the local three-particle vertex. In Sec. II A,
the form of this three-particle vertex and how to obtain
it from the three-particle Green’s function by subtracting
disconnected contributions and amputating Green’s functions
is discussed. The CT-QMC calculation of the three-particle
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FIG. 1. Frequency convention for the three-particle vertex F (3).
Note that we consider throughout the paper the situation where no
energy is transferred to frequency ν1, which reduces the frequency
dependence of F (3) to four frequencies. As for spin degrees of
freedom, F σ1σ2σ3 denotes the vertex component where both lines
associated with frequency ν1 carry the spin σ1, the lines associated
with ν carry σ2 and the lines associated with ν ′ carry σ3.

Green’s functions is outlined in turn in Sec. II B, with
additional information in Appendix A. The Feynman diagrams
that we consider in DF with this three-particle vertex as a
starting point and the corresponding equations are given in
Sec. III. This is supplemented in Appendix B by a derivation of
a generalized Schwinger-Dyson equation. Section IV presents
the results obtained for the two-dimensional Hubbard model.
Finally, Sec. V provides a summary and an outlook.

II. CALCULATION OF LOCAL THREE-PARTICLE
QUANTITIES WITHIN DMFT

A. Three-particle Green’s function and vertex

Let us start by formally defining the local three-particle
Green’s function

G
(3)σ1σ2σ3
ν1νν ′ω = 〈c†σ1

(ν1)cσ1 (ν1)

× c†σ2
(ν − ω)cσ2 (ν)c†σ3

(ν ′)cσ3 (ν ′ − ω)〉, (2)

with three fermionic Matsubara frequencies ν1,ν,ν ′ and one
bosonic (transfer) frequency ω, cf. Appendix A for the Fourier-
transformation from imaginary times. Figure 1 illustrates our
frequency and spin convention for three-particle quantities.

To obtain the fully connected n-particle vertex functions
F (n) from G(n), first, any disconnected contribution to the
propagators needs to be removed. Subsequently, we need to
amputate the outer legs of the remaining, fully connected
three-particle Green’s function G

(n)
C . On the two-particle

level, there are only two disconnected contributions to the
Green’s function G(2), both consisting of a product of two
one-particle Green’s functions: G(1)G(1). On the three-particle
level, there is much more variety among the disconnected
terms. A three-particle Green’s function G(3) contains terms
disconnected into three one-particle propagators, G(1)G(1)G(1)

[for example, δω,0 G(1)σ1
ν1

G(1)σ2
ν G(1)σ3

ν3
], as well as other terms

disconnected into a one-particle and a connected two-particle
Green’s function, G(1)G

(2)
C (for example G(1)σ1

ν1
G

(2)σ2σ3
C νν ′ω), as well

as a fully connected term, see Fig. 2 for an illustration.

B. CT-QMC results for the local three-particle vertex functions

Continuous-time quantum Monte Carlo (CT-QMC) algo-
rithms are based on a series expansion of the partition function,
and here employed for the Anderson impurity model. While
the specific Green’s function measurement depends on the
choice of expansion, CT-QMC algorithms in general provide
n-particle Green’s functions, consisting of fully connected

FIG. 2. The three-particle Green’s function G(3) is de-
composed into a three-particle connected contribution [G(3)

C =
G(1)G(1)G(1)F (3)G(1)G(1)G(1)], nine terms consisting of a one-particle
and connected two-particle Green’s functions [G(1)G

(2)
C ], and six

disconnected contributions [G(1)G(1)G(1)].

as well as disconnected contributions. Extracting irreducible
vertex functions by subtracting disconnected contributions and
amputating outer legs, as discussed in the previous section, is
a post-processing step to the simulation. CT-QMC algorithms
natively operate in the imaginary time domain. It is thus
necessary to define a suitable Fourier transform to recover
the Matsubara frequency representation of Eq. (2).

