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In this work, we analyze in detail the occurrence of divergences in the irreducible vertex functions for one
of the fundamental models of many-body physics: the Anderson impurity model (AIM). These divergences, a
surprising hallmark of the breakdown of many-electron perturbation theory, have been recently observed in several
contexts, including the dynamical mean-field solution of the Hubbard model. The numerical calculations for the
AIM presented in this work, as well as their comparison with the corresponding results for the Hubbard model,
allow us to clarify several open questions about the properties of vertex divergences in a particularly interesting
context, the correlated metallic regime at low temperatures. Specifically, our analysis (i) rules out explicitly the
transition to a Mott-insulating phase, but not the more general suppression of charge fluctuations (proposed in
[O. Gunnarsson et al., Phys. Rev. B 93, 245102 (2016)]), as a necessary condition for the occurrence of vertex
divergences, (ii) clarifies their relation with the underlying Kondo physics, and, eventually, (iii) individuates which
divergences might also appear on the real-frequency axis in the limit of zero temperature, through the discovered

scaling properties of the singular eigenvectors.
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I. INTRODUCTION

The foundation of the Feynman diagrammatic technique
relies on the many-body perturbation expansion. Nonetheless,
its high flexibility and the transparency of the physical inter-
pretation have often motivated the application of diagrammatic
schemes also well beyond the perturbative regime. This is
particularly true for the many-electron problem in condensed
matter theory. In fact, for the latter, the identification of a small
parameter controlling the perturbation expansion can become
a very hard task, especially if the Coulomb interaction is not
sufficiently screened, a common situation in transition-metal
oxides and heavy-fermion compounds.

In general, exploiting diagrammatic techniques beyond the
regime of validity of the underlying perturbation expansion is
a viable option, and, in some cases, also a rewarding one, as
witnessed, e.g., by the success of the dynamical mean-field
theory (DMFT) [1] and its extensions [2,3]. However, in doing
s0, one must expect to face particular problems, which might
limit the applicability of well-known diagrammatic relations
and challenge the corresponding algorithmic implementations
in the strong-coupling regime. Not surprisingly, considering
the fast developments of the diagrammatic extensions [3—11]
of DMFT, some of these issues have been recently put in the
focus of the forefront literature on quantum many-body theory.

In particular, two main kind of problems have been brought
to light [12,13] and analyzed. The first one is the occurrence
of divergences of the two-particle-irreducible (2PI) vertex
functions in several many-electron models. In fact, their
occurrence has been reported, even for moderate values of
the electronic interaction, in DMFT studies of the disor-
dered binary mixture (BM) [14], the Falicov-Kimball (FK)
[12,14-16], and the Hubbard model [12,14,17,18]. Analytical
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calculations [12,14,17,19] for the atomic limit (AL) of the
Hubbard model [20] or the one-point model [21,22] have pro-
vided further evidence of the robustness and the generality of
the occurrence of these divergences of the 2PI vertex. Finally,
calculations with the dynamical cluster approximation (DCA)
have also demonstrated [18,23] that the observed divergences
are not an artifact of the purely local treatment of DMFT. The
irreducible vertex divergences appear as a consequence of the
noninvertibility of the Bethe-Salpeter equation in the fermionic
Matsubara frequency space (see Sec. II), associated with a
simultaneous [14] noninvertibility of the parquet equations.
In specific cases (FK [14-16], BM [14]), their presence has
been also reported on the real-frequency axis.

The second problem reported [13,14,18,19,24-26] is an
intrinsic multivaluedness of the Luttinger-Ward functional
(LWF). This unexpected characteristic of the LWF has been
demonstrated [13] by considering the self-consistent (bold)
perturbation expansion for the self-energy X[G] in the AL of
the Hubbard model, for which the exact Green’s function is
known analytically. The corresponding resummation is found
always to converge but, for interaction values U larger than a
specific U, it converges to unphysical results, indicating the ex-
istence of at least two branches of the LWF for the self-energy.

Eventually, recent studies [26] have rigorously demon-
strated that these two aspects are exactly related, providing
an analytic proof that any crossing of different branches in
the LWF functional is associated to a divergence of the 2PI
vertex, occurring for the same parameters (see Sec. A in the
Supplemental Material of Ref. [26]).

From a purely theoretical viewpoint, these problems can be
regarded as complementary manifestations of the breakdown
of the perturbation expansion. At the same time, from a
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more practical perspective, their potential impact on several
cutting-edge algorithmic developments can also be significant.
In particular, we recall that the 2PI vertex functions constitute
the fundamental building block of all diagrammatic theories
based on the Bethe-Salpeter or parquet equations [27-30],
such as, e.g., the dynamical vertex approximation (DI'A)
[4,31,32], the multiscale [33], and the quadruply-irreducible
local expansion (QUADRILEX) [11] approach, or the parquet
decomposition of the self-energy [23]. Similarly, the presence
of multiple branches in the LWF might pose difficulties to
bold diagrammatic Monte Carlo schemes [13,18,34]. The
discussion on how (and to what extent) it is possible to
circumvent these difficulties within the different algorithms is
a subject of current scientific debate [35].

One should mention, moreover, that the interpretation of
the physics underlying this twofold manifestation of the break-
down of the perturbation expansion is still debated. Certainly,
these crossings and divergences are not associated with any
thermodynamic phase transition, due to the mutual compensa-
tion of (divergent) irreducible and fully irreducible diagrams in
the parquet equations, which ensures that the full vertex stays
finite (see Sec. [I B). It has been proposed [12,14,15], however,
that they might be interpreted, for example, as precursors of
the Mott metal-insulator transition [43] (MIT), as features
of the separation of spectral weight (such as the Hubbard
subbands), as an implication of the emergence of kinks in the
spectral function [44,45] and specific heat [46,47], and even in
terms of qualitative changes in the nonequilibrium asymptotic
behaviors [12]. Subsequently, it has been argued [23,26], that
their occurrence in the Hubbard model is associated with
the progressive suppression of the charge susceptibility for
increasing values of the electrostatic repulsion U.

The aim of this paper is to improve our current understand-
ing of the properties of the 2PI-vertex divergences, especially
in the arguably most interesting parameter regime of low
temperatures and moderate interaction values, where they
appear to coexist with a metallic, Fermi-liquid ground state.

This will provide, in turn, hitherto missing pieces of
information about the vertex divergences. In fact, recent
studies [14-16] have reported progress in understanding the
(relatively) simpler region of high temperatures and large
interactions: Here, the properties of the DMFT vertex functions
of the Hubbard model are efficiently approximated by easier
calculations performed on the one hand, in the BM and FK
[14-16] cases, whose DMFT solutions correspond [48,49]
essentially to the coherent potential approximation (CPA) [50],
and on the other hand in the AL [14] case. In these models, it has
been shown [14] that the proliferation of the divergence lines
in the corresponding phase diagrams is merely a consequence
of the Matsubara representation of a unique underlying energy
scale v*, which, in the case of the BM, completely controls
all the vertex divergences. As a result, all the divergence lines
in the phase diagrams of the BM collapse onto a single one,
if multiplied with the appropriate Matsubara index (2n — 1).
For the FK and the AL cases, this precise characterization
applies, however, only to half of the divergence lines [14,51].
Further, at T — 0 all the lines accumulate at the same value
of U, where the vertex is found to be diverging even on
the real-frequency axis. Eventually, the scale v* could be
directly related to specific properties which characterize the

single-particle Green’s function of the model evolving towards
the opening of a Mott spectral gap. More precisely, in the BM
and FK models, v* corresponds to the frequency where the
minimum of Im G(iv,) is found [14], in the AL, interestingly,
this is the case for the inflection point [51].

