
PHYSICAL REVIEW B 99, 041115(R) (2019)
Rapid Communications

Why the critical temperature of high-Tc cuprate superconductors is so low:
The importance of the dynamical vertex structure
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To fathom the mechanism of high-temperature (Tc) superconductivity, the dynamical vertex approximation
is evoked for the two-dimensional repulsive Hubbard model. After showing that our results reproduce well the
cuprate phase diagram with a reasonable Tc and dome structure, we keep track of the scattering processes that
primarily affect Tc. We find that local particle-particle diagrams significantly screen the bare interaction at low
frequencies, which in turn suppresses antiferromagnetic spin fluctuations and hence the pairing interaction. Thus
we identify dynamical vertex corrections as one of the main oppressors of Tc, which may provide a hint toward
higher Tc’s.

DOI: 10.1103/PhysRevB.99.041115

I. INTRODUCTION

More than three decades after the discovery of high-Tc

cuprate superconductors [1], the quest for higher (or even
room-temperature) Tc superconductors remains one of the
biggest challenges in solid-state physics. Despite intensive
efforts, we are still stuck with Tc � 130 K [2]. Nonetheless
the cuprates do remain arguably the most promising material
class, at least at ambient pressure [3].

In this arena, theoretical estimations of Tc, specifically
identifying the reason why it is so low (as compared with
the starting electronic energy scales of ∼eV), should be
imperative if one wants to possibly enhance Tc. Through many
theories proposed and intensively debated, it has become
clear that superconductivity in the cuprates is interlinked with
electronic correlations, which are considered to mediate the
pairing through spin fluctuations [4]. The simplest and most
widely used model for cuprates is the repulsive Hubbard
model on a square lattice, where a formidable problem is
that the scale of Tc is orders of magnitude smaller than the
Hubbard interaction U and the hopping amplitude t , which
has been a key question from the early stage of high-Tc studies
[5]. Various approaches have been employed to attack the
problem; see, e.g., Refs. [6–13]. Thus, while the conventional
phonon-mediated superconductors can now be accurately
captured by density functional theory for superconductors
(SCDFT) [14,15], a full understanding of Tc in the Hubbard
model has yet to be achieved. One inherent reason for the low
Tc is the d-wave symmetry of the gap function arising from
the local repulsion.

A possibly essential mechanism that reduces Tc comes
from vertex corrections. Migdal’s theorem [16], which works
so nicely for phonon-mediated pairing, is no longer applica-
ble to unconventional superconductivity due to the electron

correlation. For strongly correlated systems, we should in fact
expect vertex corrections to be a major player, affecting Tc

and changing it with respect to simpler (e.g., mean-field-like)
treatments [17,18].

Thanks to recent extensions of the dynamical mean-field
theory (DMFT) [19–21], specifically the dynamical vertex
approximation (D�A) [22–25], the dual-fermion [26], and
other related approaches [13,27–32], such vertex corrections
can now be studied for strong correlations; see [33] for a
review. Due to this development, we now understand the
(local) vertex structures much better [33–36], e.g., how they
affect the spectral function and lead to pseudogaps in the
normal phase [25,28,29,37–42]. This now puts us in a position
to shed light on the impact of dynamical vertex corrections on
superconductivity.

In this paper, we analyze how vertex corrections affect
Tc. We find that the dynamical structure (frequency depen-
dence) of the vertex, �(ν, ν ′, ω), is actually essential for
estimating Tc. Note that � is nonperturbative; it sums up the
local contribution of all Feynman diagrams (to all orders in
the interaction) connecting two incoming and two outgoing
particles. Physics of strongly correlated electrons such as the
quasiparticle renormalization and the formation of Hubbard
bands are hence encoded in �. On top of such correlations
already included in DMFT, the D�A further incorporates
nonlocal correlations, in particular spin and superconducting
fluctuations; see Fig. 1 and [33]. The present results show
that the dynamics of �, which turns out to reduce the pairing
interaction in a low-frequency regime, suppresses Tc by one
order of magnitude. We unravel the physical origin in the
relevant dynamical vertex structure as it is passed from the lo-
cal vertex to the magnetic vertex describing antiferromagnetic
spin fluctuations and, eventually, to the pairing interaction.
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FIG. 1. (a) Antiferromagnetic spin fluctuations captured for
weak interaction U (wiggled line) in terms of particle-hole ladder
diagrams (solid line: Green’s function). (b) D�A diagrams describe
similar spin fluctuations but now for strong correlation, with ladders
in terms of the local �, which is nonperturbative and frequency-
dependent [33] instead of U . (c) The spin fluctuations can act, in
turn, as a pairing glue for superconductivity in the particle-particle
channel (an exemplary diagram is shown).