Here, we calculate the three-particle Green’s function
for the auxiliary AIM associated with a DMFT solution at
self-consistency, using both, CT-QMC in the hybridization
expansion (CT-HYB) [5] and in the auxiliary field expansion
(CT-AUX) [24]. While in CT-AUX the single-particle Green’s
function Gloc

ν is measured as a correction to the noninteracting
Green’s function G0, in CT-HYB the measurement is achieved
by cutting hybridization lines, not correcting any prior Green’s
function object. In CT-AUX, corrections hence converge
rapidly in the high-frequency regions (∼1/ν2), while the
CT-HYB result displays a constant error over the entire
frequency range. This becomes much more relevant for the
vertex where we have, as discussed, to amputate Green’s
function lines. This corresponds to a division by a small
number at large frequencies. Hence the CT-HYB three-particle
vertex is noisy at larger frequencies, even more so than
the two-particle vertex. This makes weak-coupling CT-QMC
algorithms (e.g., CT-AUX) more suitable for the calculation
of the vertex than strong-coupling algorithms (i.e., CT-HYB),
at least when applied to single-orbital models. However, we
note that the high-frequency behavior of CT-HYB algorithms
is greatly alleviated by employing improved estimators on
the one-particle level [25] or vertex asymptotics on the two-
particle level [26]. Moreover, when eventually calculating the
self-energy, the aforementioned small Green’s functions are
multiplied again so that the noise at high-frequencies has a
negligible effect for calculations based on the two-particle
vertex [27]. As we will see below this remains true for
three-particle vertex corrections to the self-energy, but here
only for the lowest few Matsubara frequencies.

Figure 3 shows the local three-particle CT-AUX vertex
calculated for the impurity problem of the DMFT solution for
the Hubbard-model at U = 1, inverse temperature β=8, and
half-filling n = 1. With the frequency ν1 fixed, the local three-
particle vertex displays features very similar to a two-particle
vertex. A crosslike structure is visible along the diagonal
ν = ν ′ and the secondary diagonal ν = −ν ′ + ω. A pluslike
structure extends from ν = ±π/β and ν ′ = ±π/β as well as
ν − ω = ±π/β and ν ′ − ω = ±π/β. The features of the ver-
tex are more pronounced for ν = +π/β = ν1, ν ′ = +π/β =
ν1, etc. than for ν = −π/β = −ν1, ν ′ = −π/β = −ν1.
Additionally, a constant background is present. The observed
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FIG. 3. Full three-particle vertex F σ1σσ ′
(imaginary part) for the parameters U = 1,β = 8, and n = 1. The frequency ν1 was set to the first

fermionic Matsubara frequency. The heatplots are given as functions of Matsubara frequency nν and n′
ν [ν = (2nν + 1)π/β] for ω = 0 (upper

row) and ω = 4π/β (lower row) for the spin configurations σ1σσ ′ =↑↑↑ (left), σ1σσ ′ =↑↑↓ (center), and σ1σσ ′ =↑↓↓ (right).

structure is to be expected, as plotting the three-particle vertex
along the ν1 diagonal can be physically interpreted as the
scattering amplitude of a particle with energy ν1 with a particle
and a hole at energies ν,ν ′ scattering with a transfer frequency
ω.

III. DUAL FERMION APPROACH UP TO THIRD ORDER

The dual fermion approach allows for a systematic and,
in principle, exact decoupling of local and nonlocal degrees
of freedom for interacting lattice problems. This is achieved
by a Hubbard-Stratonovich transformation, which yields a so-
called dual action of the form (see Ref. [12]):

Sdual[c̃
†; c̃ ] =

∑
k1

1

Gk−Gloc
ν

c̃
†
k1

c̃k1
+

∞∑
n=2

∑
k1,k2,k3,k4,...

1

(n!)2
F (n)

× (k2,k1,k4,k3, . . . )c̃k2
c̃
†
k1

c̃k4
c̃
†
k3

. . . . (3)

Here, the Grassmann fields c̃(†) are associated with the dual
fermion degrees of freedom, and we use a four-vector plus spin
notation k = (k,ν,σ ). Gloc

ν is the local DMFT Green’s function
and Gk the k-dependent DMFT Green’s function for the
Hubbard model that is obtained from the Dyson equation and
the local DMFT self-energy. The noninteracting dual Green’s
function is given by G̃0,k = Gk − Gloc

ν . The full n-particle
DMFT vertex functions F (n) are fully local and, hence, depend
only on the frequency and spin arguments and scatter equally
between all states obeying momentum conservation.

