

Theoretical investigation of excitonic magnetism in $LaSrCoO_4$

J. Fernández Afonso ¹, A. Sotnikov ¹ and J. Kuneš ¹

(1) Institute of Solid State Physics, TU Wien, Vienna, Austria

In this work we use the LDA+U approach to search for excitonic ordered ground states of LaSrCoO₄. We find an ordered state characterized by the staggered arrangement of magnetic multipoles to be stable over a broad range of Co 3d interaction parameters. The ordered state can be described as a $d_{xy} \otimes d_{x^2-y^2}$ excitonic condensate carrying spin S = 1. We have also constructed an effective strong-coupling model in to investigate the excitonic gap. We also provide a comparison with previous studies on LaCoO₃ and we find that for the same interaction parameters the excitonic gap is smaller (possibly vanishing) in the layered cobaltite.

1 DFT computational details

The La_{2-x}Sr_xCoO₄ structure consists of single layers of CoO₆ corner-sharing octahedra separated by a random distribution of La and Sr ions. In order to investigate the possibility of excitonic condensation we simulate the LaSrCoO₄ compound employing the virtual crystal approximation on the La atom (Z_{La} = 56.5). With this approach the Co will have +3 valence with a $3d^6$ electronic configuration. The unit cell vectors used in the calculation are highlighted in on the picture below left panel and correspond to the parameters a = 6.8019 Å, b = 6.8019 Å, c = 5.3796 Å, $\alpha = \pi/2$, $\beta = \pi/2$, and $\gamma = 2.3284$. The calculations were performed within the density functional theory framework. We used the LDA as exchange-correlation potential and the Coulomb interaction 'U' added as a spin-polarized mean field term for the 3d shell of Co. The double-counting was corrected with the so called fully localized limit. The Brillouin zone was sampled with a $4 \times 4 \times 4$ k-mesh, the muffin-tin radii was set to: 2.5 for La, 1.91 for Co and 1.65 for O in bohr units, and the plane wave cut-off $R_{mt}K_{max} = 6$. The calculations were carried out with the WIEN2k software package.

2.2 Strong coupling model

We have build an effective bosonic model to study the excitonic dispersion for different interaction parameters where the starting point was the Co*d*-shell Hubbard hamiltonian. To this end, we used the set of the 25 lowest energy many-body LS, IS and HS sates of d^6 electronic configuration to treat the non local terms of $\hat{\mathcal{H}}_t^{(\mathbf{r})}$.

Co *d*-shell Hubbard model

 d^6 LS, IS, HS effective model

2 Excitonic order parameter

In compounds with a cubic crystal field and d^6 electronic filling, a low-energy exciton is a bound state of an e_g electron and a t_{2g} hole. These excitons correspond to excitations from low spin LS to intermediate spin states IS. Due to the layered structure of La₂CoO₄ only the excitons with $d_{x^2-y^2} \otimes d_{xy}$ orbital configuration will condense. The excitonic order will contribute with an extra anomalous term to the density matrix

$$\begin{aligned} \hat{\mathcal{H}} &= \sum_{i} \hat{\mathcal{H}}_{at}^{(i)} + \sum_{\mathbf{r}} \hat{\mathcal{H}}_{t}^{(\mathbf{r})} \\ \hat{\mathcal{H}}_{at}^{(i)} &= \sum_{\alpha\beta} h_{\alpha\beta}^{ii} \hat{c}_{i\alpha}^{\dagger} \hat{c}_{i\beta} + \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\gamma\delta} \hat{c}_{i\alpha}^{\dagger} \hat{c}_{i\beta}^{\dagger} \hat{c}_{i\gamma} \hat{c}_{i\delta} \\ \hat{\mathcal{H}}_{eff}^{(\mathbf{r})} &= \hat{\mathcal{H}}_{t}^{(ij)} = \sum_{\alpha\beta} h_{\alpha\beta}^{ij} \hat{c}_{i\alpha}^{\dagger} \hat{c}_{i\beta}^{\dagger}, \ i \neq j \end{aligned} \qquad \hat{\mathcal{H}}_{eff} = \sum_{ij,\,\alpha\beta} (\varepsilon_{1\alpha\beta}^{ij} \hat{d}_{i\alpha}^{\dagger} \hat{d}_{j\beta} \hat{s}_{i} \hat{s}_{j}^{\dagger} + \varepsilon_{2\alpha\beta}^{ij} \hat{d}_{i\alpha}^{\dagger} \hat{d}_{j\beta}^{\dagger} \hat{s}_{i} \hat{s}_{j}) + \text{H.c.} + \hat{\mathcal{H}}_{int} \end{aligned}$$

In this model we consider the LS state as the bosonic vacuum, $|\emptyset\rangle_i = \hat{s}_i^{\dagger} |0\rangle$, and other states bosonic flavors α are characterized by the creation (annihilation) operators $\hat{d}_{i\alpha}^{\dagger}$ ($\hat{d}_{i\alpha}$) on the lattice site *i*. From the on-site terms of the Hubbard model we obtained the atomic picture of the Tanabe-Sugano diagram where we set up the LS state to be the zero energy point for each \tilde{J} value. From the diagonalization of the effective bosonic hopping we obtained the energy dispersions of the considered LS, IS and HS manifolds. We found three distinct regions in the phase diagram: normal, IS and HS phases.