None of these semianalytical results, however, turned out
to be applicable for the interpretation of the low-T vertex
divergences in the Hubbard model. In fact, in the low-7 region
of the corresponding DMFT phase diagram, the divergence
lines display a clear reentrance, somehow similarly shaped as
the Mott-Hubbard MIT, with a significant spread for T — O.
Consequently, no unique energy scale v* could be identified,
no collapse of the lines is observed, as well as any accumulation
at a specific U value for ' = 0. Also, classifying the different
types of divergences according to their locality in frequency
space [14] (see also Sec. II B) appears to work no longer. The
plausible origin of these complications with respect to FK or
AL must lie in the differences of the underlying physics. The
major one is, arguably, the presence of low-energy coherent
quasiparticle excitations in the correlated metallic region of
the Hubbard model: these are missing, per construction, in the
simpler cases of FK and AL.

The path towards a better understanding of the nature
of the vertex divergences in the correlated metallic regime
is hampered by the intrinsic feedback effects of the self-
consistency procedure in DMFT: the embedding bath of the
auxiliary Anderson impurity model [52], for which the vertex
functions are computed, is continuously readjusted, including
in itself an important part of the correlation features of the
DMEFT solution. For example, it has been pointed out [45] that
these self-consistent effects are responsible for the appearance
of two different low-energy scales (wgr and wcp following the
notation [53] of Ref. [44]) and, thus, for the related low-energy
kinks in the self-energy [44] and the specific heat [46].

To avoid this additional complication, in this work we will
disentangle the different effects by considering a more basic
system than the Hubbard model, still capable, however, of
capturing the physics of low-energy quasiparticle excitations:
the Anderson impurity model (AIM). In fact, the AIM, defined
by a fixed electronic bath embedding one correlated impurity
site, describes highly nonperturbative processes (such as the
many-body effect related to the Kondo screening), but, at the
same time, yields important simplifications of the underlying
physics with respect to the self-consistent solution of DMFT:
for example, no Mott-Hubbard MIT is present at 7 = 0, so
that the ground-state properties remain Fermi-liquid-like for
all values of the local electrostatic repulsion U. In particular,
the comparison of our results for the vertex divergences of
the AIM to the ones found in the Hubbard model will allow
us to rigorously address a set of important questions, left
unanswered in the most recent literature:

(i) Is the Mott-Hubbard MIT a necessary condition for
the occurrence of the vertex divergences and their related
manifestations?

(ii)) Given that for the Hubbard model at low T it was
not possible to identify a unique scale v*, can there be a
scenario, comprising two energy scales on the real axis (wpL
and wcp) compatible with the vertex divergences? In the case of
a positive answer, can one find a relation with the low-energy
kink(s) [44.,45] in the self-energy and Cy(T') [46], found in

245136-2



DIVERGENCES OF THE IRREDUCIBLE VERTEX ...

PHYSICAL REVIEW B 97, 245136 (2018)

previous DMFT studies. However, for the AIM with large
conduction electron bandwidth studied in this paper, only one
energy scale, the Kondo scale [54] Tk, exists.

(iii) Can vertex divergences on the real-frequency axis be
expected, similarly as in the BM/FK case?

(iv) What is the role played by the Kondo scale [54], which
has, for the case of the AIM, a direct physical meaning?

(v) Can one exploit the simpler AIM results presented
in this work, to predict some still unknown aspects of the
divergences in the Hubbard model?

The paper is structured as follows: In Sec. II we define the
specific AIM used in our calculations as well as the quantum
field theory formalism necessary to analyze the irreducible ver-
tex divergences, and describe concisely the numerical method
applied as impurity solver. Thereafter, in Sec. I1I, our numerical
results, together with a comparison to previous DMFT findings
for the Hubbard model, are presented. In Sec. IV, a detailed
analysis of the data shown in Sec. III is made, providing
clear-cut answers to the specific questions (i)—(v) posed above.
Finally, in Sec. V, a conclusion and an outlook of our work are
presented.

II. FORMALISM AND METHODS

A. Anderson impurity model

In this work we consider an AIM with a fixed hybridization
to a bath of noninteracting electrons with a constant (box-
shaped) density of states (DOS). The corresponding Hamil-
tonian reads as

H = Zedd;da + Und,T"d,i

+ Z ekcli,ack.a + Z(deick,a + Vljcli,ada)’ (1)
k,o k,o

where €, represents the energy of the impurity level, U is the
value of the local interaction, and d/d, creates/annihilates
an electron on the impurity site ng , = dgd The first term
in the second line of Eq. (1) is the kinetic energy of the
noninteracting bath of electrons with € as the dispersion
relation and ck +/¢x o> the creation/annihilation operators of
the bath electrons. Flnally, the last terms represent the hopping
onto/off the impurity site. In the specific AIM chosen for this
work, the DOS of the bath electrons is p(¢) = (1/2D)®(D —
|€]), with the half-bandwidth D = 10 being the largest energy
scale of the system. The hybridization is assumed to be k
independent and set to 2 (Vx =V =2) and the chemical
potential is setto u = U /2 (half-filled/particle-hole symmetric
case). The choice of a box-shaped DOS and a k-independent
hybridization ensures that no particular features of p(¢) or V
will affect the study of irreducible vertex divergences, and
the selected parameter set should guarantee that the Kondo
temperature of our AIM remains sizable with respect to the
other energy scales, for the half-filled case considered.

B. Two-particle formalism

The two-particle-irreducible vertex function I, whose di-
vergences will be studied in this work, is, per definition, the
fundamental building block of the Bethe-Salpeter equation

—— >
Xc = X0 - X0 | FC | Xc
— -

FIG. 1. Schematic representation of the Bethe-Salpeter equation
in the charge channel (see text).

for the generalized susceptibility. While for more detailed
information and definitions we refer the reader to Ref. [55]
as well as Refs. [3,14,17,56,57], we want to summarize here
solely the crucial objects necessary for our analysis We

start, then, from the generalized susceptibility X]j’;lvgq, at the

impurity site, which is defined (in the particle- hole channel) as

B

ViV 2 —i i —i(vy

X i 2/ dridndr e Tt iU+ 2)T2 =i (Vy +82)T3
' 0

x [(Ted] (1), (22)d}.(z3)d,,,(0))
— (Ted} (01)d, (1)) (Ted],(z3)d,.(O))]. @

Here, ph refers to the particle-hole notation [58], 0 and o’ de-
note the spin directions of the impurity electrons, 7T; is the time-
ordering operator, and v, v/, and €2, represent two fermionic

and one bosonic Matsubara frequency, respectively. x ;" o
can be calculated using an impurity solver, as described in
the following section. We recall, that, in the case of SU(2)
symmetry, the Bethe-Salpeter equation can be diagonalized in
the spin sector defining the usual charge/spin channels. For this
work, the charge channel [ 32" %" = X;’},VT'? "4+ X;;,?f ]is of
particular interest.

Note that €2, will be set to zero throughout this work,
and is therefore omitted hereinafter. This is done to perform
comparisons of the results presented here to results of the
recent literature [12,14], but also because the irreducible vertex
divergences appear, systematically, at lower interaction values
for €2, = 0, compared to cases for €2,, # 0.