With the action in Eq. (3) as a starting point, we can
calculate via Feynman diagrammatic methods the interacting
DF Green’s function G̃k and self-energy 	̃k . As we show in
Appendix B, the latter is connected to the dual n-particle
Green’s function G̃(n) via a generalized Schwinger-Dyson

equation (or Heisenberg equation of motion):

	̃k = −
∞∑

n=2

∑
k2,k3,k4,...

(−1)n

n!(n − 1)!

× F (n)(k2,k,k4,k3, . . . )G̃(n)(k,k2,k3,k4, . . . )/G̃k. (4)

Diagrammatically, the interpretation of the above equation is
straightforward: any dual self-energy diagram has to start with
an interaction vertex. Since there are infinitely many types
of interaction vertices, an infinite sum of contributions to the
self-energy exists. Note that the dual Green’s functions G̃(n)

describe all possible diagrams, which can be built from the
original local vertices F (n). The remaining external leg G̃k of
the dual Green’s function has to be amputated to generate a
self-energy diagram.

In Eq. (4), full dual n-particle Green’s functions appear
(not connected ones). However, any disconnected contribution
to the Green’s function where a dual one-particle Green’s
function closes a loop locally does not influence the dual
self-energy if the one-particle dual Green’s functions are
required to be completely nonlocal, i.e.,

∑
k G̃kνσ = 0. For

this reason, e.g., no Hartree or Fock term appears for the dual
fermions when truncating on the two-particle vertex level.

In this paper, we consider local interaction terms up to
the three-particle vertex in Eq. (3). The actual choice of
diagrams, which are constructed from these building blocks,
is dictated by the physics of the system: in fact, for electrons
on a bipartite lattice at (or close to) half-filling, antiferro-
magnetic spin fluctuations are the predominant mechanism
through which nonlocal correlations affect self-energies and
spectral functions. Diagrammatically, such spin fluctuations
are captured by ladder diagrams for G(2) (or equivalently G̃(2))
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FIG. 4. Feynman-diagrammatic representation of the dual self-
energy in terms of the local two-particle vertex F (2), the dual
propagator G̃ (line), and the full DF vertexF (2) (obtained, e.g., through
a ladder series).

in the ph (and ph) channel. Considering first Eq. (4) for
n = 2, we construct the diagram in Fig. 4. This ladder-based
contribution to the dual self-energy corresponds to the standard
choice for DF calculations in previous works [22,28]. The
simplest contributions to G̃(3) in Eq. (4) are the disconnected
ones. For G̃(3), an equivalent decomposition to the one in Fig. 2
exists. In order to include antiferromagnetic spin fluctuations
also for n = 3 in Eq. (4), we consider the very same ladder
diagrams for the disconnected contributions to G̃(3). The terms
of the form G̃kG̃kG̃k vanish for the same reason the Hartree- and
Fock terms vanish for the two-particle vertex: a closed Green’s
function loop with

∑
k G̃kνσ = 0. The same holds for six out

of the nine G̃(2)G̃k terms contributing to G̃(3) analogously to
the decomposition in Fig. 2. The remaining three possibilities
contribute equally. Thus, within our approximation, and taking
into account all combinatorical prefactors our dual self-energy
from the two- and three-particle vertex reads

	̃k ≈ −
∑

k2,k3,k4

1

2
F (2)(k2,k,k4,k3) G̃0,k2 G̃0,k3 G̃0,k4 F (2)

× (k,k2,k3,k4) +
∑

k1,k2,k3,k4

1

4
F (3)(k,k,k2,k1,k4,k3)

× G̃0,k1 G̃0,k2 G̃0,k3 G̃0,k4 F (2)(k1,k2,k3,k4). (5)

