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Abstract

The theoretical study of strongly correlated electron systems is both a fascinating and,

at the same time, also a very challenging task. In particular, within the quantum field

theoretic description of interacting many-electron systems, no small parameter can be de-

fined a priori according to which a perturbation expansion could be safely formulated.

As it turns out, already in situations of intermediate coupling among the electrons, this

can have remarkable consequences: the breakdown of self-consistent perturbation theory,

which manifests itself in the divergences of the two-particle irreducible vertex functions

as well as the associated crossings of the physical with unphysical solutions of the (intrin-

sically multivalued) Luttinger-Ward functional. The occurrence of these nonperturbative

effects poses considerable challenges to the state-of-the-art many-body theory and to the

numerical applicability of several forefront approximation schemes.

In this thesis, one aspect of the breakdown of perturbation theory, namely the diver-

gences of the irreducible vertex functions, is analyzed in different respects. In particular,

as a first step, the appearance of these nonperturbative manifestations throughout the

parameter spaces of several fundamental many-electron models is investigated and sys-

tematically discussed for cases with and without particle-hole symmetry. Thereafter, on

a more fundamental level, the physical origin of the divergences of the irreducible vertex

functions is unveiled. To this end, the way the formation of the local magnetic moment

and its Kondo screening impact the generalized susceptibility in the charge channel is care-

fully analyzed. This study reveals the emergence of characteristic structures in Matsubara

frequency space that originate vanishing eigenvalues, which are associated with the ap-

pearance of irreducible vertex divergences. As a remarkable byproduct of this analysis, an

alternative criterion for the determination of the Kondo temperature on the two-particle

level is identified. Further, the physical implications of the occurrence of irreducible vertex

divergences are studied. As it turns out, the sign change of the associated eigenvalues of

the generalized susceptibility in specific scattering channels can lead to effectively attrac-
tive contributions in these sectors. Ultimately, these contributions are responsible for the

divergence of the isothermal compressibility, observed in the proximity of the Mott metal-

to-insulator transition of the Hubbard model solved by the dynamical mean-field theory.

From a more methodological perspective, different algorithmic strategies for circumvent-

ing the computational problems posed by the breakdown of self-consistent perturbation

theory are reviewed. Because of its potential for future method development, a particular

emphasis is given to the multiloop functional renormalization group (mfRG) scheme for

the fundamental case of theAnderson impuritymodel, where its performance andphysical

content are studied from weak- to strong-coupling. Finally, the multifaceted perspectives

for future studies, inspired by the main results presented in this thesis, are outlined in the

final chapter.
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Deutsche Kurzfassung

Die theoretische Untersuchung stark korrelierter Elektronensysteme ist eine faszin-

ierendeundgleichzeitig auch sehr herausforderndeAufgabe. Insbesondere lässt sich inder

quantenfeldtheoretischen Beschreibung wechselwirkender Vielelektronensysteme a priori

kein Parameter definieren, nach dem eine Störungsentwicklung verlässlich formuliert wer-

den könnte. Wie sich herausstellt, kann dies bereits in Situationen mittlerer Kopplung

zwischen den Elektronen bemerkenswerte Folgen haben: den Zusammenbruch der selb-

stkonsistenten Störungstheorie, der sich in den Divergenzen der zweiteilchen-irreduziblen

Vertexfunktionen sowie den damit verbundenen Kreuzungen der physikalischen mit un-

physikalischen Lösungen des (mehrwertigen) Luttinger-Ward-Funktionals manifestiert.

Das Auftreten dieser nichtperturbativen Effekte stellt die heutige Vielteilchentheorie sowie

dieAnwendbarkeitmodernsterApproximationschematavor immenseHerausforderungen.

In dieser Arbeit wird ein Aspekt des Zusammenbruchs der Störungstheorie, nämlich

die Divergenzen der irreduziblen Vertexfuntionen, in vielerlei Hinsicht analysiert. Als er-

sten Schritt wird dasAuftreten dieser nichtperturbativenManifestationen inmehreren fun-

damentalen Vielelektronenmodellen für verschiedenste Parameter untersucht und system-

atisch für Fälle mit und ohne Teilchen-Loch-Symmetrie diskutiert. Danach wird auf einer

grundlegenderen Ebene der physikalische Ursprung der irreduziblen Vertexdivergenzen

geklärt. Zu diesemZweckwird sorgfältig analysiert, wie sich die Bildung des lokalenmag-

netischen Moments und dessen Kondo-Abschirmung auf die generalisierte Suszeptibilität

im Ladungskanal auswirken. Diese Analyse offenbart die Entstehung charakteristischer

Strukturen im Matsubara-Frequenzraum, die verschwindende Eigenwerte hervorrufen,

welche wiederummit demAuftreten irreduzibler Vertexdivergenzen verbunden sind. Als

bemerkenswertes Nebenprodukt dieser Analyse wird ein alternatives Kriterium zur Bes-

timmung der Kondotemperatur auf der Zweiteilchen-Ebene identifiziert. Des Weiteren

werden die physikalischen Implikationen des Auftretens irreduzibler Vertexdivergenzen

untersucht. Wie sich herausstellt, kann der Vorzeichenwechsel der Eigenwerte der gen-

eralisierten Suszeptibilität in bestimmten Streukanälen zu effektiv attraktiven Beiträgen in

diesen Sektoren führen. Letztendlich sind diese Beiträge für die Divergenz der isothermen

Kompressibilität verantwortlich, die in der Nähe des Mott Metall-zu-Isolator-Übergangs

des Hubbard-Modells, gelöst durch die dynamische Molekularfeldtheorie, beobachtet

wird. Außerdem werden verschiedene algorithmische Strategien zur Umgehung der

methodologischen Hürden betrachtet, die der Zusammenbruch der selbstkonsistenten

Störungstheorie darstellt. Aufgrund des Potenzials für die zukünftige Methodenentwick-

lung wird der multiloop-funktionalen Renormierungsgruppe (mfRG) für den fundamen-

talen Fall des Anderson Störstellenmodells besondere Beachtung geschenkt, wobei deren

Performanz sowie deren physikalischer Inhalt von schwacher bis starker Kopplung un-

tersucht werden. Im abschließenden Kapitel werden die vielfältigen Perspektiven für

zukünftige Studien skizziert, die von den hier präsentierten Ergebnissen inspiriert sind.
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CHAPTER 1

Introduction

Preparing a great espresso is no easy task1. On the one hand, one needs to have a good

understanding of the tools needed tomake it. Thismainly concerns the portafiltermachine

and the coffee grinder. On the other hand, its quality is dramatically influenced by various

parameters, such as temperature, pressure, grinding sets, and many others. Nevertheless,

hunting for the perfect solution to this complex problem, depending on so many factors as

well as the subtle interplay among them, is a fascinating challenge for many people – and

if it works out, a very rewarding one.

Arguably, this recalls the challenges posed by the physics of interacting many-electron

problems. In fact, for systems of strongly correlated electrons the electronic interaction

can no longer be neglected, e.g. due to insufficient screening of the Coulomb repulsion. In

the theoretical description of these problems, it is hence impossible to treat the electrons

individually without considering the presence and the mutual influence of all other elec-

trons. In such cases, the electronic correlation needs to be explicitly accounted for. As an

example, consider the double occupancy, i.e., the expectation value for two electrons with

different spins to occupy the same site (e.g., of the lattice system under consideration). If

the interaction among the electrons is sizable, this quantity will significantly differ from

the product of the two individual occupancies (〈ni ,↑ni ,↓〉 , 〈ni ,↑〉〈ni ,↓〉). Of course, this

property generally characterizes all quantities of interest in the study of interacting elec-

trons, featuring collective behaviors, which cannot be deduced solely through the analysis

of the mere elementary constituents of these systems. This concept has been summarized

best by P. W. Anderson in his famous article “More is Different” [1], “The behavior of large
and complex aggregates of elementary particles, it turns out, is not to be understood in terms of
a simple extrapolation of the properties of a few particles.”. While the electronic correlation

makes the theoretical treatment of strongly correlated electron systems significantly more

challenging, it is also in these systems that a plethora of intriguing physical phenomena

are found. As E. Dagotto writes in Ref. [2]: “It is the diversity of behavior, namely the many

1For a scientific approach to this problem, consider e.g. M. I. Cameron, et al. , Systematically Improving
Espresso: Insights from Mathematical Modeling and Experiment, Matter 2, 631-648 (2020) or Chapters 15-17 of The
Craft and Science of Coffee (Academic Press, 2016) edited by B. Folmer. For a more practical perspective the

author of this thesis recommends the YouTube channel of James Hoffmann.

1

https://doi.org/10.1016/j.matt.2019.12.019


2 CHAPTER 1. INTRODUCTION

possible metallic, insulating, magnetic, superconducting, and ferroelectric phases of strongly corre-
lated systems, that makes these types of investigations so exciting”. In many cases, an intricate

competition of different phases is observed, depending on slight changes in one of the

systems parameters, such as doping, pressure, temperature, and many others. A single

glance at e.g., the phase diagram of cuprates (see for example Ref. [2] or Ref. [3]) impres-

sively illustrates this fact. However, in the study of strongly correlated electron systems,

many of these intriguing phenomena are not yet completely understood on a microscopic

level, despite the tremendous international research effort. For instance, unconventional

superconductivity [3–5], one of the many “perfect espressi” strongly correlated electron

systems have to offer, remains one of the most exciting puzzles to date. Progress on many

frontiers, both theoretically and experimentally, will be needed to tackle this challenge.

In this thesis, we focus on a crucial aspect of the theoretical description of electronic

correlation. Namely, on the physical and algorithmic implications of the fundamental

nonperturbative nature of interacting electron systems in condensed matter physics.

We recall that due to the vast number of degrees of freedom in many-electron systems,

a quantum field theoretic (QFT) description is indispensable. This formalism, described

in details in textbooks such as Refs. [6–9], shares many similarities with the perturbative,

Feynman-diagrammatic, formalism of quantum electrodynamics (QED). There is however

one crucial difference: For solid-state systems, no small parameter can be defined a priori,

such as the fine-structure constant for QED. In fact, when the electronic interaction is not

sufficiently screened, the corresponding energy scales can be of the same order of magni-

tude as the kinetic energy (or of other relevant energy scales of the system). This makes

a perturbative many-body treatment not rigorously justified and potentially dangerous.

A self-consistent perturbative treatment might even completely fail to describe pivotal as-

pects of the system under investigation, featuring what we define as “the breakdown of

perturbation theory” [10–12]. In particular, fundamental equations of the many-electron

theory, such as the Bethe-Salpeter (BSE) or the parquet equations (both introduced below),

can become non-invertible for specific parameter sets. This corresponds to divergences of

the building blocks of these equations [10] – the two-particle irreducible vertex functions.

The analysis of these divergences will be the central topic of this thesis. As it turns out,

their appearance is related [12] to an intrinsic multivaluedness [11] of the Luttinger-Ward

functional (LWF), a central quantity for the description ofmany-electron problems. In spite

of the increasing interest for this topic in the last years [10–28], some fundamental ques-

tions remained unanswered, particularly concerning the physical origin and the physical

implication of the breakdown of perturbation theory.

The aim of this thesis can be concisely summarized as the investigation of the following

four questions:

• In which cases are the different manifestations of the breakdown of perturbation the-

ory (irreducible vertex divergences and crossings of solutions of the LWF) appearing,

and how are they connected?

• What is the underlying physical mechanism that triggers the perturbative breakdown?
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• Are there physical implications of the appearance of irreducible vertex divergences?

• What are the algorithmic implications of the breakdown of the perturbative expan-

sions, and are there possible strategies for circumventing them?

The structure of the thesis is organized as follows:

Chapter 2 serves as an introductory chapter, where all the basic concepts needed for the

subsequent discussions are recalled. This concerns, on the one hand, the many-electron

models of interest for this thesis and, on the other hand, the QFT formalism on the two-

particle level, necessary for studying the breakdown of perturbation theory. Finally, the

analytical and numerical methods used to compute the quantities of interest are also

mentioned or briefly discussed.

Chapter 3 focuses on the first central question of this thesis. Here, the subject of the

divergences of the irreducible vertex functions is introduced and thoroughly discussed2.

Subsequently, the other relevant manifestation of the breakdown of perturbation theory,

i.e., the multivaluedness of the LWF, is concisely reviewed and the connection among both

nonperturbative aspects is then summarized. Eventually, the numerous manifestations of

the breakdown of perturbation theory in different many-electron models are discussed in

detail, highlighting their ubiquity in the many-electron physics.

Chapter 4 presents an important theoretical advancement obtained in the course of this

thesis. Specifically, we discuss how fundamental physical effects of many-electron systems

are encoded in the QFT description on the two-particle level and, in particular, in the

frequency structures of the generalized susceptibilities. Thanks to this progress, qualitative

and quantitative insights on the two-particle scattering processes are gained allowing for

a clear-cut answer to the second central question of this thesis.

Chapter 5 targets the third main question of this thesis, i.e., the physical implications of

the irreducible vertex divergences. After discussing how the crossing of a divergence of

the irreducible vertex, can be, to a certain extent, interpreted as a sign-flip of the effective

electronic interaction, we identify a specific physical phenomenon, which is directly linked

to the breakdown of perturbation theory: the increase of the isothermal compressibility in

the proximity of the critical endpoint of the Mott metal-to-insulator transition (MIT) in the

Hubbard model, solved by dynamical mean-field theory.

Chapter 6 discusses the last question listed above: the challenges posed by the break-

down of perturbation theory to algorithmic methods and possible workarounds. Several

2Since the topics of the divergences of irreducible vertex functions aswell as themultivaluedness of the LWF

are comparably new subjects, not yet encoded in textbooks or review articles, some sections of this thesis have

partly a review character (namely, parts of Chapter 3 and Secs. 6.1 and 6.2). In these parts, in order to provide a

self-contained reading material, recent literature results are concisely summarized and corresponding figures,

where necessary, replotted.
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cutting-edge approaches for the description of many-electron systems are summarized,

with a primary focus on the so-called multiloop functional renormalization group, whose

convergence and physical properties are investigated in great detail.

Finally, in Chapter 7, the main achievements of this thesis are summarized and the most

relevant future directions for the research on these topics are outlined.

At the end of the thesis, a list of publications is provided, togetherwith a short summary

of the personal contributions of the author to these publications. Throughout the thesis,

vertical bars mark parts taken from already published work of the author of this thesis.

Please note that these parts were slightly modified, if necessary, to better match the text.



CHAPTER 2

Models, formalism and methods

I fought the law and the law won
I fought the law and the law won

– The Clash

In this chapter, we present the basic definitions as well as the models and methods

central to the discussion of the following Chapters 3 to 7. First, the fundamental

many-electronmodels considered in this thesis are introduced. A particular empha-

sis is given to the Anderson impurity model since it represents the model used most

frequently throughout this work. Second, definitions and properties of the two-

particle quantities of interest are concisely discussed, focusing on the most relevant

aspects for the nonperturbative phenomena studied afterward. Finally, the diagram-

matic approximations and numerical approaches employed to compute two-particle

quantities are briefly illustrated.

The primary topic of this thesis is to discuss the various aspects of the breakdown of

self-consistent perturbation theory, addressed in Chapter 3. This goal is also reflected in

the structure of this present chapter. In particular, we provide a comprehensive discussion

of the basic formal concepts needed for investigating1 the divergences of the irreducible

vertex functions as well as the multivaluedness of the Luttinger-Ward functional. Other

topics, instead, such as e.g., the particulars of the continuous-time quantum Monte-Carlo

(CT-QMC) algorithm, are only defined to the necessary extent.

2.1 Models

In the following section we introduce the three many-electron models, which will be

studied throughout the thesis. Each model is designed to describe a specific physical

1Please note that parts of the present chapter (especially Sec. 2.1.1, 2.2 and 2.3.1.2) were already reported

in theMaster thesis of the author [29]. They are to a small part reproduced here in order to provide a complete

and self-contained description of the topics relevant for this thesis.

5



6 CHAPTER 2. MODELS, FORMALISM ANDMETHODS

problem, ranging fromdilutemagnetic ionsdissolved inhostmetals, up to correlated lattice

systems. For a comprehensive introduction we recommend the following textbooks [9, 30,

31], which also represented the basis for the following discussion.

2.1.1 Anderson impurity model

The Anderson impurity model (AIM) is one of the most fundamental models in the field of

correlated many-electron systems. It was originally introduced by P. W. Anderson [32] in

order to describe magnetic impurities in non-magnetic metallic hosts. In his paradigmatic

work the AIM was introduced and treated by a self-consistent Hartree-Fock method in

order to identify the parameter sets for which a magnetic impurity, i.e., a singly occupied

impurity site, would be realized. The structure of the Hamiltonian of the AIM, which

is given below, reflects the central idea of Ref. [32] that is to distinguish between free

conduction-band electrons and a local interacting site, where both elements are connected

by a hybridization term. In the case of interest for this thesis, the impurity site has a single

non-degenerate level, as in Ref. [32]. Extensions to degenerate impurity levels are of course

possible [9, 30, 32], they are, however, not considered here.

The Hamiltonian of the AIM reads as follows [30]:

H �

∑
σ

εd c†d ,σcd ,σ + Und ,↑nd ,↓

+

∑
k,σ

εkc†k,σck,σ (2.1)

+

∑
k,σ
(Vkc†d ,σck,σ + V∗kc†k,σcd ,σ)

In the first line the impurity site terms are given, where εd corresponds to the one-

particle energy of the impurity level and U is the local interaction strength, which con-

tributes only if the site is doubly occupied. c†d ,σ/cd ,σ creates/annihilates an electron on

the impurity site and nd ,σ is given by c†d ,σcd ,σ. The second line describes the energy of

the non-interacting conduction electrons with εk being the dispersion relation and c†k,σ
and ck,σ being the corresponding creation and annihilation operators, respectively. The

wavevector k is restricted to the first Brillouin zone. In the third line the hybridization

onto/off the impurity site (Vk/V∗k) is given.

The specific AIM considered throughout this thesis is characterized by the following

simplifications and parameters choices: The hybridization strength is assumed to be k-
independent, Vk � V , where V is set to V � 2 and energy is measured in units of V/2 � 1.

The non-interacting density of states (DOS) ρ(ε) for the conduction electrons is chosen

to be box-shaped, ρ(ε) � 1/2DΘ(D − |ε |), where D is the half bandwidth, which is set to

D � 10. Throughout ρ0 refers to the constant value of the DOS ρ(|ε | < D) � ρ0 � 1/2D.

The AIM is considered in the half-filled case, εd � −U/2. These choices ensure that the
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Figure 2.1: A sketch of the Anderson impurity model, showing the basic elements of the Hamil-

tonian in Eq. (2.1) in a schematic fashion: A box-shaped density of states (grey), hybridization

onto/off the impurity site from/to the electron bath (blue) and the interacting doubly-occupied

impurity site (orange). Figure taken from [29].

hybridization function ∆(ν),

∆(ν) �
∑

k

V2

iν − εk
'

∫
ρ(ε) V2

iν − ε � −i
V2

D
arctan

D
ν
, (2.2)

as well as the non-interacting Green’s function,

G0(ν) �
1

iν − ∆(ν) , (2.3)

are purely imaginary. A sketch of the AIM with these specific parameter choices can be

found in Fig. 2.1.

In the following, we summarize some important physical effects that are described

by the AIM. Our discussion mainly concerns the formation of a local magnetic moment

on the impurity site and its interplay with the conduction electrons, which will play an

important role throughout this thesis. A thorough review of the physics of the AIM and

the related Kondo problem can be found for example in the textbooks byA. C. Hewson [30]

or P. Coleman [9]. We start by considering simple limiting regimes of the AIM, and focus

on the question in which cases a magnetic impurity site is found.

2.1.1.1 Atomic limit

The atomic limit (AL) of the AIM is obtained by only considering the impurity terms in

Eq. (2.1) (corresponding to setting V � 0), for which the Hamiltonian can be diagonalized

straightforwardly. In this case„ the Hilbert space reduces to four states, which are shown

schematically in Fig. 2.2. The non-magnetic states of an empty or doubly occupied impurity

site have the energies 0 or 2εd + U, respectively. The magnetic states of a single electron

with spin ↑ or ↓ in the impurity orbital have the energy εd . By setting εd � −U/2 (ensuring

perfect particle-hole symmetry), the magnetic states become the degenerate ground-states

of the atomic limit of AIM.

Physically, the study of theAL proves to be quite insightful, since it describes a situation
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non-magnetic magnetic

Figure 2.2: Isolated interacting impurity with a single non-degenerate orbital (orange), which can

be at most doubly occupied. The energetically degenerate magnetic states are formed by the singly

occupied impurity site with spin σ �↑, ↓.

of a perfect local moment, which is not perturbed by any hybridization with conduction

electrons. The magnetic response function in such a case shows an almost perfect textbook

χm ∼ 1/T Curie-behavior in thewhole temperature rangebelowT ∼ U (see further Sec. 4.1).

For this reason, throughout this work, the AL will provide for a valuable benchmark

case, upon which results for the full AIM can be compared with2. From a practical point

of view, the AL also has the advantage of being analytically treatable, see in particular

Refs. [23, 33]. Note, that the AL case of the AIM coincides with the one of the Hubbard

model (introduced in Sec. 2.1.3 below), where it represents the limiting case of vanishing

hopping t.

2.1.1.2 Non-interacting case

The other extreme limit of the Hamiltonian given in Eq. (2.1) is realized by setting U � 0.

Physically, considering this limit corresponds to study the interplay of the conduction

electrons with a non-interacting impurity level, which represents an impurity scattering

center. This problem goes back to pioneering studies of “virtual bound states” by Friedel

and co-workers [30]. It effectively results in an excess density of states δρ(ε) around the

impurity level energy εd 3. For the case relevant to this thesis, i.e., a flat conduction band and

a k-independent hybridization V , the change in the local density of states of the impurity

site , δρ(ε), is given by Eq. (1.58) of Ref. [30]

δρ(ε) � ∆0/π
(ε − εd)2 + ∆2

0

, (2.4)

where ∆0 � πρ0 |V2 | represents the width of the Lorentzian-shaped δρ(ε), which is related

to Eq. (2.2) by ∆(ν) ≈ −isgn(ν)∆0 for small ν. For the parameters of the specific AIM,

∆0 � π/5 ≈ 0.63, holds.

This broadening of the DOS leads to important physical effects, such as a renormaliza-

tion of the specific heat and the magnetic susceptibility, but it does not yield a Curie-Weiss

contribution to the magnetic response [30].

2Note that in some instances the AL will also synonymously be referred to as Hubbard atom (HA).

3Actually, the excess δρ(ε) is centered around a shifted energy level ε̃d , see Eqs. (1.56) and (1.57) in Ref. [30].

The details of this shift, are however not relevant here, and hence neglected.
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2.1.1.3 The local moment regimes of the AIM

Evidently, the physics described by the full AIM is significantly richer than the one of

the two limiting cases considered above. In P. W. Anderson’s original calculation [32] the

question of the local moment formation was studied by using a Hartee-Fock treatment.

For this mean-field case the condition U > Uc � π∆0 [9, 30, 32] was identified to control

whether a magnetic solution, i.e., a singly occupied impurity site, was present or not.

Beyond the mean-field picture, this problem can be treated in the strong-coupling limit

by using a Schrieffer-Wolff transformation [9, 30]. This is applicable, e.g., for the following

parameter set [30]: εd +U � εF, εd � εF and |εd +U − εF |, |εd − εF | � ∆0, where εF is the

Fermi-energy [30]. In particular, for the specific AIM studied throughout this thesis these

constrains hold since in most cases U > 2 is considered and

∆0 � πρ0V2

� π/5 < 1 ; εd � −U/2 .

Themain results of this canonical transformation can already be obtained by projecting

the Hamiltonian onto the subspace of a singly-occupied impurity site, see Sec. 1.7 of [30].

In this way, the occupation of the impurity site is fixed and an effective Hamiltonian is

obtained, which describes a spin model, the so-called “s-d” model4. The most relevant

part of this Hamiltonian is given in the following and describes the interaction of the local

moment on the impurity site with the spins of the conduction electrons, see Eq. (1.64)

of Ref. [30]. The part not shown, merely represents a potential-scattering term (which

vanishes for half filling) and the energy of the conduction electrons [30].

Hs−d �

∑
k,k′

Jk,k′
(
S+c†k,↓ck′,↑ + S−c†k,↑ck′,↓ + Sz(c†k,↑ck′,↑ − c†k,↓ck′,↓)

)
(2.5)

Here, Jk,k′ represents the coupling constant between the impurity spin and the spin of the

conduction electrons, which originates from the original hybridization term of the AIM

after the projection onto the singly-occupied subspace. In particular, for a k-independent
hybridization explicitly reads (cf. Eq.(1.73) of [30]):

Jk,k′ � V2

(
1

εd + U − εk′
+

1

εk − εd

)
, (2.6)

which effectively describes an antiferromagnetic coupling of the magnetic moment of

the impurity site, with the spins of the bath electrons. While the relationwith the s-dmodel

is important for relevant aspects of the physics described by the full AIM, naturally the full

AIM represents a physically more complex case, as it also describes charge fluctuations.

2.1.1.4 The Kondo problem and the AIM

In general, the study of impurity magnetic moment interacting with the conduction elec-

trons at different temperature scales represents a fascinating and insightful problem. In

4 Note that this mapping is formally and conceptually similar to the mapping of the half-filled Hubbard

model at strong coupling to an Heisenberg model.
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Figure 2.3: Anexample for a secondorder spinflipprocess,which is responsible for the temperature-

dependent scattering amplitudes, eventually driving the logarithmic increase at low-T in the elec-

trical resistivity. A conduction electron with wave vector k and spin down (↓) is scattered into

an intermediate state k′′ ↑, where the spins of both, the conduction electron and the impurity are

flipped. The conduction electron is then scattered to the final state k′ ↓. Figure taken from [29].

fact, this underlies the so-called Kondo effect, as well as the Kondo problem, i.e., the highly

non-trivial T → 0 limit of the Kondo effect. In the following, we provide a brief historic

summary targeted at the introduction of the famous Kondo temperature (sometimes also

referred to as Kondo scale), which will be highly relevant for later chapters. We start by

recalling the Kondo effect.

What is nowadays known as the Kondo effect goes back to the theoretical explanation

of the experimentally observed resistivity minimum in metallic alloys of non-magnetic

metals containing small amounts of transition metals. For low-temperatures, instead of

a monotonically decreasing resistivity (as one would expect based on the conventional

electron-phonon and electron-electron contributions, which typically yield a ∝ T5
and a

∝ T2
contribution, respectively), one finds an increase which shows a ∝ − ln(T) behavior.

As J. Kondo first showed in 1964 [34], the − ln(T) term in the resistivity appears due to the

interaction of the conduction electrons with localized magnetic moments. In his work, he

used second order perturbation theory for the s-d model (see Eq. (2.5)), sufficient to also

describe spin-flip processes, which are shown diagrammatically in Fig. 2.3. The solid lines

represent the conduction electron, while the local moment of the impurity site is shown

as a dashed line. There are of course further examples of such a second order scattering

process, which altogether yield a temperature-dependent scattering amplitude [9, 30]. By

considering a dilute random distribution of impurities in the metal, the resistivity of the

conduction electrons is given by

R(T) � aT5

+ R0 − cimpR1 ln

(
kBT
D

)
, (2.7)

, see Eq. (2.58) of Ref. [30], where the concentration of impurity sites in the metallic host is

given by cimp , and R1 contains among other constants the coupling J (assumed here to be

k-independent). This expression yields a minimum of the resistivity (Tmin ∝ c1/5
imp), which

is weakly dependent on the concentration of impurities.

On a more general perspective, while this result correctly describes the resistivity min-

imum, it also poses a new problem, namely the T → 0 behavior. Using the treatment

described above, the limit T → 0 leads to an artificial logarithmic divergences of the resis-
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tivity and other response functions, such as the specific heat or the magnetic susceptibility,

which is not observed in experiment. The study of the T → 0 behavior of the Kondo effect

became known as the Kondo problem, a long-standing problem of theoretical solid-state

physics, whose development is briefly outlined in the following.

The approach followed by A. A. Abrikosov [35] consisted of summing up leading

logarithmic terms of higher order scattering processes. However, this did not solve the

problem, since the different physical response functions diverge even at a finite temperature

in this case: The Kondo temperature, which in the framework of this treatment reads [30]:

kBTK ∝ De−1/2Jρ0 . (2.8)

Here, ρ0 is the constant value of a box-shaped density of states and J is again the k-
independent coupling strength.

In the so-called Poor Man’s scalingmethod, P. W. Anderson found another way to attack

this problem [36]. In this scaling approach the bandwidth D is gradually reduced, which

is compensated for by a renormalization of the coupling strength J. However, for the

antiferromagnetic case of interest, a divergence of the coupling J is found, as soon as the

scaling reaches energies5 of the order of kBTK.

Nevertheless, this intuitive approach helped to inspire the development of the nonper-

turbative renormalization group approach byK. G.Wilson [37], which eventually provided

definite answers to the problem of the T → 0 limit. In fact, it could be shown that the

Kondo temperature actually represents a crossover temperature [9, 30]: While at higher

temperatures (T > TK but lower than U) the local moment is free, displaying a ∝ 1/T
Curie-behavior, it gets gradually screened by the conduction electrons as the temperature

is reduced. For very low-temperatures of T . TK this results in a fully quenched local

moment, as the conduction electron spins and the impurity moment tend to form a spin

singlet state. This results in a temperature-independent contribution to the resistivity and a

constant contribution to the magnetic susceptibility. Furthermore, in this low-temperature

regime all physical quantities turn out to be universal functions of the energy scale kBTK.

Moreover, as the work by P. Nozières from 1974 showed [38], in the very-low-temperature

case, the problem can be analyzed as a Landau Fermi-liquid, due to the presence of a sharp

Kondo resonance at the Fermi level, with a width of the order of kBTK. The resulting phys-

ical picture throughout the full temperature range is best illustrated by the phase-diagram

shown in Fig. 2.4, which was taken from the textbook by P. Coleman [9], see Fig. 16.11

therein.

These findings were later confirmed by analytic results for the s-d model obtained by

a Bethe-Ansatz approach [9, 30]. In fact, also the AIM can be treated in this way, which

allows to obtain an analytic expression for the Kondo temperature of the AIM. In the case

5Throughout this work k
B
is set to unity k

B
� 1 and usually neglected in expressions, however in this part

it is included explicitly for consistency with the referenced literature.
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Figure 2.4: Phase-diagram of the Anderson impurity model, where the local moment regime is

shown in orange, and the Fermi-Liquid regime is shown in blue. This figure was taken from

Ref. [9], see Fig. 16.11 therein.

of D � U (i.e., the wide-band limit) it reads

kBTK � 0.4107 U
(
∆0

2U

)
1/2

e−πU/8∆0+π∆0/2U
(2.9)

This equation can be found in the textbook byA. C.Hewson [30] (Eq. (6.109) therein), where

the numerical factor 0.4107 is derived from a comparison with numerical renormalization

group calculations for the AIM performed by H. R. Krishna-murthy et al. [30, 39, 40]. The
Kondo temperature can also be obtained numerically from calculations for the magnetic

response function χm , which is discussed explicitly in Sec. 4.1. A comparison of the analytic

expression for TK given in Eq. (2.9) and the numerical results for the specific AIM used

throughout this thesis can be found in Sec. 3.1.3.

This concludes the concise historic review of the local moment physics of the AIM and

theKondo problem. Let us point out that even nowadays, several decades after the solution

by Krishna-murthy and Wilson, the AIM still plays an essential role in the description of

the correlated electron systems. For instance, it represents a crucial part of the Dynamical

Mean Field Theory (DMFT) solution of the Hubbard model [41], which is discussed below

in Sec. 2.3.1. On the other hand also the Kondo problem in itself is still a very relevant

research topic, for example for quantum dot applications, see e.g., Ref. [42]. Let us at this

point also refer to a recent experiment performed by I. V. Borzenets et al. [43], where the

spatial extent of the Kondo screening cloud could be experimentally observed and its size

quantitatively estimated to be of the order of micrometers.

2.1.2 Periodic Anderson model

A natural extension of the Anderson impurity model with a single impurity site is the

periodic Anderson model (PAM). The crucial difference to the AIM lies in the fact that now

each lattice site is characterized by a strong local electrostatic interaction U and, at the

same time, a hybridization with a non-interacting conduction band. The PAM plays an

important role in modern solid-state physics, as its application range from e.g., studies
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of heavy-fermion systems [9], to quantum criticality [44] and many more. Further, for

large interaction values, it can be mapped to a spin-lattice model, the so-called Kondo

lattice model [9]. While several versions of the corresponding Hamiltonian can be found

in the literature [9, 30], we provide here the one relevant for the application of the PAM in

Chapter 4, which can be found in the work by T. Schäfer et al. [44] (see Eq. (1) therein) or in
a very similar version also in Ref. [41].

H �

∑
iσ

ε f f †iσ fiσ + U
∑

i

n f ,i↑n f ,i↓

+

∑
k,σ

εkc†k,σck,σ (2.10)

+ V
∑
iσ

( f †iσciσ + c†iσ fiσ)

Similarly as for the AIM, the first line of Eq. (2.10) describes the locally interacting

terms, which now also have a lattice site index i. f †iσ/ fiσ refers to the creation/annihilation

operator for electrons on the interacting sites, ε f is the corresponding energy and U
the strength of the local interaction. In the second line, the term describing the non-

interacting conduction electrons is given, where εk is their dispersion relation. The last

line corresponds to the hybridization term, where V is the k-independent hybridization
strength.

For the most relevant application of the PAM in Chapter 4, its specifications read

as follows: The PAM is considered on a two-dimensional lattice with nearest neighbor

hopping only. The corresponding dispersion relation of the conduction electrons reads

εk � −2t[cos(kx) + cos(ky)], where t is the hopping amplitude and kx and ky are restricted

to the first Brillouin zone ∈ [−π, π] (the lattice constant a is put to unity throughout.) The

interaction strength is fixed to U � 4t and instead the hybridization V is varied.