The Bethe-Salpeter equation in the charge channel reads as

VUV VnV/ _ VnVny y~Vny Vny Uuzvn’
Xe Xph,0 2 E: phOF Xe . 3)

U”l U,,Z

Here, T."" is the irreducible vertex function in the charge
channel, the bare susceptibility is given by XU”U" e
—BG(W,)G(2, + v,),,,, . In Fig. 1, a schematic representa—
tion of the Bethe-Salpeter equation is given, from which it can
be seen that it represents a two-particle analog to the Dyson
equation.

Inverting Eq. (3) and considering T, X0, and x. as
matrices of the fermionic Matsubara frequencies (v,,v,)
leads to

Te=Bxd" = Xpmol ™. )
Itis obvious, hence, that all divergences of I' . must correspond
toasingular x . matrix [ 14] (typically no divergence is expected
in [x ph,0]71 ). In fact, analyzing the matrix in its spectral
representation, i.e., the basis of its eigenvectors,

(X1}, Zvuvn ) (i) VEGiv), 5)
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FIG. 2. Visualization of the relation between the singular eigen-
values A, and eigenvectors V,(iv,) of x. and the full frequency
structure of ', in proximity of a divergence (the specific calculation,
shown in the main panel as an example, has been performed for an
AIM with U = 3.321444 and B = 40, yielding A, = 0.00025). The
color of the singular eigenvectors (not related to the color scale of the
main plot) highlights the connections to the sign/intensity structure
of I'. as a function of v,, v,/, defined by Eq. (6). The values of I, are
rescaled by 1/ in the main panel for a better readability.

leads to the one-to-one correspondence of an irreducible vertex
divergence to a vanishing eigenvalue (A;—, — 0) of the matrix
X . in the fermionic frequencies v, v, .

In particular, for a parameter set (U,T) close to a diver-
gence, the corresponding eigenvalue will be vanishingly small
(Mi—e = 0), leading to a simplified expression for I',.:

TUv ~ B2VE(iv, ) A, VEGivy). (6)

One sees immediately how in the proximity of a divergence
the full frequency structure of I',, i.e., its dependence on the
fermionic Matsubara frequencies v, and v,/ is determined
[14] by the nonzero components of the eigenvector Vy (iv,)
associated to the vanishing eigenvalue X,. This leads to a
distinction of two classes of irreducible vertex divergences,
a global one with an eigenvector V; (iv,) # 0 V v, and a local
one, where only for a finite subset of frequencies V; (iv,) # 0
holds.

The interplay of eigenvectors, eigenvalues, and I, is further
discussed in Sec. IIIB. Already at this stage, however, we
illustrate how the direct relation of Eq. (6) is actually realized
in the proximity of a divergence: In Fig. 2, we show a pertinent
example of the vertex function computed for a parameter set
very close to a divergence, where the lowest eigenvalue A, of
X 18 0(10™*). In this figure, the full (fermionic) Matsubara
frequency dependence (v,,v,/) of I, is plotted (main panel)
together with the eigenvector V(iv,) (both on the left and
on top of the main panel) associated to the smallest, almost
vanishing, eigenvalue A,. It can be easily noticed how in the
proximity of a vertex divergence, the frequency structure of T',.,
including the location of the maxima/minima and its signs, is
completely controlled by the corresponding frequency depen-
dence of the singular eigenvector V, (iv,). The latter encodes,
thus, all the essential information about the divergence itself,

and will be used in the following for analyzing the evolution of
the frequency structure of the vertex function in the proximity
of different divergences.

Note that in Sec. III also results for the divergences in
the particle-particle up-down channel are shown [,"" 1. For
this channel, the same general consideration made here holds,
the corresponding Bethe-Salpeter equation can be found in
Appendix B of Ref. [55] and reads as, in particle-particle
notation,

V(= v,y 1 VpVy Vn(=Vn D\ y=Vni Yy Vo Uyt

Xﬂp(,N ‘= B Z (X/)/AOl ~ Xppti )Fpr)l,?jxppz,o :

Yy Vip

Letus also briefly comment, at the end of this section, on the
degree of two-particle irreducibility of the vertex considered.
While the vertex we obtain by the inversion of the Bethe-
Salpeter equation in a given channel (e.g., the charge channel)
is, per construction, 2PI only in that specific channel, its
divergences correspond [12,14] precisely to the divergences
of the fully 2PI vertex function. In this respect, we recall
that the vertex divergences found here are not associated to
any thermodynamic phase transition, and never appear in the
full two-particle scattering amplitude (F). Hence, due to the
algebraic structure of the parquet equation [27,55], if one of
such a divergence occurs, e.g., in I, it has to be compensated
by an analogous divergence of the fully 2PI vertex function,
in order to preserve the finiteness of F' (for more details see
[3,14]). This has been explicitly verified also for the vertex
divergences discussed in the following sections.

We note that the choice of studying the divergences in I',,
instead of considering the equivalent ones in the fully 2PI
vertex, is also suggested by the more direct connection of
I', to the LW functional (of which I', represents the second
functional derivative) and, hence, to the previously mentioned
multivaluedness issues [13,18,26].

C. Calculations in CT-QMC

We solve the AIM using a continuous-time quantum Monte
Carlo (CT-QMC) impurity solver in the hybridization expan-
sion [59,60]. The algorithm is based on a stochastic Monte
Carlo sampling of the infinite series expansion of the partition
function in terms of the hybridization.

From the stochastic series expansion of the partition func-
tion one can construct estimators for the one-particle and
two-particle Green’s function and, thus, the generalized sus-
ceptibility defined in Eq. (2). Extracting the irreducible vertex
function from the one- and two-particle Green’s functions,
by inverting the corresponding Bethe-Salpeter equation, is a
post-processing step to the Monte Carlo measurement, as is the
calculation of eigenvalues and eigenvectors of the generalized
susceptibility.

Further, we recall [14] that for an easier numerical iden-
tification of the singular eigenvalues and eigenvectors it is
convenient to diagonalize (x./x pn.0)""" instead of x."" . This
way it is straightforward to distinguish the vanishing eigen-
values of y."" from the trivial high-frequency eigenvalues
(ox1/v2) and the corresponding eigenvectors. The results are
not influenced by this procedure because the vanishing of an
eigenvalue of x."" corresponds to the one of (xc/Xpn.0)"""
(X ph.0 is not singular). Hence, the specific interaction value for

Vy Uy
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FIG. 3. Left panel: T-U diagram of the AIM at half-filling, showing the first divergence lines along which the irreducible vertex functions

diverge. For red lines, this divergence takes place in the charge channel I'c
charge and the particle-particle up-down channel, I'. and F;;?’%/EQ":O)

Vv, (2, =0)

vp v, (2,=0) . . . .
ni =" along the orange lines simultaneous divergences in the

, are observed. The dashed blue box marks the parameter region

where the “atomic” ordering of divergence lines is violated (see text). Right panel: divergence lines of the half-filled unfrustrated Hubbard
model (square lattice dispersion with 4t = 1), solved with DMFT. The lines are plotted with the same color code; the blue solid line represents

the Mott-Hubbard MIT [64]. Readapted from Ref. [14].

a given temperature where a vertex divergence occurs, i.e., U ,
is identical. Further, for all cases considered in this work, the
numerical difference between the corresponding eigenvectors
was found to be negligible. Hence, in the rest of the paper we
will consider identical, for all practical purposes, the singular
eigenvectors of (x./xpn.0)"""" and xc."™ . The details of the
procedure for determining U for a given temperature are
described in Appendix C.