The diagrammatic representation of the first line is given
in Fig. 4; it corresponds to standard DF and n = 2 in Eq. (4).
The new contribution in the second line stems from n = 3 and
is illustrated in Fig. 5. The vertex F (2) in Eq. (5) denotes the
full vertex of the dual fermions. In principle, it can be obtained
from the action in Eq. (3) or all Feynman diagrams with F (n)

and G̃ as building blocks. Since an exact calculation of this
quantity proves elusive, further approximations are needed on
its part. We employ the standard approximation to this end,

FIG. 5. Feynman-diagrammatic representation of an additional
contribution to the dual self-energy that includes the local three-
particle vertex of the real fermions F (3).

the ph ladder approximation for F (2):

F (2)
kk′q,lad = F

(2)
kk′q −

∑
k1

F (2)
kk1q,ladG̃k1 G̃k1−qF

(2)
k1k′q . (6)

Where a three-variable notation

F (2)
kk′q = F (2)(k,k − q,k′ − q,k′) (7)

was adapted.
The self-energy as obtained in Eq. (5) is the one for the

dual electrons, i.e., it corrects the dual noninteracting Green’s
function. In order to obtain from it nonlocal correlations for
real electrons it has to be transformed to the space of the
original particles. For this purpose, the formalism of the DF
theory provides an exact relation [10], which reads

	k = 	loc
ν + 	̃k

1 + Gloc
ν 	̃k

. (8)

While this relation certainly holds for the exact 	̃ (i.e., where
all diagrams for vertices of all orders are taken into account) it
has been argued on the basis of diagrammatic considerations
at weak coupling [11,12,29] that it should be modified if only
certain subsets of diagrams are considered:

	k = 	loc
ν + 	̃k. (9)

The (weak-coupling) arguments in favor of Eq. (9) given in
the aforementioned Refs. [11,12] are also valid for the choice
of diagrams for 	̃ of the present paper. However, as there is
no conclusive understanding regarding the choice of Eq. (8)
or Eq. (9) for all coupling regimes, and an analysis of the
difference between them are outside of the scope of this paper,
we will consider both for the presentation of our numerical
results in the next section.

IV. RESULTS: SELF-ENERGY CORRECTIONS

Let us now present the numerical results for one-shot DF
calculations based on converged DMFT baths for the two-
dimensional Hubbard model. For every discussed point, Fig. 6
shows the (Matsubara) frequency dependence of the DF self-
energy correction [30]. This self-energy needs to be added to
the DMFT self-energy to obtain the physical self-energy of
the Hubbard model. We compare in Fig. 6 the standard DF
self-energy 	̃2kν [first line of Eq. (4)] at the nodal (π/2,π/2)
and antinodal (π,0) k point of the Fermi surface with the
selected additional contribution based on the three-particle
vertex [second line of Eq. (4)]. This specific three-particle
correction couples the two-particle ladder diagrams with the
three particle vertex, see Fig. 5, and is k-independent.

Additionally, in Fig. 7, the real and imaginary parts of the
dual self-energy corrections are given along a path through the
Brillouin zone, including as well as excluding the three-particle
vertex correction. Because of its k independence, the latter just
gives a constant offset in these plots. Since the DF self-energy
is only a correction to the DMFT self-energy in Eq. (9), a
positive imaginary part only means that the finite life time
(damping) effect of DMFT is reduced. For all investigated
points, the physical self-energy remains negative.

Let us now discuss and interpret these results. At high
temperatures [(U=1, β=8, n=1) and (U = 2, β = 8, n = 1)]
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FIG. 6. Imaginary part of the dual self-energy correction of the standard DF theory 	̃kν for two k points and the correction 	̃3 based on the
three particle vertex and diagram Fig. 5. From left to right, we present data for U = 1, β = 8, n = 1; U = 2, β = 8, n = 1 and U = 1, β = 15,
n = 0.8, cf. phase diagram Fig. 8. Inset in the first figure shows the fitting function used to estimate high-frequency behavior.