2.1.3 Hubbard model

As the last of the three fundamental models of correlated electron systems considered in

this thesis, the Hubbard model (HM) is discussed. Its introduction goes back to the works

of J. Hubbard [45], J. Kanamori [46] and M. C. Gutzwiller [47]. In the one-band version,

which will be of interest throughout this thesis, it already captures the important interplay

between the kinetic (i.e., the hopping) and the potential (i.e., the interaction) energy of

correlated lattice systems. While its expression might look deceptively simple, no analytic

solution of the HM for the general case is known. Exact solutions exist only for the one-

dimensional and the infinite-dimensional (or infinite lattice coordination number z) case,
which is given by the DMFT solution (see Sec. 2.3.1) but not for the physicallymost relevant

cases of two and three dimensions.

For a general introduction to themodel, and its connection and importance to solid-state

physics, we refer to introductory textbooks, such as e.g., [9] and [8] and for collections of

pertinentworks, see e.g., Ref. [48]. A comprehensive analysismore focused on theHM itself
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can be found in Ref. [31] and many of the books of the Jülich “Modeling and Simulation”

series, e.g., [49]. Let us also refer to some recent publications, where the current progress

of several research groups working on the Hubbard model (mostly in its two-dimensional

form) is summarized and different methods for its solution are benchmarked [50–53].

U
t

(a) (b)

(c)

Figure 2.5: A sketch representation of the two-dimensional Hubbard model on a square lattice,

where the hopping process (t, blue) and the local interaction (U, red) are shown. This figure was

taken from the recent review on different numerical solutions of the HM [53], see Fig. 1 therein.

The Hamiltonian of the HM is given by the following expression [52]:

H � −t
∑
〈i j〉,σ

c†iσc jσ + U
∑

i

ni↑ni↓ (2.11)

Unlike in the PAM or the AIM, the Hamiltonian of the HM considers only one species

of electrons or sites arranged on a periodic lattice, where c†iσ/ciσ creates/annihilates an

electron with spin σ � {↑, ↓} on lattice site i. The first term concerns the kinetic energy

part, where t is the hopping-matrix amplitude. In this thesis, we consider only nearest

neighbor hopping (signaled by the 〈i j〉 in the sum), for which the model displays a perfect

particle-hole symmetry at half-filling.

The second term of Eq. (2.11) instead represents the local interaction term, which (for

the repulsive case U > 0) penalizes double-occupations on site i.
Fig. 2.5 illustrates the relevant contributions of the HM, as determined by the Hamil-

tonian given in Eq. (2.11). This figure was taken from Ref. [53], see Fig. 1 therein. Since

the HM is used in slightly different versions throughout this thesis (e.g., on a Bethe lattice

in Chapter 4 and on a square lattice in Chapter 5), its specifications are postponed to the

corresponding instances in the later chapters.

2.2 Local two-particle formalism for many-electron systems

In this section, the focus lies on the introduction of the central quantities of interest for

this thesis: the generalized susceptibilities. As will be discussed throughout the following

chapters, the eigenvalues and eigenvectors of the generalized charge (and pairing as well

magnetic) susceptibility represent the key to study the nonperturbative divergences of the

irreducible vertex functions (s. Chapter 3), the fingerprints of the local moment formation
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(s. Chapter 4) as well as the enhancement of the isothermal compressibility (s. Chapter 5)..

Additionally, in this section, we will also introduce the fundamental classes of two-particle

Feynman diagrams, i.e., two-particle reducible and -irreducible ones, and their mutual

relations in the form of the parquet- and the Bethe-Salpeter equations.

The following discussion is based mainly on Ref. [33] (and also Ref. [54]), where the

two-particle correlation functions have been introduced for the local problem, which is

also the most relevant case for this thesis. A more recent introduction of the two-particle

formalism of generalized susceptibilities and Feynman diagrams can be found in Ref. [51],

where the definitions are given for the more general k-dependent case. For textbooks

which introduce the many-body QFT formalism on a more general level (offering also a

detailed treatment of the one-particle level), we refer the interested reader to e.g., Refs. [6,

9, 30, 31]. More specialized treatments of particular aspects of the two-particle formalism

of interest for this thesis, can be found, for example, in the books of the Jülich “Modeling

and Simulation” series, e.g., [49], as well as Refs. [55–59].

We start our introduction of the two-particle (2P) formalism with the definition of the

local one-particle (1P) Green’s function [33, 54]:

G1,σ1σ2
(τ1 , τ2) � 〈Tτc†σ1

(τ1)cσ2
(τ2)〉 (2.12)

Here, Tτ represents the time-ordering operator, putting later times to the left, and the

thermal expectationvalue 1/Z Tr(e−βHO) is denotedby 〈O〉, whereZ is thepartition function

Z � Tr(e−βH ) and β � 1/T the inverse temperature. In Eq. (2.12), c†σ1

(τ) and cσ2

(τ) refer to
creation and annihilation operators of particles at imaginary time τn with spin σn � {↑, ↓}.
While this explicit formulation is directly applicable to the local Green’s functions, one

can easily introduce operators with additional indices representing, e.g., lattice sites i or
momenta k, orbitals l and others, see Refs. [54] or [51]. Hence, while we mostly focus on

the local case throughout this work, where necessary we will provide the definition for the

k-dependent case.
To provide an intuitive understanding for the 1P Green’s function, one can consider the

following cases: For τ1 > τ2 a hole is created at the imaginary time τ2 with spin σ2, which

propagates through the system before being removed from it at τ1. G1,σ1σ2
hence represents

the transition amplitude for such a process, where the hole probes the system along its

propagation, allowing to gain essential information about the physics of the many-electron

system under consideration. For the other case of τ1 < τ2, the same is true for a particle

propagating through the system.

The natural next step, which represents a significant increase in the level of complexity,

is to consider the 2P Green’s function, which describes the propagation of two particles (or

of a particle and a hole) [33, 51, 54].

G2,σ1σ2σ3σ4
(τ1 , τ2 , τ3 , τ4) � 〈Tτc†σ1

(τ1)cσ2

(τ2)c†σ3

(τ3)cσ4

(τ4)〉 (2.13)

Usually, instead of directly working with the 2P Green’s function, one extracts the so-

called generalized susceptibility from G2 and G1 since this is the object which can be most
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𝜔𝜈 𝜈′
𝜈 𝜔+ 𝜈′ 𝜔+ 𝜔𝜈′ 𝜈

𝜈′ 𝜔+ 𝜈 𝜔+− −
Figure 2.6: Two scattering processes are represented in their natural notation, where in both cases

the energy ω is transferred and the outgoing propagator lines are shown in gray. Left panel: A

particle and a hole scattering in particle-hole notation. Right panel: Two particles scattering with

each other in particle particle notation.

directly related with physical response functions, as will be shown below.

The local generalized susceptibility χσ1σ2σ3σ4
(τ1 , τ2 , τ3 , τ4) is defined as follows [33, 51,

54]:

χσ1σ2σ3σ4
(τ1 , τ2 , τ3 , τ4) :� G2,σ1σ2σ3σ4

(τ1 , τ2 , τ3 , τ4) (2.14)

− G1,σ1σ2
(τ1 , τ2)G1,σ3σ4

(τ3 , τ4)

By exploiting the symmetries of the Hamiltonians of interest, the generalized suscepti-

bility χσ1σ2σ3σ4
(τ1 , τ2 , τ3 , τ4) can be significantly simplified. The first step is to consider the

absence of any terms in the Hamiltonians of the AIM, the PAM or the HM that break the

time-translation invariance. Together with the boundary conditions for the Green’s func-

tions, the expression for the generalized susceptibility can be simplified as follows [33, 51,

54]: χσ1σ2σ3σ4
(τ1 , τ2 , τ3 , τ4) → χσ1σ2σ3σ4

(τ1 , τ2 , τ3 , 0) � χσ1σ2σ3σ4
(τ1 , τ2 , τ3), where τ1 , τ2 , τ3

are restricted to the imaginary time interval [0, β]. As a second step, exploiting the SU(2)-

symmetry of the Hamiltonians of Eq. (2.1), Eq. (2.10) and Eq. (2.11), significantly reduces

the number of independent spin-combinations of χσ1σ2σ3σ4
(τ1 , τ2 , τ3). More specifically,

from the 2
4 � 16 combinations, due to the conservation of the total spin, only 6 are possi-

ble [33, 51, 54]. These remaining 6 spin combinations can be further related to one another

via the crossing-symmetry and the SU(2) symmetry [33, 51, 54]. In particular, in this work,

the following spin components of χσ1σ2σ3σ4
(τ1 , τ2 , τ3) are of interest:

χσσ′(τ1 , τ2 , τ3) � χσσσ′σ′(τ1 , τ2 , τ3) (2.15)

χσσ′(τ1 , τ2 , τ3) � χσσ′σ′σ(τ1 , τ2 , τ3) (2.16)

where χσσ′(τ1 , τ2 , τ3) will only be relevant for Chapter 6. Note further that these con-

siderations also simplify the 1P Green’s function, defined in Eq. (2.12), G1,σ1σ2
(τ1 , τ2) →

G1,σ(τ, 0) � Gσ(τ).
The generalized susceptibility χσσ′(τ1 , τ2 , τ3) can be Fourier transformed to Matsubara

frequency space, where ν � (2n + 1)πT denotes a fermionic and ω � 2nπT a bosonic

Matsubara frequency [33, 51, 54]. For the purposes of this thesis, two possibilities to per-

form this transformation are considered, which relate to the so-called particle-hole (ph) and
particle-particle (pp) notation. Those notations allow for a physically transparent descrip-
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tion6 of two different kinds of scattering processes, which are illustrated in Fig. 2.6. In the

left panel the process of a particle scattering with a hole is depicted and the Matsubara

frequencies are correspondingly given in the ph-notation. In the right panel two particles

scatter and the diagram is shown in its natural pp-notation. In both diagrams in Fig. 2.6 a

bosonic frequency ω is transferred (where hole propagators are associated with negative

energies). It is worth noting that though indicated with the same symbol, the transfer

frequencies for the ph- and the pp-processes are defined differently.

The generalized susceptibility in ph-notation χνν
′ω

ph ,σσ′ reads [33, 51, 54] :

χνν
′ω

ph ,σσ′ �

β∫
0

dτ1dτ2dτ3 e−iντ1 e i(ν+ω)τ2 e−i(ν′+ω)τ3
(2.17)

× χσσ′(τ1 , τ2 , τ3)

�

β∫
0

dτ1dτ2dτ3 e−iντ1 e i(ν+ω)τ2 e−i(ν′+ω)τ3

× [〈Tτc†σ(τ1)cσ(τ2)c†σ′(τ3)cσ′(0)〉
− 〈Tτc†σ(τ1)cσ(τ2)〉〈Tτc†σ′(τ3)cσ′(0)〉] .

In the pp-notation the generalized susceptibility is given as follows [33, 51, 54]:

χνν
′ω

pp ,σσ′ �

β∫
0

dτ1dτ2dτ3 e−iντ1 e i(ω−ν′)τ2 e−i(ω−ν)τ3

× χσσ′(τ1 , τ2 , τ3) .

As one can easily verify, both notations are related by a specific frequency shift: χνν
′ω

pp ,σσ′ �

χνν
′(ω−ν−ν′)

ph ,σσ′ [33, 51, 54]. Note that in the following we focus on the ph channel and hence

omit the subscript χνν
′ω

ph ,σσ′ � χ
νν′ω
σσ′ . Where necessary we provide the explicit expression for

the pp channel.

The generalized susceptibility describes all scattering processes, in particular including

also the independent propagation of the particle-hole or particle-particle pair. From a

diagrammatic perspective, it is hence useful to split χνν
′ω

σσ′ into the following two parts [33,

51, 54]:

χνν
′ω

σσ′ � −βGσ(ν)Gσ(ν + ω)δνν′δσσ′ − Gσ(ν)Gσ(ν + ω)Fνν
′ω

σσ′ Gσ′(ν′ + ω)Gσ′(ν′) (2.18)

Here, Fνν
′ω

σσ′ represents the so-called full vertex (in the ph channel). It contains all possible

vertex corrections, i.e., all 2P diagrams, where the propagating particle and hole interact

with one another. The specific form of the first term of Eq. (2.18) can be understood

6Of course, all processes are included in χσσ′(τ1
, τ

2
, τ

3
), the notation merely concerns which scattering

process is the one that is naturally described in the given notation, such that no frequency shifts are needed.
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Figure 2.7: Diagrammatic representation of Eq. (2.18) for the generalized susceptibility in ph

notation. The first diagram on the right-hand-side is the so-called “bubble”-term, which is a

product of two 1P Green’s functions. In the second term the full vertex Fνν
′ω

σσ′ contains all vertex

corrections.

from the definition of χνν
′ω

σσ′ in Eq. (2.14). In particular, by employing Wicks theorem for

the U � 0 case, two products of 1P Green’s functions are obtained, see Eq. (2.157) in

Ref. [54]. In accordance with Eq. (2.14), the remaining disconnected part describes the

independent propagation of a particle and a hole, the so-called “bubble”-term, which is

the first diagram in Fig. 2.7, where Eq. (2.18) is represented diagrammatically. By using

the definition χνν
′ω

0
� −βGσ(ν)Gσ(ν + ω)δνν′ 7, Eq. (2.18) can be written in a more compact

form [33, 51, 54]

χνν
′ω

σσ′ � χνν
′ω

0
δσσ′ −

1

β2

∑
ν1ν2

χνν1ω
0

Fν1ν2ω
σσ′ χν2ν′ω

0
. (2.19)

Physically, in the correlated metallic regime, F can be interpreted as the amplitude

of all scattering processes between a particle-hole pair [6, 33] and can also be related to

Fermi-liquid parameters [6, 57].

Before discussing the connection of the generalized susceptibility to physical response

functions, we will focus on the full vertex F, and its classification into different topological

classes of 2P-Feynman diagrams, by the parquet or the Bethe-Salpeter equation. Here, the

central quantities of interest–the irreducible vertex functions–will be defined, whose unex-

pected divergences, will be of primary interest throughout this thesis.

2.2.1 Parquet equations

The full vertex Fνν
′ω

σσ′ , referred to as F in the following part, includes all vertex corrections

to the generalized susceptibility, i.e., all connected 2P-Feynman diagrams. These diagrams

can be further classified according to the concept of two-particle reducibility, which is shown

for an example case in in Fig. 2.8. Here, the part L on the left can be split from the part R on

the right hand side by cutting two internal fermionic propagator lines, i.e., the two internal

1P Green’s functions a and b (of course L and R could be merely the bare interaction

diagram, or also more complicated connected diagrams as well). In this perspective,

the concept two-particle reducibility represents a natural extension of the one-particle

7The expression in the pp notation can be obtained by the same frequency shift as before, χνν
′ω

pp ,0 �

χνν
′(ω−ν−ν′)

0
� −βGσ(ν)Gσ(ω − ν)δνν′
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2 3

4

𝑎
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Figure 2.8: Example for a two-particle diagram which is reducible in the longitudinal particle-hole

channel. By cutting the two internal Green’s function lines a and b (signaled by the red dashed

lines) it can be split into two parts, L and R.

reducibility, for which we refer to general textbooks such as e.g., Refs. [6–9]. However,

at the higher level of complexity of the 2P level, several classes of two-particle reducible

(2PR) diagrams can be distinguished, depending on the way the four legs (i.e., outgoing

and ingoing propagator lines) are separated. The example shown in Fig. 2.8 refers to the

longitudinal particle-hole channel (ph), where the pairs (1, 2) are cut from (3, 4). Reducible

diagrams of the transverse particle-hole channel (ph) are diagrams where (1, 4) can be

cut from (2, 3). In line with the definition of the pp-notation, processes where (1, 3) can

be cut from (2, 4), hence two incoming particles from two outgoing ones, are referred to

particle-particle (pp) reducible, see also Fig. 2.9.

Due to particle-number conservation of the two-particle interaction considered, a 2PR

diagram can only be reducible in one of the pp, ph or ph classes (see in particular pages

66-69 of Ref. [54] for a precise argumentation).

The second class of diagrams of F are those, which are not two-particle reducible,

i.e., they cannot be separated by cutting two 1P Green’s functions lines. The most straight-

forward example for such a diagram is the bare interaction diagram itself, another example

(the so-called “envelope diagram”) is shown below in Fig. 2.9. The diagrams belonging to

this class are referred to as fully two-particle irreducible (fully-2PI).

Throughout this work we will indicate the fully 2PI diagrams with Λνν
′ω

σσ′ , and the ones

reducible in channel l � pp,ph, ph with Φνν
′ω

l ,σσ′ . On the basis of these definitions, the full

vertex F can be exactly decomposed as follows,

F � Λ +Φpp +Φph +Φph , (2.20)

which is known as parquet equation [33, 51, 54, 55]. Here, the spin indices σσ′ were

omitted, since the parquet equation holds for all spin components of the full vertex Fσσ′

individually [33, 51, 54]. In Fig. 2.9 the parquet equation is represented diagrammatically,

where for each diagram class an example of a low-order diagram is shown.

The parquet equation has great importance for practical applications, since it represents

the starting point for several diagrammatic approaches [51]. As will be discussed in

Sec. 2.3.2, together with the Bethe-Salpeter equations, a complete set of diagrammatic

equations can be formulated, which can be solved based on a given input for the fully 2PI

vertex Λ.
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Figure 2.9: A representation of the parquet equation, an exact decomposition of the full 2P vertex

F. In the first line the algebraic relation is shown (cf. Eq. (2.20)). In the second line, below each

class (fully-2PI or 2PR in l), an example for a low order diagram is given. The bare interaction

is represented by the blue dot with two incoming and two outgoing arrows. The diagrammatic

example for the fully 2PI vertex Λ is the so-called “envelope diagram”. In the last line, the two-

particle reducibility is recalled. This figure is a inspired by Fig. 5 in Ref. [51], where, for pedagogical

reasons, the bare interaction diagram is always drawn the same way for all examples (including the

corresponding arrows).

2.2.2 Bethe-Salpeter equation

There exists also a different possibility of classifying the 2P reducible and 2P irreducible

diagrams of the full vertex F [33, 51, 54]. Instead of classifying all reducible diagrams

into the different classes l � pp, ph, ph, one considers the reducibility with respect to a

specific channel only. Since the 2P diagrams can only be reducible at most in one channel,

this yields the decomposition F � Γl + Φl , where Γl is the class of 2P diagrams which

are irreducible in channel l. For example, when considering the ph channel, one would

summarize the first three terms shown in Fig. 2.9 (Λ,Φpp and Φph) as Γph , and distinguish

it from the last term, which is the corresponding reducible vertex Φph .

As Γl contains all 2PI diagrams of channel l, Φl can be constructed from it by using the

so-called Bethe-Salpeter equation (BSE) [33, 51, 54]

F � Γl +

∫
ΓlGGF , (2.21)

where the diagrams reducible in l are constructed by connecting Γl with F by two 1P

Green’s functions, such that the 2P-reducibility in l is ensured. A simple example is the

second-order diagram for Φph shown in Fig. 2.9, which can be obtained from the second

term in Eq. (2.21), namely by considering the contribution originated by the bare interaction

diagram for both, F and Γph .

In the case of theBSE the spin components are however not completely independent (the∫
in Eq. (2.21) denotes the summation/integration over all internal degrees of freedom and

hence mixes spin indices), unlike in the parquet decomposition case described in Sec. 2.2.1.

In fact, the BSE e.g., for F↑↑ and F↑↓ in the ph channel are coupled, see Refs. [33, 54].

However, by introducing the charge = ↑↑ + ↑↓ (c) and magnetic = ↑↑ − ↑↓ (m) components

these equations can be decoupled in the SU(2) symmetric case, where Fc � F↑↑ + F↑↓ and
Fm � F↑↑ − F↑↓ and analogously for the generalized susceptibility χ and the irreducible



2.2. LOCAL TWO-PARTICLE FORMALISM FOR MANY-ELECTRON SYSTEMS 21

− …

Figure 2.10: Diagrammatic representations of the Dyson equation (Eq. (2.23)) (a) and the BSE in the

charge channel (Eq. (2.22)). Upper panel: The dashed line refers to a non-interacting G0, the full to

a full G.

vertex Γ. In the following we express the BSE in the decoupled form for the generalized

susceptibilities, which can be obtained from Eq. (2.21) by using Eq. (2.19), see Refs. [33, 54]

(Eq. (B6) in Ref. [33]).

In the ph channel the generalized susceptibility is related to the irreducible vertex

Γph ,r � Γr as follows [33, 51, 54]

χνν
′ω

r � χνν
′ω

0
− 1

β2

∑
ν1ν2

χνν1ω
0
Γ
ν1ν2ω
r χν2ν′ω

r , (2.22)

where r � c ,m refers to the charge or magnetic channel8.

Structurally, one immediately notes that the BSE expresses the generalized suscepti-

bility in terms of a geometric series of the irreducible vertex Γ in the form of a matrix

multiplication9. Hence, while in the case of Eq. (2.19), the full vertex F is obtained from χ

by amere subtraction of χ0 and division of the four legs (i.e., the four 1PGreen’s functions),

this is not the case for the irreducible vertex. Formally, the BSE needs to be inverted in

order to obtain the irreducible vertex Γ. In fact, this represents a perfect 2P analogue to

the 1P case of the Dyson equation, which relates the Green’s function and the (one-particle

irreducible) self-energy Σ, as follows:

G � G0 + G0ΣG → inversion→ Σ � G−1 − G−1

0
. (2.23)

The structural similarity between the 1P Dyson equation and the 2P BSE also clearly

emerges from the visual comparison of their diagrammatic representations in Fig. 2.10.

By inversion of Eq. (2.22), one thus obtains an explicit expression for the irreducible

vertex in the charge and magnetic channel, which reads [33, 54]

8The ph channel is connected to the ph one by the crossing- and the SU(2) symmetry, and hence Γr for

r � c ,m are the only independent functions for the two channels, see further Refs. [33, 54].

9Throughout, the summation over one (or more) fermionic Matsubara frequency indices goes along with

one (or more) 1/β factors [33, 54].



22 CHAPTER 2. MODELS, FORMALISM ANDMETHODS

Γνν
′ω

r �

( [
χ−1

r
] νν′ω − [

χ−1

0

] νν′ω)
(2.24)

Similarly, in the particle-particle channel, we consider the ↑↓ component, which reads

as follows [33, 54]10 (see Eq. (B25) in Ref. [33]):

χ̃νν
′ω

pp ,↑↓ � −
1

β2

∑
ν1ν2

(
χνν1ω

pp ,0 − χ̃
νν1ω
pp ,↑↓

)
˜Γ
ν1ν2ω
r χν2ν′ω

pp ,0 , (2.25)

where χ̃νν
′ω

pp ,↑↓ � χν(ω−ν
′)ω

pp ,↑↓ and
˜Γ
ν1ν2ω
r � Γ

ν1(ω−ν2)ω
r . By inverting Eq. (2.25) for

˜Γ
ν1ν2ω
r one

gets [33, 54]

˜Γνν
′ω

pp ,↑↓ �
( [
(χ̃pp ,↑↓ − χpp ,0)−1

] νν′ω
+

[
χ−1

pp ,0

] νν′ω)
(2.26)

In Chapter 3, Eqs. (2.22), (2.24), (2.25) and (2.26) will play an important role for the

investigation of divergences of the irreducible vertex functions.

2.2.3 Connection to physical response functions

After these general definitions we briefly discuss how the generalized susceptibility is

related to experimentally accessible response functions.

For the already introduced charge and magnetic channel, the corresponding local

physical response functions χc(ω) and χm(ω) are defined as follows [41, 54]:

χc(ω) �
1

2

β∫
0

dτe iωτ〈[n↑(τ) + n↓(τ)][n↑(0) + n↓(0)]〉 − δω,0〈n↑ + n↓〉2 (2.27)

χm(ω) �
1

2

β∫
0

dτe iωτ〈[n↑(τ) − n↓(τ)][n↑(0) − n↓(0)]〉 − δω,0〈n↑ − n↓〉2 (2.28)

These response functions encode the information whether a fluctuation in the charge

or magnetic channel is long- or short-lived in (imaginary) time11. As a particularly simple

example one can consider the local magnetic moment in the atomic limit case, where χm(τ)
(as well as χc(τ)) stays constant, as the spin operator (the charge operator) is a constant of

motion in the AL, yielding after a Fourier-transform, a Kronecker-delta contribution at the

Matsubara frequency ω � 0. A detailed discussion of the temperature dependence of the

local response functions in the charge and spin sector, for the AL as well as the AIM, can be

10For the pp channel there is also a coupling between different spin components in the BSE. This can however

be decoupled in a different way, by using the crossing symmetry, which also underlies the expressions given

here, see Refs. [33, 54], explicitly Appendix Bc. of Ref. [33], for more details. Alternatively, one can define a

singlet and triplet channel for the pp channel analogously to the charge and magnetic one, which is however

not relevant for this thesis [33, 54].

11For a more quantitative evaluation of the timescales of the physcial (e.g., screening) processes, an analytic

continuation to real time/real frequencieswouldbeneeded. The latterwould also allow for adirect comparison

with, e.g., inelastic neutron scattering data, which is however not the subject of this thesis. We refer the

interested reader to Refs. [60–63].
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found in Sec. 4.1. In general, the physical response functions introduced above describe,

within the linear response formalism, how the system reacts to a (not-too-strong) external

dynamical or static perturbation. For details see, e.g., Chapter 6 in Ref. [64] and Chapter 6

of Ref. [65].

The important case of ω � 0 corresponds to the static/isothermal response of the

system [62, 66], and will be mostly relevant throughout this thesis.

The physical response functions can be computed from the generalized local ones

introduced before, by performing a sum over all fermionic Matsubara frequencies [33, 51,

54]:

χc(ω) �
1

β2

∑
νν′

χ νν
′ω

c � T2

∑
νν′
(χ νν′ω↑↑ + χ νν

′ω
↑↓ ) , (2.29)

χm(ω) �
1

β2

∑
νν′

χ νν
′ω

m � T2

∑
νν′
(χ νν′ω↑↑ − χ νν′ω↑↓ ) , (2.30)

as the double sum over ν, ν′ corresponds to taking equal times between pairs of fermionic

operators, which is necessary to build the corresponding observables. From the diagram-

matic point of view, this corresponds to closing the external fermionic lines of the diagrams

shown in Fig. 2.7.

2.2.4 Properties of generalized susceptibilities

In this section we focus on the eigenvalues and eigenvectors of the local generalized charge

(r � c) and magnetic (r � m) susceptibilities χνν
′ω

r in the ph channel and on the ↑↓
component in pp notation (r � pp, ↑↓). These eigenvalues and eigenvectors of χνν

′ω
r will

play a central role in the investigation of the appearances of irreducible vertex divergences,

discussed in Chapter 3.

Here, we first recall how symmetries of the underlying Hamiltonian (such as the SU(2)

symmetry) and fundamental relations (such as the complex conjugation) are reflected in

the properties of the generalized susceptibility χνν
′ω

σσ′ . As a second step,we restrict ourselves

to the static case (ω � 0) and separately consider the half-filled and out-of-half-filled case.

In Table 2.1we reproduce a subset of relations for the generalized susceptibilities, which

can be found listed in Refs. [23, 54]. As mentioned above, these are a direct consequence of

the general symmetries of the underlying Hamiltonian. For example, as discussed in the

previous section, the SU(2) symmetry relates different spin-components of the generalized

susceptibility χνν
′ω

σσ′ to one another. The “swapping” relation in Table 2.1 can be derived by

applying the crossing symmetry twice, i.e., fully exchanging the outgoing and incoming

particles [23]. Note that the last line holds only in the particle-hole symmetric case, which

coincides with the half-filling (µ � U/2) condition for the AIM. Also in the case of the HM,

µ � U/2 ensures particle-hole symmetry, since only nearest neighbor hopping terms are

taken into account.

With thehelpof thesegeneral relations forχνν
′ω

σσ′ precise statements about its eigenvalues
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Symmetry Relation

SU(2) χνν
′ω

σσ′ � χνν
′ω

(−σ)(−σ′) � χ
νν′ω
σ′σ

Complex conjugation

(
χνν

′ω
σσ′

)∗
� χ(−ν

′)(−ν)(−ω)
σ′σ

SU(2)

� χ(−ν
′)(−ν)(−ω)

σσ′

Time reversal χνν
′ω

σσ′ � χν
′νω
σ′σ

SU(2)

� χν
′νω
σσ′

Swapping (ph) χνν
′ω

ph ,σσ′ � χ
(ν′+ω)(ν+ω)(−ω)
ph ,σ′σ

Swapping (pp) χνν
′ω

pp ,σσ′ � χ
(−ν−ω)(−ν′−ω)(ω)
pp ,σ′σ

Particle-hole (µ � U/2)
(
χνν

′ω
σσ′

)∗
� χνν

′ω
σσ′

Table 2.1: Symmetry relations for the generalized susceptibility χνν
′ω

σσ′ , see Refs. [23, 54]. If no

subscript referring to the ph or the pp notation is given, the relation for χνν
′ω

σσ′ holds in the same

way for both notations.

and eigenvectors can be made, as explained in the following. As anticipated before, we

will now set ω � 0 for a given channel r, since this is the case studied most frequently

in the literature on the irreducible vertex divergences [10, 12, 13, 17–19, 21, 22, 26, 67,

68], and hence the most relevant for this work. Hereafter, we omit the bosonic frequency

superscript ω to improve the readability, χνν
′(ω�0)

r � χνν
′

r . In this way, χνν
′

r can be regarded

as a matrix in fermionic Matsubara frequency space. If no specific index regarding the

notation is given, the ph notation is considered.

2.2.4.1 Half filling

Parts of this chapter, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. B. 101, 155148 (2020).

At half filling each lattice site (or the interacting site of the AIM) is on average occupied

once: 〈ni〉 � 〈ni ,↑ + ni ,↓〉 � 1. As it can be seen in the last line of Table 2.1, for the

Hamiltonians considered, this ensures that all matrix elements of χνν
′

r are real as a result of

the perfect particle-hole symmetry. Further, due to the time-reversal and SU(2) symmetry,

χνν
′

r is a symmetricmatrix. Both properties are summarized in the following equations [26]

(see Ref. [26] for the more general version for arbitrary ω).

(
χνν

′
σσ′

)∗ PH

� χνν
′

σσ′ (2.31)

χνν
′

σσ′
TR

� χν
′ν
σ′σ

SU(2)

� χν
′ν
σσ′ (2.32)

Mathematically, a real symmetric matrix can be spectrally decomposed in the following

way:
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χνν
′

r �

∑
i

V r
i (ν) λ

r
i V r

i (ν
′) , (2.33)

where λr
i are the eigenvalues and V r

i (ν) the associated eigenvectors. Note that since χνν
′

r

is a real symmetric matrix for the particle-hole symmetric case, it can be diagonalized as

χr � VT DV , where D is a diagonal matrix and V an orthogonal matrix. In this case the

eigenvalues are guaranteed to be real and the eigenvectors V r
i (ν) are real and form an

orthonormal basis.

A secondcrucial equality canbe foundbyusing the complex conjugation in combination

with the SU(2)- and the particle-hole symmetry [23, 26].

χνν
′

σσ′
PH

�
(
χνν

′
σσ′

)∗ CC

� χ(−ν
′)(−ν)

σ′σ
TR

� χ(−ν)(−ν
′)

σσ′ (2.34)

A matrix with the property given in Eq. (2.34) is referred to as a centrosymmetricmatrix.

Since χνν
′

r fulfills both Eq. (2.32) and Eq. (2.34) at half filling, it is a so-called bisymmetric
matrix:

χνν
′

σσ′ � χ
(−ν)(−ν′)
σσ′ and χνν

′
σσ′ � χ

ν′ν
σσ′ (2.35)

This ensures that the matrix elements of χνν
′

r are symmetric with respect to the diagonal

(ν � ν′) and, at the same time, with respect to the secondary diagonal (ν � −ν′), see also

the schematic representation in Fig. 2.11.

For the sake of a self-contained presentation, we summarize some mathematical liter-

ature on bisymmetric and centrosymmetric matrices [69–71] in the following, since these

properties will be relevant throughout the thesis. First, we focus on centrosymmetric

matrices before taking also the symmetry described in Eq. (2.32) into account in a second

step.

Centrosymmetric matrices In the following we consider the centrosymmetric matrix

H, a 2n × 2n matrix, where n is the number of positive/negative fermionic Matsubara

frequencies. As H is a centrosymmetric matrix it fulfills the following condition

JH J � H (2.36)

where J is the counteridentity matrix (J2 � 1) given in Eq. (2.37)

J �

©­­­­­­«
0 . . . 0 1

...
...

... 0

0 1

...
...

1 0 . . . 0

ª®®®®®®¬
�

(
0 J
J 0

)
. (2.37)
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If J is multiplied from the right, it inverts the columns of a matrix, if it is multiplied from

the left, the rows are inverted. As one can easily see, for χνν
′

σσ′ this implies

Jχνν
′

σσ′ J � Jχν(−ν
′)

σσ′ � χ(−ν)(−ν
′)

σσ′ � χνν
′

σσ′ , (2.38)

which is true for our case, see Eq. (2.34).

If H is a centrosymmetric matrix, the following condition holds, where the submatrices

A, B, C,D are n × n matrices

H �

(
A B
C D

)
(2.36)
� JH J(

A B
C D

)
�

(
0 J
J 0

) (
A B
C D

) (
0 J
J 0

)
�

(
0 J
J 0

) (
BJ AJ
D J CJ

)
�

(
JD J JCJ
JBJ JAJ

)
(2.39)

⇒ D � JAJ & B � JCJ . (2.40)

This means that the centrosymmetric matrix H can be written in the following form

H �

(
A JCJ
C JAJ

)
. (2.41)

Eigenvalues and Eigenvectors Centrosymmetric matrices have a very useful property.

Their eigenvalues can be obtained from the diagonalization of specific combinations of the

submatrices A and C, corresponding to either symmetric or antisymmetric eigenvectors.

Consider an eigenvector v of H

Hv � λv | · J →
JHv � λ Jv

H Jv � λ Jv , (2.42)

where we used Eq. (2.36) and J2 � 1. From this it follows that Jv is also an eigenvector of

H corresponding to the eigenvalue λ, i.e.

