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A general understanding of quantum phase transitions in strongly correlated materials is still lacking.
By exploiting a cutting-edge quantum many-body approach, the dynamical vertex approximation, we make
important progress, determining the quantum critical properties of the antiferromagnetic transition in the
fundamental model for correlated electrons, the Hubbard model in three dimensions. In particular, we
demonstrate that—in contradiction to the conventional Hertz-Millis-Moriya theory—its quantum critical
behavior is driven by the Kohn anomalies of the Fermi surface, even when electronic correlations become
strong.
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Introduction.—The underlying quantum mechanical
nature of the physical world is often elusive at the macro-
scopic scale of every-day-life phenomena. In the case of
solid state physics, the most striking manifestations of
its quantum origin are confined to very low temperatures,
where thermal fluctuations are frozen. An important excep-
tion is realized where thermodynamic phase transitions (e.g.,
to amagnetic state) are driven to occur at zero temperature, at
a quantum critical point (QCP) [1–4]: The corresponding
quantum critical fluctuations become then abruptly visible
also at sufficiently high temperatures, representing one of the
most exciting subjects in condensed matter physics. While
QCPs are actually found experimentally in the phase dia-
grams of several compounds [1], a general theoretical treat-
ment of their physics is still lacking. Consequently, the
analysis of experiments often remains based on amere fitting
of the exponents controlling the critical behavior at theQCPs,
preventing a general comprehension of the phenomenon.
The major challenge, in this respect, is the competition of
several equally important physical mechanisms, because, at
the QCP, both long-ranged space and time fluctuations must
be treated on an equal footing. In fact, this is only possible in
limiting cases, such as in the perturbative regime, by means
of the Moriya [5]-Dzyaloshinskii-Kondratenko [6] theory
and the famous renormalization group (RG) treatment by
Hertz [7] and Millis [8]. However, an actual comprehension
of the experiments based only on these theories is highly
problematic, for two reasons. First of all, most quantum
critical materials are strongly correlated. This is certainly the
case for the (antiferro)magnetic quantum critical points
(QCPs) of transition metals under pressure, such as Cr
[9,10] or with doping, Cr1−xVx [11,12] and heavy fermion
compounds under pressure or in a magnetic field, such as in
CeCu6-xAux [13] and YbRh2Si2 [14,15]. It has been estab-
lished that one effect of strong correlations, namely, the

breakdown of the “large” Fermi surface containing both
conduction and f electrons and the associated local quantum
criticality [16,17], may lead to different critical exponents.
Nonetheless, we are still far away from identifying the
universality classes beyond the conventional Hertz-Millis-
Moriya (HMM) theory.
Besides electronic correlations, the physics of QCPs can

also be affected by specific properties of their Fermi
surfaces (FS), such as van Hove singularities, nesting, or
Kohn points. The effects thereof are often of minor
importance at high-T, but can be amplified in the low-T
regime. While van Hove singularities and nesting require
special forms of the electronic spectrum, Kohn points are
more generic and easily occur in three-dimensional (3D)
[18–20] and two-dimensional (2D) systems [21–23]. Kohn
points are defined as the points of the FS that (i) are
connected by the spin-density wave (SDW) vector Q and
(ii) beyond that have opposite Fermi velocities. These
points are associated with the textbook “Kohn anomalies”
of the susceptibilities [18,24], also called Q ¼ 2kF anoma-
lies, which is the momentum where they occur for an
isotropic FS. The effect of Kohn anomalies on the phonon
dispersion is well known [18] and the breakdown of
standard HMM theory has been conjectured [1,8].
In this Letter we make significant progress towards a

better understanding of QCPs. We demonstrate that FS
features in three dimensions lead to an unexpected univer-
sality class of its magnetic QCP, which also holds in the
nonperturbative regime. In principle, the complexity of the
competing microscopic mechanisms underlying a quantum
phase transition of correlated electrons calls for a quantum
many-body technique capable of treating both, extended
spatial and temporal fluctuations, beyond the weak-
coupling, perturbative regime. The approach we exploit
here is the dynamical vertex approximation (DΓA) [25–29],
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which is a diagrammatic extension [25,30–39] of dynamical
mean field theory (DMFT) [40,41] built on its two-particle
vertices [42,43]. It has been already successfully used to
study classical, finite temperature criticality of strongly
correlated systems in three dimensions [44–46], as well as
long-range antiferromagnetic (AFM) fluctuations and their
effect on the electronic self-energy in two dimensions
[26,47]. In fact, DΓA builds up nonlocal corrections at all
length scales on top ofDMFT [42], which in turn captures, in
a nonperturbative fashion, all purely local temporal corre-
lations [41]. Hence, per construction, the scheme is particu-
larly suited to the study of quantum critical phenomena.
The obtained phase diagram of the 3D Hubbard model as