For the specific CT-QMC calculations, of the one- and
two-particle Green’s function needed in this work, we have
employed the W2DYNAMICS software [61]. The vertex func-
tions generated by W2DYNAMICS were previously tested against
other established codes [62]. Additionally, we have bench-
marked the reliability of the impurity solver in computing
the vertex divergences of the AIM, against exact diagonal-
ization (ED) results in an intermediate 7 region, where the
discretization of the electronic bath affects the ED procedure
only moderately.

For the low-temperature calculations, we have quantified
the reliability of our results using a jackknife error analysis
[63], which is described in Appendix C.

III. NUMERICAL RESULTS
A. T-U diagram

We start to illustrate our numerical results by reporting
in the 7-U diagram of the AIM (Fig. 3 left panel) the first
(five) lines along which the two-particle-irreducible vertex
diverges. These correspond to the interaction values U at
given temperatures 7', where an eigenvalue of the generalized
susceptibility (charge or particle-particle up-down channel)
vanishes [see Eqs. (4) and (5)]. Specifically, the red lines
mark irreducible vertex divergences taking place in the charge
channel only, while orange lines represent divergences taking
place in the charge and the particle-particle up-down channel
simultaneously.

Even from the first look at the data, the overall behavior of
the divergence lines of the AIM appears qualitatively very sim-
ilar to the one of the Hubbard model case [12,14], reproduced
in the right panel of Fig. 3. In particular, the similarity in the
high-temperature/large interaction area of both 7-U diagrams
is not fully unexpected. In fact, here the divergence lines of both
models display a rather linear behavior, which is consistent
with the insights obtained from the results of the Hubbard atom
case [14]. The residual deviations can be ascribed to the fact
that the atomic limit condition, i.e., U and T larger than all other
energy scales, is not fully complied. In the case of the AIM,
only for larger interactions than those shown in the left panel of
Fig. 3 (U = D = 10), we recover a purely linear behavior as
well as the connection between the position of the divergence
line and the inflection point of Im G(iv,), as expected for the
atomic limit (for a more detailed analysis, see Appendix A).

At intermediate temperatures, the divergence lines show
a progressively stronger nonlinear behavior, starting to bend
rightwards. Lowering the temperature further, one reaches
the correlated metallic regime. Remarkably, in spite of the
differences in the ground states of the two models (there
is no MIT in the AIM), even there the results of the AIM
and the Hubbard model remain qualitatively very similar. For
both models, the lines show a “reentrance,” i.e. a bending
towards higher interaction values, as if the low-temperature
intermediate interaction regime were “protected” against the
nonperturbative mechanism originating the irreducible vertex
divergences. Particularly remarkable, however, is that finite-U
values at T = (O are observed in both cases; for the AIM the
low-temperature behavior of the first line is investigated in
detail in Sec. IIIC.

In the framework of the overall similarity discussed above,
a specific difference can be seen, however. This is highlighted
by the dashed blue box in the left panel of Fig. 3 (see Fig. 4
for a zoom): at intermediate temperatures, the second and
third divergence lines in the 7-U diagram of the AIM cross,
breaking the typical line order found in all cases analyzed so
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FIG. 4. A zoom of the T-U diagram of the AIM (left panel
Fig. 3) at half-filling is shown. The blue solid line marks the Kondo
temperature (7 ), estimated from the rescaling of our numerical data
for the magnetic susceptibility to the universal function given in
Ref. [68]. The black dotted line represents an estimate for 7k obtained
from an analytic expression [67] valid in the limit D > U,T. An
additional scale related to the Kondo screening, the half-bandwidth
of the T — 0 Kondo peak (% ZA) [69], is marked with a gray dotted
line, and is roughly five times larger than Tk . The light gray shaded
area can be regarded, thus, as the parameter region where the effects
of the Kondo screening become visible.

far in the literature [12,14,16,23,26] (i.e., always an orange line
after a red one, before the next red line). The two divergence
lines, however, cross again at lower temperatures, restoring
the typical line order. We also observe that even the fourth and
fifth lines show such a peculiar crossing, though, to a much
smaller extent. To verify the reliability of this observation,
several tests were performed using exact diagonalization (ED)
calculations of the generalized susceptibility [65]. As it turns
out, our ED analysis (not shown) has confirmed, within the
numerical accuracy, the occurrence of such a line crossing.

Although somewhat unexpected and unobserved in preced-
ing studies, the crossing of divergence lines is, however, not in
conflict with the most recent theoretical progress made in the
analysis of vertex divergences (see Ref. [26]). In that work, it
has been demonstrated that vertex divergences of both kinds are
originated by the crossings between different branches of the
Luttinger-Ward functional (LWF) of the self-energy. While in
the cases considered hitherto [18,26] crossings of at most two
branches have been reported, it can be logically inferred that
due to the existence of infinite unphysical branches, for other
choices of models/parameters (such as in our AIM) crossings
among three (or more) branches of the LWF (of which, of
course, only one is physical) occurs [66]. The intersections
of two divergence lines observed in our calculations then
suggest that this indeed happens for the AIM considered here.
It remains to understand, however, why such a situation is,
apparently, not realized in the correlated metallic regime of
the Hubbard model solved by DMFT.

Finally, as for the theoretical understanding of the low-T
regime of the AIM, it is important to estimate the Kondo
scale Tx and its possible connection to the properties of

the irreducible vertex divergences. In Fig. 4, a zoom of the
T-U diagram of the AIM shown in Fig. 3 is presented
together with several estimates for the Kondo temperature
Tk. In particular, the black dotted line represents an ana-
lytic estimate valid in the D > U,T parameter regime [67]
[Tx = 0.4107U(%)1/26’”U/8A+”A/2U, where in our AIM:
A = wpyV? = 7 /5], while the blue line is determined through
the universal scaling of the numerical susceptibility data [68]
(see Appendix B). We note that the two procedures yield
extremely close estimates of Tx. The Kondo temperature
marks, however, not a phase transition but a smooth crossover.
Indeed, the screening processes associated with it become
active already at temperatures larger than Tk . For instance, we
see that the temperature below which the effects of the Kondo
resonance become visible in the spectrum is 7 < ZA7, the
half-bandwidth of the central peak [69]. We choose this scale to
define the upper border of the corresponding crossover regime
(shaded gray area in the 7-U diagram of Fig. 4). It is quite
visible how the bending of the divergence lines is essentially
occurring in this parameter region.

B. Classification of the singular eigenvectors

In order to make our study of the vertex divergences in the
AIM more quantitative, we proceed with the analysis of the
singular eigenvectors in the charge channel, associated to a van-
ishing eigenvalue of X [see Eq. (5)]. In fact, as mentioned
in Sec. II B, their frequency structure controls the frequency
dependence of I in the proximity of, and especially at, a vertex
divergence. We note that for the orange divergence lines, where

I'cand T, 4, diverge simultaneously, the frequency structure
of the singular eigenvectors V<(iv,) and V)7 ‘N(i v,) is found

to be identical, which is why V.27 (iv,) will not be shown in
the following.