Jv � av , (2.43)
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with a , 0, being the eigenvalue of J and since J is an orthogonal matrix: a � ±1. This leads

to either antisymmetric or symmetric eigenvectors v. In terms relevant for our discussion

this means that

v �

(
v
Jv

)
or

(
v
−Jv

)
with

©­­­­­«
neg. Matsubara

frequencies

pos. Matsubara

frequencies

ª®®®®®¬
, (2.44)

where v is a 2n × 1 vector and v is a n × 1 subpart of it.

Next, we consider λS, an eigenvalue corresponding to a symmetric eigenvector HvS �

λSvS

(
A JCJ
C JAJ

) (
v
Jv

)
� λS

(
v
Jv

)
(2.45)

⇓
(A + JC)v � λSv . (2.46)

In a similar fashion one finds for λA, corresponding to an antisymmetric eigenvector

(
A JCJ
C JAJ

) (
v
−Jv

)
� λA

(
v
−Jv

)
(2.47)

⇓
(A − JC)v � λAv (2.48)

This shows that the centrosymmetric matrix H has eigenvalues λS obtained from

diagonalizing A+ JC, which also gives the non-trivial parts v of the symmetric eigenvectors

vS. On the other hand one observes that λA corresponds to antisymmetric eigenvectors

obtained from the diagonalization of the submatrices A − JC.

In the following, a very elegant way to demonstrate this block structure of H is pre-

sented, which will proof to be very practical in Chapter 3.

Block-diagonalization Using the following orthogonal matrix Q (QQT � 1)

Q �
1√
2

(
1 −J
1 J

)
(2.49)
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one can block-diagonalize a centrosymmetric matrix H

QHQT
�

1

2

(
1 −J
1 J

) (
A JCJ
C JAJ

) (
1 1

−J J

)
�

1

2

(
1 −J
1 J

) (
A − JC A + JC
C − JA C + JA

)
�

1

2

(
2(A − JC) 0

0 2(A + JC)

)
�

(
A − JC 0

0 A + JC

)
(2.50)

revealing the previously discussed block structure.

BisymmetricMatrices As stated above, due to the SU(2)- and the time-reversal symmetry

the centrosymmetric matrix H considered is in fact bisymmetric, see Eq. (2.35). This has

important consequences for the submatrices A and C introduced earlier

H � HT
(2.51)(

A JCJ
C JAJ

)
�

(
AT CT

(JCJ)T (JAJ)T

)
, (2.52)

as J � JT
one finds A � AT

immediately. For C the following equation holds

CT
� JCJ → CT JT

� JC→ (JC)T � JC . (2.53)

This means that the combination of submatrices yielding the eigenvalues and the

corresponding symmetric or antisymmetric eigenvectors, is itself symmetric, ensuring

together with the particle-hole symmetry that the obtained eigenvalues are real

(A ± JC)T � AT ± (JC)T (2.53)

� A ± JC . (2.54)

The discussion of the general properties of bisymmetricmatrices reported above and its

specific impact on the generalized susceptibilities χνν
′

r can be summarized as follows [26]:

χνν
′

r can be block-diagonalized into an antisymmetric and a symmetric block:

QχrQT
�

(
A 0

0 S

)
, (2.55)

where A is the submatrix which contains eigenvalues λr
i of χ

νν′
r with strictly antisymmetric

eigenvectors V r
i (ν) � −V r

i (−ν) and S is the block which contains the symmetric ones

V r
i (ν) � +V r

i (−ν). Based on these insights the physical response (see Eqs. (2.29) and (2.30))
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can be rewritten using Eq. (2.33):

χr(ω � 0) � 1

β2

∑
ν,ν′

χνν
′

r �

∑
i

λr
i wr

i , (2.56)

where wr
i refers to a weight factor which is a strictly real non-negative number (wr

i ≥ 0),

whose explicit expression in terms of the corresponding eigenvectors reads:

wr
i �

[ 1

β

∑
ν

V r
i (ν)

] [ 1

β

∑
ν′

V r
i (ν
′)
]
. (2.57)

Due to the summation of the eigenvectors V r
i (ν), it is obvious that all weight factors

corresponding to an antisymmetric eigenvector are zero. Hence the associated contribu-

tions λr
i wr

i of the entire antisymmetric block A to the physical response in Eq. (2.56) cancel

and have no contribution at half filling [26].

Theproperties for the half-filled case are summarizedbelow inTable 2.2 anda schematic

representation of χνν
′

r for the lowest Matsubara frequencies is shown in Fig. 2.11.

2.2.4.2 Out of half filling

In the more general case, where the system is not at half-filling, 〈ni〉 � 〈ni ,↑ + ni ,↓〉 , 1

and/or the underlying Hamiltonian is not particle-hole symmetric, the property of the last

row of Table 2.1 is no longer guaranteed (χνν′ωσσ′ )∗ , χνν
′ω

σσ′ .

In the following, we focus first on the ph channel quantities χνν
′

r�c ,m for which the

following equality is true [67](
χνν

′
σσ′

)∗ CC

� χ(−ν
′)(−ν)

σ′σ
TR

� χ(−ν)(−ν
′)

σσ′ . (2.58)

A matrix with this property is a so-called centrohermitianmatrix [72], where all matrix ele-

ments are symmetric with respect to the center of the matrix under a complex conjugation.

Further, since time-reversal and SU(2) symmetry evidently hold also out of half filling,

Eq. (2.32) remains valid, and hence χνν
′

r�c ,m is a symmetric centrohermitian matrix. Note

that this also means that χνν
′

r is no longer a Hermitian matrix.

In this case, the generalized susceptibility is not guaranteed to be diagonalizable as

χr � V−1DV , which is the generalization12 of χr � VT DV for matrices with complex

entries. However, in all cases where it can be diagonalized, χr can be expressed as follows:

χνν
′

r�c ,m �

∑
i

V r
i
−1(ν)λr

i V r
i (ν
′) , (2.59)

where the eigenvalues λr
i can be either real or complex conjugate pairs [67, 72] (see also

the Appendix of Ref. [73]) and V r
i
−1(ν) refers to an eigenvector of the V−1

matrix. The

corresponding physical response can be then written as in Eq. (2.56) with the weights

12Note that χνν
′

r�c ,m is not a normal matrix ([χνν′r�c ,m]∗χνν
′

r�c ,m , χ
νν′
r�c ,m[χνν

′
r�c ,m]∗), and thus cannot be diago-

nalized as V∗DV , with V being a unitary matrix V∗V � 1.
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PH symmetry given PH symmetry broken

χνν
′(ω�0)

r�c ,m bisymmetric centrohermitian and symmetric

λr
i ∈ R ∈

{
R

C as complex pairs λr
i , λ

r
i

V r
i (ν) ∈ Rn

{
V r

i (ν) � +V r
i (−ν) symmetric

V r
i (ν) � −V r

i (−ν) antisymmetric

∈ Cn

wr
i ∈ R≥0 � {x ∈ R | x ≥ 0} ∈

{
R

C as complex pairs wr
i , w

r
i

Table 2.2: Properties of the static local generalized susceptibility χνν
′(ω�0)

r , its eigenvalues λr
i ,

eigenvectors V r
i (ν) and weights wr

i in the charge and magnetic channel (r � c ,m) for a case with

(first column) and without (second column) particle-hole symmetry (PH). Note that for χνν
′(ω�0)

pp ,↑↓
the properties of the first column apply also without the PH symmetry, see Eq. (2.61) and (2.62).

defined as [67]

wr
i �

[ 1

β

∑
ν

V r
i
−1(ν)

] [ 1

β

∑
ν′

V r
i (ν
′)
]
. (2.60)

We now consider the particle-particle channel for which an important difference in the

swapping symmetry to the ph case, see Table 2.1, becomes crucial when considering the

out-of-half-filling case. In fact, using the swapping symmetry (SP) for the pp channel in

combination with the SU(2) symmetry the following equality can be found [23]:

χνν
′

pp ,σσ′
SP(pp)

� χ(−ν)(−ν
′)

pp ,σ′σ
SU(2)

� χ(−ν)(−ν
′)

pp ,σσ′ (2.61)

which means that χνν
′

pp ,↑↓ is a centrosymmetric matrix independently of the particle-hole

symmetry. Even more so, taking the complex conjugation and the time-reversal symmetry

into account, it can be shown that the static χνν
′

pp ,↑↓ remains a real matrix also out of half

filling:

χνν
′

pp ,σσ′
(2.61)

� χ(−ν)(−ν
′)

pp ,σσ′
TR

� χ(−ν
′)(−ν)

pp ,σ′σ
CC

�
(
χνν

′
pp ,σσ′

)∗
(2.62)

Hence, for the static χνν
′

pp ,↑↓ all properties and equalities of the highly symmetric half-

filled case are still valid out of half filling. This demonstrates that the violation of the

particle-hole symmetry does not directly affect the general properties of the static pp

sector. With regard to Eq. (2.26), it is straightforward to see that the additional pp bubble

term χνν
′(ω�0)

pp ,0 � −βG(ν)G(−ν)δνν′ � −βG(ν)G∗(ν)δνν′ is real.
InTable 2.2we summarizedall properties ofχνν

′(ω�0)
r and the correspondingeigenvalues,-

vectors andweights. In Fig. 2.11, χνν
′(ω�0)

r is sketched for the lowestMatsubara frequencies,

illustrating the centrosymmetric and centrohermitianproperties. Note that throughout this
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c d b fd a e b∗
b e a∗ d∗f b∗ d∗ c∗

c d b fd a e b
b e a df b d ccentrosymmetric centrohermitian

−𝜈′ +𝜈′
−𝜈
+𝜈

and symmetric and symmetric

−𝜈
+𝜈

−𝜈′ +𝜈′𝜒𝑟𝜈𝜈′

Figure 2.11: Schematic representation of the first matrix elements of χνν
′(ω�0)

r , corresponding to

the Matsubara frequencies ν(′) � ±πT,±3πT, for the half-filled (left) and the out-of-half-filled case

(right). In the left panel, the matrix elements are symmetric with respect to the center of the matrix

(centrosymmetric), in the right panel they are centrohermitian, i.e., symmetric under a complex

conjugation. Additionally, for all cases the matrix is symmetric, which reduces the number of

independent matrix elements, and ensures that in the right panel e and f are strictly real.

work, vertices and generalized susceptibilities are plotted with the diagonal running from

the upper left to the lower right, i.e., a different convention as in topically related references

such as [10, 33, 51]. This choice is made to underline the perspective of χνν
′(ω�0)

r as a matrix

in fermionic Matsubara frequency space.

2.2.5 The Luttinger-Ward functional Φ[G]

A central concept to quantum many-body field theory is the Luttinger-Ward functional

(LWF) Φ[G], a universal functional of the full (sometimes also referred to as “bold”, as

opposed to the non-interacting or “bare”) Green’s function, which depends only on the

interacting part of the underlying Hamiltonian [74], see also Ref. [31]. It is related to the

thermodynamic grand potential Ω[G] in the following way [11, 75]:

Ω[G] � Tr ln G − Tr (G−1

0
− G−1)G +Φ[G] . (2.63)

Based on the derivatives of the grand potential, static thermodynamic properties of the

system under investigation can be calculated, while the LWF allows one to obtain dynamic

quantities, such as the self-energy Σ and the Green’s function G [11, 75]. The functional

derivative of Φ[G]with respect to G yields [11, 75]

β
δΦ[G]
δG

� Σ[G] , (2.64)

which corresponds to the self-energy of the system if evaluated at the physical Green’s

function G, i.e., Σ[G] � Σ.
Based on the LWF, also the irreducible vertex Γνν

′ω
σσ′ can be obtained by the functional

derivative of Σ w.r.t. G [11, 12, 19, 55] . Note that in general, it is necessary to introduce

symmetry breaking fields to perform such calculations, which prevents analytic treatments

in most cases. For simple disordered models, however, which will be introduced and

analyzed in Chapter 3, a simple expression can be given, which reads (see Eq. (11) of
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Ref. [19]):

Γνν
′ω�0

σσ′ � β
δΣσ(ν)
δGσ′(ν′)

(2.65)

While Φ[G] can in general not be obtained in closed form, it can be calculated by a

diagrammatic perturbation expansion as the limit of an infinite series of skeleton dia-

grams [74], or in a nonperturbative manner by using a functional-integral approach, see

Ref. [75].

The LWF plays an important role for fundamental quantum many-body theory, since

e.g., approximations, which are based on an expression for the LWF, so-called "Φ"-derivable

approximations, in which Σ and Γ are obtained as functional derivatives of a given ap-

proximation for Φ[G], are guaranteed to fulfill the conservation laws of the underlying

microscopic theory [76]. Such approaches are referred to as “conserving” [51], where one

of the best known examples is e.g., the self-consistent Hartee-Fock for Σ together with the

random phase approximation (RPA) for the generalized susceptibility [11, 51]. Another

example is the dynamical mean-field theory, see Sec. 2.3.1, where all local diagrams are

included in the corresponding Φ[G] [51, 77]. In this respect, let us also note, that the func-

tional derivatives of Φ[G] and the fulfillment of microscopic conservation laws are related

to the validity of the so-called Ward identities, which are fulfilled in conserving theories,

and broken if the approach is not conserving [51, 56].

2.3 Methods

After the introduction of the many-electronmodels most relevant for this thesis, providing

the definitions for the two-particle correlation functions, and including a comprehensive

discussion of their spectral properties, wenow turn to a concise presentation of themethods

used to treat these models and obtain the two-particle quantities of interest. In the first

part we recall the basic idea underlying the well-known dynamical mean-field theory,

specifying also the impurity solver employed throughout this thesis, before focusing on

diagrammatic approaches that approximate the class of fully irreducible vertices: the

parquet approximation and the functional renormalization group.

2.3.1 DMFT

The dynamical mean-field theory (DMFT) is one of the most important methods available

to the field of strongly-correlated electron systems (for a detailed review see e.g., Ref. [41],

for textbooks see e.g., Refs. [31, 49, 64] and for introductory articles summarizing key

aspects of the DMFT see Refs. [78, 79]). This is due to the fact, that it allows for a

nonperturbative treatment of correlated lattice systems. By using DMFT, intrinsically

strong-coupling phenomena such as e.g., the Mott-Hubbard metal-insulator transition can

be systematically described, see below.

The central approximation of the DMFT lies in neglecting the momentum dependence

of the self-energy Σ(k, ν) → Σ(ν). This approximation can be understood by considering
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   d or Z

d=3, Z=12

time

dynamical

mean field

Figure 2.12: A schematic demonstration of the d →∞ limit (or equivalently of infinite coordination

number), where a specific site of the lattice system (left) reduces to an interacting site in a dynamic

mean-field (right). All temporal fluctuations of the interacting site are fully taken into account, as

illustrated by the different occupations. Taken from Ref. [79] (see Fig. 4 therein).

the limit of infinite dimensions (or equivalently of infinite lattice coordination number),

where it becomes exact. For d → ∞, all nonlocal “bold” diagrammatic contributions to

the self-energy collapse into local ones, yielding a crucial simplification, which allows for

a numerical solution of the quantum many-body problem under investigation [80]. For

pedagogical reasons, it is useful to consider a comparison to the classical Weiss mean-

field theory of the Ising model [49]. There, as d → ∞, the fluctuations of an individual

neighboring spin become irrelevant. Instead a picture emerges of a spin, which interacts

with an effective mean-field, originated by all the other neighboring spins. Analogously, in

the solution of a quantummany-body problem on a lattice for d →∞, the effect of the rest

of the system can be approximated by a time-dependent (dynamical)Weiss-field. As in the

Weiss mean-field case, also for lattice models for d → ∞ one needs to properly scale the

different terms of the Hamiltonian in order to obtain a non-trivial limit [80]. Specifically,

for the one-band Hubbard model introduced in Sec. 2.1.3, the hopping amplitude is scaled

as t → t∗√
d
[49, 80]. The interaction part of the Hamiltonian, instead, does not require

any scaling, due to its purely local nature, U → U∗ [49, 80]. The important difference

of DMFT w.r.t. static/conventional mean-field theories, such as Hartree-Fock for lattice

systems, lies in the dynamic nature of the Weiss field, as well as of the on-site correlations

(Σ(ν)), which ensures that all purely local temporal correlations are included. Fig. 2.12,

taken from Ref. [79], visualizes this important difference schematically. The inclusion of

these dynamical correlations allows for a non-trivial description of e.g., the decrease of

the double occupancy (〈ni ,↑ni ,↓〉) with U in the correlated case. In contrast to the DMFT

description, a conventional (Hartree-Fock) mean-field theory, which would factorize the

double occupancy, failing to describe its decrease as a function of U, see Ref. [49].

The DMFT equations, which are stated below, can be derived by mapping the lattice

problem for d → ∞ onto an auxiliary AIM [41, 81]. The idea behind this mapping can

be understood in the following way: The DMFT method finds a suitably chosen auxiliary

AIM (i.e., one fulfilling a self-consistency condition), which represents the local quantities

of the lattice problem under consideration, embedded in the corresponding dynamical
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Weiss-field [64]. Physically, one obtains in this way an embedded atom connected to a

self-consistently determined bath, which is defined by the following local action [41, 49,

64] (or equivalently by the Hamiltonian defined in Sec. 2.1.1):

Simp � −
β∫

0

dτ

β∫
0

∑
σ

c∗d ,σ(τ)G
−1

0
(τ − τ′)cd ,σ(τ

′) + U

β∫
0

dτnd ,↑(τ)nd ,↓(τ) (2.66)

where the c∗d ,σ(τ)/c∗d ,σ(τ) are now Grassman numbers, and the Fourier-transformed effec-

tive bare propagator reads G−1

0
(iν) � iν − εd − ∆(iν) (cf. Eq. (2.3)).

Based on the impurity action the impurity Green’s function can be obtained in the path

integral formalism as [49]:

Gimp,σ(iν) � −
1

Z

∫ ∏
σ

Dc∗d ,σDcd ,σcd ,σ(iν)c
∗
d ,σ(iν) exp(−Simp) (2.67)

with Z being the partition function, which in path integral formalism is given by [49]

Z �

∫ ∏
σ

Dc∗d ,σDcd ,σ exp(−Simp) . (2.68)

Now, as the impurity Green’s function of theAIM is used as a representation of the local

Green’s function of the lattice model, at self-consistency, one requires that the following

expression holds [64]

Gloc(iν) �
1

V

∑
k

G(k, iν) � Gimp[iν,∆] (2.69)

whereV corresponds to the volume in the first Brillouin zone, and thek-dependentGreen’s

function of e.g., the one-band Hubbard model under consideration reads

G(k, iν) � 1

iν + µ − εk − Σ(k, iν)
. (2.70)

Using the central DMFT approximation of a k-independent self-energy Σ(k, iν) �

Σloc(iν) as well as that Σloc(iν) is represented by the self-energy of the AIM: Σloc(iν) �
Σimp(iν) � Σ(iν), one can write down the following self-consistency equation based on

Eq. (2.69) (see Eq. (11) of Chapter 3 of Ref. [64])

Gimp[iν,∆] �
∑

k

1

G−1

imp
[iν,∆] + ∆(iν) − εk

. (2.71)

Here the Dyson equation Σ(iν) � G−1

0
− G−1

imp
and εd � −µ was used.

In Fig. 2.13 we provide a sketch of the DMFT algorithm, which is iterated until the

self-consistency condition is fulfilled. The bottleneck in this scheme is the calculation of

the impurity Green’s function based on G0, for which e.g., a continuous-time quantum

Monte-Carlo (CT-QMC) algorithm can be used, as was done throughout this work. The

details of the specific solver applied here can be found in Sec. 2.3.1.2.
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effective impurity problem

self−consistency condition

𝒢0(𝑖𝜈) 𝐺𝑖𝑚𝑝(𝑖𝜈) Σ𝑖𝑚𝑝(𝑖𝜈)

𝐺𝑙𝑜𝑐 = ෍

𝒌

𝐺 𝒌, 𝑖𝜈 =
!
𝐺𝑖𝑚𝑝(𝑖𝜈)

impurity
solver

Dyson eq.

Dyson eq.

Figure 2.13: Schematic representation of the DMFT algorithm inspired by similar representations

of Refs. [49, 54, 64]. At the start of the algorithm an initial guess for the impurity bath G0 is

used. In the next step, an impurity Green’s function is calculated by solving the impurity problem,

see Eq. (2.67). Using Σimp � G−1

0
− G−1

imp
the local Green’s function of the lattice problem under

consideration Gloc �
∑

k G(k, iν) is evaluated. From G−1

loc
+ Σimp � G−1

0,new a new effective bath is

calculated until convergence of the scheme.

We conclude this subsection, by recalling that in finite dimensions, the DMFT assump-

tion of considering a momentum independent self-energy is of course no longer exact, but

nevertheless can be used as an approximation [49]. In this context, correlated effects in real-

istic materials can be treated by a combination of the density functional theory (DFT) with

DMFT, frequently referred to as LDA+DMFT [49, 82, 83]. This consists of a merger of first-

principles calculation of the correlated material, and a nonperturbative DMFT treatment

of its local correlations.

2.3.1.1 Mott metal-insulator transition

As it should be clear from the discussion of the previous section, a crucial strength of

DMFT is its capability to properly take local electronic correlation into account, even in

cases where the interaction is strong and perturbative methods fail. In fact, this is clear

already by considering other limiting cases where the DMFT becomes exact: the non-

interacting case (U � 0, where Σ is trivially zero) as well as the atomic limit (∆ � 0).
Hence DMFT manages to describe the two limiting cases of isolated atoms as well as

non-interacting electrons correctly [64].

This central property of DMFT is highly relevant when considering one of its most

important successes: the description of a Mott metal-to-insulator (MIT) transition. This

transition refers to a case where a paramagnetic metal becomes insulating, not because of

a symmetry breaking (e.g., a long range magnetic order that is forming) but because of the

interaction between electrons. In Fig. 2.14 we represent a sketch of the spectral function

(A(ω) � −1/πImG(ω + i0+)) as obtained in DMFT across such a transition, taken from

Ref. [78].
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Figure 2.14: Evolution of the interacting density of states (the k-integrated spectral function) for

the DMFT solution of a Hubbard model. As the interaction is increased, spectral weight from the

quasiparticle peak at the Fermi-energy EF is transferred to the lower and upper Hubbard bands,

which leads to the characteristic three-peak structure (c) for strong interaction. For a large enough

interaction value a Mott insulator is found (d). Taken from Ref. [78] (see Fig. 2 therein).

As can be seen in the top panel, forU � 0 a half-filled bandmetal is considered, where in

this specific case the DOS is semi-circular. As the interaction is increased, the width of the

central peak reduces, which describes the renormalization of the quasiparticle weight Z.

For the strongly interacting case the so-called upper and lowerHubbard sub-band form (c),

a crucial point thatDMFT captures as opposed to e.g., DFT [64]. If the interaction compared

to the bandwidth W is large enough (e.g., U/W � 2 in the specific case of Fig. 2.14) the

quasiparticle peak around the Fermi-energy EF vanishes (d). Physically, the kinetic energy

gain of quasiparticle mobility (hopping) is here lower than the associated potential energy

cost of creating doubly-occupied sites [49]. DMFT describes this transfer of spectral weight

correctly, where the spectral weight of the quasiparticle peak ∼ Z is reduced as the MIT

is approached, and instead the upper and lower Hubbard bands, which correspond to the

atomic transitions described by the atomic limit, are formed [64].

In the DMFT description of a one-band Hubbard model the MIT is realized as a first-

order transitionwith a critical endpoint at finite temperatures [41, 49, 64]. In Fig. 2.15 in the

left panel a generic phase diagram representing this MIT is shown (taken from Ref. [64]).

To the left of the hysteresis which is delimited by Uc1(T) and Uc2(T), a paramagnetic metal

is found. For temperatures below the critical endpoint (red dot) this paramagnetic metal

undergoes a transition into a paramagnetic insulator, the Mott phase, as the interaction is

increased. For very low-temperatures an ordered phase is shown, which can be suppressed

e.g., due to geometric frustration. In practical calculations however, the ordered phase is
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Figure 2.15: Left panel: Schematic representation of theMIT as obtained fromDMFT for aHubbard

model, where a magnetically ordered phase is suppressed to low-temperatures. The first-order

transition ends in a critical endpoint, for higher temperatures a crossover is found. The red line

denotes theparameter setswhere theminimumof the free energy is found, the blue regiondelimited

by the white transition lines Uc1(T) and Uc2(T) represents the coexistence region.Taken from [64]

(see Fig. 5 of Ch. 3). Right panel: Specific DMFT calculation for Hubbard model on a Bethe lattice

(half-bandwidth D � 1) at half filling, where the coexistence region is shown in blue. The plot was

provided by M. Pelz based on calculations performed throughout his Master thesis, see Ref. [84].

mostly disregarded by enforcing the symmetries of the paramagnetic phase. The hysteresis

represents a coexistence region, where both, a metallic and an insulating phase can be

found. This first order transition ends in a critical endpoint at Tc . For temperatures larger

than Tc a crossover is found. In the right panel of Fig. 2.15 a specific calculation of the

coexistence region of the Hubbard model on a Bethe lattice at half filling, performed by

M. Pelz, is shown [84].

2.3.1.2 QuantumMonte Carlo

Throughout this thesis to obtain the one- and two-particle quantities a continuous-time

quantum Monte-Carlo (CT-QMC) impurity solver is employed. Specifically, we use the

solver provided by the open-access w2dynamics package [85] in the 1.0.0 version. This

is a CT-QMC algorithm in the hybridization expansion (CT-HYB), where we refer to the

literature [86] for details on the method. In general we exploited the segment sampling

method, which is suited for the density-density type interactions (Un↑n↓) of interest to
this thesis, see Ref. [86] for details. In some specific parts (where mentioned explicitly)

we also use worm sampling [87, 88] together with symmetric improved estimators [89], to

significantly reduce the high-frequency noise for e.g., the self-energy.

2.3.2 Parquet approximation

The diagrammatic methodologies introduced in this and the following subsection will be

used in several occasions throughout this thesis. Both are based on (i) a complete set of

equations, which relates the one- and two-particle level, as well as (ii) an approximation

for the fully 2PI vertexΛ. The goal of these approaches is always to obtain a self-consistent
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ν ↑(ν + ω) ↑

F νν′ω↑↓(ν ′ + ω)↓

ν ′ ↓

ν ↑
+

ν ↑ ν ↑

ν ′ ↓
=ν ↑ ν ↑

Σ(ν)

Figure 2.16: Diagrammatic representation of the Schwinger-Dyson equation (SDE), which relates

the self-energy Σ(v) to the full vertex F↑↓. The first term on the right-hand side is the Hartree

contribution. Taken from Ref. [33] (see Fig. 18 therein).

description of the relevant one- and two-particle quantities of the model of interest. In

this section, we consider the parquet formalism (PA) [55], which is based on the parquet

approach introduced in Sec. 2.2.1. By expressing the reducible vertices via the BSEs of

Sec. 2.2.2 in terms of the full vertex F and the irreducible Γl’s, one obtains a set of equations

relating F and the 2PI vertices Γl and Λ to one another. At this point the Green’s function

and one of the vertex classes would be needed as an input to solve this set of equations [51].

The missing relations to obtain a closed set of equations, are those, which link the one- and

the two-particle level: (i) the Dyson equation (Eq. (2.23)), which relates the propagators

used in the BSEs, to the self-energy Σ and (ii) the so-called Schwinger-Dyson equation

of motion (SDE), which relates the self-energy to the full vertex F. We recall, that the

SDE is based on the Heisenberg equation of motion, obtained by deriving the interacting

one-particle Green’s function w.r.t. the imaginary time. In Matsubara frequency space, for

local problems (such as the AIM or the DMFT solution of the HM), the SDE explicitly reads

as follows [33, 54]:

Σ(ν) � Un
2

− U
β2

∑
ν′ω

G(ν + ω)G(ν′ + ω)G(ν′)Fνν′ω↑↓ , (2.72)

where n is the density of the system n � 〈n〉 � 〈n↑ + n↓〉. A diagrammatic representation

of this equation is shown in Fig. 2.16. Let us note here, that more details of the SDE will be

discussed in Chapter 6, when analyzing explicitly how the high-frequency asymptotic of

Σ(ν) is linked to the symmetry of the full vertex F↑↓.

Having obtained a complete set of self-consistent equations for the system under in-

vestigation, this can be solved starting from an input for one of the vertex classes. In the

parquet based schemes, the natural choice is to perform the approximation on the “deep-

est” level of the corresponding diagrammatics, i.e., for the fully 2PI vertex Λ [33, 51]. The

flow chart for this approach is shown schematically in Fig. 2.17, taken from Ref. [51].

In the PA, one approximates the fully 2PI vertex with its first order perturbative contri-

bution, which is the bare interaction, Λ � U [33, 55]. This ensures that the scheme is exact

up to forth order in perturbation theory, since the next-to-leading contribution toΛ at small

U is the “envelope”-diagram, shown in Fig. 2.9, which includes four bare interactions.

While we explicitly consider the local problem, note that this set of equations can be

analogously formulated for the nonlocal case, see Ref. [51], in order to study, e.g., the
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Figure 2.17: The left part of the flow diagram (II) concerns the set of equations, which connect the

full vertex F to the irreducible ones: Γr andΛ. Starting from an input forΛ, this system of equations

can be solved for a given propagator G. The complete set of equations, providing a self-consistent

solution on the one- and the two-particle level, is shown in the right part of the diagram (I). From

the full vertex F, using the SDE (i.e., the equation of motion), one obtains the self-energyΣ, and via

the Dyson equation a new propagator G (where G0 defines the system under investigation). Taken

from Ref. [51] (see Fig. 6 therein).

Hubbard model in finite dimensions, and hence used to obtain a diagrammatic approx-

imation including nonlocal correlations. See e.g., Refs. [90–92] for an application of this

scheme, or Ref. [93] for a more recent formulation, where the parquet approach is com-

bined with several numerical techniques to improve the computational performance, the

so-called truncated unity parquet solver (TUPS). For a comparison of the TUPS version of

the parquet approach using the parquet approximation, to other methods such as DMFT,

numerically exact methods such as determinant quantum Monte-Carlo or diagrammatic

Monte-Carlo and many others we refer to Refs. [52] and [94]. Moreover, it is important to

emphasize here that one can also use the parquet approach beyond the simplest case of the

PA, by including a different set of diagrams in the fully 2PI vertex Λ as a starting point of

the method. One examples is the fully irreducible vertex of a converged DMFT solution,

ΛDMFT, a choice which defines the so-called DΓA approach [51, 95], discussed further in

Chapter 6. As a last point, note that if the exact fully 2PI vertex Λ would be available, by

using the parquet approach, all other quantities of interest could be obtained from it in an

exact manner.

For the implementation of the iterative method to solve the set of PA-equations numer-

ically, we refer to Ref. [96].

2.3.3 Multiloop fRG

Parts of this chapter, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. Research 4, 023050 (2022).

The functional renormalization group (fRG) provides a versatile framework to study

the scale-dependent behavior of a wide range of many-body problems (also outside of

condensed matter physics, see [97] for a recent review) in an unbiased (i.e., not channel-
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specific) way. For comprehensive reviews targeted at problems that are of interest to this

thesis we refer to Refs. [98] and [99], a brief summary can be found in Chapter 11 of Ref. [64]

or also in the Appendix D of Ref. [52]. Central to the fRG method is the introduction of

a scale-dependent non-interacting propagator GΛ
0
, which enters the quadratic part of the

action, see e.g., Eq. (2.66). Based on thisSΛ an effective actionSΛ
eff

can be definedwhich acts

as the generating functional for one-particle irreducible vertices, e.g., the self-energy Σ or

the full vertex F. The fRGflowthen refers to an exact functional flowequation forSΛ
eff
, which

can be expanded in terms of fields, yielding an infinite hierarchy of coupled differential

(i.e., flow) equations [64], the so-called Wetterich equation [98, 100]. In this hierarchy, the

flow equation for the one-particle irreducible (1PI) n-particle vertex, depends on the 1PI

(n+1) vertex. In most practical applications, this system of coupled differential equations

is truncated at the two-particle level, hence describing how the self-energy Σ and the full

vertex F evolve as the scale Λ is changed from its initial value Λi to its final one Λ f . The

way this scale dependence is introduced is referred to as “cut-off”, where in this work the

following two cut-offs are considered:

GΛ
0
�

ν2

ν2 +Λ2

G0 with Λi � ∞, Λ f � 0 , (2.73)

where G0 is the non-interacting Green’s function of the system. Since this cut-off is de-

pending on the frequency ν it is called “frequency” cut-off, or also Ω flow. The second

cutoff acts similarly as switching on an interaction, hence termed U cut-off or U flow.

GΛ
0
� ΛG0 with Λi � 0, Λ f � 1 . (2.74)

The fRG flow equation ofΣΛ is determined by the full vertex FΛ contracted with the so-

called single-scale propagator SΛ�−GΛ(∂ΛGΛ
0

−1)GΛ, which is related to the differentiated

propagator
ÛG≡∂ΛGΛ by

ÛG�SΛ + GΛ ÛΣΛGΛ [98]. For simplicity, we omit the superscript Λ

in the following. The flow equation for F further involves the three-particle vertex F(6) [98].
If F(6) was known at all scales, the flow of Σ and F would be exact. This would imply,

in particular, that every specific Λ dependence or cutoff choice, as in Eqs. (2.73) or (2.74),

would yield the same result at the end of the flow. In practice, however, F(6) can hardly

be treated numerically and its effect on the flow of Σ and F can only be accounted for

approximately. As a consequence, the results of such truncated fRG flows will generically

depend on the choice of the cutoff.

The most widely used fRG implementations neglect F(6) entirely, yielding approximate

1` flow equations for Σ and F [98]. The contributions of F(6) that amount to self-energy

derivatives can be added to the vertex flow by substituting S→ ÛG. This “Katanin sub-

stitution” [101] is labelled by 1`K throughout. A further refinement, which effectively

incorporates the three-particle vertex to third order in the renormalized interaction, is

obtained by the two-loop (2`) vertex corrections [101, 102].