a function of doping displays a progressive suppression of
the Néel temperature (TN), a crossover to an incommen-
surate SDW order, and eventually the vanishing of the
magnetic order at a QCP with ∼20% doping. Upon doping,
the critical scaling properties of the second-order magnetic
transition change abruptly from the ones expected for the
universality class of the 3D Heisenberg model, a “classical”
finite-T phase transition, to a quantum critical behavior
visible in a relatively broad funnel-shaped temperature
region above the QCP. Our results unveil the importance of
Kohn anomalies for the scaling properties of the QCP. In
particular, the T dependence of the magnetic susceptibility
(χQ ∝ T−γ) at the SDW wave vector Q and of the
correlation length (ξ ∝ T−ν) largely deviate from the typical
behavior expected from the HMM theory for AFM quan-
tum phase transitions in three dimensions.
Phase diagram.—We focus here on the magnetic tran-

sitions in the Hubbard model on a simple cubic lattice [48]:

H ¼ −t
X

hijiσ
c†iσcjσ þ U

X

i

ni↑ni↓; ð1Þ

where t is the hopping amplitude between nearest
neighbors,U the local Coulomb interaction, c†iσ (ciσ) creates
(annihilates) an electron with spin σ ¼ ↑;↓ at site i, and
niσ ¼ c†iσciσ; the average density is n ¼ hni↑i þ hni↓i. Here-
after, all energies are measured in units of 2

ffiffiffi
6

p
t, twice the

standard deviation of the noninteracting density of states; we
employ U ¼ 2.0, for which the highest TN at half-filling is
found in both, DMFT and DΓA [44]. We do not consider
phase separation [49], charge ordering [50,51], or disorder-
induced effects [52].
To explore the magnetic phase diagram, we employ

DMFTwith exact diagonalization (ED) as an impurity solver
and DΓA in its ladder-approximation version supplemented
by Moriyaesque λ-corrections; see Refs. [26,28,53] for the
implementation used here as well, see Supplemental
Material, Sec. II(ii) for more specific details [54]. This
approach includes spin fluctuations and was successfully
applied to calculate the critical exponents in three dimensions
before [44]. Superconducting fluctuations are treated at the
DMFT level (the full parquet DΓA [57,58] which would

incorporate these fluctuations is numerically too demanding
for the required momentum grids at the QCP).
The primary quantity we calculate is the static, fully

momentum-dependent magnetic susceptibility χq≡
χqðω ¼ 0Þ, as a function of temperature T. It has a
maximum at a specific (temperature-dependent) wave
vector q ¼ QT, and diverges at T ¼ TN , marking the
occurrence of a second-order phase transition towards
magnetism with ordering vector QTN

.
Figure 1 shows the corresponding divergence points

in the T-n phase-diagram both for DMFT (green) and
DΓA (red). By progressively reducing n, TN decreases and
two regions of the magnetic ordering can be distinguished:
(i) close to half-filling, we observe an instability at QTN

¼
ðπ; π; πÞ, i.e., to commensurate AFM (open triangles);
(ii) at higher doping (n≲ 0.88) the ordering vector is
shifted to QTN

¼ ðπ; π; Qz < πÞ, i.e., an incommensurate
SDW (filled triangles). The inset of Fig. 1 quantifies the
incommensurability π −Qz, i.e., the deviation from a
checkerboard AFM order.
Eventually, ordering is suppressed completely as