Before showing our numerical results, we discuss some gen-
eral properties, applicable to a particle-hole and time-reversal
symmetric case, like our AIM. In particular, the particle-hole
symmetry implies that y.""’, considered as a matrix of the
two fermionic Matsubara frequencies, is a centrosymmetric
matrix, i.e., it is invariant under a v, —> —v,, v,y — —Vy
transformation [17,55]. A centrosymmetric matrix in Matsub-
ara frequency space has the property that its (nondegenerate)
eigenvectors are either symmetric or antisymmetric [70].
Indeed, our results show that eigenvectors associated to red
divergence lines are antisymmetric under the transformation
v, — —Vv,, whereas orange eigenvectors are symmetric, as it
can be seen in the right insets of Fig. 5 and in Fig. 6. The
symmetry of the singular eigenvectors is, as expected, well
reflected in the frequency structure of the irreducible vertex. As
an illustrative example, a cut of the irreducible vertex function
in the charge channel I'""="""" =% for two values of the
interaction U at the same temperature (7 = 0.05) is shown in
Fig. 5. In fact, in spite of the proximity between the second
red and the first orange divergence lines for these parameters,
it can be clearly seen how the frequency structure of the vertex
function is almost perfectly antisymmetric/symmetric in the
case where the lowest eigenvalue corresponds to a red/orange
divergence line (left/right panel).

After discussing this general feature of the singular eigen-
vectors, applicable to all particle-hole symmetric models
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FIG. 5. Cuts of the irreducible vertex function in the charge channel I'.
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eigenvector V/(iv,) corresponding to the lowest eigenvalue A, is shown as a function of iv,. Left panel: at U = 4.5 the lowest eigenvalue is
corresponding to the second red divergence line (red dot), hence, V/(iv,) is antisymmetric. Right panel: for U = 4.59 the eigenvalue of the

first orange line is the smallest (orange dot), V' (iv,) is symmetric.

20 15 10 -5 0 5 10 15 20

(2

FIG. 6. Singular eigenvectors of (x./xpn.0)" =% (numeri-

cally equivalent to the ones of x." V(O :0)), corresponding to the five
divergence lines (left panel Fig. 3), shown as a function of Matsubara
index n for the temperature 7 = 0.025. In gray, the eigenvectors of
the red divergence lines for a higher temperature 7' = 0.5, properly
rescaled, are plotted, indicating the broadening of V(iv,) for lower
temperatures. Top panel: eigenvectors of the first red divergence line
(red, antisymmetric) and the first orange divergence line (orange,
symmetric). Middle (bottom) panel: same as top panel, but for the
second (third) red and orange (red) divergence lines.

hitherto analyzed [14], we turn to their intriguing evolution
with decreasing temperature, and start by going back to Fig. 6.
There, eigenvectors corresponding to the five divergence lines
(three red, two orange) shown in the left panel of Fig. 3 are
compared for the same temperature (7' = 0.025). We further
plot properly rescaled eigenvectors corresponding to the red
lines at the highest temperature employed in the calculations
(T = 0.5) in gray. The latter show an almost perfect agreement
with the atomic limit: eigenvectors, localized in Matsubara
frequency space, which have finite weight almost only at one
frequency [v, = (2n 4+ 1) T] equal to the energy scale v*.
For example, for the first divergence line (top panel) the gray
eigenvector displays its by far largest contribution at the first
Matsubara frequency (n = 1).

This specific property of frequency localization character-
izing the singular eigenvectors of the red divergence lines (see
Sec. IIB) gets lost, however, when reducing the temperature.
At T = 0.025 (red and orange eigenvectors), we note that
their frequency decay is even slower than for the singular
eigenvectors of the orange lines, which are always associated
to “global” divergences, even in the AL [14]. This means, in
turn, that also the divergence of I, is no longer restricted to
a finite set of frequencies. Such a “frequency broadening” of
the red singular eigenvectors at low temperatures was so far
only observed in the DMFT solution of the Hubbard model
[14], and seems to be associated with the presence of coherent
quasiparticle excitations.

This general trend is analyzed in detail in Fig. 7: in the left
panels the eigenvectors are plotted in terms of the Matsubara in-
dex n, while in the right panels several V for low temperatures
are reported as a function of Matsubara frequency iv,. It can
be easily seen, then, that for the eigenvectors corresponding to
the first red (upper) and the first orange (lower) divergence line
two regimes are distinguishable: (i) for T > Tk, the V; are
strongly peaked at a given Matsubara index 7,x, in perfect
agreement with the results of the AL. (ii) For T < Tk the
maximum contribution of the eigenvector moves to a higher
index with decreasing temperature, i.e., to the right (Fig. 7, left
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FIG. 7. Left top panel: singular eigenvectors V, (iv,) for several temperatures along the first red divergence line, plotted as a function of
the Matsubara index n. Right top panel: singular eigenvectors of the left top panel plotted as a function of Matsubara frequency iv, instead.
Bottom panels: as top panels, but showing the data corresponding to the first orange divergence line.

panels). Remarkably, one notices instead that, as a function of
Matsubara frequency, the maximum contribution of VS (iv,)
remains localized at a given frequency iv,  in this regime
(Fig. 7, right panels).

Finally, it is interesting to analyze in more detail the low-
frequency structures of Vy(iv,), which can be highlighted
by comparing the red singular eigenvectors of different lines
at the same low temperature (see Fig. 6). In particular, for
the eigenvector of the second red divergence line (middle
panel of Fig. 6), an additional local maximum and minimum
appear at the lowest frequencies, leading to three “nodes” in
their frequency components. In the case of the third red line
(bottom panel), VS (iv,) has five “nodes.” Extrapolating the
behavior observed for the first three red divergence lines, one
expects that the eigenvector of the nth red divergence line will
have 2n — 1 nodes. It is also interesting to note that for the
eigenvectors of the first and second red divergence lines the
respective one or three nodes are also observed in the high-T
regime (see the gray eigenvectors). This, however, no longer
holds for the eigenvector of the third line.

C. Calculations in the low-T regime

Before proceeding with the interpretation of our results and
their implications, we conclude this section with a detailed

analysis of our data in the regime of the lowest temperatures
accessible to our algorithm. This is particularly important
because a correct determination of the vertex divergences for
T — 0 is crucial for answering the questions posed in Sec. I.

We start, thus, assessing the numerical accuracy of our
results for the first red divergence line in the low-7 range
(0.0033 < T < 0.05 < Tx ~ 0.07). Our results are shown in
Fig. 8, together with the corresponding error bars. The latter
were obtained from a jackknife error analysis [63], which is
described in detail in Appendix C. From the error bars in
the main plot and the inset of Fig. 8 it can be inferred that
the combined scaling (8 of the CT-QMC sampling and B2 of
the Matsubara frequency box of the vertex function for 2, = 0)
prohibits us to access temperatures lower than 7 = 0.0033,
therefore not yielding any further informative results about
the vertex divergences. However, the numerical precision for
T > 0.0033 was sufficient to accurately define the low-T
behavior. In fact, we can compare our data with the dotted
gray line, showing a linear extrapolation of the divergence line
to 7" — Ousing the (higher) temperatures 7 = 0.05 and 0.025.
Even considering the growing error bars, the first divergence
line shows a progressive leftwards deviation from the linear
extrapolation when reducing the temperature. This is evidently
completely inconsistent with an infinite value of U of the
divergence line endpoint for T — 0.
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FIG. 8. Zoom on the first red divergence line showing the low-
T behavior (for T « Tx) which shows that within the error bars
obtained by a jackknife analysis (see Appendix C), the line bends
towards the U axis for T — 0. Inset: further zoom on the lowest
temperatures, emphasizing the growth of the error bar with decreasing
temperature.