and for the doped system [(U = 1, β = 15, n = 0.8)], the stan-
dard dual fermion self-energy 	̃2 is only a relatively small cor-
rection to the DMFT self-energy [Im	loc

nν=1= −0.14, −0.96,
and −0.075, respectively]. For U = 1, the DF corrections
based on the three-particle vertex 	̃3 are again considerably
smaller than 	̃2. Note that this does not hold for all k points. For
example, the scattering rate due to Im	̃3 is larger than for Im	̃2

for k = (π/2,π/2). However, 	̃2 is much larger for k = (π,0),
and also in general the variation of 	̃2 with k is much larger
than 	̃3. While the three-particle vertex corrections appear
small in Fig. 7, Fig. 6 reveals that 	̃3 is actually comparable
in magnitude to 	̃2 when taking the second (not the first)
Matsubara frequency into account. This is particularly true for
(U = 2, β = 8, n = 1), which happens to have a particularly
small 	̃3 at the lowest Matsubara frequency.

We can trace these large DF contributions, both for 	̃3

and 	̃2, back to the strong enhancement of F2 in the ladder
series for spin ↑↓ and q = (π,π ). Physically this corresponds
to strong spin fluctuations in the two-dimensional Hubbard
model. For 	̃2, these spin fluctuations combine with one
more interacting vertex F (2) in Eq. (4) to yield a strongly
k-dependent self-energy and pseudogap physics. But the very
same spin fluctuations also couple to the three-particle vertex
in Eq. (4), and yield a k-independent imaginary part of the

self-energy of similar magnitude. We additionally compared
the self-energies, as extracted from DMFT, dual fermion, based
on two and three-particle vertices, D�A and DCA in Fig. 9.
The results were obtained β = 8. The general trend, however,
of the dominant fluctuations influencing the three-particle
corrections in a sizable fashion is expected to persist within a
stable, self-consistent approach.

An important remark is in order regarding the 1/iν asymp-
totic behavior of the self-energy 	k for the real electrons:
the correction 	̃(3) [second line in Eq. (5)] gives rise to a
1/ν contribution in 	̃ (see inset in Fig. 6, left panel). This
modifies the, already correct, 1/iν asymptotics of the local
DMFT self-energy and leads, hence, to a wrong 1/iν behavior
of the total self-energy in Eqs. (8) or (9). Such a violation of the
asymptotic behavior of the self-energy can be also observed
in the D�A and the 1PI approaches [11,13,31] and can be
traced back [31] to a violation of the Pauli principle at the
two-particle level [i.e., more precisely to a violation of the sum
rule 1

β

∑
k χk

↑↑ = n
2 (1 − n

2 )] in ladder based approaches. In the
D�A and the 1PI approach, this problem has been overcome
[11,13,31]) by renormalizing the corresponding spin and/or
charge susceptibilities through a Moriya λ correction. Such a
procedure could be also applied for the situation in this paper
where the violation of the asymptotics of 	 originates from

FIG. 7. Same as Fig. 6 but now presenting the k dependence of the DF self-energy with (	̃2 + 	̃3) and without (	̃2) three-particle
vertex corrections. The figure shows the imaginary and real parts of the DF self-energy at the lowest Matsubara frequency along the path
� = (0,0) → X = (π,0) → M = (π,π ) → � through the Brillouin zone.
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FIG. 8. Positions of investigated points in parameter space
relative to the Néel-temperature within DMFT for the half-filled
system (which is an indication where spin fluctuations become more
relevant).

the inclusion of the local three-particle vertex. An alternative
route, which is more in the spirit of the DF method, would be
to choose an appropriate (outer) self-consistency condition for
the local reference system, removing the spurious asymptotic
behavior. The question about which of the proposed methods
is more suitable, needs further discussions, and goes beyond
the scope of the present paper.

Let us note that we find good agreement between DF
calculations based on vertices from CT-AUX and CT-HYB
calculations, as exemplarily shown in Fig. 10, though a
separate investigation of the vertices themselves showed
that CT-AUX vertices display less noise, especially at high
frequencies. Let us note that for higher frequencies, outside

FIG. 9. Comparison of the self-energy for the k points (π,0) and
(π/2,π/2) calculated from DMFT, two-particle dual fermion (	DF ),
three-particle dual fermion (	DF3), D�A and DCA for 72 lattice sites
for the parameters U = 2, β = 8, and n = 1.