II. MODEL AND METHODS

We consider the two-dimensional single-orbital Hubbard
model,

H =
∑

k,σ

ε(k)c†k,σ ck,σ + U
∑

i

n̂i↑n̂i↓, (1)

where c
†
k,σ (ck,σ ) creates (annihilates) an electron with spin

σ =↑,↓ and wave vector k, U is the on-site Coulomb repul-
sion, and n̂iσ ≡ c

†
iσ ciσ . The two-dimensional band dispersion

is given by ε(k) = −2t (coskx + cosky ) − 4t ′coskxcosky −
2t ′′(cos2kx + cos2ky ), with t , t ′, and t ′′ being the nearest-,
second-, and third-neighbor hoppings, respectively. We con-
sider two sets of hopping parameters: (a) t ′ = t ′′ = 0 and
(b) t ′/t = −0.20, t ′′/t = 0.16, which corresponds to the band
structure of HgBa2CuO4+δ [43,44].

We adopt the D�A as a method that incorporates nonlocal
correlations beyond the local correlations treated in DMFT.
In the D�A [22,25,33], the local two-particle vertex � that is
irreducible in the particle-hole channel is calculated from a
DMFT impurity problem. We employ the exact diagonaliza-
tion as an impurity solver to this end, but we also checked
against quantum Monte Carlo simulations [45–48]; see the
Supplemental Material [49].

From �σσ ′ (ν, ν ′, ω), the nonlocal vertex Fσσ ′ (k, k′, q ),
which describes, among other things, longitudinal and
transversal spin-fluctuations, is obtained via the Bethe-
Salpeter equation in the vertical particle-hole channel [as
visualized in Fig. 1(b)] and transversal particle-hole channel
(not shown). Fσσ ′ (k, k′, q ) depends on the spin (σ, σ ′), two
fermionic (k, k′), and one bosonic (q ) four-vectors consist-
ing of momentum and Matsubara frequency, i.e., k = (k, ν).
From F , the D�A self-energy �(k) is in turn computed via the
Schwinger-Dyson equation [33]; spin fluctuations included in
�(k) give rise to a pseudogap in the nonlocal Green’s function
G(k) [25,39,49].

For studying superconductivity, we extend here the existing
D�A treatment. That is, we extract, from F , the particle-
particle irreducible vertex �pp(k, k′, q = 0) ≡ F (k′,−k, k −
k′) − �pp(ν, ν ′, ω = 0) (with four-vector in particle-particle
convention). Here �pp is defined as the local reducible vertex
diagrams in the particle-particle channel, which are included
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FIG. 2. d-wave eigenvalue λ against the band filling n for U =
6t, T /t = 0.010, 0.013, 0.020 with (a) t ′ = t ′′ = 0 and (b) t ′/t =
−0.20, t ′′/t = 0.16. (c,d) Momentum dependence of the Green’s
function |G(π/β, k)| (c) and the pairing interaction vertex �pp, Q

(d) for n = 0.775 (overdoped), 0.825 (optimally doped), and 0.85
(underdoped), at T/t = 0.02 with other parameters as in (a). In
(d) we specifically display the Q dependence of the pairing vertex
[�pp, Q (π/β, π/β ) + �pp, Q (−π/β, π/β )]/2, which is symmetrized
for d-wave (singlet, even-frequency) pairing.

in F but need to be subtracted to obtain the �pp, Q=k−k′

(ν, ν ′), see [49] for details. The vertex �pp contains spin
fluctuations as a pairing glue, and we can now insert it into the
particle-particle ladder [as illustrated in Fig. 1(c) for selected
diagrams]. For evaluating this ladder, we use the linearized
gap (Eliashberg) equation [50]:

λ�(k) = − 1

βNk

∑

k′
�pp(k, k′, q = 0)G(k′)G(−k′)�(k′).