Subsequently, the multiloop fRG extension (mfRG) [103–105] was introduced to incor-

porate all those contributions of F(6) to the flow of Σ and F ensuring that their right-hand
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Figure 2.18: Diagrammatic representation of the multiloop flow equation for the reducible vertex

in the ph channel ÛΦph ( Ûγa in the figure). In the first line the 1` contributions are shown, where the

single-scale propagator S is represented by the doubly-slashed propagator line. In the second line

the first and last term represent Eq. (2.77a), while Eq. (2.77b) is shown in the center (
ÛIa corresponds

to ÛΦ ¯
ph

the notation of this thesis). The grey boxes represent the full vertex F. Taken from Ref. [105]

(see Fig. 2a therein).

sides are total scale derivatives—which is not the case for the 1` flow—thus guarantee-

ing by construction that the final results are independent of the choice of cutoff. In fact,

the corresponding higher-loop terms of the mfRG represent the minimal additions to the

conventional 1` flow required to obtain cutoff-independent results. They also provide the

maximal amount of diagrammatic contributions that can be added in a numerically feasible

manner. Indeed, due to the iterative structure based on successive 1` computations, these

higher-loop contributions can be computed very efficiently [106].

The mfRG was shown to formally reproduce the diagrammatic resummation of the

PA [104, 105] with the fully 2PI vertex Λ � U. An analogous approximation is performed

in truncated fRG flows: Neglecting F(6), the vertex flow equation is of the form
ÛF �

∑
l ÛΦl

(note that l, which refers to the diagrammatic channels ph,pp,ph, needs to be distinguished

from `, which is the loop order). Thus, only the reducible parts are renormalized, while

the fully irreducible part does not flow and remains at its initial value Λ � U.

In the following, the flow equations for the self-energy and the two-particle vertex are

summarized, using a compact notation introduced in Ref. [105] (see Appendix A therein):

A regular dot · refers to a sum over one internal frequency with a one-particle quantity,

the ◦ refers to a matrix multiplication between two two-particle quantities.

One-loop flow The ‘standard’ fRG self-energy flow [98] reads

ÛΣstd � F · S . (2.75)

The first line of Fig. 2.18 shows an exemplary depiction of the 1` flow of the reducible

vertices, given by

ÛΦ(1)l � F ◦ ÛΠl ,S ◦ F, (2.76)

and
ÛF�

∑
l ÛΦl . ÛΠl ,S corresponds to the differentiated two-particle propagator in channel l,

with S used instead of
ÛG.

The 1`K flow with the Katanin substitution is obtained by replacing S→ ÛG, i.e., ÛΠl ,S→
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ÛΠl , in Eq. (2.76). Since it includes self-energy (and not vertex) corrections from F(6), the
results of the 1`K flow are plotted between those for `�1 and `�2 in Chapter 6.

Multiloopflow Themultiloopflow further includes the contributions from F(6)which are

generated by vertex corrections. These can be ordered by loops, leading to the expansion

ÛΦl �
∑
`≥1

ÛΦ(`)l [103, 104]. Here, ÛΦ(1) already includes the Katanin substitution to account

for the self-energy corrections as above. The higher-loop terms, ` > 1, are determined by

ÛΦ(`)l � ÛΦ(`−1)
¯l
◦Πl ◦ F + F ◦Πl ◦ ÛΦ(`−1)

¯l
(` ≥ 2) (2.77a)

+ F ◦Πl ◦ ÛΦ(`−2)
¯l
◦Πl ◦ F (` ≥ 3), (2.77b)

where Φ¯l �
∑

l′,l Φl′. Equation (2.77a) with ` � 2 corresponds to the 2` flow, while the

so-called center part ÛΦ(`)l ,C � F ◦Πl ◦ ÛΦ(`−2)
¯l
◦Πl ◦ F of Eq. (2.77b) contributes only for `≥3.

Both lines of the multiloop contributions to ÛΦl are shown in the second line of Fig. 2.18.

In order to fully generate all parquet diagrams, the self-energy flow also acquires

a multiloop correction [104], where ph is for practical reasons renamed to xph in the

following expression

ÛΣ � ÛΣstd + (1 + F ◦Πxph) ◦ ÛΦ ¯
xph,C · G, (2.78)

where ÛΦ ¯
xph,C�

∑
`≥3

ÛΦ(`)
¯

xph,C
.

The above-mentioned procedure outlines the “traditional” way of viewing the mfRG

equations as corrections to the fRG flow equations, which restore the total derivative

by taking the effect of F(6) in the flow equations of Σ and F fully into account. Let us

also highlight here the work by F. Kugler and J. von Delft [105], which offers a different

perspective on the mfRG equations, in many ways closer to the concepts already presented

in this thesis: As a starting point the parquet equation is used, see Sec. 2.2.1, which holds

for any propagator. The idea of the authors was hence to replace G → GΛ and derive

the flow equations for the two-particle vertex, given above. Similarly, the SDE introduced

in Sec. 2.3.2, was used to derive the flow equation for the self-energy together with the

multiloop corrections mentioned above. In this way it becomes evident that solving the

mfRG equations is equivalent to calculating the PA solution.

Equations (2.77a),(2.77b) and (2.78) define the mfRG procedure, which will be used in

Chapter 6 of this thesis. The numerical solution of this system of differential equations,

often referred to “flowing”, is done by a Runge-Kutta solver, implemented in a C++ frame-

work designed by N. Wentzell. Details on the implementation can be found in Refs. [94,

96, 106]. Let us note here that, similarly as in the PA case, the mfRG framework can also be

used with a different irreducible vertex as a staring point, as it will be discussed explicitly

in Chapter 6.



CHAPTER 3

Aspects of the breakdown of perturbation theory

Turn and face the strange
– David Bowie

In this chapter, the central topic of this thesis is formally introduced: the divergences

of the irreducible vertex functions. As an unmistakable hallmark of nonperturbative

physics, they are found in many fundamental models of correlated electron systems

already at intermediate coupling. Here we present an overview of their appearance,

with a focus on the Anderson impurity model as well as the Hubbard model. The

irreducible vertexdivergences are also intrinsically connected to themultivaluedness

of theLuttinger-Ward functional, which is reviewed in the secondpart of this chapter.

In the last part, we eventually discuss the connection between these nonperturbative

manifestations of the breakdown of self-consistent perturbation expansions.

Several of the most interesting phenomena observed in strongly correlated electron

systems are beyond the description of perturbation theory. One example is the Mott

metal-to-insulator transition (MIT), which was discussed in the previous Sec. 2.3.1.1. The

central problem for condensed matter systems is that as soon as the interaction becomes

sizable, e.g., due to insufficient electronic screening, there is no longer a clear expansion

parameter, on the basis of which a perturbation theory could be safely formulated. In

this chapter, we focus on a particular aspect of the way how the nonperturbative nature

of electronic correlation becomes apparent in the quantum field-theoretical description of

many-electron systems: the divergences of the irreducible vertices.

In the first part, we define the divergences of the two-particle irreducible (2PI) vertex

functions and distinguish them from divergences of the full vertex F. We then provide

an overview of their appearance in different many-electron models, with the main focus

on the Hubbard model (HM) and the Anderson impurity model (AIM) (both defined in

Sec. 2.1).

This manifestation of nonperturbative physics affects also a different quantity, central

to the description of many-body problems: the Luttinger-Ward functional Φ[G] (LWF)

43
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Figure 3.1: DMFT calculations for the Hubbard model on a square lattice for T � 0.4t, taken from

Ref. [10] (see Fig. 1 therein). In the first row, plots of the static local irreducible vertex in the charge

channel as a function of ν and ν′ are shown, which diverges as U is increased from U � 1.27

(second column) to U � 1.28 (third column), where U is measured in units of 4t. The second

row panels demonstrate a comparison between the results obtained by second-order perturbation

theory (green circles) and the DMFT results (black diamonds) for a cut along ν′ � πT (n refers to

the Matsubara index). As can be readily seen, not only the magnitude, but also the sign-structure

is missed by perturbation theory (PT). The insets show the value of the corresponding singular

eigenvalue of χνν
′(ω�0)

c , see Eq. (3.1) and the corresponding discussion.

(see Sec. 2.2.5), which happens to be multivalued. In the second part of this chapter,

we summarize some important aspects of the multivaluedness of Φ[G], which can lead

to unphysical solutions for Σ[G] at crossings of different branches of Φ[G], and discuss

several instances where this problem appears.

Finally, in the last part of this chapter, we discuss the close connection between these

two problems. As it turns out, they are in fact two sides of the same coin: the breakdown

of self-consistent perturbation theory.

3.1 The divergences of the irreducible vertex functions

In the previous Sec. 2.2, the different classes of two-particle vertex functions were intro-

duced. It is important to clarify that all of these vertex classes can in principle diverge

for different reasons. An important example is the full one-particle irreducible vertex F,
which is directly related to the generalized susceptibility (see Eq. (2.19)), and diverges at

physical phase transitions, see for example Refs. [6, 33, 41, 57, 98]. However, here, we are

interested in divergences exclusively affecting the irreducible vertex functions Γr , which

are irreducible in channels r � c ,m , pp ↑↓1 as well as of the fully 2PI vertex Λ.

These divergenceswere first described in awork by T. Schäfer et al. [10] for theHubbard

model on a square lattice solved by DMFT at half filling, whose central result is shown in

1The ↑↑ component in the pp sector is not considered, since no divergences of this quantity for ω � 0 have

been reported in the literature [19, 23].
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Fig. 3.1. Already at intermediate interaction values (note that U is measured in units of

4t � 1 in the referenced work), well below Uc of the corresponding MIT, a divergence of

the irreducible vertex in the charge channel for the static case, Γ
νν′(ω�0)
c , is observed (first

row panels2). As it can be seen in Fig. 3.1, the behavior of Γc completely contradicts the

predictions by second-order perturbation theory, shown in the second row of Fig. 3.1. Not

only the order of magnitude is wrong, as one could have expected, but the sign-flip of the

entire low-frequency structure in Γνν
′

c is missed by perturbation theory. The insets in the

second row panels of Fig. 3.1 report an eigenvalue of the static generalized susceptibility

in the charge channel χνν
′(ω�0)

c � χνν
′

c , which crosses zero at the divergence of Γc . This

connection can be understood by inserting the spectral decomposition for the half-filled

case of χνν
′

r (see Eq. (2.33)) into the inverted Bethe-Salpeter equation for the irreducible

vertex in the charge or magnetic channel r � c ,m (see Eq. (2.24)):

Γ
νν′(ω�0)
r�c ,m �

(∑
i

V r
i (ν)

[
λr

i

]−1

V r
i (ν
′) −

[
χ−1

0

] νν′)
. (3.1)

The same equation can also be written in matrix-product form for the pp↑↓ channel, in
which case however the spectral decomposition for χν(−ν

′)
pp ,↑↓ −χ

νν′
pp ,0 needs to be considered [19,

22], see Eq. (2.26).

Eq. (3.1) represents indeed a crucial relation for the further discussion of this thesis:

By increasing the interaction, the eigenvalues of χνν
′

c (which are all positive at U � 0) get

gradually suppressed, and some of them can even cross zero and become negative [12].

For repulsive U the same consideration applies to the pp↑↓ channel, for attractive U, this

applies to the magnetic channel [26]. Evidently, each time an eigenvalue λr
i crosses zero,

the irreducible vertex function diverges [10, 12, 13, 17–19, 21–23, 25, 26]. In practice,

searching for singular eigenvalues of χνν
′

r is also the way how the divergences of Γr are

traced throughout the phase diagram of the model under investigation, see Refs. [19, 22,

29, 107] for further details on this topic. Let us at this point make a couple of important

remarks concerning Eq. (3.1):

(i) Eq. 3.1 can also be written for ω , 0, see e.g., Ref. [19] or Ref. [23]. However, in this

thesis only the irreducible vertex divergences at ω � 0 are considered since this is also the

case analyzed most frequently in the literature [10, 12, 17–19, 21, 22, 25, 26]. The interested

reader can find an analysis of the appearance of divergences of Γr also for the case ω , 0

in Ref. [23].

(ii) Eq. 3.1 holds for half filling. Using Eq. 2.59, a similar expression can be formulated

for a (diagonalizable) case out of half filling, however, not always the same conclusions can

be drawn, which will be further discussed in Sec. 3.1.4.

(iii) As a last point, we note that a divergence of the irreducible vertices is indeed

produced by singular eigenvalues of χνν
′

r , since the second contribution, [χ−1

0
]νν′ ([χ−1

pp ,0]νν
′

in case of r � pp ↑↓), is merely the nonsingular inverse of the bubble-term.

Turning back to Eq. (3.1), onemust note that, close to a vertex divergence, the eigenvalue

determining the divergence, e.g., λi�α is vanishingly small, and hence its inverse is clearly

2In the conventions of this thesis β2Γ
νν′(ω�0)
c is shown in Fig. 3.1, cf. Ref. [10] and Ref. [19].
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Figure 3.2: Demonstration of influence of the singular eigenvector V c
α(ν) onto the frequency struc-

ture of Γνν
′

c close to the singularity of λα. The parameters of the calculation for the AIM, defined

in Sec. 2.1.1, are: U � 3.321444 and β � 40, which yields λc
α ' 0.00025. The colors of the singular

eigenvectors reported on the upper and left side of the main plot are not related to the colorbar, but

merely serves as a guide to the eye. This figure is reproduced in the unit conventions of this thesis

from Ref. [22].

larger than all other eigenvalues for i , α3. This allows one to rewrite Eq. (3.1) in the

following way [22]:

Γνν
′

r ≈ V r
α(ν)

[
λr
α

]−1

V r
α(ν′) . (3.2)

This relation clearly illustrates how, close to a vertex divergence, the magnitude of the

irreducible vertex Γνν
′

r is mostly determined by

[
λr
α

]−1

and its frequency structure by the

corresponding eigenvector V r
α(ν). In Fig. 3.2 this connection is showcased for a specific

calculation for theAIMvery close to the zero-crossing of one λr�c
i�α [22]. It can be readily seen

how the frequency structure of Γνν
′

c is completely controlled by the corresponding singular

eigenvector plotted on top and to the left of Γc . Fig. 3.3 extends the analysis presented

in Fig. 3.2 by comparing the full Γνν
′

c (left panel) and the tensor product λ−1

α Vα(ν) ⊗
Vα(ν′) (center), where the corresponding difference is shown in the rightmost panel. The

frequency structure of this remaining part shows two main features. On the one hand,

a diagonal structure can be identified, which is originated by reducible vertices of other

channels, see further Ref. [33]. On the other hand, highly fluctuating features are observed

in the difference of Γνν
′

c − λ−1

α Vα(ν) ⊗ Vα(ν′), which can be attributed to noise of the QMC

method that can become sizable for inversions of the BSE.

From this comparison, it becomes obvious that, close to a vertex divergence, also the

symmetry properties of the eigenvectors corresponding to the singular eigenvalues will be

directly reflected in the frequency structure of the divergences of Γνν
′

r , which also allows

3This holds in the non-degenerate case, which is observed most frequently in cases discussed here, there

are however situations where this is no longer true, see Sec. 3.1.3.
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Figure 3.3: For the same parameter set used for the calculation shown in Fig. 3.2 a direct comparison

of Γνν
′

c (left) and [λα]−1Vα(ν) ⊗ Vα(ν′) (center) is shown, whose difference is plotted in the right

panel (note the difference in the colorbars on the right side of the corresponding plots).

for a categorization of the divergences, discussed further below.

Irreducible vertex divergences and the full vertex F After defining the divergences of

the irreducible vertex functions let us point out a crucial aspect before discussing their

appearance. As discussed above, the divergence of the irreducible vertex functions Γνν
′

r is

caused by singular eigenvalues of the generalized susceptibility χνν
′ω

r , i.e., by the inversion

of the corresponding BSE (cf. Sec. 2.2.2) which contains singular contributions. The full

vertex F, on the other hand, remains finite in such a case. How this happens can be

analytically understood by reformulating Eq. (2.19) for the static local full vertex Fνν
′

r in

channels4 r � c ,m as follows:

Fνν
′

r �
[
χ−1

0

] νν′ − 1

β2

∑
ν1ν2

[
χ−1

0

] νν1χν1ν2

r
[
χ−1

0

] ν2ν′
(3.3)

�
1

β2

∑
ν1ν2

[ [
χ−1

r
] νν1 −

[
χ−1

0

] νν1︸                   ︷︷                   ︸
Eq. (2.24)

]
χν1ν2

r
[
χ−1

0

] ν2ν′

�
1

β2

∑
ν1ν2

Γ
νν1

r χν1ν2

r
[
χ−1

0

] ν2ν′ .

From the first line, it becomes clear that the singular eigenvalues λr
i → 0 of χνν

′
r have

a vanishing contribution to F, since χνν
′

r enters directly instead of being inverted. The

reformulation in the second and third line illustrates how the divergence of Γνν
′

r , originated

by [χ−1

r ]νν
′
, is compensated for by the matrix multiplication with χνν

′
r .

This fact is (presumably) also the reason why the divergences of the irreducible vertex

functions were first fully described only in 20135 in Ref. [10].

4Note that the same argument can be made for the pp ↑↓ channel.
5In fact, the irreducible vertex divergences were observed for the first time 2011 in calculations performed

in the group of M. Jarrell, see the first ArXiv version in Ref. [108]. This result was however discarded in the

published version of this article [109]
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Figure 3.4: Results for the same model and parameters as in Fig. 3.1 for the local full vertex in the

charge channel Fνν
′

c (left), the irreducible vertex in the charge channel Γνν
′

c (center) as well as the

fully 2PI vertex Λνν
′

c as a function of ν(′) � (2n(′) + 1)π/β. The bare interaction value is subtracted

from the irreducible vertices. In the upper row the interaction value shown in the leftmost panel

of Fig. 3.1, U � 1.2 (in units of 4t), is used, where no divergence is close. In the bottom row the

calculation for U � 1.27 is shown, where a divergence in both Γνν
′

c and Λνν
′

c is found, but not in the

full vertex. Taken from Ref. [51].

The absence of divergences in F can also be analyzed from the perspective of the

parquet equation [10, 18, 19, 51], introduced in Sec. 2.2.1. One possibility is to explicitly

express the fully irreducible vertex Λ in terms reducible Φl and irreducible Γl vertices. In

this case, the divergences of Γl are reflected in divergences of the fully 2PI vertex Λ and

the corresponding reducible ones Φl � F − Γl , rendering the full vertex F finite6, as is

explicitly shown in Chapter 3 of Ref. [110]. In Fig. 3.4, we showcase this aspect by hands of

a calculation for the Hubbard model for the same parameter sets already used in Fig. 3.1,

taken fromRef. [51]. From the comparison of the upper row (regular parameter set, U � 1.2

in Fig. 3.1) to the bottom row (diverging parameter set, U � 1.27 in Fig. 3.1) it is evident

how the full vertex remains finite, while the irreducible vertices demonstrate a divergence.

Let us stress an important aspect at this stage: While the full vertex F remains finite at
the divergence of the local irreducible vertex, the effects of electronic correlation that induce

the appearance of singular eigenvalues are also affecting the full vertex F. In particular,

while the divergence itself is compensated for, the suppression of the eigenvalues has a

clear effect on F, which can be better noticed by reformulating Eq. (2.19) in the following

way:

6We note that, alternatively, the reducible vertices in Eq. (2.20) can also be rewritten using Φl � F − Γl ,
yielding an expression containing only full vertices F (for different spin combinations and frequencies) and

irreducible ones, Λ and Γl . In this case a perfect compensation of divergences is observed, leaving the full

vertex F finite. The explicit calculation is however not shown here.
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Figure 3.5: Full eigenvalue spectrum of χcχ−1

0
(orange triangles) and χ0Fc (blue circles) for the AIM

at U � 5.75 and β � 60. The negative eigenvalues of χcχ−1

0
are compensated for by eigenvalues

larger than 1 of χ0Fc , see Eq. (3.4).

1

β

∑
ν1

χνν1

r
[
χ−1

0

] ν1ν′
+

1

β

∑
ν1

χνν1

0
Fν1ν′

r � 1νν
′
. (3.4)

From Eq. (3.4) it becomes clear that the eigenvalues of χνν
′

r , which cross zero and

become more and more negative as the interaction is further increased (see e.g., the inset

of rightmost panel in Fig. 3.1 and in more details Chapter 5), are reflected in large positive

eigenvalues of F. This is demonstrated numerically for an example case of the AIM in

Fig. 3.5, where the full spectrum of χcχ−1

0
is plotted in comparison to χ0Fc .

Note that, a priori, one could wonder how the eigenvalues of two different matrices

(here χνν
′

r and Fνν
′

r ) could actually be compared since the twomatrices could have different

eigenbases in general. However, one can show that in the specific case considered here,

these matrices are simultaneously diagonalizable, and hence it is valid to directly link their

eigenvalues as done above:

Suppose both A and B are diagonalizable matrices, where A � V−1DV and D is a

diagonal matrix. Since these matrices sum to unity A + B � 1, the following statement is

true:

A + B � 1

⇓ ·VV−1

(3.5)

VAV−1︸  ︷︷  ︸
D

+VBV−1

� VV−1

� 1

V−1BV � 1 − D � ˜D

where
˜D is again a diagonal matrix, which demonstrates that A and B are simultaneously

diagonalized by V .
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3.1.1 Manifestations of vertex divergences at half filling

In the following parts, we focus on the numerous manifestations of irreducible vertex di-

vergences in different models. To this end, we present an overview of their appearances in

this as well as the following Sec. 3.1.4, whereas in the former, we will address the particle-

hole symmetric case (half filling); in the latter, we will focus on the results obtained for

problems with broken particle-hole symmetry (out of half filling). A particular emphasis

will be naturally given to results where the author of this thesis contributed to the calcula-

tion or the interpretation, while all the other findings of the literature, which are relevant

for this work, are concisely reviewed.

Throughout, we consider two-particle calculations for the static case (ω � 0), which is

treated most frequently in the literature [10, 12, 17–19, 21, 22, 25, 26]. In general, for any

model we are going to discuss, we first present the corresponding phase diagram. These

explicitly show the parameter sets for which one (or more) eigenvalue of the generalized

susceptibility in channel r crosses zero, corresponding to the so-called (vertex) divergence

lines. Second, we characterize the irreducible vertex divergences by considering the sym-

metry of the corresponding singular eigenvectors. At the end of each subsection, a short

summary of our analysis is given (colored boxes with bullet points), which highlights the

relevant points for the discussion of this thesis (and allows for a quicker reading of this

chapter).

3.1.1.1 Divergences in the atomic limit

The first model considered, due to its relative simplicity, is the atomic limit (AL), which

has been defined in Sec. 2.1.1.1. At half filling (µ � −U/2), the model is fully characterized

by the temperature T and the interaction U, since there is no hopping term included in the

Hamiltonian. The advantage of this simplified model is that analytic expressions for the

full vertex F, the generalized susceptibility and the irreducible vertex are available [23, 33].

Nevertheless, the physics realized by this model is far from being trivial.

In Fig. 3.6 the T-U diagram of the AL for repulsive interaction U at half filling is shown,

which was taken from Ref. [19]. As it turns out, two groups of lines along which the

irreducible vertex diverges are found, which are shown as red and orange lines in the main

panel of the figure. All divergence lines originate form U � 0 at T � 0, which means

that there is no critical interaction value that needs to be reached before irreducible vertex

divergences start to appear, as opposed to other cases discussed below.

The red divergence lines mark parameter sets where the static irreducible vertex in the

charge channel Γνν
′(ω�0)

c diverges. These divergences are driven by eigenvalues associated

to eigenvectors with a particular frequency structure [19, 23]:

V c
ν (ν) �

1√
2

[
δνν − δν(−ν)

]
(3.6)

with ν � (2n − 1)πT, being a fixed fermionic Matsubara frequency7. These eigenvectors

7Note that in Chapter 2 the fermionic Matsubara frequencies were defined as ν � (2n + 1)πT, which does
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Figure 3.6: Phase diagram of the atomic limit at half filling for repulsive interaction. Along the

red divergence lines, Γ
νν′(ω�0)
c diverges for a given Matsubara frequency ν � (2n − 1)πT � ν,

where n refers to the corresponding Matsubara index shown in the main panel. These divergences

are determined by the energy scale ν∗ (cf. Eq.(3.7)), shown in the inset (where W is a misprint

in the original publication, is should be U). The orange lines mark the parameter sets where

a simultaneous divergence of Γ
νν′(ω�0)
c and Γ

νν′(ω�0)
pp ,↑↓ , i.e., in the charge and the particle-particle

(singlet) channel is observed. The figure is taken from Ref. [19] (Fig. 8 therein).

are completely localized in Matsubara frequency space, and thus also the divergence of

Γνν
′

c is observed only at this specific frequency ν, as discussed above, see Eq. 3.2. Due

to the antisymmetric nature of V c
ν
(ν), the corresponding eigenvalues originate from the

antisymmetric subspace of χνν
′

c , cf. Sec. 2.2.4. As shown in Ref. [19] (see Eqs. (44)-(46)

therein) the analytic condition for vanishing eigenvalues along the red divergence lines

can be explicitly written as:

ν � (2n − 1)πT !

�

√
3

2

U � ν∗ (3.7)

⇓

Tn �
1

(2n − 1)π

√
3

2

U .

Hence, each time the frequency ν becomes equal to the energy scale ν∗ � U
√

3/2 a diver-

gence of Γνν
′

c occurs at this specific frequency (i.e., for Γ
(ν�±ν)(ν′�±ν)
c ). This allows also to

relate the red divergence lines shown in Fig. 3.6 to a given Matsubara index n (as explicitly

shown in the reformulation in the second line of Eq.(3.7)). In this way, it becomes obvious

that in the AL for each U > 0 infinitely many divergence lines are found for T → 0, as the

Matsubara frequencies become more and more dense. Equivalently, the red divergence

lines can be rescaled to a single line, as shown in the inset of Fig. 3.6, using the factor

(2n̄ − 1). For completeness, let us note here that the energy scale ν∗ corresponds to the

inflection point of the one-particle Green’s function of the AL, as discussed explicitly in

not differ crucially from the relation written here, apart from shifting the index n. The convention of Ref. [19]

was used here, in order to match the convention used in the corresponding Fig. 3.6. In the conventions of this

thesis, the first red divergence line would correspond to n � 0.
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Refs. [22, 23].

At the same time, the phase diagram of Fig. 3.6 shows that a second kind of vertex

divergence can be found. These take place simultaneously in the pp ↑↓ and the charge

channel8, and are represented by the orange lines in Fig. 3.6. Such divergences do not
correspond to an eigenvector localized in frequency space, but to one that displays nonzero

contributions at all Matsubara frequencies. More specifically, the singular eigenvalues

associated to the orange lines, which are symmetric inMatsubara frequency, are determined

by a more complicated equation, see Refs. [19, 23], and, as a result, no energy scale similar

to ν∗ can be defined. Nevertheless, infinitely many divergence lines also of this second

kind are numerically found as T → 0 [23]. They occur always after the red ones described

above, becoming progressively nearer to them as T is reduced.

For the interested reader, let us make a wholehearted recommendation of Ref. [23],

where the problem of vanishing eigenvalues and the corresponding eigenvectors for the

atomic limit is analyzed in all details in a very transparent manner. In Ref. [23], other than

half filling, no restrictions are made, e.g., also divergences for ω , 0 are analyzed. Instead

of going further into details, we summarize the crucial aspects of the results of the AL

discussed above, which will be relevant throughout this thesis [19, 23]:

• In the half filled AL case, infinitely many divergence of the irreducible vertex

function are found, which all emanate from U � 0 at T � 0. Hence, there is no

critical interaction value for the vertex divergences of the AL.

• For repulsive interactions, these divergences are found in the charge and the

pp ↑↓ sector, which are the channels with suppressed fluctuations in the AL. In

the dominant magnetic channel, on the contrary, no divergences are observed

for ω � 0.

• The red divergence lines represent divergences of the irreducible vertex in the

charge channel (Γc) and correspond to antisymmetric eigenvectors, which are

localized in Matsubara frequency space and completely determined by the

energy scale ν∗.

• The orange divergence lines mark parameter sets where divergences of the

irreducible vertex functions in the charge and the pp, ↑↓ channel occur simul-

taneously (Γc and Γpp ,↑↓). These are characterized by symmetric eigenvectors

and are always observed after a red divergence line, i.e., at lower-T or larger-U.

8Note that for technical convenience, the divergence lines shown in Fig. 3.6 are calculated for the charge and

the singlet channel, see Ref. [19], which is related to the pp ↑↓ one via χνν′ω
singlet

� [χνν′ωpp ,↑↑ + 2χνν
′ω

pp ,↑↓ − 2χνν
′ω

pp ,0 ]/4,

see Eq. (5c) in Ref. [23]. Since χνν
′(ω�0)

pp ,↑↑ does not show any singular eigenvalues for ω � 0, the divergence lines

of the singlet channel have a one-to-one correspondence to those of the pp↑↓ channel [19].
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3.1.1.2 Divergences in disordered models

In the next partwe summarize the problemof irreducible vertex divergences for disordered

models, solved by DMFT. The advantage of these models is that the divergences can be

analyzed analytically, as in the AL case, in spite of the presence of a nonzero hopping

amplitude t. However, in contrast to the AL, these models essentially describe non-

interacting electrons, betweenwhich interaction-like aspects, as the appearance of nonzero

self-energies and vertex functions, are effectively introduced by averaging over random

distributions of impurities. As a result, thesemodels do display aMIT, and, in this way, the

effect of metallic/Fermi-liquid behavior on divergence lines can be studied in a simplified

way.

Irreducible vertex divergences have been reported for the Falicov-Kimball (FK) model

in DMFT [13, 17, 19], as well as the binary-mixture (BM) model in DMFT in Refs. [19, 23,

26]. Here we focus on the BM, since this allows for particularly transparent calculations

for the discussion made below in Sec. 3.2. The BM is characterized by the following

Hamiltonian [19]:

H � −t
∑
〈i j〉,σ

c†iσc jσ +
∑
i ,σ

εi c†iσciσ , (3.8)

where εi � ±W
2
is randomly distributed with equal probability and mimics the effect of an

electron-electron interaction. W refers to the associated disorder strength. More details on

this model and underlying calculations can be found in Ref. [19] (specifically, in Section III

and Appendix D therein).

As in the AL case, also for the BM, frequency localized divergences of the irreducible

vertex function are found, which are completely determined by a characteristic energy

scale ν∗BM [19]:

ν∗BM(W) �
2W2 − 1

4W
. (3.9)

More specifically, as soon as a Matsubara frequency ν is equal to ν∗BM , a divergence of

Γc occurs9, the resulting divergence lines are shown in Fig. 3.7 and defined by the previous

relation as [19] (see Eq. (20) therein):

Tn(W) �
1

π(2n − 1)
2W2 − 1

4W
. (3.10)

Hence, as for the red lines of the AL, all divergence lines can be rescaled to coincide by a

factor (2n − 1). Note that for the BM, the energy scale ν∗BM can be related to the minimum

of the Green’s function G(ν) [19, 23].
However, the divergence lines for the BM demonstrate a crucial difference w.r.t. the

ones of the AL: They start from a critical disorder strength W̃ � 1/
√

2, which is smaller
than the one associated to the MIT (WMIT � 1). This property of the irreducible vertex

9Note that for the BM, Γ↑↓ vanishes [19], hence the “charge” channel for the BM is given solely by the Γ↑↑
contribution, i.e., Γc � Γ↑↑.
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Figure 3.7: DMFT phase diagram of the binarymixturemodel at half filling as a function of disorder

strengthW and temperatureT. The infinitelymany red lines, which emanate froma critical disorder

strength W̃ lower than the one associated to theMIT (blue arrow), refer to divergences in the charge

channel. These divergences are fully localized in frequency space, determined by the energy scale

ν∗, which is shown in the inset. The figure is taken from Ref. [19] (Fig. 2 therein).

divergences of the BM is of particular significance, as a similar behavior is also observed in

the HM. Let us note that for the BM the irreducible vertex divergences were also analyzed

on the real frequency axis. As it turns out, only at the critical disorder strength W̃ , which

represents an accumulation point, a divergence on the real axis is found, see Ref. [19] for

details.

As mentioned before, as a next step of complexity, also the divergences of the DMFT

solution of the Falicov-Kimball model were analyzed in the literature [13, 17, 19]. In fact,

the DMFT solution of the FK model shares important similarities with the BM model, but

yields a more complete description of the possible ways how vertex divergences can occur.

In particular, on the one hand, one finds exactly the same localized divergences as in the

BM case. On the other hand, the FKmodel also features divergences in the charge channel,

which are not localized in frequency space, similar to those occurring along the orange

lines in the AL.

Before considering the divergence lines for the substantially more complex Hubbard

model, we summarize the results for the DMFT solution of disordered models:

• In the DMFT solution of the BM and the FK model, infinitely many diver-

gences of two types are found, which are either localized or non-localized in

Matsubara frequency space.

• For the BM and the FK model, the localized divergences show a similar de-

pendence on an energy scale ν∗BM , as in the AL case. These divergence lines

start at a single critical disorder strength/interaction value for T → 0, which

is smaller than the one associated to the corresponding MIT.
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3.1.1.3 Divergences in the Hubbard model

In this part we consider the divergences of the irreducible vertex functions in the HM

solved in DMFT.We first discuss the results obtained for the HM on a square lattice, which

was also the case first considered in the literature [10, 19].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

T

U

√3/(2π)

√3/(6π)

√3/(10π)

≈ 0.195

--

--

--
--

----

≈ 0.082

≈ 0.052

T
/U

a
to

m
ic

--
----------

--
----------------MIT

Figure 3.8: Phase diagram of the Hubbard model on a square lattice solved in DMFT, where the

MIT is represented by the blue line. A finite set of divergence lines is shown, where along the red

ones a divergence of the static Γνν
′

c is observed, while along the orange lines Γνν
′

c and Γνν
′

pp ,↑↓ diverge

simultaneously. The first two divergence lines of the AL, see also Fig. 3.6, are plotted as dashed

lines. The scale to the right of the main plots shows the ratios T/U for the AL divergences. Taken

from Ref. [19] (Fig. 10 therein).

Similarly as for the AL and the disordered models, also for the HM solved in DMFT

infinitely many divergence lines are found [19]. In the phase diagram of Fig. 3.8, the first

six divergence lines are reported [19], while the Mott MIT is shown as the blue line (the

shaded grey area illustrates the nonperturbative regime). Again two classes of divergences

are observed: On the one hand, divergences of the static irreducible vertex in the charge
channel Γνν

′
c , which are associated to an antisymmetric singular eigenvector and marked

as red lines throughout the phase diagram. On the other hand, divergences which take

place simultaneously in the charge and the pp↑↓ channel, with a corresponding symmetric
singular eigenvector. This kind of divergences are represented by orange lines in Fig. 3.8,

in line with the color coding used for the AL.

