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Impact of self-consistency in dual fermion calculations
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The dual fermion (DF) method allows for calculating corrections due to nonlocal correlations relative
to an effective impurity model. Choosing the impurity as that of a dynamical mean-field theory (DMFT)
solution at self-consistency is popular, and the corrections from dual fermion theory are physically meaningful.
We investigate the effect of choosing the impurity instead in a self-consistent manner and find for the
two-dimensional Hubbard model an exponential increase of the correlation length and susceptibility at low
temperatures. There are pronounced differences for the two self-consistency schemes that are discussed in the
literature; the self-consistent DF solution can even be more metallic than the DMFT solution.
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I. INTRODUCTION

Strongly correlated electron systems pose some of the
greatest challenges in modern solid-state theory. The strong
interplay between the electrons in such systems causes a
multitude of interesting phenomena, such as superconductiv-
ity and interaction-driven metal-insulator transitions. While
the underlying physics is interesting, the complexity also
makes finding reliable analytic or even numerical solutions
notoriously hard. Dynamical mean field theory (DMFT) [1–3]
has become a well established tool for treating purely local
correlation effects. Based on this success, multiple methods
for extending DMFT and including nonlocal correlation ef-
fects as well have been proposed. On the one hand there are
cluster extensions of DMFT such as the dynamical cluster
approximation (DCA) and cellular DMFT (CDMFT) [4]. On
the other hand there are Feynman-diagrammatic extensions
[5] such as the dynamical vertex approximation (D�A) [6],
the dual fermion method (DF) [7], the DMFT to functional
renormalization group [8], the nonlocal expansion scheme [9],
the one-particle irreducible approach (1PI) [10], and the triply
irreducible local expansion (TRILEX) [11].

In this work, we study the two-dimensional Hubbard model
on a square lattice with nearest-neighbor hopping. At half
filling eminent questions are antiferromagnetism, pseudogaps,
and the metal-insulator transition. From the Mermin-Wagner
theorem [12] we know that truly long-range antiferromag-
netic ordering only sets in at zero temperature T = 0; for
perfect nesting there is antiferromagnetism at arbitrarily weak
interactions U . DMFT on the other hand gives a finite Néel
temperature TN with mean-field critical behavior for the sus-
ceptibility and correlation length: χ ∼ (T − TN)−1, ξ ∼ (T −
TN)−0.5. One of the successes of the diagrammatic extensions
of DMFT is to show instead (around the TN of DMFT) a
crossover to an exponentially increasing susceptibility [13,14]
χ ∼ ea/T and correlation length [15] ξ ∼ eb/T with nonuni-
versal parameters a and b. This way the Mermin-Wagner theo-
rem is eventually fulfilled with exponentially large correlation
lengths instead of long-range order.

These long correlation length have, on the other hand, a
strong impact on the metal-insulator transition. Here DMFT

yields a first-order Mott-Hubbard metal-insulator transition
with a second-order critical end point [3], independent of
dimension and hence also in two dimensions. Cluster DMFT
with a finite 4 × 4 momentum (k) grid also gives a first-
order transition, but at a reduced Uc and opposite slope of
the transition line because now the metallic instead of the
insulating phase in DMFT has the larger entropy [16]. Similar
results have been obtained using other methods that include
short-range correlations only, such as the variational cluster
approximation (VCA) [15] or second-order DF (DF(2)) [17].

But in D�A [15], taking into account long-range cor-
relations of hundreds of sites, the paramagnetic phase is
always insulating for low enough temperatures, i.e., Uc =
0. The reason for this are the aforementioned long-range
antiferromagnetic correlations. Even though there is no true
antiferromagnetic order yet, the exponentially large correla-
tion length leads to a quasiorder so that the paramagnetic
spectral function has essentially the same gap as the antifer-
romagnetic phase. Due to perfect nesting on a square lattice
Hubbard model, antiferromagnetism and hence the gapped
low-T paramagnetic state exist all the way down to Uc = 0.
A similar behavior is also observed in ladder DF [18], the
two-particle self-consistent theory (TPSC) [19,20], and the
nonlinear sigma model approach [21,22]. Also numerical re-
sults point in the same direction: extrapolated lattice quantum
Monte Carlo (QMC) data [15] show a similar insulating self-
energy as D�A; CDMFT [23] and DCA [24–26] suggest at
least a reduction of Uc with increasing cluster size. Against
this trend, TRILEX yields an even larger Uc than DMFT [27].