(2)

Here, �(k) is the anomalous self-energy, λ is the supercon-
ducting eigenvalue with λ → 1 signaling an instability toward
superconductivity [51], β = 1/T is the inverse temperature,
and Nk is the number of k points.

III. SIZE AND DOME SHAPE OF Tc

We first show the superconducting eigenvalue λ for the two
sets of hopping parameters in Figs. 2(a) and 2(b), respectively.
In the doping region in Fig. 2, the d-wave has the largest λ,
while antiferromagnetic fluctuations become dominant close
to half-filling; cf. Refs. [25,52]. A superconducting instability
(λ → 1) is found for Tc � 0.01t in Fig. 2(a) and for Tc ≈
0.015t in Fig. 2(b).

The results reproduce well the phase diagram of the
cuprates with a dome structure and peaks that amount to
Tc ≈ 50–80 K around n = 0.80–0.95 if we take a typical
t ≈ 0.45 eV [53]. We can explain the physical origin of the
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FIG. 3. (a) Eigenvalue λ against the frequency range nvertex [ex-
emplified in (b) as a dashed line], over which the local vertex
correction δ�m is considered, for U = 6t, t ′ = t ′′ = 0, n = 0.825,
and T/t = 0.040, 0.067. (b,c,d) Dynamical vertex structure of
(b) the local vertex correction δ�m(νn, νn′ , ω = 0) in the magnetic
channel relative to −U , (c) the nonlocal vertex in the magnetic
channel, Fm, Q=(π,π )(νn, νn′ , ω = 0), and (d) the pairing interaction
�pp, Q=(π,π )(νn, νn′ , ω = 0), for the same U, t ′, t ′′, n with T/t =
0.067 here. The inset in (d) shows a typical structure of �pp in
mean-field-like approaches.

Tc dome as follows: antiferromagnetic spin fluctuations that
mediate the pairing become stronger [i.e., �pp in Fig. 2(d)
increases] toward half-filling, while close to half-filling the
self-energy blows up and damps |G(k)| in Fig. 2(c). The latter
eventually leads to a pseudogap at smaller dopings within the
central peak in a three-peak spectrum; see the Supplemental
Material [49]. Thus the dome appears as a consequence of
two opposing factors: �pp and G(k) in the gap equation (2).
We can see in Fig. 2(d) that �pp is sharply peaked at around
Q = (±π,±π ) (with some offset and splitting because of
incommensurability), leading to a d-wave �(k) in Eq. (2). Let
us note that a superconducting dome has also been reported in,
e.g., [6,7,12,13], but not in the dual-fermion approach [9,11].

IV. IMPORTANCE OF THE DYNAMICAL
VERTEX STRUCTURE

Let us now look into the structure of the vertex
�(ν, ν ′, ω = 0) against frequencies ν, ν ′. As we shall see be-
low, if we start from a mean-field or random phase approxima-
tion (RPA)-like treatment, where �m(ν, ν ′, ω) =�↑↑−�↑↓ is
replaced with the bare −U in the Bethe-Salpeter ladder [54],
this would yield stronger spin fluctuations and overestimate
Tc by an order of magnitude.

We can elucidate this point in an energy-resolved fashion
by taking the local irreducible vertex in the magnetic channel
�m(ν, ν ′, ω) only up to a frequency nvertex, with the bare
(−U ) adopted outside this range [55] [pictorially this means
taking Fig. 1(a) instead of Fig. 1(b) for large frequencies].
In Fig. 3(a), we plot the eigenvalue λ against nvertex [56]. As
the region nvertex in which we take the dynamical vertex is

λ＝0.403 λ＝0.677

)b()a(

FIG. 4. Frequency structure of the local vertex correction,
δ�m(νn, νn′ , ω = 0) ≡ �m(νn, νn′ , ω = 0) − (−U ), for (a) second-
order or (b) third-order perturbation theory for U = 6t, t ′ = t ′′ =
0, n = 0.825, and T/t = 0.067. In each panel, the inset shows a
typical diagram taken into account, and the corresponding eigenvalue
λ is indicated.

widened, λ is seen to dramatically decrease, already when a
few frequencies are taken into account. This signifies that the
low-frequency part of the dynamical �m is quite important.