FIG. 10. Comparison of 	3 calculated from CT-AUX (dashed
line) and CT-HYB (crosses) for the parameters U = 1, β = 8, and
n = 1.

the range of Fig. 10, the CT-HYB self-energy becomes more
noisy.

V. CONCLUSION

We have calculated local three-particle Green’s functions
and vertices employing CT-QMC algorithms in the hybridiza-
tion (CT-INT) and the auxiliary field expansion (CT-AUX).
The structure of the vertices for a fixed entering and leaving
frequency ν1 is found to be similar to the two-particle case.
High frequency features persist in the Green’s function, and
by extension, the vertex functions. Unavoidable noise in the
high-frequency parts of the vertices has only weak effects
when calculating three-particle self-energy corrections at small
frequencies as the dual propagators within DF introduce
enough damping. For larger frequencies, however, the high
noise level of the CT-INT vertex also reflects in a noisy
self-energy, whereas the CT-AUX vertex and constructed
self-energy have a low statistical error.

For different points in the parameter space of the Hubbard
model, we find sizable corrections to the DF self-energy when
including specific three-particle diagrams. For high enough
temperatures and for the doped model, these three-particle
vertex corrections are considerably smaller than the standard
DF self-energy. In particular, they are smaller than the two-
particle DF corrections for the nodal point (π/2,π/2). In
this parameter regime, our calculations indicate a proper
convergence of the DF theory when going to higher orders
in the expansions (from the n = 2 to the n = 3 vertex).

For higher interaction values, this picture changes. Spin
fluctuations are the dominant driving force influencing the
self-energy on the two-particle level. The same kind of
strong two-particle ladder contributions (the same kind of
spin fluctuations) couple additionally via the three-particle
vertex to an additional self-energy correction. This correction
term yields an additional k-independent contribution to the
imaginary part of the self-energy, and can be interpreted
as additional scattering at spin fluctuations. The considered
three-particle vertex correction term also gives a 1/ν
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asymptotic behavior, which is absent in standard DF and calls
for a closer investigation.
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APPENDIX A: CT-QMC MEASUREMENT OF
THE THREE-PARTICLE GREEN’S FUNCTION

For completeness, this appendix attempts to briefly sum-
marize the construction of an estimator for the impurity
three-particle Green’s function G(3) defined in Eq. (2). This
is not a comprehensive introduction, rather it can be read as an
addendum to Ref. [7].

In the hybridization expansion (CT-HYB), we can define
the interacting Green’s function by cutting hybridization lines
from a given partition function configuration, i.e.,

Gij (τ,τ ′) = 1

Z

δZ

δji(τ ′,τ )

=
〈∑

αβ

Mβαδ(τ − τα)δ(τ ′ − τ ′
β)δiiα δjjβ

〉
=: 〈gij (τ,τ ′)〉, (A1)

where (τ,τ ′) is the hybridization function, M−1
αβ =

iαjβ
(τα,τ ′

β) is the matrix of hybridization lines, α and β

are indices that run over the local creation and annihilation
operators, respectively, i and j denote spin orbitals, and 〈·〉
denotes the Monte Carlo sum over the configurations of Z. We
introduce the shorthand g(τ,τ ′) for the sum of all contributions
to the Green’s function for a single configuration. Note
that while the expectation value G(τ,τ ′) is time-translational
invariant, this is not the case for the individual configuration
g(τ,τ ′), since the inner time indices of the diagram have not
yet been integrated over.