That the temperatures considered are low enough to allow
for a T — 0 extrapolation is also supported by the behavior
of the singular eigenvectors. We discuss here the case for the
first red and orange divergence, which is representative for
all calculated divergence lines. In fact, for T <« Tk (e.g., for
T < 0.025 for the first divergence) the eigenvectors do not
only display a maximum at a T-independent value i v, , butas
functions of iv,, they even show a perfect scaling in the whole
low-T regime (see Fig. 9). This demonstrates that the low-T
frequency structure of the singular eigenvectors, and hence, of
the vertex divergences, is completely controlled by an underly-
ing, T-independent, function: V;(iv), such that V/(iv,,T) =
f(T)VS(iv). Our numerical data indicate further that f(T)
simply represents the conversion factor needed, when taking
the T — O limit of the discrete sum of Matsubara frequencies
defining the norm of the eigenvector [Zvn |V (ivy,, D? =11

0.6 [ S " T=0.025(U=3321448) © ]
T=00125 (U=33743) v
T=0.003333 (U=3.405)

0.5
v
Z 04
-
=
= 03
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f(T)=+/2nT.InFig. 9, the correspondingly rescaled eigen-
vectors [=V (iv)] for the first red and orange divergence lines
are shown. These are extracted from the data for V(iv,,T) by
exploiting the low-T scaling relation

VG T)  VE(ivy,T)
f(ry 27T

In the case of V;(iv), iv represents continuous imaginary
frequencies.

Ve(iv) = )

IV. DISCUSSION AND ANALYSIS

Our numerical study of the vertex divergences in the AIM
presented in the previous sections, and the comparison of the
results to the ones of the Hubbard model in DMFT, yield clear-
cut answers to several open questions on this subject, which
were mentioned at the end of Sec. L.

In particular, the results definitely demonstrate that (i) the
MIT does not represent the essential ingredient to induce
vertex divergences (as well as the associated nonperturbative
manifestations). This is proven by the similarity of the low-T
behavior of the vertex divergence lines in the Hubbard model
and the AIM, ending in both cases at finite-U values in the
limit 7 — 0, although no MIT occurs in the ground state of
the latter. We must conclude, hence, that the occurrence of a
MIT can represent a sufficient, but not a necessary, condition
to observe vertex divergences. In this respect, we recall that in
the phase diagrams of the Hubbard/FK models the MIT cannot
be reached (from the noninteracting or the high-T perturbative
region) without crossing (at least) one divergence line: Only in
this somewhat more limited context, the vertex divergences
can be regarded as “precursors” of the MIT, as originally
proposed [12].

The picture emerging from our AIM data does not
contradict, however, the physical considerations made in
Refs. [23,26], where one could relate the suppression of the
charge susceptibility [26], driven by the formation of a local
magnetic moment [71], to the onset of the divergences. The
same physical mechanism can also induce, depending on the

0.8 T T T T T T T
T=0.025 (U=4.7550187)
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FIG. 9. Left panel: eigenvectors of the first red divergence line for a given temperature multiplied with the inverse of the scaling factor f(7')
yielding the eigenvector at 7 = 0 governing the frequency structure of the eigenvectors at all temperatures in the 7 <« Tk regime. Right panel:
as left panel, but for the first orange divergence line. Here, the minor discrepancies can be ascribed to a stronger U dependence of the singular

eigenvectors in comparison to those of the red lines.
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FIG. 10. Schematic representation of the energy scale(s) control-
ling the border(s) of the perturbative/nonperturbative regimes (a) in
the AL/FK case, which is relevant for the large 7 and U limits of the
AIM and the DMFT solution of the Hubbard model, (b) for the ring
scenario which was proposed in Ref. [14] for the Hubbard model in
the correlated metallic regime (see text). Note that for the AIM with
a large bandwidth, as studied here, only one energy scale exists.

model, the appearance of a MIT. This scenario would be,
thus, coherent with our numerical finding of divergence lines
without a MIT.

At the same time, the origin of the rather striking similarity
between the low-T curvature of the divergence lines and the
MIT in the DMFT phase diagram of the Hubbard model can
be further rationalized, as we will discuss below, in terms of
the relation to Tk.

Further, (ii) the observation of an overall qualitatively
similar 7-U diagram (down to very low T) rules out the
proposed explanation of the line reentrance shape in terms
of the so called “ring scenario” [14]. This proposed scenario
represents a simple generalization of the theoretical framework
applicable at high 7" and large U. We recall [14] that, in the
latter regime, the existence of infinitely many divergence lines
could be interpreted as a direct manifestation of an underlying
energy scale v* in the Matsubara frequency space: a divergence
occurs whenever a Matsubara frequency [v, = %(2n + 1)]
equals v*. While it was already made clear in previous studies
[14] that this high-T explanation does not work at low 7, a
simple generalization was proposed: at low-T', two underlying
energy scales might control the vertex divergences. This idea
would have matched well previous results showing that in
the DMFT solution of the Hubbard model (for roughly the
same interaction values where the divergences occur) two
energy scales wgr, and wcp appear in the low-energy sector
[44], where the renormalized quasiparticle excitations of the
systems are defined. From a merely theoretical viewpoint,
the separation of low-energy scales can be ascribed [45]
to the self-consistent renormalization of the electronic bath
of the auxiliary AIM of DMFT in the correlated metallic
regime. This has also important observable consequences, like
the emergence of kinks in the spectral functions [44] and the
specific heat [46] of the Hubbard model. In the perspective of
the vertex divergences, the emergence of two energy scales on
the real axis would correspond to a situation (referred to as
“ring scenario”) where the perturbative physics is preserved
not only, as usual, at high energy (for w > wcp), but also in the
lowest-frequency Fermi-liquid (FL) regime (for v < wgy) (for
a schematic representation, see Fig. 10). The nonperturbative
effects, instead, would appear first at intermediate energies,
i.e., for wpL, < @ < wcp, and reach the Fermi level, only at the
MIT.

The existence of two scales could be indeed reflected in
the observed more complex nonlocal structure of the singular
eigenvectors in Matsubara space. Moreover, this interpretation
would also have the appealing advantages of providing a one-
to-one correspondence of the vertex divergences to physical
observables (the kinks), and, at the same time, of avoiding the
necessity to deal with a Fermi-liquid ground state, of intrinsic
nonperturbative nature.

Our finding of qualitatively similar divergence lines, also
in the low-T area of the T-U diagram of the AIM, however,
makes a general validity of the proposed ring scenario very
unlikely: In our AIM with a fixed and large conduction electron
bandwidth, the intrinsic origin of the separation of energy
scales (i.e., the self-consistent renormalization of the electronic
bath) is missing (see the discussion in Refs. [45,72]).

As a consequence, from a theoretical point of view, one
will indeed face the challenge of reconciling the observation
of well-defined Fermi-liquid properties at low energies with
the evident breakdown of perturbation theory marked by the
multiple divergence lines. In other words, it will be necessary to
describe and fully understand the emergence of an intrinsically
nonperturbative Fermi-liquid phase.