Figure 3(b) displays the deviation, δ�m(νn, νn′ , ω = 0) ≡
�m(νn, νn′ , ω = 0) − (−U ), of the local �m from −U . �m is
indeed prominently reduced (dark blue δ�m) at small frequen-
cies νn, νn′ ∼ 0, as well as along the diagonal νn = −νn′ .

The nonlocal magnetic vertex Fm [Fig. 3(c)] and the
pairing interaction �pp [Fig. 3(d)] inherit similar dynamical
structures from the local �m. This comes from the Bethe-
Salpeter equation Fm = �m − �mχ0Fm with χ0 being the
bare bubble susceptibility, and from �pp = F − �pp, respec-
tively; for a more extensive discussion, see the Supplemental
Material [49]. Without the vertex δ�m, Fm depends on the
spin susceptibility through Fm = −U − U 2χm(ω) [49] and
hence only on ω, which corresponds to the red background in
Fig. 3(c). As a consequence, the pairing vertex �pp depends
only on the difference of two frequencies νn, νn′ [inset of
Fig. 3(d)]. With the suppressed �pp, the Eliashberg Eq. (2)
finally leads to a reduced λ and Tc. Thus we have traced that
the local vertex corrections are responsible for the reduction
of Tc, where an important message is that their dynamical
structure has to be examined. Indeed, a mean-field-like (e.g.,
paramagnon-exchange) picture cannot describe the frequency
structure in Fig. 3(d) even if we consider vertex correction
effects on the susceptibility χm(ω).

V. PHYSICS BEHIND SUPPRESSION OF �m

Having identified the suppression of the local �m as the
key ingredient for low Tc’s, we can now pinpoint which
physical processes are at its origin. In Fig. 4 we show the
contributions to δ�m in (a) second-order and (b) third-order
perturbation theory, where we show a typical diagram along
with the eigenvalue λ estimated in D�A when �m is replaced
by the displayed local vertex [56]. When the bare value (−U ;
δ�m = 0) is used instead of the full �m, λ is enhanced dra-
matically from the correct value 0.45 to 2.49 for T/t = 0.067
(Tc increases correspondingly from 0.01t to 0.13t). We can
see that most of the dynamical effect is already included in
the second-order particle-particle diagram in Fig. 4(a), which
compensates the bare contribution (−U ) for νn ≈ −νn′ , and
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FIG. 5. Typical diagrams that contribute to the magnetic vertex
Fm in the Bethe-Salpeter ladder. Left: a typical diagram as in RPA
with U (red wavy line) as an irreducible building block, connected
by χ0 (with two Green’s functions having fermionic frequencies ν1

and ν1 + ω). Right: local (second-order) vertex correction δ�m with
a particle-particle bubble. Such terms are particle-hole irreducible,
hence they need to be inserted in the Bethe-Salpeter ladder for spin
fluctuations. They lead to the suppression of �m in Fig. 4, and
through the whole ladder suppress Fm and �pp in Figs. 3(c) and 3(d).

strongly reduces λ back to 0.40. Third-order diagrams in
Fig. 4(b) slightly enhance λ, and already resemble the full
vertex qualitatively. Thus the second-order particle-particle
diagrams in Fig. 4(a) constitute by far the major process for
the suppression of the λ.