Generalizing Eq. (A1) to the three-particle Green’s func-
tion, we find

Gijklmn(τ1, . . . ,τ6) = 〈gij (τ1,τ2)gkl(τ3,τ4)gmn(τ5,τ6)

− gil(τ1,τ4)gkj (τ3,τ2)gmn(τ5,τ6)

− gin(τ1,τ6)gkl(τ3,τ4)gmj (τ5,τ2)

+ gil(τ1,τ4)gkn(τ3,τ6)gmj (τ5,τ2)

+ gin(τ1,τ6)gkj (τ3,τ2)gml(τ5,τ4)

− gij (τ1,τ2)gkn(τ3,τ6)gml(τ5,τ4)〉. (A2)

This is nothing but the antisymmetrized sum over all possible
removals of three hybridization lines, which reflects the fact
that Wick’s theorem is valid for the (noninteracting) bath
propagator. The frequency convention chosen in Eq. (2)
translates to the following definition of the Fourier transform:

G
(3)σ1σ2σ3
ν1νν ′ω =

∫ β

0
d6τ Gσ1σ1σ2σ2σ3σ3 (τ1, . . . ,τ6)

× ei(ν1τ1−ν1τ2+ντ3−(ν−ω)τ4+(ν ′−ω)τ5−ν ′τ6). (A3)

A naive implementation of Eq. (A3) scales as O(k6N4
ω),

where k is the current expansion order and Nω is the
number of frequencies, and is thus prohibitively expensive for
even moderate k. A binned measurement in imaginary time,
while having superior scaling O(k6), is problematic, because
Gijklmn(τ1, . . . ,τ6) is discontinuous on a set of hyperplanes
τi = τj and their intersections, which in turn translate to large
binning artifacts in the Fourier transform.

It is thus advantageous split the estimator into two parts:
first, we perform a Fourier transform of the single-particle
quantity from Eq. (A1),

gij (ν,ν ′) =
∫ β

0
dτ dτ ′ gij (τ,τ ′)

=
∑
αβ

Mβα exp(iντα − ν ′τ ′
β)δiiα δjjβ

, (A4)

which we can speed up by using a nonequidistant fast Fourier
transform. Note again that we need to retain both frequencies,
as the quantity is not time-translational invariant. Finally, we
perform the assembly in Eq. (A2) directly in Fourier space:

G
(3)σ1σ2σ3
ν1νν ′ω = 〈gσ1 (ν1,ν1)gσ2 (ν,ν − ω)gσ3 (ν ′ − ω,ν ′)

− gσ1 (ν1,ν − ω)gσ2 (ν,ν1)gσ3 (ν ′ − ω,ν ′)δσ1σ2

− gσ1 (ν1,ν
′)gσ2 (ν,ν − ω)gσ3 (ν ′ − ω,ν1)δσ1σ3

+ gσ1 (ν1,ν − ω)gσ2 (ν,ν ′)gσ3 (ν ′ − ω,ν1)δσ1σ2σ3

+ gσ1 (ν1,ν
′)gσ2 (ν,ν1)gσ3 (ν ′ − ω,ν − ω)δσ1σ2σ3

− gσ1 (ν1,ν1)gσ2 (ν,ν ′)gσ3 (ν ′ − ω,ν − ω)δσ2σ3〉.
(A5)

Putting it all together, this reduces the scaling to
O(k2Nω log Nω) + O(N4

ω), which improves also on the scaling
of the time binning and makes the estimator computationally
feasible.

It is worth pointing out that Eq. (A2), and in general any
estimator for n > 1 particles constructed in this fashion, is not
valid for systems with interactions beyond density-density
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type and a hybridization function that is (block-)diagonal
in i and j . In such cases, one would have to resort to
worm sampling, which we however gauge as a formidable
computational challenge in itself due to the sheer size of the
worm configuration space and the size of the measured object
itself. Fortunately, this is not an issue here, as we are studying
the single-orbital case.

In the auxiliary field expansion (CT-AUX), one follows the
same procedure of applying Eq. (A5) to a Fourier transformed
quantity. However, since the CT-AUX estimator is formed
by adding a pair of local operators rather than cutting
hybridization lines, the single-particle contribution is instead
given by

gσ (ν,ν ′) = G0σ (ν,ν ′) + G0σ (ν,ν ′)mσ (ν,ν ′)G0σ (ν,ν ′) (A6)

mσ (ν,ν ′) =
∑
αβ

Mαβ exp(iντα − ν ′τ ′
β)δσσασβ

, (A7)

where G0 is the noninteracting Green’s functions, and Mαβ

is the matrix of auxiliary spin system. The scaling for the
estimator is the same as for the CT-HYB case; however, it is
evident from Eq. (A6) that the CT-AUX estimator is more well-
behaved at large frequencies, since the Monte Carlo signal
drops as 1/ν2.