Let us emphasize that the physics of the metal-insulator
caused by long-range antiferromagnetic spin fluctuations is
distinctively different from that of Mott-Hubbard transition.
It is not a first-order transition but a crossover where (with
decreasing T ) a gap first develops at the antinodal point
and at lower T at the nodal point. That is, with decreasing
temperature, we first have a paramagnetic metal at elevated
temperatures, then a pseudogap, and eventually a paramag-
netic insulator.

In this paper, we study the two-dimensional Hubbard
model within the DF approach. Usually DF calculations are
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based on the local problem that arises as the solution of a
converged DMFT problem. Here, we do ladder DF not only
with inner self-consistency (updating the DF self-energy and
Green’s function) but also with outer self-consistency, which
has been studied in parallel to this work using second-order
DF(2) [17] instead of the ladder DF used in our work. We show
that the two variants for the outer self-consistency [Eqs. (7)
and (8) below] lead to very different results, and that for the
self-consistency condition Eq. (8) we can even get a metallic
DF solution for large U ’s where DMFT already yields an
insulator. We also demonstrate the exponential scaling of the
correlation length in DF, which is the cornerstone for having
a paramagnetic insulator at small U and low T .

II. RECAPITULATION OF THE METHOD

We study the half-filled Hubbard model on a square lattice,

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓. (1)

Here, c
†
iσ (ciσ ) creates (annihilates) an electron on site i with

spin σ ; 〈ij 〉 denotes the summation over nearest neighbors
only, U is the local Coulomb repulsion, and t is the hopping
amplitude. In the following, 4t ≡ 1 sets our unit of energy.

We employ the standard ladder dual fermion method [5,7].
That is, we truncate the dual fermion interaction expansion on
the two-particle vertex level. Note that a full self-consistent
calculation with three-particle corrections is beyond present
computational resources, but higher interaction-order terms
are not necessarily negligible [28]. Hence, we calculate at
least selected three-particle diagrams as an error estimate after
convergence of the two-particle approach, in the same way as
in Ref. [28].

A workflow diagram with inner and outer self-consistency
is given in Fig. 1. The calculation is started with the impurity
problem of the converged DMFT solution, which yields a
local full two-particle vertex Floc taking the place of an in-
teraction for the dual fermions and a DMFT self-energy �loc.
The latter yields a k-dependent physical (DMFT) Green’s
function

Gloc
kν = 1

iν − εk − �loc
ν + μ

(2)

and a noninteraction DF Green’s function

G̃0,kν = Gloc
kν −

∑
k

Gloc
kν , (3)

where we implicitly assumed a normalization
∑

k = 1.
The next step in Fig. 1 is to calculate the interacting

DF vertex F̃ as the series of ladder diagrams with building
blocks Floc and interacting DF Green’s function G̃. The
latter is first set to G̃0 and then determined self-consistently
from the DF self-energy �̃ of the ladder diagrams. This
self-consistent solution of the ladder in dual space is called
inner self-consistency and has been routinely employed in DF
calculations before [5].

After we have achieved a converged solution in dual space,
the dual self-energies are used as self-energy corrections for
the real fermions. Here, we do not make use of the dual

Defines dual problem:

Extract real self-energy 
corrections

Inner self-consistency:
Iterated ladder calculations and 
self-energy updates in dual space

Outer self-consistency: 
Update of impurity bath

DMFT
Impurity 
problem

FIG. 1. Workflow of the self-consistent DF approach. As an
initial starting point we solve an impurity problem at DMFT self-
consistency. This provides an initial DF interaction Floc and non-
interacting Green’s function G̃0. In an inner self-consistency loop
the DF Fermion ladder equations are solved, which yield self-energy
corrections for the real fermions. In an outer self-consistency loop
also the hybridization function is updated and a new impurity model
is solved. This procedure is iterated until full self-consistently, i.e.,
until the impurity problem does not change any more.