From a more physical point of view, the similarity of the
divergence lines in the Hubbard model and the AIM also
excludes a direct connection of the divergences to the kinks in
the self-energy, which are present [44,47] and absent [45,72]
in the two respective models. Note, however, that the kinks
in the DMFT solution of the Hubbard model are also related
to the Kondo temperature [45], so there might be an indirect
connection as for the bending of the divergence lines around
Tk [see (iv)].

(iii)) The presence of several distinct intersections of the
divergence lines with the 7 = 0 axis poses the question as to
whether irreducible vertex divergences occur also on the real-
frequency axis. In fact, this behavior is radically different from
the one found in the FK model [14-16]. In the latter case, all
divergence lines accumulate at 7 = 0 for a nonzero interaction
value [14,16] (U = D/ ﬁ), which corresponds to the unique
vertex divergence on the real-frequency axis [14,15]. The low-
T spread displayed by the divergence lines of the AIM is, thus,
fully incompatible with the simpler FK scenario of a single
divergence point of the vertex in real frequency. In this respect,
important insight is provided by the analysis of the temperature
evolution of the singular eigenvectors V, (iv,) for the different
lines, especially in the low-T regime where their behavior can
be fully described by a rigid scaling (see Sec. III C and Fig. 9).
In fact, close to the divergence, I', can be approximated as in
Eq. (6). The scaling properties of the eigenvectors, combined
with the different (odd/even) symmetries (under v, — —v,) of
the eigenvectors corresponding to the red/orange divergences,
provide a strong indication that real-frequency divergences in
the limit of zero frequencies, i.e., i€2,, = 0,iv,,iv, — 0, will
appear at the endpoints of all orange lines. This is due to the fact
that for the rescaled eigenvectors of orange divergence lines,
the value of the lowest-frequency component of the singular
eigenvector is finite and nonzero in the T — 0 limit [V (iv =
0) # 0, see Sec. I1I C and Fig. 9]. On the contrary, the vanishing
of V. (iv = 0) forred divergences, which is enforced by the odd
symmetry of the eigenvector, suggests the absence of similar
real-frequency divergences as for the orange endpoints. This

245136-10



DIVERGENCES OF THE IRREDUCIBLE VERTEX ...

PHYSICAL REVIEW B 97, 245136 (2018)

would represent a further, major differentiation between the
two kinds of divergences, as only the orange ones would be
mirrored by corresponding divergences at the origin of the real-
frequency axis at the 7 = 0 endpoints. Of course, our analysis
can not exclude that the real-frequency vertex functions might
display additional divergences at finite nonzero frequencies.

(@iv) The precise determination of the Kondo temperature in
the T-U diagram of the AIM we considered (Fig. 4) provides
novel insights into the problem of the vertex divergences in
the correlated metallic regime. First, as we briefly mentioned
in Sec. I1I, the relatively featureless and smooth behavior of all
divergence lines for T < Tk indicates that unexpected bending
below the lowest temperature where the QMC calculations of
the impurity vertex functions are feasible is highly improbable
and also incompatible with the perfect scaling of the singular
eigenvectors discussed in Sec. IIIC. This represents an im-
portant, physics-based argument supporting all low-T results
and considerations discussed before. Second, we must recall
that the Kondo screening in the AIM is not taking place as a
sharp transition. On the contrary, it is known that the impurity
magnetic moment screening starts to become progressively
effective at temperature larger than Tk . In fact, considering the
low-energy spectral properties of the impurity site, a natural
estimate of the crossover temperature leads to values more than
five times larger than the “standard” Tk (see Sec. II A). This
is relevant for the interpretation of our results, as the bending
of the divergence lines, and in particular their reentrance
behavior, is taking place in this crossover regime. Consistently,
in the same parameter region, the qualitative change in the
structure of the eigenvectors for the red lines (and of the
corresponding divergence of I'. from localized to nonlocalized
in frequency space) takes place. The emerging scenario for the
breakdown of perturbation expansion in the AIM is, thus, the
following: Vertex divergences with arelatively simple structure
(straight linear behavior of all divergence lines, fully localized
eigenvectors, etc.) are associated to the formation of a local
moment, and to the related net separation of energy scales,
marked by a spectral gap between the Hubbard bands. This
agrees with our understanding in the AL [12,14,17,51].

The progressive Kondo screening occurring by lowering
T towards Tk is responsible for the gradual, but important,
deviations from this “simpler” divergent behavior. In partic-
ular, it is interesting to note that the screening of the local
moment appears, to some extent, to “counter”’ the breakdown
of the perturbation expansion (low-7 reentrance) of the lines.
This effect, however, is only partial, as the divergence lines
for T < Tk are not bending up to U = oo, but rather display
multiple (presumably infinite) endpoints on the 7 = 0 axis.

(v) From the numerical results obtained for the AIM
and from the considerations made hitherto, it is possible to
formulate specific, though somewhat heuristic, predictions for
the structure of the divergence lines in the DMFT solution of
the Hubbard model. In particular, we will focus on the most
interesting regime of the coexistence region surrounding the
Mott-Hubbard MIT. In fact, due to the considerable accumula-
tions of vertex divergences close to the MIT, no detailed study
of the irreducible vertex functions in this parameter region has
been performed so far.

The starting point for our prediction is the connection
discussed above (iv), between the Kondo screening, controlled

by Tk, and the bending of the divergence lines. Further, it is
also important that for 7 < Tk each of the (infinitely) many
lines smoothly continue down to their respective finite endpoint
on the T = 0 axis (iii). In fact, a converged DMFT solution
is defined through the self-consistently determined electronic
bath of the auxiliary AIM. This means that the AIM of a given
DMEFT solution would be characterized by a Tx depending
not only on U, but also on T, n, etc. Such an “effective”
TMFT(U, T) becomes zero at the Mott-Hubbard MIT at T =
0,U — U,,. This suggests that the divergence lines appearing
in the T < Tk part of the whole T-U parameter space of the
AIM will be squeezed in the region U < U,, of the DMFT
solution of the Hubbard model. This will evidently result in
an accumulation of divergence lines close to U,,. For T # 0,
instead, one will cross, by increasing U, a first-order MIT
where a discontinuity of the physical properties occurs. Such a
discontinuity affects, among other observables like the double
occupancy or the kinetic energy, also the self-consistently de-
termined electronic bath of the auxiliary AIM. Hence, one must
expect that the number of negative eigenvalues of x. (and thus,
of divergences lines already crossed) will be different on the
two sides of the transition, except for 7 = 0 and at the critical
endpoint where the MIT is continuous. More specifically, we
recall that the Mott-insulating phase is characterized by an
essentially unscreened local moment. As a consequence, on
the insulating side of the MIT we will observe only very minor
corrections with respect to the divergence lines computed in
the AL (straight lines with frequency localized red divergences,
etc.). On the metallic side of the MIT, instead, the electronic
bath is associated with a finite TPMFT(7,U), and, thus, the
screening effect, partially mitigating the vertex divergences,
will be at work. As a result, for a fixed 7T # 0 one would
find here a fewer number of negative eigenvalues (and, hence,
of divergences lines) than on the insulating side. Eventually,
for low enough T ~ TPMFI(U,T), the divergence lines on
the metallic side will show the typical bending behavior, and
display very frequency delocalized eigenvectors.