APPENDIX B: DERIVATION OF GENERALIZED
SCHWINGER-DYSON EQUATION

Starting from the dual fermion action Eq. (3), we can
rewrite the functional-integral expression for the dual fermion
propagator G̃ as

G̃k =
∫
D[c̃†c̃ ]eSdual c̃

†
kc̃k∫

D[c̃†c̃ ]eSdual
. (B1)

Let us now systematically decompose Sdual into two parts Sk
dual

and S¬k
dual, where Sk

dual consists of all summands containing c̃
†
k

and S¬k
dual of all the remaining ones (containing no c̃

†
k). Since all

terms in the action have an even number of Grassmann-fields,
they commute and we can write

eSdual = eS
k
dualeS

¬k
dual . (B2)

We also know that (
Sk

dual

)2 = 0, (B3)

because all of its constituting terms contain c̃
†
k [and (c̃†k)2 = 0].

Therefore we also have

eS
k
dual = (

1 + Sk
dual

)
(B4)

and

Sk
dual · eS

k
dual = Sk

dual. (B5)

We use the relations above to rewrite Eq. (B1) as [37]

G̃k =
∫
D[c̃†c̃ ]eSdual c̃

†
kc̃k∫

D[c̃†c̃ ]eSdualSk
dual

. (B6)

The next steps in expressing the dual self-energy are a division
of both enumerator and denominator in Eq. (B6) by the dual
partition function

∫
D[c̃†c̃ ]eSdual and an explicit decomposition

of Sk
dual,

Sk
dual = (

G̃0,k

)−1
c̃
†
kc̃k +

∞∑
n=2

∑
k1,k2,k3,...

1

n!(n − 1)!
F (n)

× (k1,k,k3,k2, . . . )c̃k1
c̃
†
kc̃k3

c̃
†
k2

. . . . (B7)

Here, the sum over all k is gone as only the terms containing c̃
†
k

are included inSk
dual; multiple possibilities for the summed over

indices to generate the index k are taken care of by replacing
one of the factors n! by (n − 1)!. We now restore normal
ordering to the Grassmann variables in Sk

dual, yielding another
factor (−1)n for the term containing vertices. Inserting Eq. (B7)
into Eq. (B6), we get

G̃k =

∫
D[c̃†c̃ ]eSdual c̃

†
kc̃k∫

D[c̃†c̃ ]eSdual∫
D[c̃†c̃ ]eSdual (G̃0,k)−1c̃

†
kc̃k + ∑∞

n=2

∑
k1,k2,k3,...

(−1)n

n!(n − 1)!
F (n)(k1,k,k3,k2, . . . )c̃†kc̃k1

c̃
†
k2

c̃k3
. . .∫

D[c̃†c̃ ]eSdual

. (B8)

The enumerator by itself yields G̃k when performing the
Grassmann-integration, while in the denominator a sum of n-
particle dual Green’s functions multiplied by n-particle DMFT
vertex functions and a term G̃k(G̃0,k)−1 appear. We divide both
by the enumerator G̃k , and end up with

G̃k =
⎛⎝(

G̃0,k

)−1 +
∞∑

n=2

∑
k1,k2,k3,...

(−1)n

n!(n − 1)!

×F (n)(k1,k,k3,k2, . . . )G̃(n)(k,k1,k2,k3, . . . )/G̃k

)−1

,

(B9)

where G̃(n) denotes the dual n-particle Green’s function.
Employing Dyson’s equation, we recover an exact expression
for the self-energy of the dual fermions,

	̃k = −
∞∑

n=2

∑
k1,k2,k3,...

(−1)n

n!(n − 1)!

×F (n)(k1,k,k3,k2, . . . )G̃(n)(k,k1,k2,k3, . . . )/G̃k,

(B10)

which is reminiscent of the Schwinger-Dyson equation.
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