Hence it is worthwhile to look into this second-order
contribution in more detail. The local irreducible vertex �m

is the building block for the nonlocal particle-hole ladder that
leads to magnetic fluctuations as visualized in Fig. 1(b). If
we take �m(ν, ν ′, ω) = −U as in Fig. 1(a) or the left part of
Fig. 5, we obtain the standard RPA with a Stoner-enhanced
spin susceptibility,

χ = χ0/(1 − Uχ0) = χ0 + χ0Uχ0 + χ0Uχ0Uχ0 · · · . (3)

While all the terms enhance the susceptibility in this ge-
ometric series in U , local vertex corrections do need to
be included in the particle-hole ladder with �m(ν, ν ′, ω) =
−U + δ�m(ν, ν ′, ω) as a building block. In Fig. 4(a), we have
identified the second-order particle-particle contribution to
δ�m > 0 to be most important for suppressing antiferromag-
netic spin fluctuations, and the inclusion of such a contribution
δ�m in the ladder series for Fm is visualized in the right part
of Fig. 5.

The difference from the RPA ladder comprising −U and
particle-hole bubbles (left block in Fig. 5) is that δ�m > 0 has
(in the second order) two −U ’s and a local particle-particle
bubble (right block in Fig. 5). This bubble, being a particle-
particle bubble, depends on the frequency combination ν +
ν ′ + ω rather than on ω alone as in particle-hole bubbles.
This, first of all, gives the pronounced frequency structure of
δ�m in Fig. 4(a). Since Fig. 5 shows typical diagrams that
contribute to Fm, we can also see that, with a δ�m located
at an end of the ladder, Fm and �pp = F − �pp inherit a
similar frequency structure as in Figs. 3(c) and 3(d); see the
Supplemental Material [49] for a general explanation.

Second, at its maximum (ω = 0, ν ′ = −ν), the particle-
particle bubble

∑
ν ′′ G(ν ′′)G(−ν ′′)=∑

ν ′′ G(ν ′′)G∗(ν ′′) has a
sign opposite to the particle-hole bubble

∑
ν ′′ G(ν ′′)G(ν ′′),

because the biggest contribution comes from Im G(ν).
Hence δ�m partially compensates the second-order RPA
contribution, Uχ0U in Eq. (3). This is the reason why δ�m

reduces the bare U , whereas the RPA ladders Eq. (3) enhance
it.

Now we are in a position to finally grasp a physical picture:
while a repulsive interaction can give rise to a spin-fluctuation
mediated attraction through the particle-hole channel, a local
repulsive interaction U always leads to a repulsion between
two particles in the particle-particle channel, too. As we have
seen in Fig. 5, this repulsion in the particle-particle channel
reduces the antiferromagnetic spin fluctuations, albeit only for
certain frequency combinations. With reduced antiferromag-
netic spin fluctuations, superconductivity is suppressed.

VI. CONCLUSION AND OUTLOOK

We have extended the D�A formalism for studying su-
perconductivity in the repulsive Hubbard model on a square
lattice. Our results reproduce well the superconducting dome
and typical values of Tc ≈ 50–80 K for the cuprates. We have
pinpointed the importance of dynamical vertex corrections.
That is, Tc would be around room temperature if the pairing
interaction was built from a ladder with the bare interaction
U . However, local vertex corrections give rise to a pronounced
frequency structure accompanied by a suppression (screening)
of the irreducible magnetic vertex �m (i.e., the effective
interaction in the magnetic channel). This in turn suppresses
antiferromagnetic spin fluctuations and the pairing glue (�pp)
for superconductivity in the particle-particle channel.

Thus local particle-particle fluctuations are at the origin of
the suppression of �m, so that it is intriguing to ask: can one
possibly evade this oppressor of Tc? This is not simple. As the
leading correction that reduces the bare interaction U is ∼U 2,
the suppression becomes smaller for weaker Coulomb interac-
tions, but so do the antiferromagnetic spin fluctuations. Local
particle-particle fluctuations can be suppressed by disorder or
a magnetic field [57], but this would degrade the nonlocal
particle-particle (superconducting) fluctuations, too. One way
out might be to exploit the characteristic frequency structure
of �m, possibly in combination with a frequency-dependent
(local) interaction, which may originate from off-site (ex-
tended Hubbard) interactions as described in dual-boson [58]
and extended-DMFT [59–63] approaches, or from phonons.
A further route may be a proper design of the band structure,
including multiorbital models. Another, completely different
outcome of the frequency structure in the vertex is that it
may possibly realize exotic gap functions on the frequency
axis.
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