fermion mapping [7]

��k = �̃k

1 + Gloc
ν �̃k

, (4)

with four-vector notation k = (k, ν). Instead, the dual self-
energies are directly applied as corrections to the real fermion
self-energies,

��k = �̃k. (5)

In principle, Eq. (4) is an exact mapping—but only if local
vertices of arbitrary order are considered in DF. If this is
not the case, Eq. (5) has certain advantages since the cor-
rection of Eq. (4) cancels at least partially with three-particle
vertex diagrams that are not considered in standard DF. For
a more detailed discussion see Ref. [29]. Whether to use
Eq. (4) or Eq. (5) remains an issue of ongoing debate. The
difference between the two approaches becomes significant
when both Gloc

ν and �̃k become large. In our calculations,
the difference for the final self-energies was found to be very
small; the hybridization after the first iteration step, but not at
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self-consistency, changes considerably for larger U . In a
standard DF this correction together with the local impurity
self-energy yields the physical self-energy

�k = �loc
ν + ��k. (6)

Here, we go beyond this standard scheme and recalcu-
late the impurity vertex Floc and noninteracting DF G̃0 in a
so-called outer self-consistency loop; see Fig. 1. Two ways
to do this outer self-consistency loop have been proposed [5].
Route (i) has been previously employed and requires that

(i)
∑

k

G̃k,ν = 0. (7)

Here, we predominately follow another route (ii) instead.
Route (ii) assumes that the new local impurity Green’s func-
tion is given by the momentum-average over the physical
Green’s functions:

(ii) Gloc
new,ν =

∑
k

1

iν − εk − �loc
ν − ��k + μ

. (8)

This impurity Green’s function in turn gives a new impurity
hybridization function,

�new,ν = 1

Gloc
new,ν

− iν + �loc
ν − μ, (9)

where �loc is the impurity self-energy from the previous
iteration. This �new defines a new impurity model, which
we solve using the W2DYNAMICS [30,31] continuous-time
quantum Monte Carlo impurity solver in the hybridization
expansion. This way we obtain a new Floc and impurity self-
energy �loc. With these we continue with Eq. (2) above until
self-consistency. Let us remark that the repeated recalculation
of the two-particle vertex Floc is the computational bottleneck
when doing outer self-consistency.

Please note that outside the well-investigated half-filled
case, the dual corrections can change the occupation of the
system as calculated from the real fermion Green’s functions.
Neither self-consistency scheme, (i) or (ii), fulfills the Hartree
condition �k

ν→∞−→ U
2 n where n is the occupation given by the

physical Green’s functions of Eq. (8).

III. RESULTS

Let us start by providing an overview in Fig. 2 of
which points we calculated in DF with inner and outer self-
consistency. We consider the half-filled Hubbard model on a
square lattice at relatively weak interaction (U = 1 ≡ 4t), in
the DMFT strongly correlated metallic (U = 2) and DMFT
insulating phase (U = 3). In all cases we lower the temper-
ature so that antiferromagnetic spin fluctuations and DF cor-
rections become larger around the DMFT Néel temperature.
Similar to ladder DF with inner self-consistency only [18],
convergence at low temperatures is not always achieved and
for some parameters convergence was only achieved after
averaging the new hybridization function with the previous
one using a mixing factor (under relaxation); see Fig. 2.

FIG. 2. Data points in the phase diagram of the two-dimensional
Hubbard model for which DF calculations with outer self-
consistency have been performed (4t ≡ 1). The different symbols
mark data points for which convergence was achieved automat-
ically without further modifications (green crosses), convergence
was achieved after averaging the hybridization function of previous
iterations (blue crosses), and no convergence was achieved (red
crosses). The antiferromagnetic ordering temperature TN in DMFT
from Kuneš [32] is given for comparison (gray line).