Both types of divergence lines of the HM display a linear behavior at high-T and

large-U, which can be understood by comparing them to the AL results [10, 19] discussed

above. In particular, the dashed red and orange lines shown in Fig. 3.8 represent the first

two divergence lines of the AL, which asymptotically coincide with the ones of the HM

for large-U and high-T. Further, also the frequency structure of the associated singular

eigenvectors in this regime is very similar to the ones of the AL [19] (cf. Sec. 3.1.3.2).

Moreover, the scale to the right of the main plot in Fig. 3.8 reports the values for all ratios
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T/U of the AL divergences, which determines the behavior of the HM divergence lines at

large U.

As the temperature is reduced, the divergence lines of the HM show a bending (“re-

entrance”), whose shape seems to suggest a relation to the MIT [10, 19]. The bending of

the divergence lines is, however, incomplete, and hence the T → 0 endpoints of the first

divergence lines are found at finite U values, see more explicitly Appendix B of Ref. [19]

and Fig. 13 therein. As in the case of the disorderedmodels, the first vertex divergences are

found already at interaction values significantly smaller thanUc of theMIT.However, other

than in these simplified cases, there is not a single point at T � 0 where all divergence lines

emanate from [19]. Moreover, with decreasing temperature, the frequency structure of the

singular eigenvectors along the first red divergence line changes significantly (cf. Fig. 11 in

Ref. [19] and in detail below Sec. 3.1.3.2), deviating strongly from the δνν′-form observed

in the AL (cf. Eq. (3.6)).

These results demonstrate important features, which provides the motivation for the

subsequent studies presented10 in Secs. 3.1.2 and 3.1.3:

• As in the AL case, the divergences for the DMFT solution of the HM appear in

channels where the physical fluctuations are suppressed, i.e., for the specific case of

repulsive interactions, in the charge and the pp sector. Thus a natural question arises:

Are irreducible vertex divergences always affecting the scattering channels that are

suppressed?

• So far, all models considered demonstrated a MIT (in the AL case, one can argue

that this is located at U � 0). Is the MIT a necessary condition11 to observe vertex

divergences [10, 19]?

• Can the observed symmetry properties of the singular eigenvectors be understood

on a more fundamental level?

3.1.2 Divergences in the Hubbard model on the Bethe lattice at half filling

Parts of this chapter, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. B 101, 155148 (2020).

In this part, by means of the DMFT (cf. Sec. 2.3.1), the local two-particle susceptibilities

and irreducible vertex functions of both, the attractive and the repulsive Hubbard model

(cf. Sec. 2.1.3) on the Bethe lattice (with a semielliptic DOS of half-bandwidth D � 2t � 1)

are analyzed.

In all studies of models with repulsive interactions (summarized above) negative eigen-

values have exclusively occurred in physical channels that are suppressed upon increasing

the interaction strength U, namely in the charge and in the particle-particle channels.

10Note that for practical reasons, both of these parts are formatted as subsections to allow for a better

structured illustration. However, these cases are also studies performed at half filling, and hence topically part

of Sec. 3.1.1.

11Note also the title of the first publication on irreducible vertex divergences [10]:“Divergent Precursors of

the Mott-Hubbard Transition at the Two-Particle Level”.
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According to this observation, one may expect that vertex divergences in models with

an attractive interaction will occur in themagnetic channel only. This would heuristically be

consistent with the known “mapping" of the physical degrees of freedom (D.o.F./DOF) of

the half-filled Hubbard model. Due to the intrinsic O(4) � SU(2) × SU(2) symmetry, the

partial particle-hole, or also Shiba, transformation [111, 112]

ci↑→ ci↑ and ci↓→ (−1)i c†i↓ (3.11)

acts as a mapping of all physical observables between U < 0 and U > 0. In particular,

the two SU(2) spin (
®S) and pseudospin (

®Sp) sectors, which are related to the respective

suppressed channels on the attractive and repulsive side, are transformed into each other
12

Sx �
1

2

[c†↑c↓ + c†↓c↑] ↔
1

2

[c†↑c
†
↓ + c↓c↑] � Sp ,x

Sy �
i
2

[c†↑c↓ − c†↓c↑] ↔
i
2

[c†↑c
†
↓ − c↓c↑] � Sp ,y (3.12)

Sz �
1

2

[c†↑c↑ − c†↓c↓] ↔
1

2

[c†↑c↑ + c†↓c↓ − 1] � Sp ,z .

This mapping of physical D.o.F. suggests that a similar “transformation" may as well apply

to the vertex-divergences. However, as already noted in Refs. [33, 113], the mapping of

generalized two-particle quantities, and especially of dynamical irreducible vertices, is

more complex than Eq. (3.12) would suggest. In the following, we will see how this is

reflected in the appearance and the nature of vertex divergences in the attractive Hubbard

model.

3.1.2.1 DMFT results

The main outcome of our DMFT calculations are summarized in Fig. 3.9, where we report

the location of the divergences of the static irreducible vertex Γ
νν′(ω�0)
r found for different

values of the local attraction U < 0 and the temperature T (left side), compared against

the corresponding results for the repulsive case U > 0 (right side), all in units of the

half-bandwidth D � 2t � 1. In the large |U | regime the numerical results are consistent

with analytical calculations in the AL [23], (as seen above). Furthermore, in the whole

repulsive sector, we also reproduce the outcome of the DMFT studies on the HM on a

square lattice [10, 19], see Sec. 3.1.1.3, finding multiple lines in the U-T plane, where the

irreducible vertex diverges. The small differences arise from the different lattices used

in the DMFT calculations [19]. As already observed in Refs. [10, 19] and outlined above,

the first divergences are located at moderate repulsion values, well before the MIT. With

increasing interaction the occurrence of divergence lines becomes more dense, and the

lines occur in alternating order starting with a divergence in the charge channel (red lines)

followed by a simultaneous divergence in the charge and pp ↑↓ channel (orange lines).
In the case of attractive interaction we find vertex divergences in the charge channel

12Here we assume for the explicit expression a site where (−1)i � 1 holds. For a neighboring site on the

lattice, one would have to consider the corresponding (−1), see further Ref. [113].
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Figure 3.9: Left: Location of the divergences of the irreducible vertex in the different channels along

the whole phase-diagram of the attractive and the repulsive half-filledHubbardmodel on the Bethe

lattice, computed in DMFT. The comparison of the negative and positive U sectors yields perfectly

mirrored divergences in the density (i.e., charge in the conventions of this thesis) channel (red).

The simultaneous divergences in the density and particle-particle channel (orange) in the repulsive

model are mapped into divergences of the magnetic channel (green) on the attractive side. Stars

refer to the position in the phase diagram of the data shown in Fig. 3.11. Right: Schematic sketch

comparing the mapping of the singular eigenvalues λS
[λA

] associated to symmetric [antisymmet-

ric] eigenvectors to the mapping of different physical degrees of freedoms (D.o.F.).

(red lines), which are perfectly mirrored with respect to the repulsive side. These occur

in alternating order with lines of divergences in the magnetic channel (green lines), which

mirror the orange divergence lines of the repulsive model. As a consequence, the location

of the vertex divergences is highly symmetric when comparing the repulsive and the

attractive sides of the phase diagram.

At first sight, this symmetry may appear rather surprising, because the physical prop-

erties of a given scattering channel in the repulsive and the attractive model are very

different [112, 114, 115], as dictated by the mapping of the physical degrees of freedom (cf.

Eq. (3.12) and Fig. 3.9). At a closer look, we can distinguish the situation of the three-fold

degenerate divergences found at the orange and green lines, respectively, from that of

the single degenerate divergences found at the red lines, occurring in the charge sector

only. Specifically, the mapping of the combined divergences in the pp ↑↓ and charge sector

(orange lines) into divergences of the magnetic sector (green lines) is fully matching our

physical expectations: (i) divergences appear in the suppressed fluctuation channels and

(ii) they are mapped consistently with the physical D.o.F., i.e., according to Eq. (3.12). At

the same time, the perfect mirroring of the charge divergence lines (red) under the U ↔ −U
transformation looks puzzling, because (i) for U < 0, these divergences affect a scattering

channel associated to a physical susceptibility, which is not suppressed but enhanced by

the attractive interaction, and (ii) the physical degrees of freedom associated to the charge

channel is mapped onto one of the three spin-components.
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Figure 3.10: Comparison of the singular eigenvectors V r
α in the repulsive and the attractive case,

plotted as a function of theMatsubara index N � ν
β
π . The upper [lower] panels showperfectly iden-

tical singular antisymmetric [symmetric] eigenvectors located at different temperatures along the

first [second] attractive (left) and first [second] repulsive (right) divergence line. The T-dependence
will be studied explicitly in Sec. 3.1.3.2.

A first understanding of this apparent discrepancy is provided by the analysis of

the symmetry of the eigenvectors associated to a vanishing eigenvalue (cf. Eq. (3.1)). In

Fig. 3.10 we compare the shape of eigenvectors following the first and second divergence

lines at different temperatures for U ≶ 0 (the T-dependence is studied explicitly below

in Sec. 3.1.3.2). Evidently, the perfect mirroring of divergence lines is also reflected in

identical shapes of the corresponding eigenvectors. The singular eigenvectors associated

to all divergences in the charge sector only (red lines), display a completely antisymmetric
frequency structure. In contrast, all other divergence lines (green and orange lines) are

associated to frequency symmetric singular eigenvectors.
The symmetry of eigenvectors is essential in the calculation of the physical suscepti-

bility, as discussed in Sec. 2.2.4 (cf. Eq. (2.56) and Eq. (2.57)). Due to the summation over

Matsubara frequencies, the value of χr is independent of any antisymmetric eigenvector,

irrespective of whether associated to a positive or a negative eigenvalue. Hence, the ap-

pearance of negative eigenvalues in a channel is not necessarily associated to a suppression

of the respective physical susceptibility. While in the repulsive model the occurrence of

divergences and the suppression of the respective channel coincide (maybe incidentally),

our calculations of the attractivemodel provide a clear-cut counter-example: the crossing of

several divergence lines in the charge sector is accompanied by an enhanced susceptibility.
To rationalize the results of our two-particle DMFT calculations on more general
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grounds, we investigate the effect of the attractive-repulsive mapping on generalized

two-particle quantities and its relation to the physical symmetries of the system under

consideration.

3.1.2.2 The role of the underlying symmetries

As mentioned above, the mapping of the generalized two-particle quantities is far less

obvious than the mapping of the physical degrees of freedom.

When considering purely local quantities, the single-particle Green’s function G(τ1 , τ2)
is identical for the repulsive (U > 0) and attractive (U < 0) half-filled model. On the other

hand, the two-particleGreen’s functionG↑↓(τ1 , τ2 , τ3 , τ4)with anti-parallel spin orientation

transforms [33, 54] according to

G(U)↑↓ (τ1 , τ2 , τ3 , τ4) � −G(−U)
↑↓ (τ1 , τ2 , τ4 , τ3), (3.13)

which, after Fourier transformation of all fermionic variables, reads

G(U)↑↓ (ν1 , ν2 , ν3) � −G(−U)
↑↓ (ν1 , ν2 ,−ν4) (3.14)

with ν4 � ν1 − ν2 + ν3. After changing to the ph-notation, as defined in Eq. (2.17) (ν1 � ν,

ν2 � ν + ω, ν3 � ν′ + ω, ν4 � ν′) one can easily see how the transformation maps the

generalized static (ω � 0) susceptibility, χν,ν
′

↑↓ � G↑↓(ν, ν, ν′) of the ↑↓ sector according to

χνν
′

↑↓
U↔−U
⇐⇒ −χν(−ν

′)
↑↓ , (3.15)

while χ↑↑ is obviously invariant under a partial particle-hole transformation.

Hence, in general, the Shiba transformation at the two-particle level willmix the differ-
ent (particle-hole) channels of generalized susceptibilities and the associated irreducible

vertices. Only the mapping of the generalized susceptibility expressed in the pp-notation

χν(−ν
′)

pp ,↑↓ − χ
νν′
0,pp

U↔−U
⇐⇒ χνν

′
m (3.16)

reflects [33, 54, 113] the transformation of the physical (spin/pseudospin) degrees of

freedoms, discussed in Eq. (3.12), in a direct fashion.

As the location of divergence lines is directly encoded in the generalized susceptibilities,

itwill also be subject to themixingof channels, explaining thedifferencesw.r.t. themapping

of the physical degrees of freedom. To fully rationalize the results demonstrated in Fig. 3.9,

wewill focus on the symmetry properties of the generalized susceptibilities. In this respect

we note that Eq. (3.16) already shows why the mirrored divergences of the pp ↑↓ channel
for U > 0 are observed in the magnetic channel for U < 0. Hence, the main question

concerns the behavior of the particle-hole channels.

Since we consider the HM at half filling (with nearest neighbor hopping only), particle-

hole symmetry is given, and thus the considerations made in Sec. 2.2.4.1 fully apply. As

a reminder we recall the most relevant properties here: In this highly symmetric case, the
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static generalized susceptibility is a bisymmetric matrix, which can be block-diagonalized

by the orthogonal matrix Q (defined in terms of the counteridentity (Jνν′ � δν(−ν′)) and
identity (1) submatrices):

Q �
1√
2

(
1 −J
1 J

)
, Qχνν

′
r QT

�

(
A 0

0 S

)
. (3.17)

The block-diagonalization of χνν
′

r is associated with precise symmetry properties: the sub-

space denoted by A represents a submatrix with exclusively antisymmetric eigenvectors,

while S is the subspace of purely symmetric eigenvectors. As a consequence, one can

unambiguously attribute the occurrence of a red divergence line in χνν
′

c (i.e., the corre-

sponding vanishing eigenvalue) to the purely antisymmetric subspace A, while all other

divergence lines will be accounted for by the symmetric subspace S.

A crucial ingredient for connecting the bisymmetry of the generalized susceptibilities

to the mapping of divergence lines lies in the equivalence of the Shiba transformation for

χνν
′

↑↓ to a matrix multiplication with the negative counteridentity matrix (−J)

χνν
′

↑↓,(U)(−J) � −χν(−ν
′)

↑↓,(U) � χ
νν′

↑↓,(−U) . (3.18)

Using J2 � 1, the bisymmetric matrices χ↑↑ and χ↑↓ can be written as follows (the

fermionic Matsubara frequency indices will be partly omitted in the following):

χU>0

↑↑ � χU<0

↑↑ � χ↑↑ �

(
A JBJ
B JAJ

)
(3.19)

χU>0

↑↓ �

(
C JD J
D JCJ

)
(3.20)

χU<0

↑↓
Eq. (3.18)

� χU>0

↑↓ (−J) �
(

C JD J
D JCJ

) (
0 −J
−J 0

)
�

(
−JD −CJ
−JC −D J

)
. (3.21)

Block-diagonalization (described in Sec. 2.2.4.1) of χ↑↑ and χ↑↓ for both cases leads to
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Qχ↑↑QT
�

(
A − JB 0

0 A + JB

)
(3.22)

QχU>0

↑↓ QT
�

(
C − JD 0

0 C + JD

)
(3.23)

QχU<0

↑↓ QT
�

(
−JD − J(−JC) 0

0 −JD + J(−JC)

)
�

(
C − JD 0

0 −[C + JD]

)
(3.24)

This immediately shows that the antisymmetric block of χ↑↓, (C − JD), is unchanged,

whereas the symmetric one changes sign for U > 0↔ U < 0. Considering χc and χm for

U < 0 and U > 0 the following expressions are obtained, where we use the trivial relation

Qχc+ ,m−QT
� Q(χ↑↑ ± χ↑↓)QT

� Qχ↑↑QT ±Qχ↑↓QT ,

QχU≷0

c QT
�

(
[A− JB]+[C− JD] 0

0 [A+ JB]±[C+ JD]

)
(3.25)

QχU≷0

m QT
�

(
[A− JB]−[C− JD] 0

0 [A+ JB]∓[C+ JD] .

)
(3.26)

In the charge channel case the + sign corresponds to U > 0 the − sign to U < 0, for the

magnetic case it is the other way around. From Eqs. (3.25) and (3.26) three conclusions can

be drawn:

(i) The antisymmetric block of QχU≷0

c QT
is independent of the sign of U. The di-

agonalization of [A − JB] + [C − JD] will yield the eigenvalues and the corresponding

antisymmetric eigenvectors of χνν
′

c . Their singularity corresponds to a red divergence line,

independently of the sign of U. This is the mathematical reason for the perfect mapping

of the red divergence lines reported in Fig. 3.9 and the equality of the singular eigenvec-

tors shown in Fig. 3.10. Note that this statement is crucially dependent on the perfect

particle-hole symmetry of the problem. Otherwise the bisymmetry property is lost.

(ii) The antisymmetric block of QχU≷0

m QT
is also independent of the sign of U. This

means that, irrespective of the sign of U, the eigenvalues corresponding to antisymmetric

eigenvectors of χm can be calculated by diagonalizing [A − JB] − [C − JD]. However, for

the static cases considered so far none of these eigenvalues were found to be singular (see

further Ref. [23]).

(iii) The symmetric parts of χνν
′

c and χνν
′

m are mapped in the following way: [A + JB]+
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[C + JD] is the symmetric blockmatrix of χU>0

c and χU<0

m . This explains why the sym-

metric charge channel divergences for U > 0 are mapped to divergences with symmetric

eigenvectors in the magnetic channel for U < 0. Analogously, [A + JB] − [C + JD] is the
symmetric blockmatrix of the enhanced channels χU<0

c and χU>0

m .

Let us concisely summarize the considerations made so far: The antisymmetric sector

A remains invariant under U↔−U for all χνν
′

r . This explains why the red divergence lines

(χνν
′

c ) in Fig. 3.9 and their associated antisymmetric eigenvectors (Fig. 3.10) are perfectly

mirrored onboth sides of the phase diagram. At the same time onefinds that the symmetric

parts (S) of χνν
′

c and χνν
′

m are mapped into one-another for U↔−U, therefore connecting the

symmetric divergences and the corresponding eigenvectors, appearing in χU>0

c (orange)

and in χU<0

m (green). Let us stress at this point that the proof given here applies not only

to singular eigenvalues, which are connected to divergence lines, but to all eigenvalues
and eigenvectors of χνν

′
r . In this way, we have extended the mapping relation known for

χνν
′

pp ,↑↓ [33, 54, 113], see Eq. 3.16, to the entire particle-hole sector, clarifying the relation

with the mapping of the physical D.o.F.: The antisymmetric subspace A of all channels r,
which is not contributing to the physical susceptibility (cf. Eq. (2.56)), is invariant under the
Shiba transformation, while the symmetric subspace is found to transform in accordance

with Eq. (3.12).

As we have illustrated, the particle-hole symmetry plays a central role in determining

the mirroring properties of the generalized susceptibilities. If one relaxes this constraint,

the bisymmetry in the particle-hole sector is lost, and the eigenvalues are no longer neces-

sarily real. At the same time, it is important to stress that even in the absence of particle-hole

symmetry (e.g., out of half filling) χνν
′

pp ,↑↓ remains [23] bisymmetric, as shown explicitly in

Sec. 2.2.4.2, ensuring the validity of all associated properties (real eigenvalues as well as

bisymmetry and associated properties).

3.1.2.3 Spectral representations of physical susceptibilities

The relation between generalized and physical susceptibilities emerging from our numer-

ical and analytical analysis can be illustrated in a physically insightful way. As, for half

filling, all eigenvalues of χνν
′

r are real, we introduce a susceptibility density ρ(χ) defined
(cf. Eq. (2.56)) as

ρr(χ) �
∑

i

�����∑
ν

V r
i (ν)

�����2 δ(χ − λr
i ) ≥ 0 (3.27)

from which the local physical susceptibility is readily obtained as an average over ρr(χ)

〈χr〉 �
∫
χ ρr(χ) dχ . (3.28)

This representation has several advantages: Equations (3.27) and (3.28) enable to distin-

guish immediately between positive (λi > 0, ρ(λi) > 0), negative (λi < 0, ρ(λi) > 0)

and vanishing (λi � 0 or ρ(λi) � 0) contributions to the static response χr . Further, its
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Figure 3.11: Comparison of susceptibility densities Eq. (3.28) for the magnetic (green), charge

(ρd red), and pp (orange) sectors of the attractive U < 0 and repulsive U > 0 case, respectively.

Each δ function in Eq. (3.28) is represented by horizontal bars (grey/colored if corresponding to

an antisymmetric/symmetric eigenvector). The corresponding susceptibility densities ρr(χ) are
plotted as colored circles. Data shown here was obtained for T � 0.2 and U � 2.16 in units of D.

The position in the phase diagram is indicated by light blue stars in Fig. 3.9.

graphical conciseness is particularly suited to illustrate how the mapping of the general-

ized susceptibilities works for the different cases, highlighting the most relevant physical

implications.

The introduced representation is applied here to analyze our susceptibility data after

crossing four divergence lines at two mirrored positions in the phase diagram (light-blue

stars in Fig. 3.9).

The corresponding results are shown in the three plots of Fig. 3.11, representing the

three scattering channels. The positions of all eigenvalues λr
i are shown as bars in the light-

blue shaded innermost panels of the three plots: Gray bars indicate eigenvalues associated
to antisymmetric eigenvectors and thus to a vanishing ρr which does not contribute to

χr . Colored bars account for eigenvalues associated to finite ρr(λr
i ) values, corresponding

to symmetric eigenvectors whose weighted sum builds up the full χr . The actual value

of the susceptibility density ρr for a given eigenvalue is indicated by the circle-symbols

in the outermost panels of the plots in Fig. 3.11. The color-shaded regions slightly above

χ ∼ 0 represent an increasingly denser distribution of small positive eigenvalues, arising

from the high-frequency behavior of χννr ∝ 1

ν2
δνν

′
. It can be shown that this (essentially

non-interacting) large-ν feature induces a van Hove singularity in the T → 0 behavior of

ρr(χ) ' 1/χ−3/2
for χ→ 0, see the Appendix of Ref. [26].

The three plots of Fig. 3.11 graphically combine all aspects of the attractive-repulsive

mapping of the generalized susceptibilities and allow for a comprehensive understanding

at a single glance.

The location of the colored bars together with the corresponding values of ρr(χ) are
transformed fully consistently with the mapping of the physical DOF. In accordance with
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the results of Sec. 3.1.2.2, not only the physical susceptibility, but the entire distribution

ρr(χ) of the identical charge and pp (pseudospin) sectors are mapped onto the magnetic

(spin) sector and vice versa.

On the contrary, the positions of the gray bars of each channel are unchanged in the

+U and −U cases, reflecting the perfect invariance of the antisymmetric subspaces of all

generalized χr under the mapping. We note that the identical location of the gray bars in

the magnetic and the pp channel reflects the fact that the entire generalized susceptibility

sectors are transformed exactly as the physical degrees of freedom (compare Eq. (3.16)).

On the other hand, the different locations of gray bars in the charge sector compared

to the other channels explain the non-trivial mapping properties of χνν
′

c and of the corre-

sponding irreducible vertices.

These general observations allow for a remarkable rationalization of the problem at

half filling. Any suppressed local physical susceptibility can be associated to a unique
susceptibility-density

ρsup(U)�ρU<0

m �ρU>0

c �ρU>0

pp . (3.29)

Obviously, by replacing U with −U in Eq. (3.29), a similar property holds for all enhanced

susceptibility densities

ρenh(U) � ρsup(−U) �ρU>0

m �ρU<0

c �ρU<0

pp . (3.30)

The comparison of the attractive and repulsive panels of each channel in Fig. 3.11

indicates as an overall trend that the suppression of a susceptibility is associated to a

systematic shift of the colored bars toward smaller values, as well as to a change of the

weight distribution, where the largest values of ρsup are associated with the smallest

eigenvalues. This supports the physical picture that an interaction-driven suppression of

a static local susceptibility is connected to an increasing number of negative eigenvalues

and therefore with the crossing of multiple vertex divergences.

At the same time, this demonstrates why the “reverse" implication of the physical

picture above is not correct. The perfect invariance of the gray bars under the mapping,

whose physical content is totally decoupled from the static susceptibility, implies the

perfect mirroring of all red divergence lines where only the charge channel is singular

(Fig. 3.9). Hence, the occurrence of red divergence lines is independent of the behavior of

the corresponding susceptibility as well as of the SU(2)×SU(2) symmetry properties of the

model considered.

Finally, important quantitative information can also be gained from Fig. 3.11. By

analyzing the behavior of the enhanced susceptibilities, it is evident that ρenh is dominated

by the contribution of a single term: the one associated to largest eigenvalue λmax
. This

property is illustrated in Fig. 3.12, wherewe compare the actual values of the static response

functions χc and χm obtained from Eq. (3.28) with the case where the summation in

Eq. (3.27) is reduced to the largest eigenvalue only. The contribution from the largest

eigenvalue λmax reproduces the trend across the entire repulsive and attractive regime very
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Figure 3.12: Comparison between the static charge χc(ω � 0) (red) and magnetic χm(ω � 0)
(green) susceptibility and the contribution of the largest eigenvalue only, as a function of the

attractive/repulsive Hubbard interaction U at T � 0.2. At the bottom of the plot, the lowest

eigenvalue of χνν
′

c is shown. The evolution of the lowest eigenvalues (λmin
d , in dark gray) is

completely decoupled from the behavior of the static susceptibility.

well and approximates to a great extent the actual value of the static susceptibilities χc and

χm in their respective enhanced regions. Since the relation Vmax
enh � Vmax

m � Vmax
c � Vmax

pp

follows from Eqs. (3.25), (3.26) and (3.16), the value of all physical susceptibilities in their

respective enhanced regions can be approximated by

〈χr〉 ∼ λmax

�����∑
ν

Vmax
enh (ν)

�����2 . (3.31)

According to this relation, the Curie-Weiss behavior of any static local susceptibility in the

strong-coupling regime can be ascribed to the evolution of the corresponding λmax
and

the associated eigenvector.

At the end of this section, it is useful to summarize the most relevant features emerging

from the analysis of thedivergence lines in the (attractive and repulsive) half-filledHubbard

model solved by DMFT.

• In the DMFT solution of the half-filled HM, infinitely many divergence lines

are found, which can be grouped according to the symmetry of the underlying

eigenvector.

• Divergences with an associated antisymmetric eigenvector are found in the

charge channel (red lines), irrespective of the sign of U. Due to the antisymme-

try of the eigenvector, the corresponding eigenvalues are not contributing to

the physical response.

• Divergenceswith an associated symmetric eigenvector are found in those chan-

nels, where the physical response is suppressed. For repulsive interactions,

this is realized simultaneously in the charge and the pp sector (orange lines),
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while for attractive interactions, divergences of this kind are found in the

magnetic channel (green lines).

• In all cases, the divergence lines are found already in the Fermi-Liquidmetallic

phase, for interaction values significantly smaller than those corresponding to

the Mott-MIT. At high-T and large-U, the behavior of the vertex divergences

can be understood to a great extent via a comparison to the atomic limit. In

particular, in this regime, the divergence lines display a qualitatively similar

linear behavior. For intermediate- to low-temperatures, however, this changes

drastically. A bending of divergence lines towards higher values of U is found,

with T → 0 endpoints at finite interaction values. Unlike in the disordered

models discussed in Sec. 3.1.1.2, these endpoints do not coincide for T �

0. Moreover, in contrast to the AL and BM/FK cases discussed above, no

energy scale can be identified, that controls the behavior of at least one kind

of divergence.

3.1.3 Divergences in the Anderson impurity model at half filling

Parts of this chapter, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. B 97, 245136 (2018).

In this part, we consider the divergences found for the case of the AIM (defined in

Sec. 2.1.1) at half filling. This allows for an investigation of the remaining question posed

at the end of Sec. 3.1.1.3: whether or not the MIT represents a necessary condition for

the appearance of irreducible vertex divergences. At the same time, the AIM enables us

to directly investigate the interplay between the behavior of the divergence lines and the

Kondo scale (cf. Sec. 2.1.1.4).

Note that in the following section the notation is slightly changed: The fermionic

Matsubara frequencies are denoted by iνn[� (2n + 1)πT] in order to better illustrate the

significant difference between the behavior of the quantities of interest as a function of

Matsubara index n and the frequency iνn . This slight modification of our notation also

facilitates the distinction between finite temperature Matsubara frequencies iνn and their

continuous imaginary frequency counterparts at T � 0: iν.

3.1.3.1 The T–U diagram

We start to illustrate our numerical results by reporting in the T–U diagram of the AIM

(Fig. 3.13 left panel) the first (five) lines along which the two-particle irreducible vertex

diverges. These correspond to the interaction values U at given temperatures T, where an

eigenvalue of the generalized susceptibility vanishes, see Eq. (3.1), in the following denoted

by Ũ. Specifically, the red lines mark irreducible vertex divergences taking place in the

charge channel only, while orange lines represent divergences taking place in the charge
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Figure 3.13: Left panel: T −U diagram of the AIM at half filling, showing the first divergence lines

along which the static (ω � 0) irreducible vertex functions diverge. For red lines this divergence

takes place in the charge channel, Γ
νnνn′
c , along the orange lines simultaneous divergences in the

charge and the particle-particle up-down channel, Γ
νnνn′
c and Γ

νnνn′
pp,↑↓, are observed. The dashed blue

box marks the parameter region where the "atomic" ordering of divergence lines is violated (see

text). Right panel: Reproduced Fig. 3.8 here for convenience and consistency with Ref. [22].

and the particle-particle up-down channel simultaneously (in agreement with the cases

discussed so far).

Even from the first look at the data, the overall behavior of the divergence lines of

the AIM appears qualitatively very similar to the one of the Hubbard model case [10, 19],

shown in Figs. 3.8 (and 3.9), and reproduced for the square lattice case in the right panel

of Fig. 3.13 (for convenience and consistency with Ref. [22]).

In particular, the similarity in the high-temperature/large interaction area of both T–U
diagrams is not fully unexpected. In fact, here the divergence lines of both models display

a rather linear behavior, which is consistent with the insights obtained from the results of

the Hubbard atom case [19, 23]. The residual deviations can be ascribed to the fact that

the atomic limit condition, i.e., U and T larger than all other energy scales, is not fully

complied. In the case of the AIM, only for larger interactions than those shown in the

left panel of Fig. 3.13 (U ≥ D � 10), we recover a purely linear behavior (cf. Ref. [29]) as

well as the perfect connection between the position in Matsubara frequency space of the

divergence and the inflection point of Im G(iνn) [23], as expected for the atomic limit (for

a more detailed analysis, see Appendix A of Ref. [22]).

At intermediate temperatures, the divergence lines show a progressively stronger non-

linear behavior, starting to bend rightwards. Lowering the temperature further, one reaches

the correlated metallic regime. Remarkably, in spite of the differences in the ground states

of the two models (there is no MIT in the AIM), even there the results of the AIM and

the Hubbard model remain qualitatively very similar. For both models the lines show a

"re-entrance", i.e., a bending toward higher interaction values, as if the low-temperature

intermediate interaction regime were "protected" against the non-perturbative mechanism

originating the irreducible vertex divergences. Particularly remarkable, however, is that

finite Ũ values at T � 0 are observed in both cases, for the AIM the low-temperature
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Figure 3.14: A zoomof the T–U diagram of theAIM (left panel Fig. 3.13) at half filling is shown. The

blue-solid line marks the Kondo temperature (TK), estimated from the rescaling of our numerical

data for the magnetic susceptibility [39, 40], see Sec. 4.1. The black-dotted line represents an

estimate for TK obtained from an analytic expression [30] valid in the limit D � U, T, see Eq. (2.9).
An additional scale related to the Kondo screening, the half-bandwidth of the T → 0 Kondo peak

(
π
2

Z∆0) [30] is marked with a gray-dotted line, and is roughly five times larger than TK . The light-

gray shaded area can be regarded, thus, as the parameter region where the effects of the Kondo

screening become visible.

behavior of the first line is investigated in detail in Sec. 3.1.3.3.

In the framework of the overall similarity discussed above, a specific difference can be

noticed, however. This is highlighted by the dashed blue box in the left panel of Fig. 3.13

(see Fig. 3.14 below for a zoom): At intermediate temperatures, the second and third di-

vergence line in the T–U diagram of the AIM cross, breaking the “atomic” line-order

found in all cases analyzed so far (i.e., always an orange line after a red one, before the

next red line). Nonetheless, the two divergence lines cross again at lower temperatures,

restoring the typical line-order. We also observe that even the fourth and fifth line show

such a peculiar crossing, though, to a much smaller extent. To verify the reliability of this

observation several tests were performed using exact diagonalization (ED) calculations of

the generalized susceptibility (see Ref. [29] for details). As it turns out, our ED analysis

(not shown) has confirmed, within the numerical accuracy, the occurrence of such a line

crossing. Although somewhat unexpected and not observed in other cases, the crossing

of divergence lines is not in conflict with the theoretical understanding of vertex diver-

gences [12], which is discussed in detail in Sec. 3.3. However, it remains to be understood

why such a situation is apparently not realized in the correlated metallic regime of the

Hubbard model solved by DMFT.

Finally, as for the theoretical understanding of the low-T regime of the AIM, it is

important to estimate the Kondo scale TK and its possible connection to the properties of

the irreducible vertex divergences. In Fig. 3.14 a zoom of the T–U diagram of the AIM,
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Figure 3.15: Cuts of the static irreducible vertex function in the charge channel, β2Γ
νnνn′ (ωn�0)
c , for a

fixed Matsubara frequency, νn � π/β at T � 0.05 and two U values are shown. In the left insets the

two eigenvalues of (χc/χ0)νnνn′ closest to zero are reported vs. U, in the right insets the eigenvector

V c
α(iνn) corresponding to the lowest eigenvalue λα is shown as a function of iνn . Left panel: At

U � 4.5 the lowest eigenvalue is corresponding to the second red divergence line (red dot), hence

V c
α(iνn) is antisymmetric. Right panel: For U � 4.59 the eigenvalue of the first orange line is the

smallest (orange dot), V c
α(iνn) is symmetric.

shown in Fig. 3.13, is presented together with several estimates for the Kondo temperature

TK . In particular, the black dotted line represents the analytic estimate of Eq. (2.9), valid

in the D � U, T parameter regime [30] (cf. Sec. 2.1.1.4), while the blue line is determined

through the universal scaling of the numerical susceptibility data [39, 40] (see Sec. 4.1

below). We note that the two procedures yield extremely close estimates of TK . However,

the Kondo temperature marks not a phase transition, but a smooth crossover, as discussed

in Sec. 2.1.1.4. Indeed, the screening processes associated with it become active already

at temperatures larger than TK . For instance, we see that the temperature below which

the effects of the Kondo resonance become visible in the spectrum is T . Z∆0

π
2
, the half-

bandwidth of the central peak [30] (Z refers to the quasiparticle weight factor, and was

extracted from polynomial fits of Σ(iνn) for very low temperatures (β � 300)). We choose

this scale to define the upper border of the corresponding crossover regime (shaded gray

area in the T–U diagram of Fig. 3.14). It is quite visible, how the bending of the divergence

lines is essentially occurring in this parameter region.