TN → 0, leading to the emergence of a QCP at
nDΓAc ≈ 0.805. We note that the critical filling in DMFT
is comparable to that obtained before [59] for a similar
interaction strength (U ¼ 2.04).
Critical properties.—Let us now turn to the (quantum)

critical behavior. We select representative temperature cuts
at four different dopings (n ¼ 1.0=0.87=0.805=0.79)
chosen on both the ordered and the disordered side of
the QCP. Along these four paths we compute two funda-
mental observables, which yield the (quantum) critical
exponents γ and ν of the magnetic transition: (i) the spin
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FIG. 1. Phase diagram of the 3D Hubbard model at U ¼ 2.0,
showing the leading magnetic instability as a function of the
density n in both DMFT and DΓA. Inset: Evolution of the
magnetic ordering vector along the instability line of DΓA,
showing a transition from an commensurate AFM with Qz ¼ π
(open triangles in the main panel) to incommensurate SDW with
Qz < π (full triangles in the main panel). The dashed red line
indicates the presumptive crossover between AFM and SDW.
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susceptibility χQT
∝ ðT − TNÞ−γ at its maximum, reached

at the T-dependent wave vector QT, and (ii) the corre-
sponding correlation length ξ ∝ ðT − TNÞ−ν. The latter is
calculated via χQTþq ¼ Aðq2 þ ξ−2Þ−1.
Figure 2 shows the T dependence of ξ−1 (upper panels)

and χ−1QT
(lower panels). Note that, apart from its intrinsic T

dependence, the susceptibility is also affected by the T
dependence of the wave vector QT, with the further
complication that the dominating wave vector changes
with both n and T.
In the half-filled case (leftmost panels of Fig. 2)

both ξ and χQT
display a critical behavior compatible with

the 3D Heisenberg universality class when approaching the
classical (finite-T) antiferromagnetic phase transition at
TNðn ¼ 1Þ ≈ 0.072. The numerically extracted critical expo-
nents of ν ≈ 0.72 and γ ≈ 1.37 are consistent with previous
calculations [44,46]; cf. our overview in Fig. 3 below.
Significant changes are observed at a doping, where the

SDW order appears (n≃ 0.87, second column of Fig. 2).
Here, by inspecting ξ−1ðTÞ and χ−1Q ðTÞ, a clear crossover is
found between the high-temperature region (T > 0.04),
where commensurate AFM fluctuations dominate [maxi-
mum of χq at ðπ; π; πÞ], to the low-temperature regime
(T < 0.025) where incommensurate fluctuations at
ðπ; π; Qz < πÞ outpace these before approaching the phase
transition. At the crossover, ξ−1 shows a maximum in
Fig. 2, which is, however, not an indication of a decreasing
correlation length, but rather reflects the inapplicability of
our standard definition of ξ: In the vicinity of the AFM-to-
SDW crossover, we have a double-peak structure in χq
(not shown) at Qz ¼ π and Qz ∼ π − 0.4, which altogether
appears in the form of a large peak width, i.e., a large ξ−1.
Despite the apparently more complex temperature

behavior of ξ and χQ, and the onset of an incommen-
surate order, the critical exponents at low T are not
altered at all (ν ≈ 0.72, γ ≈ 1.42) with respect to the 3D

Heisenberg values. This is ascribed to the persistence of a
classical phase transition at TNðn ¼ 0.87Þ ≈ 0.012, which
still belongs to the same universality class as the commen-
surate one. At higher T a linear behavior of the inverse
susceptibility (which is characteristic for a mean-field
theory for bosonic degrees of freedom) is eventually
recovered.
Quantum criticality.—Before turning to our DΓA data at

the QCP, let us briefly discuss the analytical results for the
nonuniform susceptibility in the random phase approxi-
mation (RPA). We start by recalling that the standard HMM
approach relies on the expansion [1,5–8]

χQþqðωÞ ¼ Aðq2 þ ξ−2 þ iω=jqjz−2Þ−1; ð2Þ
where the first and third term in the denominator are
determined by the band dispersion (under the assumption
that no Kohn points exist). The T dependence of the
correlation length is ξ−1 ∝ Tν with ν ¼ ðdþ z − 2Þ=ð2zÞ ¼
3=4 (d ¼ 3 and z ¼ 2 for a SDW). It originates from the
(para)magnon interaction, dominating over the T depend-
ence from the bare susceptibility. Since dþ z > 4 we are
above the upper critical dimension, and quantum criticality
can be described by a bosonic mean-field theory.
As shown in the Supplemental Material [54], for the