A. Updated impurity hybridization and self-energy

Figure 3 shows the change of the impurity model with outer
self-consistency or more precisely the change of its hybridiza-
tion function. We find that when demanding a vanishing dual
Green function [scheme (i)], the outer self-consistency leaves
the hybridization function �new′ essentially unchanged with

FIG. 3. Hybridization function for U = 1 and β = 20 at half
filling. Depicted are the initial hybridization function at DMFT
self-consistency �DMFT, the updated hybridization function after one
iteration if consistency of the local Green’s function is demanded
�new [scheme (ii), Eq. (8); the dashed line is for the case when the
DF self-energy mapping Eq. (4) is employed instead of (5)], the up-
dated hybridization function after one iteration if nonlocality of the
dual Green’s function is demanded �new′ [scheme (i) first iteration,
Eq. (7)], and hybridization function at outer self-consistency after
self-consistency of the local Green’s function �conv [scheme (ii)].
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FIG. 4. Same as Fig. 3 but for U = 3 and β = 10. Note that,
while the first iteration changes between application of Eqs. (4)
and (5), the converged solution hardly changes.

respect to the DMFT solution �DMFT. Shown is only the first
iteration but subsequent iterations are visually not distinguish-
able from the first iteration on the scale of the figure.

In contrast, scheme (ii), which requires consistency be-
tween the impurity Green’s function and the k-integrated lat-
tice Green’s function for the real fermions, shows a very dif-
ferent hybridization function after the first iteration (�new) but
also after convergence (�conv). In particular at low frequencies
the hybridization function is quite considerably enhanced.
Figure 4 shows that the same tendency but to a larger quan-
titative extent also holds for U = 3. Here the hybridization
function is even changed from a vanishing hybridization in
the low-frequency limit in DMFT and scheme (i) to a finite
one in outer-self-consistency scheme (ii).

The enhanced hybridization corresponds to a more metallic
bath or more bath states at low energies. This allows the
electrons at the impurity to better evade each other, therefore
reducing the imaginary part of the impurity self-energy as
can be seen in Fig. 5. While the difference between using

FIG. 5. Imaginary part of the impurity self-energy for U = 1
and β = 20 at half filling. Depicted are the self-energy at DMFT
self-consistency �DMFT and the impurity self-energy at outer self-
consistency �conv [scheme (ii)].

FIG. 6. Interacting density of states for selected sets of pa-
rameters at DMFT self-consistency (blue line) and DF outer self-
consistency (green line).

the self-consistency condition (i) [Eq. (7)] or (ii) [Eq. (8)] is
substantial, the differences for the two self-energy mappings
Eqs. (4) and (5) are minute at self-consistency. See �conv vs
�conv(4) in Figs. 3 and 4. The first update of � for larger U is
different, but eventually both schemes converge towards simi-
lar impurities. For all parameters considered also the changes
between the physical Green’s functions are rather small for
the different self-energy mappings. Since the present paper
focuses on the different self-consistency schemes we will not
discuss the differences in Eq. (4) vs Eq. (5) any further.

B. Local Green’s functions

As for the impurity Green’s function at low frequencies,
the enhanced hybridization and reduced self-energy compete
in their effect. While the reduced self-energy leads to an
increase of the local Green’s function at low frequencies,
the stronger hybridization suppresses it. Depending on the
parameter regime, the effect on the spectral function of the
local system changes.

In Fig. 6 we provide continuations of the local Green’s
functions, calculated with the maximum entropy method. The
large impact of the outer self-consistency condition can be
seen when comparing to the initial DMFT Green’s function.
Note that the impurity spectrum at self-consistency corre-
sponds to the lattice spectrum for scheme (ii) [see Eq. (8)].
For U = 1, the nonlocal correlations lead to a more insulting
behavior of the DF solution. On the other hand, for U = 3,
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FIG. 7. Local Green’s functions for U = 3 and β = 10 within
DF [scheme (i)], DF′ [scheme (ii)] and DCA with cluster sizes 4, 8,
16, 18, and 32 (indiscernible on the scale of the figure).

the DF solution is—at least at β = 10—metallic with a three-
peak spectrum, while the DMFT solution is already in the
Mott insulating phase.