3.1.3.2 Classification of the singular eigenvectors

In order to make our study of the vertex divergences in the AIM more quantitative, we

proceed with the analysis of the singular eigenvectors in the charge channel, associated to

a vanishing eigenvalue of χνnνn′
c (see Eq. (3.1)). As illustrated in Fig. 3.2 and Fig. 3.3, their

frequency structure controls the frequency dependence of Γ
νnνn′
c in the proximity of – and

especially at – a vertex divergence.

Since the perfect mapping, discussed in Sec. 3.1.2, is also applicable to the particle-

hole symmetric AIM, the singular eigenvectors V c
α(iνn) and Vpp ,↑↓

α (iνn), associated to the

orange divergence lines, are identical. For this reason Vpp ,↑↓
α (iνn) will not be shown in the
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following. Additionally, note that below we will frequently display the eigenvectors of

χνν1

c [χ−1

0
]ν1ν′ � (χc/χ0)νν

′
. This choice has specific practical reasons: locating vanishing

positive eigenvalues of (χc/χ0)νν
′
is significantly easier13 than for χνν

′
c , see also Refs. [19,

22, 29]. Hence, since at half filling, the locations where the eigenvalues of both (χc/χ0)νν
′

and χνν
′

c become singular as well as the corresponding singular eigenvectors perfectly

coincide [22, 29], it is more convenient to directly study (χc/χ0)νν
′
. Out of half filling,

however, these properties are no longer guaranteed, see Ref. [107].

In general, the results for the AIM presented in the right insets of Fig. 3.15 and in

Fig. 3.16 are qualitatively consistent with the AL and HM cases discussed above: Red

divergence lines are associated to antisymmetric eigenvectors, while orange divergence

lines have corresponding symmetric eigenvectors [22].

The symmetry of the singular eigenvectors is, as expected, well reflected in the fre-

quency structure of the irreducible vertex. As another illustration of this connection, a cut

of the irreducible vertex function in the charge channel, Γ
νn�πT,νn′
c for two values of the

interaction U at the same temperature (T � 0.05) is shown in Fig. 3.15. In fact, in spite of

the proximity between the second red and the first orange divergence line for these param-

eters, it can be clearly seen how the frequency structure of the vertex function is almost

perfectly antisymmetric/symmetric in the case where the lowest eigenvalue corresponds

to a red/orange divergence line (left/right panel).

After discussing this general feature of the singular eigenvectors, we turn to their

intriguing evolution with decreasing temperature, and start by going back to Fig. 3.16.

There, eigenvectors corresponding to the five divergence lines (three red, two orange)

shown in the left panel of Fig. 3.13 are compared for the same low temperature (T � 0.025).

We further plot properly rescaled eigenvectors corresponding to the red lines at the highest

temperature employed in the calculations (T � 0.5) in gray. The latter show an almost

perfect agreement with the atomic limit: Eigenvectors, localized in Matsubara frequency

space, which have finite weight almost only at one frequency [νn � (2n+1)πT] equal to the
energy scale ν∗. For example for the first divergence line (top panel) the gray eigenvector

displays its by far largest contribution at the first Matsubara frequency (n � 0, iνn � πT).
This specific property of frequency localization, characterizing the singular eigenvec-

tors of the red divergence lines of the AL, and those of the HM and the AIM at high-T,
gets lost when reducing the temperature. At T � 0.025 we note that their frequency decay

is even slower than for the singular eigenvectors of the orange lines, which in the litera-

ture were always associated to "global" divergences [19]. In turn, this means that also the

divergence of Γc is no longer restricted to a finite set of frequencies. Such a "frequency-

broadening" of the red singular eigenvectors at low temperatures was so far only observed

in the DMFT solution of the Hubbard model [19] (cf. Fig. 3.10), and seems to be associated

with the presence of coherent quasiparticle excitations.

13This is due to the 1/ν2
contribution originated by the bubble term, which creates many small, but never

singular, eigenvalues of χνν
′

c .
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Figure 3.16: Singular eigenvectors of (χc/χ0)νnνn′ corresponding to the five divergence lines (left

panel Fig. 3.13), shown as a function of Matsubara index n for the temperature T � 0.025. In gray

the eigenvectors of the red divergence lines for a higher temperature, T � 0.5, properly rescaled,

are plotted, indicating the broadening of V c
α(iνn) for lower temperatures. Top panel: Eigenvectors

of the first red divergence line (red, antisymmetric) and the first orange divergence line (orange,

symmetric). Middle (Bottom) panel: Same as top panel, but for the second (third) red and orange

(red) divergence line.

For both kinds of singular eigenvectors, this general trend is analyzed in detail in

Fig. 3.17: In the left panels the eigenvectors are plotted in terms of the Matsubara index n,
while in the right panels several V c

α for low temperatures are demonstrated as a function

of Matsubara frequency iνn . It can be easily seen, then, that for the eigenvectors corre-

sponding to the first red (upper panels) and the first orange (lower panels) divergence line

two regimes are distinguishable: (i) for T � TK , the V c
α are strongly peaked at a given

Matsubara index nmax, in perfect agreement with the results of the AL, see above. (ii)
for T . TK the maximum contribution of the eigenvector moves to a higher index with

decreasing temperature, i.e. to the right (Fig. 3.17 left panels). Remarkably, one notices

instead that, as a function of Matsubara frequency, the maximum contribution of V c
α(iνn)

remains localized at a given frequency iνnmax
in this regime (Fig. 3.17 right panels).

Finally, it is interesting to analyze inmoredetail the low-frequency structures ofV c
α(iνn),

which can be highlighted by comparing the red singular eigenvectors of different lines at

the same low temperature, see Fig. 3.16. In particular, for the eigenvector of the second

red divergence line (central panel of Fig. 3.16) an additional local maximum andminimum



3.1. THE DIVERGENCES OF THE IRREDUCIBLE VERTEX FUNCTIONS 73

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  3  6  9  12  15  18  21

1st red

V
αc

n

T=0.5

T=0.3333

T=0.25

T=0.2

T=0.1333

T=0.1

T=0.05

T=0.025

T=0.0125

T=0.00625

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5  3  3.5  4

V
αc

iν
n

1st red
T=0.25

T=0.2

T=0.1333

T=0.1

T=0.05

T=0.025

T=0.0125

T=0.00625

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  3  6  9  12  15  18  21

1st orange

V
αc

n

T=0.5
T=0.3333

T=0.25
T=0.2

T=0.1333
T=0.11494

T=0.1
T=0.08
T=0.05

T=0.025
T=0.0125

T=0.00625

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5  3  3.5  4

V
αc

iν
n

1st orange T=0.1333

T=0.11494

T=0.1

T=0.08

T=0.05

T=0.025

T=0.0125

T=0.00625

Figure 3.17: Left top panel: Singular eigenvectors V c
α(iνn) for several temperatures along the first

red divergence line, plotted as a function of the Matsubara index n. Right top panel: Singular

eigenvectors of the left top panel plotted as a function of Matsubara frequency iνn � (2n + 1)πT
instead. Bottom panels: As top panels, but showing the data corresponding to the first orange

divergence line.

appear at the lowest frequencies, leading to three "nodes" in their frequency components.

In the case of the third red line (bottom panel) V c
α(iνn) has five "nodes". Extrapolating the

behavior observed for the first three red divergence lines, one expects that the eigenvector

of the n-th red divergence line will have 2n − 1 "nodes". It is also interesting to note that

for the eigenvectors of the first and second red divergence line the respective one or three

nodes are also observed in the high-T regime (see the gray eigenvectors). This, however,

no longer holds for the eigenvector of the third line.

Let us underline that the symmetry and node-structure of the singular eigenvectors

become crucial in practical calculations, where vanishing eigenvalues of generalized sus-

ceptibilities need to be associated to the corresponding divergence lines. This consideration

is especially important in cases of crossings as seen here for the AIM, or for large values

of U, where the divergence lines become very dense in the phase diagram. Also, let us

note that the T-dependent frequency structure of the associated singular eigenvectors (de-

scribed above) can help to correctly locate a divergent parameter set along a divergence

line that is being calculated, i.e., in the high- or the low-T regime (cf. Ref. [29]).
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Figure 3.18: Zoom on the first red divergence line (cf. Figs. 3.13 and 3.14), showing the low-T behav-

ior (for T � TK), which demonstrates that, within the error bars obtained by a Jackknife analysis,

the line bends toward the U-axis for T → 0. Inset: Further zoom on the lowest temperatures,

emphasizing the growth of the error bar with decreasing temperature.

3.1.3.3 Calculations in the low-T regime

In the last part of the analysis of the irreducible vertex divergences in the AIMwe explicitly

consider the low-temperature regime.

We start by assessing the numerical accuracy of our results for the first red divergence

line in the low-T range (0.0033 < T < 0.05 < TK ∼ 0.07). Our results are shown in Fig. 3.18,

together with the corresponding error bars. The latter were obtained from a Jackknife

error analysis [116] (for details we refer to the Appendix C of Ref. [22]). From the error

bars in the main plot and the inset of Fig. 3.18 it can be inferred that the combined scaling

(β3
of the CT-QMC sampling (cf. Sec. 2.3.1.2) and β2

of the Matsubara frequency box of

the vertex function for iωn � 0) prohibits us from obtaining informative results about

the vertex divergences at temperatures lower than T � 0.0033. However, the numerical

precision for T > 0.0033 was sufficient to accurately define the low-T behavior. In fact,

we can compare our data with the dotted gray line, showing a linear extrapolation of the

divergence line to T → 0 using the (higher) temperatures T � 0.05 and T � 0.025. Even

considering the growing error bars, the first divergence line shows a progressive leftwards

deviation from the linear extrapolation when reducing the temperature. This is evidently

completely inconsistent with an infinite value of Ũ of the divergence line endpoint for

T → 0.

That the temperatures considered are low enough to allow for a T → 0 extrapolation is

also supportedby the behavior of the singular eigenvectors. Wediscuss here the case for the

first red and orange divergence line, which is representative for all calculated divergences.

In fact, for T � TK (e.g., for T ≤ 0.025 for the first divergence) the eigenvectors do not

only display a maximum at a T-independent value iνnmax
, but as functions of iνn , they
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Figure 3.19: Left panel: Eigenvectors of the first red divergence line for a given temperature

multiplied with the inverse of the scaling factor f (T), which yields the eigenvector at T � 0 that

governs the frequency structure of the eigenvectors at all temperatures in the T � TK regime. Right

panel: As left panel, but for the first orange divergence line. Here, the minor discrepancies can be

ascribed to a stronger U-dependence of the singular eigenvectors in comparison to those of the red

lines (cf. Ref. [29]).

even show a perfect scaling in the whole low-T regime (see Fig. 3.19). This demonstrates

that the low-T frequency structure of the singular eigenvectors, and hence, of the vertex

divergences, is completely controlled by an underlying, T-independent, function: Ṽ c
α(iν),

such that V c
α(iνn , T) � f (T)Ṽ c

α(iν). Our numerical data indicates further that f (T) simply

represents the conversion factor needed, when taking the T → 0-limit of the discrete sum

of Matsubara frequencies defining the norm of the eigenvector (

∑
vn |V c

α(iνn , T)|2 � 1):

f (T) �
√

2πT. In Fig. 3.19 the correspondingly rescaled eigenvectors (� Ṽ c
α(iν)) for the first

red and orange divergence line are shown. These are extracted from the data for V c
α(iνn , T)

by exploiting the low-T scaling relation:

Ṽ c
α(iν) �

V c
α(iνn , T)

f (T) �
V c
α(iνn , T)√

2πT
(3.32)

In the case of Ṽ c
α(iν), iν represents continuous imaginary frequencies.

After these considerations for the case of the AIM we summarize the results and

elaborate on the implications of the most important findings [22]:

• Consistent with the results for repulsive interactions of the AL and the DMFT

solution of the HM, two kinds of divergences are observed in the AIM: Those

occurring in the charge channel only (red divergence lines), and those affecting

the charge and the pp↑↓ channel simultaneously (orange lines). The symme-

tries of the singular eigenvectors coincide with the one seen for the AL and the

HM (antisymmetric eigenvectors corresponding to red divergence lines, sym-

metric ones to the orange kind). Note that these general resultswere confirmed

in a later work by C. Melnick and G. Kotliar [25], where the irreducible vertex
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divergences for the same AIM were compared to those of the PAM solved by

DMFT.

• The similarity of the results between the AIM and the HM also extends to

the low-T regime: In both cases a bending (“re-entrance”) of divergence lines

is observed as the temperature is reduced, featuring endpoints at finite U
values as T → 0. In particular, in the case of the AIM, the low-T behavior

was studied in great detail. The analysis of the lowest-T results of the first

divergence line, in comparison with the error bars of the QMC treatment,

as well as the scaling behavior of the singular eigenvectors, provides robust

numerical evidence that the divergence lines of the AIM end at finite U values

for T → 0
14
. Based on the results discussed so far, several conclusions can

be drawn, which we summarize in the following. At the same time, we also

formulate some outstanding questions that arise from these conclusions:

– The striking resemblance between theHMandAIM results for all temper-

ature regimes demonstrates clearly that the presence of the MIT does not
represent a necessary condition to observe irreducible vertex divergences.

Note that this similarity also rules out the so-called “ring-scenario” [19,

22], where two energy scales would take a similar role in the descrip-

tion of the divergences of the HM, as the energy scale ν∗ for those of the

BM/FK or the AL case.

– Instead, the AIM results in the very low-T regime call for a reconciliation

of well-defined Fermi-Liquid properties on the one hand, with nonper-

turbative divergence lines down to T → 0 on the other hand. One could

view this problem as an emergence of a nonperturbative Fermi-Liquid

phase, whose precise meaning needs to be defined.

– These results also inspire questions on the possible appearance of vertex

divergences on the real frequency axis. Based on Eq. (3.1), the scaling

of the singular eigenvectors described in Eq. (3.32) and their underlying

symmetry properties, one can expect divergences of Γ
(iνn→0)(iνn′→0)
c;pp↑↓ for

T → 0 for all orange divergence lines. Instead, at zero frequency, the red

divergences vanish due to the antisymmetric nature of the eigenvectors.

So far, only for the BM/FK case, a vertex divergence for real frequencies

was observed. However, this was found only at the accumulation point

at T � 0, where all divergence lines coincide [19].

• The interplay between the divergences and the Kondo regime allows for a

clear and physically transparent classification: At high-T the divergence lines

display a linear behavior, with associated eigenvectors that are localized in

Matsubara frequency space, in perfect agreement with the results of the AL. In

the regime where the screening of the local moment becomes active (indicated
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by the grey region in Fig. 3.14) the divergence lines start to bend and the nature

of the eigenvectors is changing. For T < TK instead, a smooth behavior of the

divergence lines is observed, the eigenvectors fully extend over the whole

Matsubara frequency range, and even display a perfect scaling for T � TK , see

Eq. (3.32) and Fig. 3.19. In general, for both theHMand the AIM, the screening

of the local moment seems to counter the appearance of vertex divergences,

which will be discussed further in Chapter 4.

• Based on these insights, one can formulate a clear-cut prediction for the ap-

pearance of divergence lines in the coexistence region of the MIT of the HM,

see Chapter IV of Ref. [22]. This was later confirmed by the DMFT calculations

of theMaster thesis ofM. Pelz [84]. In this work, the divergence lines (or in fact

the number of negative eigenvalues) in the coexistence region of the Hubbard

model on the Bethe lattice solved in DMFT, both for the metallic and the in-

sulating solution, was carefully investigated. In particular, the corresponding

number of negative eigenvalues is shown as an intensity plot in Fig. 3.20 (figure

taken from Ref. [84], see Fig. 5.1 therein). On a first glance one immediately

notices how high the number of negative eigenvalues, and hence how dense

the corresponding divergences lines, becomes at large interaction values. The

results for the metallic solution indicate the presence of an accumulation point

of divergence lines at Uc2(T � 0). The insulating solution shows a different

(and systematically larger) number of negative eigenvalues as compared to the

metallic solution, in agreement with the first order nature of the MIT.

68 5 Conclusion and Outlook

Figure 5.1: (upper left) Metallic and (upper right) insulating coexistence region with
an intensity plot of the number 𝑁𝜆<0 of negative eigenvalues of 𝜒𝜈𝜈′

𝑐 which
essentially corresponds to a visualization of the shape of the Γ∞

𝑐 -lines of the
DMFT solution of the Hubbard-model on a Bethe lattice. Orange lines on
the right side of the coexistence region mark the Γ∞

𝑐 -lines of the atomic
limit. (lower panel) Behavior of 𝑁𝜆<0 over the inverse temperature 𝛽 along
the transition lines 𝑈𝑐2(𝑇 ) and 𝑈𝑐(𝑇 ), yielding a linear and logarithmic
behavior, respectively.

with test calculations later performed at 𝛽 = 300, supporting the supposed diver-
gence of the number of Γ∞

𝑐 -lines at 𝑈𝑇=0
𝑐2 (see Sec. 4.4). Hence, the point where

the Mott MIT occurs at 𝑇 = 0 can be reported as an accumulation point of an
infinite number of Γ∞

𝑐 -lines. This conclusion clarifies the questions posed at the
beginning of this thesis about the speculated connection between the MIT and the
divergences of the irreducible vertices: the occurence of the Mott-Hubbard MIT is
associated to an accumulation of infinitely many vertex divergence lines at 𝑇 = 0.
Hence, while this feature demonstrates the highly non-perturbative nature of the
Mott MIT, it also explains, why the mere presence of Γ∞

𝑐 -lines in the phase diagram
does not imply -per se- the occurrence of a Mott MIT. We can put this finding,

Figure 3.20: Number of negative eigenvalues for themetallic (left panel) and insulating (right panel)

solution in the coexistence region of the MIT, shown as an intensity plot (colorscale on the right).

The calculationwas performed for aHubbardmodel on the Bethe lattice (same units as in Sec. 3.1.2),

solved byDMFT. The orange lines to the right of the coexistence regions for both solutions represent

the divergence lines of the AL. Taken from Ref. [84] (see Fig. 5.1 therein).

14Let us here also refer to the project work of C. Schattauer [117] (performed in the group of A. Toschi

and co-supervised by the author of this thesis), who analyzed the divergences of an AIM with a single bath
site. Both, the low-T behavior of the first divergence line as well as the scaling of the associated singular

eigenvectors, are also verified in this case, providing further numerical support for the conclusions drawn.
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3.1.4 Manifestations of vertex divergences out of half filling

In the last section, the irreducible vertex divergences for different models at half filling

were discussed in great detail. Here, instead, we consider the vertex divergences in cases

out of half filling, where the perfect particle-hole symmetry is broken. For this analysis,

it is essential to differentiate between the ph channels r � c ,m and the ↑↓ component

of the pp channel. As established at the end of Sec. 2.2.4.2, χνν
′(ω�0)

pp ,↑↓ remains real and

bisymmetric (with real eigenvalues and perfectly (anti)symmetric eigenvectors), even if

particle-hole symmetry is broken. Thus, for the r � pp ↑↓ channel, Eq. 3.1 stays valid

and continues to determine the divergences of Γ
νν′(ω�0)
r�pp ,↑↓ also out of half filling. For the ph

channels r � c ,m, this is not the case, as the generalized susceptibility χνν
′

r�c ,m is now a

symmetric centrohermitian matrix, see Sec. 2.2.4.2, with either real or complex conjugated

pairs of eigenvalues. The associated eigenvectors are no longer guaranteed to be real

or to demonstrate strict symmetry properties. Hence, for the r � c ,m channels, the

defining Eq. 3.1 and the corresponding conclusions needs to be re-examined and several

modifications need to be taken into account. First of all, as discussed in Sec. 2.2.4.2, the

static generalized susceptibility can be written as V−1DV if it is diagonalizable, which is

now no longer guaranteed a priori. When χνν
′

r is diagonalizable, the analogous equation

to Eq. 3.1 reads [67, 73]:

Γ
νν′(ω�0)
r�c ,m �

(∑
i

V r
i
−1(ν)

[
λr

i

]−1

V r
i (ν
′) −

[
χ−1

0

] νν′)
, (3.33)

whereas, different from Eq. (3.1), λr
i is not guaranteed to be real. This has important

consequences for the understanding obtained so far: Even if the real part of a specific

eigenvalue λr
α � Re[λr

α] + iIm[λr
α] would vanish, Γr would not diverge, as long as the

imaginary part Im[λr
α] is nonzero.

In the following we summarize the few existing numerical results, which demonstrate

that there indeed exists a doping regime close to half filling, where divergences in the

ph-channels are still found, because a subset of eigenvalues remains real. On the other

hand, as soon as a doping becomes large enough, these eigenvalues become complex and

no true divergence of the irreducible vertex can be found any longer.

A first understanding can already be gained by considering a 2 × 2 submatrix15 of

χ(ν�±πT)(ν′�±πT)
c ,m : (

a + ib c
c a − ib

)
⇒ λ1,2 � a ±

√
c2 − b2 . (3.34)

From this simplified analysis (seeRef. [118]) one can alreadyoutline a plausible expectation.

Since for the ph-channels out of half filling, the eigenvalues are either real or complex

conjugate pairs, while they are strictly real at half-filling, when going out of half filling, the

real eigenvaluesneed to “meet”, i.e., becomecomplexpairwise. In thequite recent literature

15Note that the off-diagonal element c stays real, due to the centrohermitian and symmetric property of the

generalized susceptibility.
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Figure 3.21: First two divergence lines of the AIM (cf. Fig. 3.13) for dopings close to half filling (in

percent) at T � 0.2. The red divergence lines mark divergences in the charge channel. The orange

point at half filling represents the orange divergence line at this temperature, which splits into the

second red and the first yellow divergence line along which solely the pp↑↓ component diverges.

The red divergence lines meet at ≈ 6% doping, the dashed red line tracks the condition Reλc
α � 0.

Taken from Ref. [107].

on this topic, this has been referred to as “splitting point” [118], “meeting” point [107] or

“exceptional point” [119]. In particular, this wording reflects the fact that with increasing

doping, starting at half filling, the real parts of λ1,2 (for |c | ≥ |b |) need to become closer in

value. In fact, λ1,2 � a ± ∆ holds (with ∆2 � c2 − b2
) for as long as the eigenvalues are still

real (|c | ≥ |b |). As the imaginary part b grows, the eigenvalues approach their meeting

point, becoming equal in value, λ1,2 � a, where the matrix is formally not diagonalizable.
Going further out of half filling, in the case of |c | < |b |, λ1,2 form a complex conjugate

pair of eigenvalues with λ1,2 � a ± i ˜∆ (with
˜∆2 � b2 − c2

). Afterwards, the condition

Reλ1,2 � 0 does no longer correspond to an actual vertex divergence (but defines the

so-called “pseudodivergence line”, whose formal and physical implications need further

investigations in the future).

3.1.4.1 Divergences in the AIM out of half filling

The first model considered is the AIM (defined in Sec. 2.1.1), identical to the one analyzed

in Sec. 3.1.3, for dopings close to half filling at the fixed temperature T � 0.2. This analysis

was performed by Leon Domazetovski in the context of a project work in the group of

A. Toschi [107]. The results as a function of doping and U for the first two divergence

lines (cf. Fig. 3.13) are presented in Fig. 3.21. The first red divergence lines moves toward

higher values of U as the doping is increased, until it meets the second red divergence line
at ≈ 6% doping. Here, right after this meeting point, the eigenvalues become a complex

conjugate pair, and no actual vertex divergences is found any longer, in agreement with

the simplified 2 × 2 analysis made above. Note that at this meeting point, the generalized

susceptibility is not diagonalizable. For higher dopings, one can track the parameter sets

along which the real part of the eigenvalues vanish, which is shown as a dashed red line.
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Figure 3.22: Eigenvectors of the first (upper panels) and second (lower panels) red divergence

line, along which only the charge channel diverges for different dopings. The panels on the right

represent the corresponding imaginary parts, which have nonzero contributions out of half filling.

Taken from Ref. [107].

At the same time, due to the violation of particle-hole symmetry (see Sec. 2.2.4.2 and

the argument above) the orange divergence line splits into the second red divergence line,

along which only the charge channel diverges, and the yellow line, where a divergence of

solely the pp↑↓ component is found. This yellow divergence line shows a similar behavior

in doping as the first red divergence line, moving toward higher interaction values with

increasing doping. However, as opposed to the red divergence lines, it always marks an

actual vertex divergence, due to χνν
′

pp ,↑↓ remaining a real bisymmetric matrix even out of

half filling (see Sec. 2.2.4.2 and above).

As pointed out in Sec. 2.2.4.2, out of half filling, also the perfect symmetry properties of

the singular eigenvectors in the ph-channels are lost. This can be seen in Fig. 3.22, where

the eigenvectors along the first two red divergence lines are shown for different dopings. In

the right panels the imaginary parts of the corresponding eigenvectors are shown, which

have nonzero contributions out of half filling. As Fig. 3.22 illustrates clearly, only for half

filing (0% doping), the eigenvectors display perfect symmetry properties.

For further details on the results of the AIM out of half filling we refer to Ref. [107].
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Figure 3.23: Parquet decomposition of the self-energy for the nodal (left panel) and the antinodal

(right panel) momentum of a DCA calculation (8 cluster sites) for the Hubbard model on a square

lattice with n=0.94, β � 60, U � 1.75. The parquet contributions (Λ, pp, charge, spin (=magnetic))

sum to the DCA solution for Σ (sum and exact). Taken from Ref. [18] (see Fig. 8 therein).

Let us at this point also refer to related works by D. R. Fus and H. Eßl, both working in

the group of Alessandro Toschi, who performed a similar analysis for the AL case [118,

120], which yielded results in agreement with the AIM case presented here, and allowed

for additional analytic insights.

3.1.4.2 Divergences in the Hubbard model out of half filling

We now consider the case of the Hubbard model (on a square lattice) out of half filling,

and at this point also extend the analysis made so far by a crucial aspect: in the following

we will review literature results including nonlocal correlation beyond DMFT. So far, only

divergences in DMFT solutions of the Hubbard model (or disordered models) and for the

purely local AL and AIM were considered. One should not get the wrong impression,

however, that the irreducible vertex divergences are a phenomenon restricted to local

physics. This is absolutely not the case, as was first shown in a work by O. Gunnarsson et
al. [18] in 2016.

In this work the parquet decomposition idea was applied to the self-energy for the

Hubbard model on a square lattice using both, DMFT and the dynamical cluster extension

(DCA) [121]. Summarizing briefly the main idea of Ref. [18]: By decomposing the full

vertex F↑↓ in the second term of the Schwinger-Dyson equation (cf. 2.3.2) according to the

parquet equation, introduced in Eq. (2.20), one can split the self-energy into four parts

corresponding to the different diagrammatic channels: Σ � ΣΛ + Σpp + Σc + Σm . The first

term is originated by the fully irreducible vertex, the other terms by reducible vertices in

channels r � pp , c ,m. In principle, this procedure would allow to individually inspect the

effects that the two-particle fluctuations, separated into the different fluctuation channels,

have onto the one-particle self-energy (and thus also e.g., on the one-particle spectrum).

Let us also refer to recent publications, where this idea is reviewed and compared to other

approaches, such as the fluctuation diagnostics [122], which work in the same spirit [58,

59]. The fundamental problem of the parquet decomposition of the self-energy is that
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Figure 3.24: Divergence lines of the charge channel in the Hubbard model on a square lattice,

solved by DMFT (dashed lines) and CDMFT(colored areas), as a function of U and doping δ. The

color map represents the magnitude of the imaginary part of the associated eigenvalues. The inset

depicts the behavior of the imaginary parts of those eigenvalues, associated with the colored areas,

as a function of doping. Taken from Ref. [21] (see Fig. 1 therein).

possibly diverging irreducible vertices directly enter into the approach. In fact, this type of

procedure breaks down in the nonperturbative regime. As an example, in Fig. 3.23, results

of Ref. [18] showing a DCA calculation (8 cluster sites) for the underdoped case n=0.94

at β � 60 and U � 1.75 (in eV units) is presented, a parameter set where the momentum

differentiation of the self-energy is found (see exact and sum data sets in Fig. 3.23). In the

left panel the different contributions to the self energy at the nodal point (k � (π
2
, π

2
)) are

shown, in the right panel at the antinodal point (k � (π, 0)) [18]. As can be seen easily, the

fully irreducible contribution (Λ) is fluctuating wildly, due to the proximity of divergences

of the corresponding irreducible vertex function16 [18]. The full self-energy, however, is

well-behaved, because in the sum (grey crosses), the pp-contribution compensates for the

uncontrolled Λ-contribution [18].This is related to the fact that the full vertex F↑↓ remains

finite, as discussed at the beginning of this chapter. The magnetic (spin) and charge

contributions on the other hand appear well-behaved for the parameter set considered.

While this is not surprising for the former, as the irreducible vertex function in themagnetic

channel do not diverge for the repulsive model considered (see Sec. 3.1.2), the absence of

an unstable behavior of the charge contribution needs additional considerations. In fact,

this numerical outcome can be reasonably explained by assuming that the divergences of

the charge channel have already been neutralized due to breaking particle-hole symmetry,

which has been discussed above (cf. Eq. 3.33).

16As discussed in [18], it is mostly the momentum dependence of the generalized susceptibility, which

triggers the divergence observed in the DCA results.
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Another important study on vertex divergences of theHMbeyond the single-site DMFT

is represented by the work of J. Vučičević et al. [21]. In Fig. 3.24 the first three divergence

lines of the Hubbard model (square lattice) solved by DMFT (dashed lines) and cellular

DMFT (CDMFT) [121] (colored areas) as a function ofU and doping for a fixed temperature

of T � 0.125 (in units of 4t) are shown, taken from Ref. [21]. Note that in this work only the

charge channel has been considered. Similarly to the results for the AIM out of half filling,

the DMFT solution (dashed lines) yields real eigenvalues for a limited doping region

around half filling. In the case of the third divergence line (U ≈ 1.8) already for small

dopings the eigenvalue becomes complex. The first two divergence lines meet at around

6% doping, as in the AIM case. The CDMFT results, obtained for a 2 × 2 cluster, yield

real and complex eigenvalues which are shown as colored areas in Fig. 3.24. These results

demonstrate three important features: (i) Instead of one eigenvalue crossing zero, four

eigenvalues cross zero at fairly similar parameter sets, which defines the colored areas. (ii)
As also noted in Ref. [18], these divergence areas shift toward lower values ofU as compared

to the single-site DMFT results. (iii) They appear to be become neutralized by the increase

of the imaginary parts of the associated eigenvalues already at dopings slightly closer to

half filling.

The second point (ii) can be qualitatively understood by recalling the half-filling results

for the vertex divergences of the AIM and the DMFT solution of the HM, summarized at

the end of Sec. 3.1.3. Since in cluster approaches the MIT of the HM is shifted to lower

values of U [51], also a possible accumulation point of divergences at Uc2 is most likely

shifted toward lower values of U. Assuming, that the distance between divergence lines

at intermediate coupling does not change dramatically, one can expect to find divergence

lines of the HM solved in cluster extensions of DMFT already at lower values of U, as

compared to those of the single-site DMFT solution.

Eventually, all the (few) existing results for the irreducible vertex divergences out of

half filling can be summarized as follows:

• When the condition of perfect particle-hole symmetry is released (e.g., by dop-

ing the system away from half filling), the local generalized ph-susceptibility

acquires imaginary components, yielding a centrohermitian matrix. The latter

is characterized by eigenvalues which can be either real or complex conjugated

pairs. The appearance of an imaginary part in an eigenvalue with a vanishing

real part evidently cuts off a possible irreducible vertex divergence.

• For repulsive interactions, divergence lines in the charge channel in doping

regions close to half filling are still found (red lines). If the doping is large

enough, however, these divergence linesmeet pairwise, and the corresponding

singular eigenvalues develop nonzero imaginary parts. After this exceptional

point, where the generalized susceptibility is formally not diagonalizable, no

actual divergences of the irreducible vertex in ph channels are found any

longer. The corresponding singular eigenvectors become complex and lose
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Figure 3.25: Simplified illustration of G[G0 ,U], where multiple G0’s (blue dots) correspond to the

same physical G (blue lines) for different values of U (sheets). The dashed green lines represent the

corresponding self-energies. A crossing of the physical branch, which is connected to the U � 0

sheet, and an unphysical solution, is demonstrated in the third sheet. Taken from Ref. [12] (see

Fig. 1 therein).

the perfect symmetry properties of the particle-hole symmetric case.

• In the pp channel, the generalized susceptibility retains its symmetry prop-

erties, remaining a real bisymmetric matrix also out of half-filling. Hence,

divergence lines along which only the pp↑↓ channel diverges are found, ex-

tending throughout the whole doping region (yellow lines).

• Irreducible vertex divergences are also found in cluster extensions of DMFT

(DCA and CDMFT). They are shifted towards lower values of U, and the

exceptional points of the ph-channel divergences appear to be slightly closer

to half filling.