Kohn points on the FS spin fluctuations are, however,
enhanced due to their antiparallel Fermi velocities, and
their quantum critical behavior changes dramatically.
Moreover, as our DΓA calculations below demonstrate,
the Kohn quantum critical behavior survives also in the
strongly correlated regime. While the (possible) inappli-
cability of HMM in the presence of Kohn points has been
pointed out before [1,8], their implication on the quantum
critical behavior in three dimensions and particularly the
critical exponents have not been analyzed hitherto.
For the simple cubic lattice, which we consider here for

the numerical comparison with the DΓA below, there are

0.0

1.0

2.0

3.0

ξ-1
n = 1.00

TN

ν ≈ 0.72

0.0

1.0

2.0

3.0

n = 0.87

TN

ν ≈ 0.72

0.0

0.5

1.0

1.5

2.0

n = 0.805
ν ≈ 0.9

0.0

0.5

1.0

1.5

2.0

n = 0.79
ν ≈ 1.0

0.0

0.1

0.2

0.3

0.0 0.05 0.1 0.15

T

TN

γ ≈ 1.37

0.0

0.04

0.08

0.12

0.0 0.025 0.05 0.075

T

TN

γ ≈ 1.42

0.0

0.04

0.08

0.12

0.0 0.01 0.02 0.03 0.04

T

γ ≈ 0.6

0.0

0.04

0.08

0.12

0.0 0.01 0.02 0.03 0.04

T

γ ≈ 0.9

χ Q
-1

FIG. 2. Inverse correlation length (ξ−1, upper panels) and susceptibility (χ−1Q , lower panels) computed in DΓA as a function of T for
different n. The solid lines show the fits for extracting the critical exponents ν and γ (using the respective green points). The insets show
enlargements of the four respective lowest temperature points.
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four pairs of lines of Kohn points ð�Kx;∓ Kx − π;−Qz=2Þ
and ðπ � Kx;∓ Kx;Qz=2Þ, which are connected by the
ground-state spin density wave vectors Q0 ¼ ðπ; π; QzÞ
(and symmetrically equivalent wave vectors) and have
opposite Fermi velocity; see Figs. 3(e) and 3(f). The
leading contributions in the momentum and T dependence
of χ−1q are nontrivial already in RPA. They stem from the
vicinity of the lines’ end points ð0; π;�Qz=2Þ and
ðπ; 0;�Qz=2Þ, yielding (see Supplemental Material [54])

χQTþq ≃ ½ðχ−1Q0
ÞT¼0 þ AT1=2 þ BT−3=2q2z �−1: ð3Þ

Here, QT ¼ Q0 þ ð0; 0; δQzÞ, with δQz ¼ −2CT describ-
ing a shift of the wave vector with the temperature and
A, B, C are positive factors, containing weak, ln lnð1=TÞ,
corrections. The susceptibility Eq. (3) is in stark contrast to
the standard expansion Eq. (2). It is strongly anisotropic in
momentum and strongly T dependent due to nonanalytic
momentum and temperature dependences of the bare sus-
ceptibility in the presence of Kohn anomalies. For qz ¼ 0we
obtain the critical exponent γ ¼ 1=2 for the susceptibility,
whereas the critical exponent for ξ (defined in the direction of
the z axis) is ν ¼ 1. These exponents are strikingly different
from those of HMM theory, ν ¼ 3=4, γ ¼ 2ν ¼ 3=2. Even
their relative magnitude is reversed; see Figs. 3(c) and 3(d).
A corresponding, radical modification of the critical

properties at the QCP (at nc ¼ 0.805) is found also numeri-
cally in DΓA, see Fig. 2 (3rd column). Here, the critical
exponents change to ν ¼ 0.9 ð�0.1Þ and γ ¼ 0.6 (�0.1)
(with an additional error of the same magnitude stemming
from the selection of the proper T range, see Fig. 2; a detailed