This is counterintuitive since one expects nonlocal spin
fluctuations to result in a more insulting solution. It is a
consequence of the larger (more metallic) hybridization func-
tion in scheme (ii), see Fig. 4, which pushes the U = 3
impurity model into the metallic phase. The origin of the
larger hybridization in turn is that, because of the k-dependent
DF self-energy, the spectrum at occupied and unoccupied k
points is pushed further away from each other, as we will
see in the next section. In an impurity model we can only
describe this larger spectral width at fixed U if we have a
larger hybridization function.

C. Comparison to DCA

Since it is doubtful whether these results of outer-self-
consistency scheme (ii) are describing the correct physics,
we have compared the results with DCA Green’s functions
and self-energies on the Matsubara axis; see Fig. 7 and 8,
respectively. The DCA yields an insulating spectrum as is
indicated by a vanishing Gloc for frequency ν → 0 in Fig. 7
and a divergent � for ν → 0 in Fig. 8. This is qualitatively
and even quantitatively the same behavior as in DMFT as well
as in DF without outer self-consistency (and also the outer
self-consistency scheme (i) hardly changes the hybridization
and hence this result). Clearly DF with outer self-consistency
scheme (ii) is off.

This puts severe doubts on the self-consistency scheme
(ii). A possibility is that third-order diagrams cure this effect
as they provide an extra term proportional to 1/(iν) which,
in principle, could provide a more insulating solution again.
But without further modifications the outer-self-consistency
scheme (ii), requiring that the impurity Green’s function
equals the physical Green’s function, does not properly work
at large U . Let us also note that employing the translation from
DF self-energies to real ones using Eq. (4) instead of Eq. (5)
hardly affects the results since either the self-energy or the

FIG. 8. Self-energies for nodal and antinodal k points for U = 3
and β = 10 within DF [scheme (i)], DF′ [scheme (ii)], and DCA with
cluster sizes 4, 8, 16, and 32 (which lie essentially on top of each
other).

Green’s function in the denominator of Eq. (4) is small for the
converged solution.

D. DF and physical self-energies

Next, let us discuss the resulting self-energies, real as
well as dual ones. The imaginary part of the impurity self-
energies �loc was already shown in Fig. 5 and is found to be
consistently reduced by the employed outer self-consistency
scheme. �loc already represents the major contribution to the
self-energy for the real fermions, with the dual fermion self-
energy shown in Fig. 9 yielding only quantitatively smaller

FIG. 9. Dual self-energies for different k points for U = 1 and
β = 20 at inner self-consistency only (left; DMFT impurity problem)
and inner and outer self-consistency (right). Imaginary parts are
depicted as full lines and real ones as dashed lines. Additionally,

momentum-independent three particle corrections �
3

are given, with
“+” symbols for the real and “×” symbols for the imaginary part.
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FIG. 10. Left: (Inverse) vertex contribution to the antiferromagnetic susceptibility (χ − χ0) and correlation length ξ (extracted from χ −
χ 0) as functions of temperature for U = 1 (upper panel) and U = 2 (lower panel) at half filling. The light symbols denote the results obtained
from the initial DMFT impurity model at inner dual self-consistency only (in); the dark symbols those after outer self-consistency is achieved.
Right: Same as left but on a logarithmic scale and as a function of β = 1/T . The correlation length is measured in lattice spacings (l.s.) and
the remaining susceptibilities are in units of μ2

B .

corrections. Note that the physical self-energies are just given
by the sum of Figs. 5 and 9 according to Eq. (6).

We also find that the change of �loc throughout the iter-
ations is quantitatively larger than the corrections due to the
dual fermion calculations themselves. The dual self-energies
for k points on the Fermi edge lead to enhanced scattering and
reduce the contribution of these states to the low-frequency
spectral function. For points sufficiently far from the Fermi
edge the sign of the imaginary part of the dual self-energy
changes from negative to positive, corresponding to a reduc-
tion of the scattering rate. Also, the dual corrections pick up a
real part, shifting the states such as k = (0, 0) and k = (π, π )
further away from the Fermi energy. Consequently, the overall
width of the spectrum is enhanced.