3.2 The mulivaluedness of the Luttinger-Ward functional

In Sec. 2.2.5, the Luttinger-Ward functional Φ[G] (LWF) was introduced, a fundamental

quantity in the description of many-body systems. In this present section, we focus on

a peculiarity of the LWF, which can have surprising consequences: Φ[G] turns out to be

multivalued [11, 12, 14–16, 19–21, 23, 24, 27, 28]. As first described in the pioneering

work by E. Kozik et al. in 2015 [11], due to this intrinsic property of Φ[G], the self-energy

functional Σ[G] � β δΦ[G]δG (cf. Eq. 2.64), is not single-valued. Put differently, for the same
physical Green’s function G, several Σ[G]’s can be found that correspond to it, only one of

which is the physical one. As we discuss below, this is related to the fact that the map
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G0 → G is not injective.
An intuitive, but strongly simplified, sketch of the multivaluedness is presented in

Fig. 3.25, taken from Ref. [12]. Here the full Green’s function G and it’s non-interacting

counterpart G0 are treated as simple numbers. The red lines illustrate the functional

dependence G[G0] for different values of U, where the specific physical Green’s function is

represented by the blue line. At the point where the physical Green’s function crosses the

red line, a suitable non-interacting Green’s function is found. For U � 0, only one solution

can exist as G � G0.At larger values of U, due to the multivaluedness of Φ[G], several G0’s

may be in principle identified that fulfill the map G0 → G, and hence, consistent with the

Dyson equation (cf. Eq. (2.23)), several possible Σ’s (green dashed lines). These additional

solutions are characterized by unphysical behaviors. However, their existence in itself does

not pose a problem, until these unphysical solutions cross the physical one, i.e., an equality

of the physical G0 with one (or more) of the unphysical G0’s is found, as illustrated in the

3rd sheet in Fig 3.25. These so-called “branching”-points can have dramatic effects. For

instance, (i) methods and algorithms that are based on diagrammatic resummations of

Φ[G] might select the wrong branch. As observed in several applications [11, 14, 15, 21,

24, 27, 28], these methods do converge also after the branching points, but to an unphysical
result. On the other hand, (ii) at these branching points, the irreducible vertex diverges [12,
19], suggesting the existence of a precise link between the two aspects, which is addressed

further below in Sec. 3.3.

This rather abstract problem can be understood in a very transparent manner by going

back to the BMmodel (see Sec. 3.1.1.2), which allows for analytic calculations, reproduced

here from Ref. [19]:

In DMFT (i.e., the coherent potential approximation for the BM) the Green’s function

of the BM reads:

G(ν) � 1

2

(
1

G−1

0
(ν) + W

2

+
1

G−1

0
(ν) − W

2

)
, (3.35)

where G0 � (ν − ∆(ν))−1
and ∆ is the self-consistently determined hybridization function

(half filling is assumed in the calculation).

Using the Dyson equation one can express the self-energy as a functional of G0:

Σ[G0] �
W2

4

G0 , (3.36)

which yields the exact solution. However, one can also calculate Σ[G], i.e., as a functional

of the full G:

Σ2

+ G−1Σ − W2

4

� 0 (3.37)

⇓

Σ±[G] �
±
√

1 + W2G2 − 1

2G
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Figure 3.26: Physical self-energy (black circles) of the BM for weak (W < W̃ , left) and intermediate

coupling (W > W̃ , right). Σ+ and Σ− refer to the two possible solutions of Eq. 3.37. In the right

panel the physical Σ for ν < ν∗BM is given by Σ−, while for ν > ν∗BM , Σ+ corresponds to the physical

solution. The insets demonstrate the relation of ν∗BM to theminimum of the Green’s function, which

is unique to the BM case [19] (see Sec. 3.1.1.2). Taken from Ref. [19] ((see Fig. 3 therein)).

which demonstrates that Σ[G] is not single-valued. Instead, two solutions (referred to

as “branches”) are found, which both correspond to the physical Green’s function. Let

us note that this simple BM calculation already foreshadows an important aspect: When

expressing Σ (or in more general cases, the diagrammatic expansion for the object of

interest) as a function of G0, no multivaluedness is found [11, 16, 19] (see further Sec. 6.1).

As mentioned, the existence of unphysical solutions alone is not problematic in itself,

but it becomes problematic at a crossing of unphysical solutions with the physical one.

In fact, the two self-energies Σ± coincide for 1 + W2G2 � 0, which is exactly the defining

equation for the energy scale ν∗BM , see Eq. (3.9) [19]. The implications of this result is

shown in Fig. 3.26. For weak disorder strength W < W̃ (left panel) ν∗BM is negative,

i.e., 1+W2G2 � 0 is never fulfilled and no crossing exists. Indeed, the physical self-energy

(defined by Eq. (3.36)) coincides for all frequencies with Σ+. At larger disorder strengths

W > W̃ (right panel), a crossing occurs and for ν < ν∗BM the physical self-energy is given

by the Σ− branch. Only at higher frequencies ν > ν∗BM , Σ+ (which also has the correct

high-frequency behavior), corresponds to the physical solution.

As outlined in Ref. [19], by calculating the irreducible vertex ∝ δΣ
δG , one finds a diver-

gence at the energy scale ν∗BM , which defines the divergence lines of the BM presented in

Fig. 3.7 (see Sec. 3.1.1.2). While the BM example is a special case, allowing for analytic cal-

culations, it already illustrates the fundamental connection between the multivaluedness

of Φ[G] and the divergences of the irreducible vertices, further discussed in Sec. 3.3.

After introducing the multivaluedness of Φ[G] and the corresponding multivalued

Σ[G] in general and for the simpler BM case, we need to clarify an important aspect: For

analytic considerations onΦ[G], one can always restrict oneself to the physical solution [11].

Theproblem instead affects practical diagrammatic resummations. As seen in several cases,

these approaches seem to select the wrong branch after the first crossing, where they still

converge, but to unphysical results [11]. The underlying issue is that these methods produce
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results corresponding to the perturbative branch, i.e., the one connected to U � 0 [14, 15,

27, 28] (Σ+ in the simple BM example, see Ref. [19]). However, the physical solution is not

always given by this branch, as seen for the simple BM example at larger disorder strength.

We split the subsequent presentation in this thesis along the following lines: In this

section the appearance of the multivaluedness is addressed. The focus lies, in particular,

on the locations of branching points of the LWF solutions in the phase diagrams of different

models, as well as on their general connection to the divergences of the irreducible vertex

function (see Sec. 3.3). We postpone to Sec. 6.1 instead, the treatment of the corresponding

algorithmic implications: How does themultivaluedness affect numerical calculations and

what can be done to findworkarounds and enter parameter regimes beyond the branching

points.

In the following, we summarize the appearance of the multivaluedness of Φ[G] for
cases at half filling and out of half filling, respectively. In the literature, two strategies have

been chosen for the identification of unphysical solutions. On the one hand (i), comparisons

between results of diagrammatic resummations based on Φ[G] to those of benchmark

methods are performed (such bold diagrammatic Monte-Carlo [123, 124] versus QMC,

respectively). Where significant differences17 are observed, a branching point is identified.

On the other hand (ii), iteration schemes [11], or also “reverse” solvers [21], and even

reformulated Hirsch-Fye methods [12], follow a different path. In these approaches the

exact Green’s function G is known a priori and instead G0 candidates are identified that

correspond18 to this physical G. Evidently, in order to identify unphysical G0’s, one needs

to allow for some freedom, e.g., real parts in cases where they should be zero due to

symmetry reasons, see further Ref. [12] and the corresponding supplemental material.

3.2.1 The multivaluedness of the LWF at half filling

As already pointed out at the beginning of this section, the first observation and character-

ization of the multivaluedness was made in the work by E. Kozik et al. in 2015 [11]. In this

work the multivaluedness was described for the AL, the AIM (both at half filling at out

of half filling) and the HM (not discussed explicitly here, we refer the interested reader to

Ref. [11]).

In Fig. 3.27 we show the results of Ref. [11] for the AL at half filling, where the double

occupancy is plotted as a function of U for β � 2. Scheme A and B refer to iteration

schemes, along strategy (ii) discussed above, where A represents the natural choice, which

coincideswith the results of diagrammaticMonte-Carlo calculations. Scheme B is an ad-hoc
modification of Scheme A. The exact solution for the AL is known, and demonstrates a

decreasing double occupancywith increasing interactionU. However, at a large enough in-

teraction U∗, Scheme A converges, but yields increasing double occupancies – an evidently

unphysical trend. Instead, after the branching point, Scheme B produces the expected

17Significant differences refer in this context to deviations in the results that go beyond numerical ones that

can be attributed to choosing different methods.

18In particular, if a G
0
, which was identified by such a “reverse” procedure, is used as an input for a

numerically exact solver, the physical G is obtained again.
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(a) (b)

Figure 3.27: Calculations for the AL at β � 2, demonstrating the double occupancy as a function

of U at half filling. Scheme A and B refer to iteration methods, see strategy (ii) above, the results

of diagrammatic resummations coincide with those of Scheme A (not shown). A branching point

is identified, after which Scheme A converges, but yields an increasing double occupancy. Taken

from Ref. [11] (see Fig. 2 therein).

physical behavior (where no data is shown, Scheme B did not converge). Diagrammatic

Monte-Carlo calculationswere performed for theAL and reproduced the results of Scheme

A, including convergence to unphysical results at large enough interaction (see Fig. 3 in

Ref. [11]).

Naturally, the results of Ref. [11] triggered the interest of the many-body commu-

nity, which lead to several studies where the multivaluedness was analyzed in simplified

models. One example is the so-called “one-point”-model, where analytic calculations are

possible, see Refs. [14, 15]. As opposed to the BM model, a full interaction term is taken

into account in this model, but no Matsubara frequency dependence is considered. Since

the LWF Φ[G] is a universal functional of the interaction term, this makes the results of

the one-point model more comparable to the AL case. Nevertheless, similarly as for the

BM, two branches of the self-energy are identified. Further, the multivaluedness in replica

systems was studied [24], where is was linked to the nature of fermionic statistics. An

analysis of the effect of self-consistency for the case of the AL can be found in Ref. [20].

3.2.2 The multivaluedness of the LWF out of half filling

The multivaluedness of Φ[G] has been also observed numerically for several cases out of

half filling.

In Fig. 3.28 the result of Ref. [11] for the AIM is displayed, where the color map

encodes the difference in the double occupancy between the exact solution (obtained by a

numerically exact QMC impurity solver) and the solution of Scheme A, mentioned above.

In this way, the locations of branching points as a function of the interaction U and the

doing δ are identified. In general, the results are reminiscent of the AIM results for the

divergences out of half filling. In a doping region close to half filling, one observes an
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(b)

Figure 3.28: Identification of the branching points for the AIM as a function of U and doping δ,

by using the iterative Scheme A of Fig. 3.27, see Ref. [11]. The red dots mark parameter regimes,

where the calculation did not converge. Taken from Ref. [11] (see Fig. 2 therein).

extended region where a growing difference of the results of Scheme A w.r.t. the exact

one is found. For large doping values Scheme A reproduces the physical solution, and no

branching points are identified. As in the AL case, diagrammaticMonte-Carlo calculations

were performed and indeed reproduced the results of Scheme A [11].

The direct link between the irreducible vertex divergences and the multivaluedness

becomes evenmore apparent in Fig. 3.29,whichwas taken fromRef. [21]. These calculations

were performed for a HM on a square lattice, using CDMFT (left) and the so-called nested-

cluster scheme (NCS, see below) (right) for its solution. The colored red and blue areas,

alongwhichdivergences of irreducible vertex are found,were alreadyanalyzed in Sec. 3.1.4.

The colormaps of both panels show themagnitude of the difference between an unphysical

solution and the physical one, obtained byCDMFT. In the left panel, a reverse solver is used

(strategy (ii)), identifying unphysical non-interacting Green’s functions based on CDMFT

calculations. If a branching point is encountered, the reverse solver jumps onto the wrong

branch and yields unphysical results (in the right inset of the left panel the hybridization

function of an unphysical result is shown, see Ref. [21] for details). At the red crosses, the

iteration did not converge, similarly as in Fig. 3.28. In the right panel, the actual result

of the NCS is shown, as compared to the CDMFT benchmark (strategy (i)). This cluster

approach is an attempt to formulate a translationally invariant real-space cluster method,

which is based on diagrammatic resummations for Φ[G] for different cluster sizes, see

Ref. [21] for details. After the branching point, this method starts to yield an unphysical

result, progressively deviating from the CDMFT result for Σ.

Altogether, both panels of Fig. 3.29 are relatively similar to Fig. 3.28 for themultivalued-

ness of the AIM. On the one hand, close to half filling, unphysical solutions are identified

at large interaction values, while at lower interaction values only the physical solution is

found, and hence no branching points are present. On the other hand, at higher doping
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Figure 3.29: Results of Ref. [21], identifying themultivaluedness for theHubbardmodel on a square

lattice at T/D � 0.125 as function of U and dopingδ (in units of D � 4t). The red and blue areas

represent the parameter sets where vanishing eigenvalues are found without (red) and with (blue)

a remaining imaginary part, see Sec. 3.1.4. In the left panel the difference in the local component

of the non-interacting G0 is shown, as obtained from the CDMFT benchmark (2 × 2 cluster) and a

reverse solver (strategy (ii), see Ref. [21]). At the red crosses the reverse solver did not converge. In

the right panel the difference between the CDMFT benchmark and the result of a NCS calculation,

based on Φ[G] (see text), is shown. Taken from Ref. [21] (see Fig. 1 therein).

levels, an increasing difficulty in the convergence of both schemes (reverse CDMFT and

NCS) is observed. For both cases, the first divergence area (red and blue branch) seems to

delimit the two regimes, even in cases, where the divergence of the irreducible vertex itself

is no longer observed (blue area, due to imaginary parts of associated eigenvalues).

3.3 Two sides of the same coin

In the last part of this chapter, we summarize the state-of-the-art theoretical understanding

on the fundamental connection between the divergences of the irreducible vertex functions

(cf. Sec. 3.1) and the branching of different solutions due to themultivaluedness of the LWF

Φ[G] (cf. Sec. 3.2).
A first step in this direction was already showcased in the last section: for the BM

model the multivaluedness of Σ[G] and the divergence of Γc could be understood on

an analytic level [19]. In general, however, it is not as straightforward to obtain the

irreducible vertex from a functional derivative ∝ δΣ[G]/δG. In this respect, the work

of O. Gunnarsson et al. from 2017 [12] represents a very important achievement. In this

work, the precise connection between the crossings of the physical andunphysical solutions

and the divergences of the irreducible vertex functions could be demonstrated for the AL

at half filling. As a first step, the authors managed to identify several unphysical G0’s,



3.3. TWO SIDES OF THE SAME COIN 91

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  2  4  6  8  10
R

e
 T

r 
Σ

G
/(

β
U

)

U

physical
div. 1st kind
div. 2nd kind
nonsingular

Figure 3.30: As Fig. 3.27, demonstrating the crossing of the physical (solid black line) with several

unphysical solutions (red, orange and grey lines). The arrows represent the interaction values

where divergences of the irreducible vertex functions in the AL occur. The color code corresponds

to the one of Fig. 3.6. Taken from Ref. [12] (see Fig. 2 therein).

which is shown in Fig. 3.30 in the same manner as Fig. 3.27. Several crossings of the

physical solution (black line) with unphysical solutions (red, orange and grey lines) are

observed, where the first red one corresponds to the one crossing shown in Fig. 3.27 of

Ref. [11]. Moreover, at the different crossings, the precise behavior in U how an unphysical

G0’s becomes equal to the physical one for the different Matsubara frequencies ν could be

identified (see Fig. 2 of Ref. [12]). This was crucial for the second step, where the authors

succeeded in connecting this crossing-behavior in U for the different ν to the appearance

of vertex divergences at these parameter sets. Indeed, the arrows in Fig. 3.30 represent the

U values of the divergences observed in the AL for β � 2, which are in perfect agreement

with the crossings of solutions. The analytic proof of this fundamental link can be found

in the corresponding supplemental material (part I.A) of Ref. [12]. The main idea of the

proof will be summarized here in a few words, allowing also to discuss its limitations:

The starting point is the generating functional F [G−1;U,ν
0

] for the one-particle Green’s

function, at a parameter set close to a crossing of the physical G0 with an unphysical G0.

F [G−1;U,ν
0

] for one G0 around the crossing can then be expressed by a Taylor expansion in

terms of the other G0. This expansion is then connected with the generalized susceptibility

in the charge channel (as a functional derivative of the generating functional w.r.t. G−1

0
). By

a suitable recasting of the equation, using the precise behavior in U how the G0’s cross for

the different Matsubara frequencies, an eigenvalue equation is obtained. Vanishing eigen-

values were found corresponding to localized eigenvectors on the one hand, controlled by

the energy scale ν∗, and non-localized eigenvectors on the other hand, depending on the

precise crossing-behavior in U for the different frequencies ν. These singular eigenvalues

and eigenvectors of course correspond to the previously discussed red and orange diver-

gence lines of the AL (cf. Sec. 3.1.1.1), as reflected in the color coding of Fig. 3.30. Note that

also the presence of grey lines corresponds to unphysical G0’s which do not become equal

to the physical one at the crossing point.

In this way the crossings of solutions, fulfilling the map G0 → G, where G is the
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physical Green’s function, could be connected to the divergences of the irreducible vertex

functions for theAL. The precise behavior inU for the differentMatsubara frequencies even

determines the kind of divergence that is found - localized or non-localized in frequency

space.

On amore general perspective, the question ariseswhether such a connection exists also

for more general situations. Considering, e.g., the results for the HM solved by CDMFT

presented in Fig. 3.29, it seems that the direct link between the crossings of physical and

unphysical solutions and the divergences of irreducible vertex divergences extends also to

cases without particle-hole symmetry. Hence, in future studies, it remains to be seen how

the formal relation presented here for the AL can be extended to describe, e.g., cases where

the eigenvalues of χνν
′
have nonzero imaginary parts and form complex conjugated pairs.

In fact, as Fig. 3.29 impressively demonstrates, also in cases where the divergence itself

is absent, due to imaginary parts of the singular eigenvalues, a branching of the LWF is

found. Further, an extension of the direct link described here for the AL, accounting also

for the symmetry property of the associated singular eigenvectors, would be of interest

(cf. the summaries of Secs. 3.1.1, 3.1.2 and 3.1.3). In this way, this extension of the proof of

Ref. [12] would also apply to the irreducible vertex divergences of the AIM and the DMFT

solution of the HM throughout the entire temperature regime.

As the last (rather specialist) topic let us recall the crossing of divergence lines, observed

in the case of the AIM in Figs. 3.13 and 3.14. Based on the results for the crossings of

the physical with unphysical solutions in the AL represented in Fig. 3.30, this can be

rationalized. In particular, in Fig. 3.30 at U ≈ 1,Re Tr(ΣG/βU) ≈ −0.1, one observes a

crossing of two unphysical solutions (here referred to as A). One can easily imagine a

situation where this crossing (A) takes place between the first orange and the second red

unphysical branch at the point where they cross also the physical solution. This would

characterize a parameter set with two simultaneous divergences of two kinds – a crossing

of a red and an orange divergence line, such as the ones observed in Figs. 3.13 and 3.14.



CHAPTER 4

Physical origin of irreducible vertex divergences

You can’t always get what you want
But if you try sometimes, well, you just might find

You get what you need
– The Rolling Stones

The previous chapter thoroughly discussed the ubiquitous presence of characteristic

manifestations of the breakdown of self-consistent perturbation theory in correlated

electron systems. This chapter focuses, instead, on amore fundamental topic, which

represents one of the central questions of this thesis: What is the underlying physical
mechanism that triggers the perturbative breakdown? To investigate this question, the

impact of fundamental physical processes of the many-electron physics upon quan-

tities of the two-particle level is studied in-depth in this chapter. Specifically, the

precise way how the local magnetic moment formation and its Kondo screening are

encoded in the Matsubara frequency structure of generalized susceptibilities will be

clarified. These insights also allow, on a more quantitative level, to identify an alter-

native criterion for the determination of the Kondo temperature in the charge sector

and, more generally, to precisely assess the limitations of self-consistent perturbative

methods.

Parts of this chapter, marked by a vertical bar, have already been published in the APS journal
Phys. Rev. Lett. 126, 056403 (2021) and the corresponding supplemental material.

To improve the pedagogical character of this chapter, both sources are mixed accordingly.

The quantum field theoretical (QFT) description of many-electron systems can be pur-

sued at different levels of complexity, essentially depending on the number of added or

removed electrons in the physical processes considered to define the correspondingGreen’s

functions.

93
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Presently, one can rely on a solid textbook interpretation [6, 8] of the QFT formalism

describing the single-particle (1P) processes, measurable e.g., by (angular resolved) direct

and inverse photoemission [125] or scanning tunneling microscopy [126, 127]. Crucial in-

formation about themetallic or insulating nature of a givenmany-electron problem, aswell

as quantitative information about the electronic mass renormalization Z and quasiparticle

lifetime τ is encoded in the momentum/energy dependence of the electronic self-energy

Σ. If the temperature T is low enough, even a quick glance at the low-energy behavior of

Σ, either in real or in Matsubara frequencies, yields a qualitatively reliable estimate of the

most important physical properties.

The situation is clearly different on the two-particle (2P) level, which can be exper-

imentally accessed by e.g., inelastic neutron scattering [128, 129]. Due to the complex

physical mechanisms at play, the related textbook knowledge is mostly limited to general

definitions [6–9]. For this reason, corresponding analytical/numerical calculations are

often performed with significant approximations or with a black-box treatment of the 2P

processes. However, the last decade has seen a rapid development of methods at the

forefront of the many-electron theory [51, 98, 121], for which generalized 2P correlation

functions are the key ingredient. This is reflected in an increasing effort to develop the

corresponding formal aspects and algorithmic procedures [18, 33, 51–53, 58, 59, 67, 94, 96,

98, 104, 105, 121, 122, 130–142]. At the same time, the rather poor physical understanding

of the 2P processes remains largely behind the requirements of the most advanced QFT

methods. Interesting progress has been recently reported [25, 57] on the relation of 1P

Fermi-liquid parameters to 2P scattering functions. Ideally, however, one would like to be

able to interpret the physics encoded at the 2P level with a similar degree of confidence as

for the 1P processes.

In this chapter, we make a significant step forward in this direction: We identify

the fingerprints of two major hallmarks of strong correlations in the generalized charge

susceptibility. In particular, we pinpoint the frequency structures encoding the formation

of local magnetic moments as well as of their Kondo screening. In this perspective, we also

show how the Kondo temperature TK corresponds to a specific property of the generalized

charge susceptibility, allowing for an alternative, simple path of extracting its value directly

from the lowest Matsubara frequency data.

We recall that the Kondo problem [30] provides a paradigm for a variety of physical

effects [143–147] involving strong electronic correlations. Local moment formation and

Kondo screening are also a crucial ingredient of the physics described by the dynamical

mean-field theory (DMFT) [41] through the solution of a self-consistently determined

auxiliary Anderson impurity model (AIM).

Learning how to extract important physical information from the generalized suscep-

tibility represents a substantial improvement for the understanding of quantum many-

electron physics at the 2P level. Further, having this information at hand also enables us to

draw conclusions on two relevant theoretical questions: (i) The relation of themultifaceted

manifestations [12] of the breakdown of perturbation theory, discussed in great detail in
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Figure 4.1: Behavior of the static magnetic (left) and charge (right) response function for the AIM

(green diamonds) and the HA (grey dashed-dotted line) for an interaction value of U � 5.75 as a

function of T. To facilitate the identification of the Curie-Weiss behavior ∝ 1/T, Tχm is plotted in

the left panel.

Chapter 3, such as the divergences of the irreducible vertex functions [10, 12, 13, 17–19,

21–23, 25, 26] and the crossing of multiple solutions [11, 12, 14, 15, 19–21, 23, 24] of the

Luttinger-Ward functional, with the local moment physics and its Kondo screening; (ii) the

built-in limit of advanced perturbative approaches to describe these fundamental physical

effects.

4.1 Response functions for the AIM

Before starting with the analysis of the generalized susceptibility we first present a concise

overview of the behavior of the static response functions of the impurity site in the charge

χc(ω � 0) � χc and the magnetic χm(ω � 0) � χm channel. This section serves hence

as a short summary on the well-known and thoroughly studied response functions of the

AIM for a half-filled case without external magnetic field, we refer e.g., to Refs. [9, 30,

39, 40] for more details. For the purposes of this chapter we also compare the results of

the AIM to the ones of the Hubbard atom (HA) case (i.e., the atomic limit of the AIM,

see Sec. 2.1), where simple analytic expressions are available [23, 33]. We recall that in

the HA no hopping term is taken into account, hence representing the case of a single

site with solely an on-site interaction U. In this way the HA case constitutes an “ideal

realization” of the local moment physics, and therefore represents an important baseline

for our considerations throughout this chapter.

In Fig. 4.1 we show Tχm (left panel) and χc (right panel) as a function of temperature

for a sizable interaction value of U � 5.75 for both the AIM (green diamonds) and the HA

(grey dashed-dotted line) case. Note that the specific value ofU � 5.75 is also considered in

the remaining sections of this chapter because it represents an interaction value for which

the local magnetic moment in the AIM is already well-defined in a broad T-range, while,

at the same time, self-consistent perturbative calculations (see below in Sec. 4.5) are still

feasible. We note that in other contexts, U for the AIM is often expressed in terms of the
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scale ∆0 � πV2ρ0, see Sec. 2.1.1. Since in our case ∆0 � π/5, U � 5.75 corresponds to

U/∆0 ≈ 9.15.

Starting this step-by-step analysis by inspecting the HA results for χm at high temper-

atures, one observes a well-defined and expected trend: The magnetic susceptibility rises

as the local moment begins to form for T ∼ U. For higher temperatures, in the so-called

free-orbital regime [39, 40], all states are thermally populated, leading to Tχm ' 1/8 (not

shown). In the local moment regime T < U, the susceptibility shows a Curie-Weiss ∝ 1/T
behavior, which can be clearly noticed in the plot as a constant. Comparing the HA re-

sult with the QMC calculations for the AIM one observes a qualitatively similar trend at

high-temperatures, as expected. However, the AIM contains also the physics of the Kondo

screening, originated by the coupling to the conduction electron bath. This coupling leads

to a deviation of the plain∝ 1/T dependence found in theHA case. After the local moment

is formed at about T ≈ 1, where the maximum of Tχm is found, the moment begins to get

screened as the temperature is decreased. At low-T the screening of the local moment is

fully effective, which leads to a constant-in-T behavior of χm , seen as a steep decrease of

Tχm in the left panel of Fig. 4.1.

While the local moment formation as well as its screening for magnetic response func-

tions is a thoroughly studied topic, the corresponding behavior of χc is, in comparison,

less frequently analyzed. The temperature dependence of χc is shown in the right panel

of Fig. 4.1. At first, we focus again on the HA case: Here, one readily observes a signif-

icant decrease of the charge fluctuations as the local moment is formed at temperatures

of the order of U (note the linear x-scale instead of the logarithmic one of the left panel).

Similarly, also for the AIM a decrease is found in the temperature regime where χm shows

predominantly a Curie-Weiss behavior. However, at low-temperatures the local moment

is screened and hence the charge fluctuations get partially revived. This is reflected in the

observed low-temperature increase of χc of the AIM, which is completely absent in the HA

case.

It is important to recall here that the changes fromone regime to theother are continuous

crossovers in the AIM, i.e., there is no abrupt change of phase as that observed at the MIT

in the Hubbard model. This also applies to the Kondo temperature TK, which represents a

crossover temperature. Thus, let us present the precise definition adopted throughout this

work for computing TK.

Specifically, the value of the Kondo temperature for the AIM has been determined from

the overall temperature dependence of the static magnetic susceptibility χm(ω � 0) on the

impurity site. This (well-known) procedure was described in a work by H. R. Krishna-

murthy, et. al [39, 40] and is also summarized in Ref. [30]. It is based on comparing

the temperature evolution of χm(ω � 0) for a fixed interaction value U to a universal

renormalization group solution for a Kondo-Hamiltonian [39, 40]. Note that the constants

used in Refs. [39, 40] are included in our definition of the static magnetic susceptibility,

leading to χm � χRefs. [39, 40]m /(gµB)2, where g � 2 and µB is the Bohr magneton. In practice,

one must (i) compute Tχm(ω � 0) in a quite large temperature range and (ii) shift the data
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Figure 4.2: Extracting the value of TK of the AIM for a given interaction value (U � 5.75) from the

numerical data for the static local magnetic susceptibility χm(ω � 0) (QMC, green), by shifting the

universal result (red) onto it (highlighted by the red arrow), obtained from the renormalization-

group solution of a Kondo-Hamiltonian [39, 40]. The value for TK obtained in this way is shown as

the vertical grey dotted line.

of the universal result [39, 40], plotted as a function of log(T/TK) with TK � 1, onto the

numerical result for Tχm(ω � 0). This way, one obtains the effective Kondo temperature

of the AIM for this value of U. The procedure is shown in Fig. 4.2 for U � 5.75, where

the unshifted case is plotted in the left panel, the shifted one in the right. This shift is

applied in such a way that the agreement between the universal result for the Kondo-

Hamiltonian (red) and the numerical one for the AIM (green) is the most precise for low

temperatures T . TK. For the specific case of U � 5.75, the Kondo temperature results to

TK ' 1/65 ≈ 0.015. Throughout this thesis this procedure was used to obtain the value

of TK for several interaction values of the AIM, in particular, also the ones depicted in

Fig. 3.14, where they were shown to agree well with the analytic estimate of Eq. (2.9) for

TK corresponding to the wide-band limit of the AIM.

4.2 How to read two-particle quantities

After discussing the behavior of the response functions of the AIM, we now turn to the

generalized susceptibilities, defined in Eq. (2.17). Note that a minor change of notation is

made in the following. To facilitate the distinction between the static response functions

χr(ω � 0) � χr and the generalized susceptibilities χνν
′

r (ω � 0) in channel r, the latter will

be highlighted by adding a tilde: χνν
′

r (ω) → χ̃νν
′

r (ω) throughout the rest of this chapter.
More on a physical note, it is worth underlining already at this stage that, for repulsive

on-site interactions, the local generalized charge susceptibility χ̃ νν′c (ω)� χ̃ νν
′

↑↑ (ω) + χ̃
νν′

↑↓ (ω)
allows for a particularly high readability of the underlying physics at the 2P level. While

this statement will be substantiated by the numerical analysis we discuss below, we can

already note–on a general level–that correlation functions in the charge channel capture

fundamental properties of any interacting electron system. In particular, they describe

the fluctuations of its charge carriers, which are crucial, for example, to characterize the
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different mobility properties of metallic and (Mott) insulating phases.

As already mentioned in Sec. 2.2.3, the corresponding physical charge response func-

tion, χc(ω), can be directly obtained from the generalized susceptibility χ̃νν
′

c (ω) by sum-

ming over the fermionic Matsubara frequencies ν, ν′ (cf. Eq. (2.29)). For convenience we

reproduce Eq. (2.29) here for the static case (ω � 0) regarded throughout this chapter:

χc � χc(ω � 0) � T2

∑
νν′

χ̃c
νν′

� T2

∑
νν′
(χ̃ νν′↑↑ + χ̃ νν

′

↑↓ ) (4.1)

After this general considerations, we start by analyzing the arguably simple case of the

Hubbard atom. In Fig. 4.3 (upper panels), we show an intensity plot of χ̃νν
′

c (normalized

by T2
) for U � 5.75, half filling (where χ̃νν

′
c is real [23, 33], cf. Sec. 2.2.4.1) and different

temperatures. At high temperature (Thigh � 2, left panel), the overall frequency structure

consists of a large positive-valued diagonal (yellow/red) and a weak negative cross struc-

ture (blue). This corresponds to a typical perturbative behavior [33, 96], dominated by the

diagonal bubble term χ̃ νν
′

0
� χ̃ νν

′

0,↑↑ �−δνν′G(ν)
2/T: Correlation effects are washed out for

T&U, consistent with the feasibility of high-T expansions.

The situation changes radically when reducing T: in the intermediate (Tint � 0.1) and

low (Tlow � 1/60 ≈ 0.017) temperature regime (central and right panel), one observes a

strong damping of all diagonal elements of χ̃νν
′

c . The effect is more pronounced at low

frequencies, as the sign of χ̃ν�ν
′

c becomes even negative (bluish colors) for |ν |.
√

3/2 U [23]

(black square). This major feature is accompanied by the appearance of small positive off-
diagonal elements (yellow). The net effect is a suppression of the physical susceptibility χc ,

see Eq. (4.1), which occurswhen the thermal energy is no longer large enough (T∼ν<U) to

counter the formation of a local moment driven by U, eventually yielding an exponentially

small χc ∼ e−U/2T
for T → 0, as seen in Fig. 4.1.

As opposed to theHA case, we now consider the case of the perturbative randomphase

approximation (RPA, central row). The RPA results were obtained by using the simplest

possible approximation for the irreducible vertex (Γνν
′

↑↓ � U, Γνν
′

↓↓ � 0∀ ν, ν′) and the non-

interacting G0 of the AIM as propagator. Instead of sign changes of the diagonal of χ̃νν
′

c ,

for all temperatures no qualitative deviations from the perturbative structure, i.e., from the

one identified at high-T in the HA case, is observed.

Altogether, the low-T HA results illustrate, on a single glance, how the onset of a

pure local moment is encoded in the charge sector: A progressive emergence of a non-

perturbative sign structure in χ̃νν
′

c (strong negative diagonal, light positive background),

which qualitatively appears as the opposite image of the perturbative one seen for the RPA

(strong positive diagonal, light negative background). This also induces several negative

eigenvalues of χ̃νν
′

c , responsible for the breakdown of perturbative expansions [12] (see

Sec. 3.1).

Let us now examine how this picture changes when the HA system is connected to

an electronic bath, corresponding to the full Anderson impurity model. By comparing
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Figure 4.3: Upper part: Matsubara frequency structure of T2χ̃νν
′

c (ω� 0) for the HA (top row), the

RPA (center row) and the (numerically exact) QMC (bottom row) solution of the AIM for U �5.75

and various temperatures. A fixed number of Matsubara frequencies is plotted (note that the

readability is improved here by hiding the corresponding labels). The main frequency structures,

as described in the text, are marked by black and white squares. Lower panel: Lowest Matsubara

frequency elements of T2χ̃νν
′

c (ω � 0): χ̃D � T2χ̃ πT, πT
c (violet) and χ̃O � T2χ̃ πT,−πT

c (green) as a

function of temperature. They coincide at Thigh at the divergence of Γc (red (I)), as well as at low-

temperatures at T ' TK (black triangle). The inset shows a zoom for T ∼ TK (vertical blue line).

