Master theses & project works

Thomas Schäfer

Agnese Tagliavini Dr. Jan Tomczak

Tin Ribic

Patrik Gunacker

Dr. Marco Battiato

Markus

Wallerberger

Current MAs Nikolaus Berlakovich, Michael Weis, Josef Kaufmann

Recent PAs

Matthias Pickem, Felix Hörbinger, Benedikt Hartl, Tobias Reisch, Marie-Therese Philipp, Bejamin Klebel, Paul Semmelrock

Janson

Dr. Patrik Thunström

Anna Galler

Dr. Gang Li

Topic 1: Topology – hexagonal layers

New research area: Transition metal oxide heterostructures

(111) surface, 2 layers \rightarrow hexagonal lattice \rightarrow Dirac points

Density functional theory (DFT) + dynamical mean field theory (DMFT) for materials with hexagonal layers – analysis of topological properties

Prerequisite: good theory skills and physical understanding

Supervisors: Held (held@ifp.tuwien.ac.at), Janson

Topic 2: Ab initio dynamical vertex approximation (D Γ A)

ERC project

includes GW (exchange), DMFT (correlations), and non-local correlations beyond Materials calculations and/or program development

Start: summer 2016

Prerequisite: quantum field theory, good physical understanding

Supervisors: Held (held@ifp.tuwien.ac.at), Tomczak, Galler, Thunström

Topic 3: Full parquet $\mathbf{D}\Gamma\mathbf{A}$ for Hubbard model

Hubbard model with t, t' $H = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$

Dynamical vertex approximation (D ΓA) with full parquet

calulation: Hubbard model with t', physics of cuprates

Prerequisite: quantum field theory

Supervisors: Held (held@ifp.tuwien.ac.at), Li, Pudleiner

Topic 4: Falicov-Kimball model

$$H = \sum_{ij} t_{ij} c^{\dagger}_{i\uparrow} c_{j\uparrow} + \frac{U}{\sum_{i} c^{\dagger}_{i\uparrow} c_{i\uparrow} c^{\dagger}_{i\downarrow} c_{i\downarrow}}$$

Master, Ph.D. thesis Ribic: Analytical calculation of n-particle vertex

Tasks:

- corrections due to 3-particle vertex
- $\Sigma(\omega)$ at real frequencies

Prerequisite: quantum field theory

Supervisors: Held (held@ifp.tuwien.ac.at), Ribic

Project 1: Mobile Molecular Orbitals

- Waltzing Atoms is an educational app to learn chemistry & physics
- Goal: Develop an efficient algorithm to visualize molecular orbitals on web & mobile.
- Questions: How to approximate many-electron physics on a molecule to get majority of molecules isosurfaces right? Starting Point: electron-negativity
- Technology: web and mobile technology, web-interfaces (can be learned during project)
- Company: 3DataX GmbH & Co KG Lambrechtgasse 3 1040 Vienna Contact: office@waltzingatoms.com

Project 2: Energies of Surface Layers for electron-beam nano-lithography

- 3DataX develops a simulator for e-beam nano-lithography (semi-conducting industry)
- Goal: Develop an automatized way to determine the work function of top layers in computer chip mask materials
- Questions: Depending on depth, how quickly do surface energies morph to bulk properties? How strong is this behavior dependent on the material? Starting Point: WIEN2k super-cell calculations
- Technology: WIEN2k, web-GUI and interface (can be learned during project)
- Company: 3DataX GmbH & Co KG Lambrechtgasse 3 1040 Vienna Contact: office@waltzingatoms.com

MA/DA: Implementation of $U(\omega)$ in the quantum Monte-Carlo (w2dynamics) code

MOTIVATION: Current version of w2dynamics (our DMFT imputity solver) allows *only* calculations with **static** electron interaction $U(\omega) = U$. BUT, in general ...

GOALS: Extension of w2dynamics to include also the case of $U(\omega)$: a preliminary implementation for the simplest case can be used as a starting point.

PHYSICS APPLICATIONS: (second part of MA) several:

from correlated surfaces/heterostructure, to Fe-based superconductors.

PREREQUISITES: good programming skills, CMS, QFT, and/or this VO may help **SUPERVISION: Toschi**, Tomczak, Held (& cooperation UniWürzburg: Sangiovanni)

MA/DA: The "puzzling" scattering rate of high-Tc cuprates

MOTIVATION: unexpected new, experimental estimate of an **universal electronic** scattering rate in high-Tc supercondicting cuprates (N. Barisic's group, here @ IFP)

GOALS: theoretical investigation of the phenomenon: Direct calculation of electron self-energy in DMFT & beyond (D Γ A). Derivation of the expressions for resistivity and Hall coefficient in DMFT/D Γ A, and their implementation in the algorithm.

PREREQUISITES: solid theoretical background, CMS or QFT, and/or this VO **SUPERVISION: Toschi**, Schäfer (coll. with :Tomczak, Held and –maybe- N. Barisic)

MA/DA: Detecting the time scales of the spin dynamics

MOTIVATION: Dynamic spin susceptibilities yield crucial information about the presence/absence of local magnetic moments and their time/energy scales.
BUT such infos need to be ,,disentangled" in the numerics (often in imaginary time).

GOALS: analytical modellization of $\chi(t)$ on real-time axis (w. one /more time-scales), characterization of its general properties on both real/frequency domains

→ rules of thumb to detect time-scales from data

PHYSICS APPLICATIONS: 2-orbital systems, Fe-based superconductors.

PREREQUISITES: good theory background, e.g. QFT, and/or this VO (o. ae.) **SUPERVISION: Toschi** (possible cooperation with Würzburg: G. Sangiovanni)