where Γ' and Γ'' are expressed in the spherical harmonic basis and D_0 is the occupation matrix in the normal phase. We can describe this excitonic state with a three-dimensional complex order parameter ϕ .

$$\hat{O}_{\beta}' = \frac{i}{4} \sum_{\sigma,\sigma'=\uparrow,\downarrow} (\tau_{\beta})_{\sigma\sigma'} (\hat{c}_{2\sigma}^{\dagger} \hat{c}_{-2\sigma'} - \hat{c}_{-2\sigma}^{\dagger} \hat{c}_{2\sigma'}) \\ \hat{O}_{\beta}'' = \frac{1}{4} \sum_{\sigma,\sigma'=\uparrow,\downarrow} (\tau_{\beta})_{\sigma\sigma'} (\hat{c}_{-2\sigma}^{\dagger} \hat{c}_{-2\sigma'} - \hat{c}_{2\sigma}^{\dagger} \hat{c}_{2\sigma'}) \quad \phi_{\beta} = \langle \hat{O}_{\beta}' \rangle + i \langle \hat{O}_{\beta}'' \rangle = \phi_{\beta}' + i \phi_{\beta}'',$$

where $\hat{c}_{m\sigma}^{\dagger}(\hat{c}_{m\sigma})$ are the creation (annihilation) operators for 3d electrons on the same Co atom (the site indices are not shown for sake of simplicity). The orbital index m refers to the spherical harmonic $Y_{2,m}$ basis with the zquantization axis. The Pauli matrices τ_{β} ($\beta = x, y, z$) capture the spin-triplet character of the exciton. When the oder parameter is zero, there is no excitonic order and the excitonic spin density on the Co site vanishes.

2.1 LDA+U calculations

LDA+U calculations without SOC lead to a non-zero excitonic order parameter $\phi = (-1)^k (0, 0, \lambda')$ with staggered arrangement in the Co-O plane. This electron-hole coupling lowers the energy and increases the band gap. We studied the stability of the EC as function of the Coulomb interaction U and the Hund's coupling J. The phase diagram resembles previous results obtained for LaCoO₃.

We also performed calculations on the ideal LaCoO₃ perovskite to compare the excitonic gap obtained for LaSrCoO₄ for $\widetilde{U} = 1.96$ and $\widetilde{J} = 0.92$ eV. We observed that the gap almost vanishes in layered LaSrCoO₄ cobaltite while it is sizable (around 55 meV) for LaCoO₃ compound. Also notice that the HS excitations lay higher for the layered structure than for the cubic one.

3 Conclusions

- LDA+U calculations showed that the excitonic condensate is an stable solution for a large range of U and J interaction parameters studied.
- This excitonic phase was found to lower the energy of the non-ordered state.

The spin-orbit interaction introduces a non-zero value of the hybridization between e_g and t_{2g} orbitals. $\langle xy, \sigma | \hat{l}_z \hat{s}_z | x^2 - y^2, \sigma \rangle$ coupling generates a non-zero contribution to ϕ''_z . For U= 3.94 and J= 0.95 eV (starshaped point in the La₂CoO₄ phase diagram) we found two distinct excitonic phases with different symmetries. As shown in the table, the excitonic in-plane excitonic order was found to be the ground state.

Staggered	Uniform	Solution	Approach	$ \phi' $	$ \phi'' $	$\Delta E \ ({\rm meV/f.u.})$
		EC	LDA+U	0.289	0.000	-14.25
$oldsymbol{\phi}_{i}^{\parallel} = (-1)^{j} (egin{array}{cccc} 0 & 0 \ \lambda_{\parallel}^{\prime}) + i (0 \ 0 \ \lambda_{\parallel}^{\prime \prime}) \end{array}$		EC^{\perp}	LDA+U+SOC	0.274	0.098	-14.83
$\phi_j^\perp = (-1)^j (\lambda'_\perp \ \lambda'_\perp \ 0) +$	- $i(0 \ 0 \ \lambda_{\perp}^{\prime\prime})$	EC^{\parallel}	LDA+U+SOC	0.299	0.096	-17.58

• The effective strong-coupling model suggest that the LaSrCoO₄ is close to the excitonic instability.

Funding

ERC consolidator grant EXMAG grant agreement No 646807.

References

[1] J. K. and P. A., Phys. Rev. B **90**, 235112 (2014).
[2] J. K., J. Phys.: Condens. Matter **27**, 333201 (2015).
[3] A. S. and J. K., Sci. Rep. **6**, 30510 (2016).
[4] J. F. A. and J. K., Phys. Rev. B **95**, 115131 (2017).
[5] J. F. A., A. S. and J. K., arXiv 1712 03774 (2017).