error analysis can be found in the Supplemental Material
[54], Sec. II). These exponents are in stark contrast to any
standard expectation such as the 3D Heisenberg results or
HMM theory, but agreewith our RPA exponents. Evenwhen
considering the significant error bars, it is safe to say that only
the Kohn-anomaly scenario is consistent with our DΓA
results as these irrevocably show a roughly linear behavior of
ξ−1ðTÞ in the whole low- and intermediate T regime above
the QCP (i.e., ν ≈ 1) and, even more clear cut, a strong
violation of the scaling relation γ ¼ 2ν [60], implying a
highly nontrivial anomalous dimension η.
Slightly overdoping the system (4th column of Fig. 2,

n ¼ 0.79) yields a Fermi liquid with a finite χQ for T → 0.
In the quantum critical regime (i.e., excluding the low-
temperature points which lie outside the quantum critical
region) we find similar exponents as at optimal doping
(ν ≈ 1.0, γ ≈ 0.9; the determination of the accurate value of
the critical exponent γ is more difficult because of the
restricted temperature range).
No univocal prediction can be made instead for the

dynamical exponent z: The frequency dependence of χqðωÞ
in the presence of Kohn anomalies has a rather complicated
form [23,62], not characterized by a single exponent. The
same effect is also responsible for a non-Fermi-liquid
power law in the 2D self-energy [23].
Having whole lines of Kohn points and, hence, the above

critical exponents is evidently specific to the 3D dispersion
with nearest neighbor hopping. Consistent with the results
of previous studies [20], however, we demonstrate in Sec. I D
of the Supplemental Material [54] that the critical exponents
are ν ¼ γ ¼ 1 for the more general situations of a FS with
isolated Kohn points having opposite masses in two direc-
tions. This again violates the HMM prediction. Please note
that these values of the exponents in three dimensions
coincide (up to logarithmic corrections) [63] with those
expected for Kohn points in two dimensions [22].
In general, the momentum dependence of vertex correc-

tions beyond RPA and the self-energy corrections should
not be too strong, and the quasiparticle damping should be
sufficiently small at T → 0 to preserve the above-mentioned
values of the critical exponents in the interacting model.
Under these assumptions,we expect theobservedbehavior to
be universal, with several new “universality classes” depend-
ing on whether there are lines of Kohn points with divergent
or nondivergent mass, or isolated Kohn points with opposite
masses (see Supplemental Material [54]).
The final outcome of our calculations, i.e., unusual values

of ν, γ and of their mutual relation, which are in a different
universality class than HMM theory, can be understood thus
as the consequence of two competing physical processes at
work: On the one hand, as TN → 0 at the QCP, the temporal
fluctuations increase the effective dimension of the system
above the three geometrical ones. This pushes it above the
upper critical dimension and renders non-Gaussian fluctua-
tions irrelevant as in HMM. On the other hand, the effect of

FIG. 3. (a),(b) Magnetic correlation length ξ and magnetic
susceptibility χQ vs T comparing the critical exponents ν and γ
for a classical finite-temperature phase transition in (a) mean-field
theory and (b) for the 3D Heisenberg model. (c),(d) Quantum
critical behavior comparing (c) standard HMM theory and (d) our
scenario with Kohn line anomaly. (e) Visualization of (one out of
four pairs of) Kohn lines in the 3D FS of the simple cubic lattice
with nearest-neighbor hopping and the connecting SDW vector
Q0. (f) 2D cut with the Kohn line of (e) and the corresponding
(opposite) Fermi velocities.

PRL 119, 046402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
28 JULY 2017

046402-4



Kohn anomalies, yielding a nonanalytic momentum and
temperature dependence of the susceptibility, are no longer
smeared out by finite T and become relevant.
Conclusions.—We have studied the magnetic QCP in the

doped 3D Hubbard model. We find that, even above the
upper critical dimension, quantum criticality is not of
the standard Hertz-Millis-Moriya type. Even in the pres-
ence of strong correlations critical properties are driven by
Fermi-surface features: the presence of Kohn points leads
to unexpected critical exponents, the breakdown of the
scaling relations and not univocal definitions of the
dynamical exponent z. The implications of our results
go well beyond the specific system considered and also
hold for other dispersion relations, showing how strongly
the QCP physics can be driven by peculiar features of the
FS. In this perspective, the cases where controversial
interpretations of experiments in the proximity of QCPs
arise might need to be reconsidered.
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