E. Susceptibilities and correlation lengths

Let us finally turn to the DF susceptibilities and correlation
lengths and their change with outer self-consistency shown
in Fig. 10. We focus here on the vertex contribution to the
susceptibility which becomes dominant for T � 0.07 (U = 1)
and T � 0.1 (U = 2). Only plotting the vertex contribution
has the advantage that the exponential behavior can be seen
up to higher temperatures. The additional bare bubble sus-
ceptibility has a weaker temperature dependence and hence
becomes dominant/obfuscates the exponential behavior of the
vertex contribution. At low interaction values, the outer self-
consistency scheme (ii) is found to reduce the antiferromag-

netic susceptibility for the antiferromagnetic q point (π, π ).
Also, correlations lengths extracted from the width of the
(vertex part of the) magnetic susceptibilities on a q mesh are
shorter when based on the impurity with outer-self-consistent
local Green’s functions compared to the calculation based on
the DMFT impurity. A similar trend is found for the inner self-
consistency: it suppresses the antiferromagnetic susceptibility
which otherwise would diverge at the DMFT TN (because
the Green’s function becomes more damped with inner self-
consistency). In the case of outer self-consistency the physical
reason is the enhanced hybridization strength. Because it also
gives—unphysically—a more metallic solution at large U , it
is however doubtful whether this is an artifact of the self-
consistency scheme (ii).

Plotting vertex contributions to the susceptibility and cor-
relation lengths on a logarithmic scale as a function of the
inverse temperature β, as it is done in Fig. 10 (right), shows a
clear linear trend which translates into the exponential scaling
χ ∼ ea/T and ξ ∼ eb/T , both with and without outer self-
consistency. Such an exponential increase of the correlation
length has been reported before in D�A [13,15].

IV. CONCLUSION

We have shown that enforcing outer self-consistency re-
quiring the physical and the impurity Green’s function to be
equivalent [scheme (ii)] changes the results of dual fermion
calculations not only quantitatively, but in some cases it also
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has a qualitative effect and causes interesting phenomena,
such as the appearance of a three-peak metallic spectrum
at U = 3, above the Uc of the DMFT Mott transition. The
reason for this is the larger hybridization function of the self-
consistent impurity problem which needs to accommodate a
larger spread of the spectral function because the k-dependent
DF self-energy pushes states further away from the Fermi
energy. The self-consistency scheme (i), which requires a
purely nonlocal interacting dual Green’s function, on the
other hand, hardly changes the hybridization function so that
corrections due to the outer self-consistency scheme (i) are
small when using the ladder DF approach. This poses pressing
questions about the best outer self-consistency scheme and its
underlying impurity problem. Our results indicate that scheme
(ii) might be inferior, but for a conclusive answer further
benchmarks against independent methods, such as cluster
Monte Carlo simulations, are called for.

Another important result of our paper is that the DF ap-
proach also yields an exponential scaling of the correlation
length at low temperatures for the two-dimensional Hubbard
model. We were able to demonstrate this by focusing on
the vertex contribution to the susceptibility, which becomes
dominant for low enough temperatures. This reaffirms the
scenario that the paramagnetic phase is always insulating
at low enough temperatures and for a lattice with perfect
nesting [15,19,20], essentially because the spectrum looks
(almost) like that of the antiferromagnetic ground state if the
correlation lengths are that large. In contrast, for second-order

DF(2) with outer self-consistency a finite Uc was found [17].
With the strongly increasing correlation length in our ladder
DF calculations, one might also expect that the metallic DF
solution at U = 3 eventually becomes insulating due to strong
antiferromagnetic spin fluctuations, but only at much lower
temperatures.

Note added. During the completion of this work, we
learned about another DF outer-self-consistency study using
DF(2) and focusing on self-consistency scheme (i) [17].
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