V. CONCLUSION AND OUTLOOK

In this work, we have studied the divergences of the
irreducible vertex functions occurring in an Anderson impurity
model with a fixed electronic bath, aiming at gaining insights
about the breakdown of many-body perturbation theory in
correlated metallic systems. In fact, the numerical solution of
the AIM, computed at high accuracy in CT-QMC, fully cap-
tures the physics of low-temperature quasiparticle excitations,
as those observed in correlated metals. It avoids, however,
the additional complication of a self-consistent adjustment
of the electronic bath required by DMFT calculations. Hence,
the AIM represents a fundamental test bed to address several
open issues posed in the literature, about the different nonper-
turbative manifestations in quantum many-body theory.

Indeed, our study could clarify a set of relevant ques-
tions about the interpretation and the consequences of the
divergences of the two-particle-irreducible vertex functions. In
particular, our results rule out that the Mott-Hubbard transition
plays a crucial role as the origin of the multiple divergence
lines. This limits the previously proposed interpretation [12]
of the vertex divergences as ‘“precursors” of the MIT in
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the sense of a necessary condition for vertex divergences to
occur, consistently with the physical interpretation presented
in Refs. [23,26]. By a thorough analysis of the low-temperature
sector, we could ascribe, at the same time, important character-
istics of the vertex divergences, such as their structure in Mat-
subara frequency space and the reentrance of the divergences
line, to the screening processes of the local magnetic moment
occurring when approaching Tk . Moreover, our data for T <
Tk have unveiled a perfect scaling of the singular eigenvectors,
allowing us to extrapolate the 7" = O behavior of the vertex
divergences on the real-frequency axis. Finally, exploiting the
insights gained from the low-T analysis, we could propose
a heuristic prediction about the vertex divergences in the
particularly relevant case of the coexistence region in the
DMEFT phase diagram of the Hubbard model.

Having clarified important properties of the vertex di-
vergences in the correlated metallic phase (partly with an
unexpected outcome which corrected previously made as-
sumptions), our work also demonstrates how valuable studies
are, where the many-body correlation effects are realized in
the most fundamental fashion. This suggests future extensions
of this work, by considering systems with embedded clusters
of impurities, to investigate the role played by short-range
correlations in the breakdown of the quantum many-body
perturbation expansion.
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APPENDIX A: THE ATOMIC LIMIT AND THE
INFLECTION POINT OF Im G(iv,)

As mentioned in Sec. I, in the case of the atomic limit, the
inflection point of Im G(iv,) is found [51] at the frequency
v, = v*, i.e., the energy scale which is also governing the
position of the divergence lines and the frequency structure
of the localized singular eigenvectors corresponding to red
divergence lines. As we briefly discuss in Sec. IIT A, this
connection is also found for the Anderson impurity model,
in the regime of high-7" and large interaction. The results
are shown explicitly in Fig. 11 of this appendix, where the
rescaled Im G(iv,) is compared to 3°Im G(iv,) = %
for the third red divergence line. Note that in the simple method
used to compute the second derivative of Im G(iv,), namely,
finite differences, there are no data for the first frequency. For
T = 0.5 [see Fig. 11(a)], it is evident that the inflection point
is located at the third Matsubara frequency, which agrees with
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-0.02 . .
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v,
FIG. 11. Comparison of Im G(iv,) (rescaled by a proper factor)
and 3’Im G(iv,) = % for three different temperatures along
the third red divergence line of the AIM.

the atomic limit description. With decreasing temperatures,
the inflection point moves from the third frequency towards
lower frequencies, which is visible in Fig. 11(b), where
it is found between the second and third frequencies for
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FIG. 12. The shifted data for T x,(w = 0) for several tempera-
tures at U = 4.2, compared to the universal result for 7 x,(T) (see
Ref. [68]).

T = 0.33. Although the divergence line shows still a rather
linear behavior (see main part, Fig. 3), the inflection point
completely disappears for T = 0.2 [see Fig. 11(c)].

APPENDIX B: NUMERICAL EXTRACTION OF THE
KONDO TEMPERATURE T g

To extract the Kondo temperature Tx numerically, the static
local magnetic susceptibility of the impurity x,(i€2, = 0) has
been calculated by integrating x,(t) = gz(SZ(r)SZ(O)), with
g = 2 (computed with W2DYNAMICS) over the interval [0, 8]:

B
X2, =0) = / xs(7), (A1)
0
which corresponds to its Fourier transform for i€2,, = 0. The
data for x(i€2, = 0) have been computed for several T, and

then compared to the universal result for (Tgﬁ gz), computed for

the spin—% Kondo Hamiltonian in Ref. [68] (cf. also Ref. [73]),
where upg is the Bohr magneton. Plotted as a function of
log(T/ Tk ) the Kondo temperature can thus be obtained with
high precision by shifting the numerical data for T x,(i€2, = 0)
onto the universal result (on a logarithmic 7 scale). For the case
of U = 4.2 the shifted results are shown in Fig. 12. The data
for Tx obtained through this procedure are the blue crosses
reported in Fig. 4 of the main paper.

APPENDIX C: DETERMINATION OF U/ AND THE
ASSOCIATED ERROR BARS

To estimate U for a given temperature at least two separate

. V2, =0
calculations of x. are necessary. As an example of the
procedure, we show the case of the first divergence line for

T = 1/300 =~ 0.003 33. For this case, the smallest eigenvalue

0.02 — : : . : . . .
Ag of X /%o at T=0.00333 —e—
0.015 |

0.01

F——p——

0.005 |

-0.005 |
-0.01

T
1
R 1
-0.015 | RO
-

_0.02 1 1 1 1 1 1 1 1 -
3.38 3.385 3.39 3.395 3.4 3.405 3.41 3.415 3.42

U

FIG. 13. The singular eigenvalue Ay of (Xc/ X pn,0)"" =0 for T =
0.0033 and two different U values (3.383, 3.42) is shown. A linear
interpolation is used for the determination of U (red solid line). The
jackknife error analysis provided error bars for the two results for A,
(red dashed), which are, then, used to estimate the error bar of U (gray
dashed lines).

of (xc/xpn,0)"" (see Sec. IIC) is plotted as a function of U
(see Fig. 13). This, in turn, allows us to adopt an interpolation
or extrapolation procedure for an estimation of U, depending
on whether we find two eigenvalues with different signs or
not. In the following, a bisection procedure is used until U is
known to the desired accuracy for the given temperature. In the
calculations shown throughout this work, we have performed
calculations until we reached an interval in U of the order of
01071 to O(1073). For the first line and high T, the coarser
interval was used; for the subsequent lines a more refined
interval was employed, as well as for the low-7 results of all
lines. Each calculation was performed on the Vienna Scientific
Cluster (VSC3) using about 10.000 to 15.000 CPU hours; in
the case of the low-T calculations 25.000 (8 = 160) or 50.000
(B = 300) CPU hours were used.

- Finally, to estimate the error bars of the interaction values
U it is necessary to extract, first, the error of the eigenvalues
of (X¢/Xph,0)™ vw$=0_To this end, a (n — 1) jackknife method
[63] was used. Specifically, with the same CPU hours used
for the calculations discussed above, 25 bins were produced.
From these 25 different results for (x./x phyo)”"”"’ﬂﬂzo, 26
eigenvalues were produced, according to the (n — 1) jack-
knife method [63], which also provides an expression for the
standard deviation. As a last step, the intersection points of
the interpolation of the maximum and minimum error of the
eigenvalues and zero were used as an estimate for the error bar
of U for a given T'. This procedure is also shown explicitly in
Fig. 13.
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