The local moment and the Kondo screened regime are sketched by the arrows without and with

the surrounding screening cloud, respectively.

the results of T2χ̃νν
′

c (bottom-row panels of Fig. 4.3, computed with w2dynamics [85],

see Sec. 2.3.1.2) to those of the HA, we observe almost no difference at Thigh. This is not

surprising, as thermal fluctuations prevail over both correlation (U) and hybridization

(V) effects in this case. Upon lowering T to Tint, we enter the local moment regime of
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the AIM, see also Fig. 4.1. This is reflected in a qualitatively similar evolution as seen

in the HA: a progressive suppression of the diagonal entries of χ̃νν
′

c , turning negative in

the low-energy sector (black square), accompanied by positive, yet smaller, off-diagonal

contributions, with an overall freezing effect on the local charge fluctuations (see Eq.(4.1)

and more explicitly below). This is how the formation of a local moment affects the charge

sector, thus representing its fingerprint. However, due to the screening effects of the bath, its

features get weakened, explaining the quantitative differences to the HA (e.g., the reduced

size of the black square).

The most interesting situation is encountered when reducing T further down to Tlow &
TK (right panel), where the Kondo screening induces qualitative differences w.r.t. the HA.

We observe that the low-frequency diagonal elements of χ̃νν
′

c (white square) are flipped

back to positive, as in the perturbative regime and the RPA. This trend is driven by the

low-energy correlations between electrons with antiparallel spins (χ̃ ν�ν
′

↑↓ ), as we explicitly

show in Sec. 4.3. The weakening of their negative contribution increases the physical

charge susceptibility χc , see Eq. (4.1), and simultaneouslymitigates themagnetic response.

However, in the intermediate frequency regime, the diagonal elements of χ̃νν
′

c are still

negative, reflecting the underlying presence of a (partially screened) local moment. The

fingerprint of the Kondo regime is, thus, the onion-like frequency structure of χ̃νν
′

c , which

is clearly recognizable in the rightmost bottom panel of Fig. 4.3: (i) a high-frequency

perturbative asymptotic, (ii) a local moment driven structure (with suppressed diagonal)

at intermediate frequencies, (iii) an inner core (with a similar sign structure as (i)) induced

by the Kondo screening. A quick glance at the sign structure of χ̃νν
′

c therefore allows for an

immediate understanding of the underlying physics. This nicely illustrates the balanced

competition in the charge sector between the freezing effects of the local moment and the

defreezing effects of its low-energy screening, which characterizes the Kondo regime.

The connection between the frequency structure of χ̃νν
′

c and the correspondingbehavior

of the physical response χc in the localmoment and theKondo regime, can also be traced in

the results of partial summations of the generalized charge susceptibility. Specifically, we

consider the ν, ν′ summation of χ̃νν
′

c over frequency boxes of increasing sizes, as detailed

by the following expression:

χpartial(νmax) � T2

νmax∑
ν,ν′�−νmax

χ̃ νν
′

c (4.2)

Evidently, for νmax →∞, χpartial corresponds to χc , and Eq. (4.2) reduces to Eq. (4.1). At

the same time, by inspecting the results obtained for finite νmax, the energy-selective effects

of different nonperturbative/perturbative features in χ̃νν
′

c can be clearly individuated.

In Fig. 4.4 the result of this partial sum is displayed as a function of νmax for the three

different temperatures regimes discussed in Fig. 4.3.

At high-temperature (Thigh), i.e., in theperturbative regime, χpartial (red circles) is always

positive and increasesmonotonically toward its asymptotic value for νmax →∞ (red dashed

line).
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Figure 4.4: Partial frequency summation of T2
∑
νν′ χ̃

νν′
c (cf. Eq. (4.2)) for the AIM at U � 5.75 over

frequency boxes of increasing size (νmax) for three different temperatures regimes (solid lines). The

values of the physical response χc , which correspond to the νmax→∞-limit, are depicted as dashed

lines. The area where χpartial is negative is highlighted by a grey background.

For intermediate temperatures (Tint) we enter the local moment regime of the AIM.

As we discussed above, this results in large negative diagonal entries in χ̃ νν
′

c at low-to-

intermediate frequencies. Due to these negative contributions, χpartial (orange triangles) is

negative for small νmax and further decreases until, for a certain value of νmax a minimum is

reached. Thereafter, the perturbative high-frequency asymptotics comes into play, slowly

enhancing χpartial until a positive value of χc is eventually obtained for νmax →∞ (orange

dashed line). Because of the initial negative low-frequency contributions to χpartial, the final

value of the physical charge response χc gets strongly suppressed w.r.t. the perturbative

one.

At low-temperatures (Tlow) in the Kondo regime χ̃νν
′

c displays the characteristic “onion-

structure”. This represents a clear hallmark of the competition between the two trends

discussed above. χpartial (blue diamonds) starts positive, due the positive low-frequency

elements of the diagonal of χ̃νν
′

c . χpartial then decreases as a function of νmax until aminimum

is reached, similarly as in the local moment regime. Eventually it increases again until a

positive value is recovered for νmax →∞. Due to the initial positive sign of the low-energy

contributions to the frequency sum of Eq. (4.2), the final value of the physical response

χc gets slightly enhanced w.r.t. the corresponding one in the local moment regime, where

these positive low-energy contributions to the partial sum are absent.

Note, that the characteristic frequency structures in χ̃νν
′

c (i.e., the local moment and the

onion structure) are also found for other values of U, as well as in other models, see further

Appendix A.1.1.
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Figure 4.5: Behavior of the lowest-frequency diagonal element of T2χ̃ν�ν
′
for the ↑↑ (blue), the

↑↓ (red) and the charge (↑↑ + ↑↓) sector (violet, shown also in Fig. 4.3), for the AIM at U � 5.75

as a function of the temperature on a logarithmic axis. The vertical dotted lines mark the three

temperatures also shown in Fig. 4.3.

4.3 How to extract the Kondo temperature in the charge sector

The behavior of χ̃νν
′

c described above is also reflected in the temperature evolution of its

lowest frequency entries: the diagonal χ̃D�T2χ̃ πT, πT
c and the off-diagonal χ̃O�T2χ̃ πT,−πT

c ,

shown in the lowest panel of Fig. 4.3. We can readily trace the sign changes marking

the three regimes discussed above, associating the (negative) minimum of χ̃D
with the

temperature at which the strongest local moment effects are observed.

As already mentioned in the previous section, it is mainly the correlation between antipar-

allel spins T2χ̃ πT,πT
↑↓ � χ̃D

↑↓ that underlies the behavior of χ̃D
, which is verified in Fig. 4.5.

The only remaining contribution to χ̃D
originates in the ↑↑ sector. However, since on the

diagonal there are no vertex corrections, Fν�ν
′

↑↑ � 0, see e.g., Refs. [33] and [54], only the

bubble term remains T2χ̃ν�ν
′

↑↑ �T2χ̃νν
′

0
�−Tδνν′G(ν)2, which is plotted as χ̃D

0
(blue line).

The screening induced enhancement of χ̃D
at lower temperatures has remarkable conse-

quences: We find that crossing the Kondo temperature, as defined in a standard way from

the behavior of the static magnetic response of the system, see Sec. 4.1 (TK � 1/65≈ 0.015

at U � 5.75), matches with high accuracy the equality of χ̃D
and χ̃O

observed at low-T
(s. inset of Fig. 4.3, marked by black triangle). We emphasize that this criterion holds more

generally. As shown in the phase diagram of the AIM in Fig. 4.6 (left panel), the condition

χ̃D � χ̃O
(black triangles) perfectly traces TK (blue line)

1
in the entire local moment regime

T,V < U (see also the logarithmic inset), i.e., where the definition of a Kondo scale is

actually meaningful. Note that this is not the case for other criteria one could naturally

think of, such as χ̃D�−χ̃O
or χ̃D�0 see Appendix A.1.2.

Moreover, our simple 2PdefinitionofTK holds alsobeyond the single impurityproblem.

In Fig. 4.6, we show DMFT calculations for the periodic Anderson model (defined in

Sec. 2.1.2) on a square lattice with nearest-neighboring hopping t (PAM, central) and for

a Hubbard model (defined in Sec. 2.1.3) on a Bethe lattice with unitary half-bandwidth D
(HM, right).
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Figure 4.6: Phase diagramof theAIM (left), the PAM (DMFT) (middle), and theHM (DMFT) (right)

as a function of the interaction U (hybridization V for the PAM, U fixed) and the temperature T
showing the line where χ̃D � χ̃O

holds (black triangles dashed), i.e., the singularity of the 2×2

submatrix of χ̃νν
′

c . The left and central panels show the agreement at low temperatures between

TK (blue solid line) and the condition χ̃D � χ̃O
, clearly evident also in logarithmic scale (left inset).

The local moment regime is represented by a bluish shadowed area in both panels. The red lines

denote the (first) divergence of the irreducible vertex Γc . For the HM on the Bethe lattice the

paramagnetic metallic (PM)/insulating (PI) phases are indicated together with their crossover. The

coexistence region is shown in gray. The arrow on the abscissa (left) marks the interaction value

used in Figs. 4.3, 4.5 and 4.7. The figure is reproduced from Ref. [68].

In particular, we observe that for the PAM, the same matching of the condition χ̃D � χ̃O

(black triangles) and TK [44, 148] (blue line) is found in the local moment regime (i.e.,

when V < t, blue-shadowed area). Note that for the PAM the maximum of χm(ω � 0) as
a function of the temperature was used to determine the value of the Kondo temperature,

see further the supplemental material of Ref. [44].

In theHM, theKondo temperature characterizing the auxiliaryAIMassociatedwith the

self-consistentDMFTsolution, depends on the temperature itself: T HM

K
(T). Hence, χ̃D� χ̃O

(black triangles) indicates that the temperature equals the effective Kondo temperature,

i.e., T HM

K
(T)�T. Physically, it is natural to relate this condition to the onset of low-energy

electronic coherence: For all temperatures below the χ̃D � χ̃O
condition, a conventional

Fermi-liquid behavior of the physical response can be expected (e.g.: ρ(T) ∝ T2 , cV (T) ∝ T,
etc. [6]). This would also be consistent with the χ̃D � χ̃O

condition approaching the Mott

Hubbard metal-insulator transition (MIT) at UMIT(T �0)�Uc2 in the low-T limit (see also

recent DMFT studies of the physics in the proximity of the MIT [149, 150]).

The equality of the elements of the innermost 2×2 submatrix of χ̃νν
′

c represents therefore

a very simple, clear-cut 2P criterion for determining TK in the charge sector.

4.4 A nonperturbative Fermi liquid

Beyond its physical relevance, our improved 2P understanding sheds light onto the non-

trivial relation with the breakdown of perturbation theory [12], thoroughly introduced in

1For different interaction values T
K

is extracted, as detailed in Sec. 4.1 (blue crosses), and then fit-

ted using a function based on the analytical expression for T
K

(cf. Eq. (2.9)) in the wide-band limit [30]

(A
√

U∆
0

exp (−B U
∆0

+ C ∆0

U )).
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Chapter 3. At high T, where ν0 � πT & V,U, t, the 2 × 2 submatrix encodes all relevant

energy scales, the rest being nonsingular high-frequency asymptotics. In this case χ̃D� χ̃O

corresponds to a singular eigenvalue of the entire χ̃νν′c and hence to a divergence of the irre-

ducible vertex function Γνν
′

c � [χ̃νν′c ]−1−[χ̃νν′
0
]−1

, specifically to the first (I) one encountered

when reducing the temperature (red line in Figs. 4.3 and 4.6) [10, 19, 22, 23, 26], shown

also in several instances in Secs. 3.1.1, 3.1.2 and 3.1.3. For intermediate temperatures, the

2×2 submatrix is controlled by the local moment, leading to a strongly negative χ̃D
and

negative eigenvalues of the submatrix (as in the HA case). At TK the eigenvalue flips sign

and one finds again χ̃D > χ̃O
for T . TK, as in the perturbative regime (s. Fig. 4.3, lowest

panel). Here, however, because of the onion-like structure of χ̃νν
′

c , the positive-definiteness

(and thus the invertibility) is guaranteed only for an inner submatrix describing the Fermi

liquid regime, but not for the full χ̃νν
′

c . This explains why divergences of irreducible vertex

functions can occur also at low temperatures [22] even in the presence of a Fermi liquid

ground state, as shown explicitly in Sec. 3.1.3. Indeed, such vertex divergences mark the

distinction between a Fermi liquid in the weak- and in the strong-coupling regime, which

mostly affect the intermediate frequency/energy domain.

4.5 Limitations of perturbative approaches

The direct link between the 2P fingerprints of local moments and vertex divergences,

sets also precise physical limitations for self-consistent perturbative methods, where–per

construction–Γ is finite (with the only exception of second-order phase transitions to long-

range ordered phases, not relevant here). Hence, the impact of the characteristic physics

emerging from the magnetic sector onto the charge channel, cannot be described by such

self-consistent perturbative methods. We substantiate this statement by considering two

advanced perturbative schemes, the functional renormalization group (fRG) [98] (in the

1`K truncation, see Sec. 2.3.3) and the parquet approximation (PA) [55, 90–92, 96, 151–

157], both introduced in Chapter 2, where per construction Λνν
′
� U holds. The results

obtained for the AIM with U � 5.75 and T �Tint are shown in Fig. 4.7. χ̃νν
′

c computed by

the fRG and PA (upper panels) appear qualitatively different from the (numerically) exact

one of Fig. 4.3 (AIM, bottom-row): The diagonal elements are all positive and substantially

larger than the off-diagonal ones, resembling more the case of the RPA (central-row).

This ensures the positive-definiteness of the entire χ̃νν
′

c , preventing the strong suppression

effects of the charge response, which characterize the localmoment regime. This drawback

qualitatively affects the physical description. In particular, the temperature dependence of

the numerically exact charge susceptibility χc (Fig. 4.7 lower panel) exhibits a clearminimum
for intermediate Thigh>T>TK, as discussed in Sec. 4.1. This emerges from the competition

between the suppression induced by the local moment (see the extreme HA case) and

the low-energy screening. Both features are not captured by the fRG (blue pentagons)

and PA (brown squares), which display a monotonous behavior as T is decreased. At

the same time, as we show in the following, the perturbative approaches are able to
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Figure 4.7: Generalized charge susceptibility (T2χ̃νν
′

c ) for the AIM, as obtained by means of PA

and fRG (using the 1`K truncation, see Sec. 2.3.3 for details) for U � 5.75 and T � Tint. The same

color scale as in Fig. 4.3 (AIM, Tint) is used. Lower panel: static physical charge susceptibility χc

computed with different approaches as a function of T.

capture the qualitatively correct behavior of the magnetic response, reflecting the absence

of divergences of Γ in this sector.

To substantiate this understanding, we now focus on the static magnetic response

χm(ω � 0) as obtained from the PA as well as the fRG and extract the corresponding Kondo

temperature, in a similar fashion as in Sec. 4.1. In the following we choose an interaction

value of U � 4.2, which ensures that, as opposed to the U � 5.75 case shown above, low

temperatures (T < TK) are numerically accessible with our PA solver.

In the left panel of Fig. 4.8 the Kondo temperature is extracted from the PA data (brown).

The corresponding result is incorrect at the quantitative level (T PA

K
� 1/12 & 2TK, where

TK � 1/27). Nonetheless, the PA method yields a qualitatively correct description of the

local moment physics (namely of its overall temperature-dependence) in the magnetic

channel. Similarly as in Fig. 4.2 the unshifted universal result is shown as the dashed red

line, whereas the arrow illustrates the shift. In the same way the fRG 1`K case (blue) is

shown in the right panel of Fig. 4.8. Here one notices that, as in the PA case, the quantitative

value is too large (T fRG

K
� 1/8). Further the qualitative description is no longer perfect,

showing deviations from the universal result for T < TK. Let us note at this point, that

the multiloop fRG extension (mfRG) [104, 105] of the 1`K contains all PA diagrams, as

detailed in Chapters 2 and 6. This means that, if it is solved, the result coincides with the
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Figure 4.8: Extracting TK in the standard way described in Sec. 4.1, for the PA (left panel) and the

fRG (right panel) data for U � 4.2, where the respective result is shown as vertical dotted line

for each method. Interestingly, the PA manages to describe the qualitatively correct behavior of

χm(ω � 0), albeit with a too high T PA

K
& 2TK. The fRG method with a 1`-truncation, gives an even

larger estimate for TK and displays some qualitative deviations for T < TK.

PA solution, removing the low-T discrepancies observed for 1`K in Fig. 4.8.

To summarize, both perturbativemethods describe the physics of themagnetic channel

in a qualitatively correct way (with somewhat larger deviations in the 1`K-fRG case).

This contrasts entirely their performance in the charge sector, where their description

is fully incorrect, even at a qualitative level, as shown and discussed above. The false

description of the impact of the local moment formation and its screening onto the charge

fluctuations roots back to the absence of divergences of the corresponding irreducible

vertex functions [10, 13, 17, 19, 21–23, 26] in both perturbative approaches. The same

consideration applies to the paring channel (not shown). For completeness, in Fig. 4.9 the

result for the physical local charge susceptibility χc is shown for U � 4.2 (solid lines), as a

reference also the result forU � 5.75 is reproduced (dashed and transparent). In both cases

it can be readily noticed that both perturbative methods fail in describing the minimum of

χ(T) associated with the local moment regime of the AIM, as seen above.

To analyze this qualitative drawback in the description of local moment physics in

greater detail, we provide a comparison for U � 4.2 of the low-frequency elements of χ̃νν
′

c ,

χ̃D � T2χ̃ πT,πT
c and χ̃O � T2χ̃ πT,−πT

c , for all methods considered, similarly as in Sec. 4.3.

Fig. 4.10 shows the behavior of the diagonal frequency elements (χ̃D
) (solid lines) for the

numerically exact QMC solution (green, top panel), the PA result (brown, middle) and the

fRG result (blue, bottom), as well as of the corresponding off-diagonal ones (χ̃O
) (dashed

lines). The QMCdata (top panel) for U � 4.2 display qualitatively the same behavior as the

QMC results for U � 5.75 shown in Fig. 4.3. In particular one readily notices the negative

sign of χ̃D
, which encodes the freezing of charge fluctuations in the local moment regime.

The corresponding data for the perturbative methods show instead qualitative differences

w.r.t. the QMC ones in the entire local moment regime as no sign change in χ̃D
(middle

and bottom panels) is observed in the whole temperature regime. As a last point, we also
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Figure 4.9: Temperature behavior of the physical static charge susceptibility χc for U � 4.2 (solid)

and U � 5.75 (dashed) for the exact solution (QMC, green diamonds) and perturbative approaches

(PA, brown squares and fRG, blue pentagons).

note that for the PA the largest deviations are found precisely for the temperatures where

χc is mostly suppressed in the numerically exact solution.

4.6 Discussion and current developments

In this chapter, we have characterized how the local moment formation and its Kondo

screening affect the generalized susceptibility in the charge channel [68]: On the one hand,

the local moment leads to a strong suppression of the physical charge response χc . On the

2P-level this is reflected most evidently in suppressed or even negative diagonal elements

of χ̃νν
′

c , which together with an emerging off-diagonal frequency structure, yield negative

eigenvalues of χ̃νν
′

c . Each time a sign change of one of the eigenvalues of χ̃νν
′

c occurs,

the irreducible vertex diverges, a feature that is –by construction– entirely absent in self-

consistent perturbative approaches such as the (truncated) fRG and the PA. On the other

hand, the screening of the local moment leads to a partial revival of the charge response

χc . In the Kondo regime for T ∼ TK, we observed the formation of the “onion”-structure

in χ̃νν
′

c , where the negative diagonal entries flip sign again in the lowest-frequency range.

These quite general findings allow discerning the physical situation at hand by just a

single glance at theMatsubara frequency structure of the local generalized susceptibility in

the charge sector. Additionally, based on our results [68], we could identify a quantitative

criterion for the Kondo temperature, namely that all elements of the lowest-frequency 2×2

submatrix of χ̃νν
′

c (for ν, ν′ � ±πT) are equal, and hence have a zero-eigenvalue.

At this point, one might wonder what happens, instead, in the magnetic channel on the

2P level. We recall that the magnetic channel is the dominant fluctuation channel of the

AIM for repulsive interactions. As discussed in Sec. 4.1, with decreasing temperatures,

χm changes from a ∝ 1/T Curie-behavior to one constant in T. To understand how this

is reflected on the 2P level, we show a similar plot as in Fig. 4.3, but only for the AIM in
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Figure 4.10: Comparison of χ̃D
and χ̃O

for the QMC (top), PA (middle), fRG (bottom) for U � 4.2

anddifferent temperatures. Also shown as a vertical blue line in all panels is theKondo temperature

TK as obtained from the numerically exact solution for U � 4.2. The grey vertical lines show the

Kondo temperature as obtained from the approximative solutions (PA and fRG) described above.

both the charge (top row) and the magnetic (bottom row) channel in Fig. 4.11. Here one

immediately notes the crucial difference between the two channels. While quantitative

changes in the magnetic channel are visible, the main frequency structure remains the

same as the temperature is decreased, even for very low temperatures Tcold � 1/300 � TK.

No change of sign or other crucial qualitative changes can be identified, apart from the

finerMatsubara frequency grid, as opposed to the charge channel. Indeed, it is the “precise

balance” in the charge channel, i.e., the delicate interplay between the strong suppression

and its mitigation as T is reduced, which allows for a more immediate readability of the

generalized two-particle quantities and, in particular, of their sign-structure.

Fig. 4.11 also shows results at lower T than those analyzed in Ref. [68] (see Fig. 4.3). In

particular, turning back to the inspection of the charge channel, we note that the results

for χ̃νν
′

c at Tcold � TK, demonstrate how, for very low temperatures, the onion structure

vanishes, and an apparently more “perturbative-looking” frequency structure seems to be

recovered. In fact, by comparing the rightmost upper panel of Fig. 4.11 to the PA result

of Fig. 4.7 one notices a striking qualitative similarity. This is also in agreement with

the low-T results of Fig. 4.10, where the QMC data for the 2 × 2 submatrix become more

similar to the ones of the fRG and the PA. Physically, this is related to the manifestation

of the Fermi-liquid regime of the AIM, where the charge fluctuations become gradually

revived. On the two-particle level, however, a crucial difference remains between the PA

(or the fRG) and the QMC case. Although the fingerprint structure corresponding to

the local moment formation is no longer directly visible in χ̃νν
′

c , there are still negative

eigenvalues for T � TK present (see Sec. 3.1.3), as opposed to the case of the self-consistent

perturbative solutions of the fRG and PA (or also the perturbative case ofThigh � TK, which

also shows a qualitatively similar structure). This feature distinguishes a Fermi-Liquid in
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Figure 4.11: Similarly as in Fig. 4.3, AIM results for T2χ̃νν
′(ω � 0) in the charge (upper) and the

magnetic (lower) channel for a broad temperature range and fixed U � 5.75.

the perturbative from one in the nonperturbative regime. The negative eigenvalues of

the low-T QMC solution are also reflected in the characteristic structure of the partial

summation, introduced in Sec. 4.2, which is explicitly reported in Appendix A.1.1. From

a more general perspective, this finding underlines that the “onion structure” in χ̃νν
′

c is a

rather selective hallmark of the Kondo regime, i.e., of T ∼ TK.

To complete the description of our numerical results, we also consider smaller values of

U, i.e., where less negative eigenvalues are present. In particular, in Fig. 4.12we report Tχm

(left panel) and χc (right panel), similarly as in Fig. 4.1, forU � 3.0 andU � 4.2, as indicated

in the phase diagram shown in the inset of the right panel. Evidently, U � 3 corresponds

to a borderline case, where only the first divergence line is crossed for a limited T-range
as T is varied. For both interaction values, the magnetic channel displays the behavior

already discussed in Sec. 4.1, where U � 3 corresponds to a weaker local magnetic moment

than U � 4.2. In the charge response for the case of U � 4.2, a clear minimum can be

still identified, as already discussed throughout this chapter (see explicitly Fig. 4.9). In

the borderline case of U � 3, one observes the precursor of the minimum of χc , which

corresponds to the occurrence of an almost “stationary” point in the temperature range of

the local moment formation. This analysis indicates that in the perturbative regime, where

no vertex divergences are present, the suppression of the charge fluctuations is too weak

to produce a minimum in the T-dependence of the local charge response. More systematic

investigations of a possible strict link between the minimum formation and the presence

of divergences in correlated metallic systems is left for future studies. A fist step in this

direction, inspired by the results shown in this thesis, have been performed in Ref. [158],

where the temperature-behavior of χc was studied for the DMFT solution of the Hubbard

model (see also the discussion at the end of the section).

Finally, we turn to the central question of this chapter: What is the underlying physical
mechanism that triggers the perturbative breakdown?

Based on the insights gained so far, the localmoment formation can be clearly identified
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Figure 4.12: Temperature dependence of the physical response functions of theAIM in themagnetic

(left) and the charge (right) channel for two different interaction values. Left panel: The magnetic

response is plotted as Tχm , similarly as Figs. 4.1 and 4.2, to facilitate the identification of the local

moment formation. At low temperatures, both data sets perfectly match the universal result (red

line), see Sec. 4.1. Right panel: The inset shows the first divergence lines of the AIM (red and

orange), described in Chapter 3, together with the two interaction values U � 3 (teal triangles) and

U � 4.2 (green diamonds) plotted as vertical lines.

as the driving mechanism behind the singular eigenvalues of χ̃νν
′

c [68], as speculated

already in early works [10, 12, 18, 22]. This fundamental physical effect, which dominates

the local magnetic response, leads to a frequency dependent suppression of the diagonal

entries of χ̃νν
′

c and a concomitant emergence of off-diagonal ones [18, 26, 68].

These findings strongly suggest the interpretation that the irreducible vertex is, in-

tuitively speaking, acting as a “messenger”. It exchanges essential physical information

between the different diagrammatic channels and ensures the physical consistency be-

tween them. In the specific case studied in this chapter, the irreducible vertex carries over

the information of the local moment formation from one channel to the other. As the

fRG and PA results show, if the irreducible vertex is fixed to e.g. Λ � U, the messenger

function is to a large extent deactivated –the messenger is “silenced”– and, consequently,

the suppression of the charge response remains largely incomplete. This leads to the rather

unphysical result of a well-formed local moment in the magnetic channel coexisting with

still sizable local charge fluctuations. Evidently, a consistent treatment of both channels

is necessary to describe nonperturbative physical situations in their entirety as, e.g., in

the case of the Mott-MIT in the Hubbard model. Hence, the possibility of capturing the

intense communication between channels, which characterize the phenomena described

above, is beyond those theoretical descriptions, which do not allow for the occurrence of

divergences of the irreducible vertex functions. For diagrammatic approaches for strongly

correlated electron systems, these considerations support the choice of a DMFT starting

point on the two-particle level [51], where the localmoment formation is already accounted

for consistently in all channels. The interplay of such approaches and the breakdown of

self-consistent perturbation theory is discussed in Chapter 6.

The study of the local moment formation has been the subject of renewed interest
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Figure 4.13: Comparisons of the “fingerprint”-criterion introduced in Sec. 4.3, and two independent

criteria for the local moment formation (left) and TK (right). Left: Plot taken from the work by

E. Stepanov et al. [159] (Fig. 3 therein). The calculations are performed for a 3D Hubbard model on

a cubic lattice, solved by DMFT, the blue line traces the χ̃D � χ̃O
condition, the red line represents

the parameter sets where a sign change of the second derivative of the free energy is found [159].

Right: Plot is taken from the work by T. B. Mazitov and A. A. Katanin [158] (Fig. 4 therein). The

calculations are performed for a Hubbard model on a square lattice, solved by DMFT. In this case

the red line represents the condition based on the 2 × 2 submatrix of χ̃νν
′

c and the black line the

calculation of TK by shifting the magnetic response function χm(ω � 0) [158], as in Sec. 4.1.

recently, see e.g., Refs. [62, 63, 158, 159]. In fact, the identification of an alternative route to

calculate the Kondo temperature, introduced above, inspired several authors to perform

precise comparisons for the Hubbard model case. Specifically, in the work by E. Stepanov

et al. [159], the authors have introduced an effective local action, where the local moment

formation is described by using the formalism of a spontaneous symmetry breaking. In

this way, a precise criterion for the formation of the local moment could be formulated by

considering the sign change of the second derivative of the free energy, i.e., when the free

energy changes from a paraboloid-like to a “Mexican”-hat-shaped potential. In Fig. 4.13,

we reproduce the comparison performed by E. Stepanov et al. for the three-dimensional

Hubbard model on a cubic lattice, solved by DMFT, which shows satisfactory agreement

in the large interaction, low-temperature regime, when the Mott MIT is approached. In

an independent work by L. Gaspard and J. Tomczak [63] the agreement between our

and E. Stepanov’s criteria was confirmed for the Bethe lattice case of the Hubbard model

(solved by DMFT). In this work both criteria also showed a convincing agreement with

characteristic timescales of the decay of the magnetic susceptibility in imaginary time,

which are the focus of the corresponding Ref. [63]. Eventually, in the work by T. B. Mazitov

and A. A. Katanin [158] the same procedure as the one introduced in Sec. 4.1 for the AIM

was used for the Hubbard model on a square lattice solved by DMFT. In this way, the

Kondo temperature of the DMFT solution of the Hubbard model was extracted from the

temperature-behavior of χm and again compared to the criterion of the generalized charge

susceptibility introduced above. The result is shown in the right panel of Fig. 4.13.

As the authors of the corresponding publications note, and as we also mentioned

before, the TK criterion as obtained from χ̃D � χ̃O
is valid only in the low-temperature and
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the intermediate-to-strong coupling regime. In fact, our “fingerprint”-criterion coherently

applies in the parameter regions where a description of the local properties in terms of

the Kondo physics becomes appropriate. To summarize, the consistent comparisons of

Refs. [63, 158, 159] support the remarkable agreement of TK and the “fingerprint”-criterion

in theKondo regime. In our opinion, this represents a clear hint for aprofoundand rigorous

connection between the vertex functions (generalized susceptibilities, or also reformulated

as full vertices F) and the Kondo temperature, which goes beyond the general one related to

the numerical determination ofTK based on χm , see Sec. 4.1. In particular, we speculate that

a specific analytic relation may exist between the Kondo singlet formation and the lowest-

frequency entries of the vertex functions, analogous to the one between the quasiparticle

weight Z and the low-frequency range of the self-energy. It remains left for future studies

to investigate whether such an analytical connection can be formulated, e.g., by starting

from newest NRG two-particle calculations of the scattering amplitude of Ref. [141] (see

Fig. 9 therein).



CHAPTER 5

Physical implications of irreducible vertex divergences

Here comes success, here comes success
Hooray success, hooray success

– Iggy Pop

The last chapters clearly demonstrated that irreducible vertex divergences should be

expected as a general characteristic of interacting many-electron models. However,

the physical implications of their appearance have not been discussed so far. This

will be the main topic of this chapter, also answering the third central question of

this thesis. To this aim, we first elaborate on the connection between the suppression

of physical response functions and the vertex divergences, already partly addressed

in Chapters 3 and 4. In particular, we investigate whether their role is purely linked

to suppressive effects. As it turns out, this is not the case. In fact, the sign-flip

of the singular eigenvalues, associated with crossing a divergence line, can also

drive opposite effects, such as an effective attraction in given scattering channels.

This mechanism can have dramatic implications: It underlies the enhancement and

ultimately the divergence of the isothermal compressibility, which characterizes the

occurrence of phase-separation instabilities in the proximity of the Mott transition.

So far, the discussion of vertex divergences has remained on a very conceptual and fun-

damental level. Chapter 3 focused on analyzing their occurrence in different models at half

filling and out of half filling. This investigation clearly demonstrated that the appearance

of irreducible vertex divergences is not a peculiar feature of one specific model but rather

a ubiquitous property of strongly correlated electron systems. In Chapter 4, we discussed

how the formation of a local magnetic moment originates negative diagonal entries in the

static generalized charge susceptibility χνν
′(ω�0)

c and leads to vanishing eigenvalues, the

origin of the vertex divergences. However, an important question remained unanswered:

Are there physical implications of the appearance of irreducible vertex divergences?, which repre-

sents the third central question of this thesis. As outlined at the beginning of Chapter 3,

the full vertex F remains finite at an irreducible vertex divergence since the generalized

113
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susceptibility has a vanishing contribution there, ruling out the most natural connection

with observable physical effects.

Nonetheless, in this chapter, we demonstrate that significant physical implications

exist, and thus, entering the nonperturbative regime is not only a mere mathematical

pathology of the QFT description of many-electron systems. In particular, as we will

show, the eigenvalues and eigenvectors that determine the occurrence, the location, and

the mathematical properties of the irreducible vertex divergences, also play an essential

role for physical response functions.

First, by restricting ourselves to purely local physics, we discuss the interplay of the

suppression of physical response functions and the suppression of eigenvalues of the

corresponding generalized susceptibilities.

As a second step, we leave the purely local level and consider the uniform (q→ 0) charge

response of the system (in the framework of DMFT), which is related to the isothermal

compressibility κ. As we will show, the negative eigenvalues of the local charge suscepti-

bility can have significant effects on this quantity: they encode a sign-flip of the effective

interaction, which leads to attractive contributions that enhance the uniform charge re-

sponse. In some cases, e.g., in the proximity of the Mott MIT, these attractive contributions

can even lead to a divergence of the isothermal compressibility κ. Note that this topic

was first addressed in the Master thesis of M. Reitner [73] (which the author of this PhD

thesis has co-supervised) and then extended in Ref. [67] (which represents the basis for

this chapter).

5.1 Is it all just suppression?

Parts of this chapter, marked by a vertical bar, have already been published in the APS journal
Phys. Rev. Lett. 125, 196403 (2020) and the corresponding supplemental material.

To improve the pedagogical character of this chapter, both sources are mixed accordingly.

As alreadymentioned in previous chapters, the possible link between irreducible vertex

divergences in channel r and the corresponding suppression of the physical response in the

same channel r was considered in several works [12, 18, 22, 26]. In this context, the more

recent results obtained in the attractive case of the HM solved in DMFT (see Sec. 3.1.2),

have cast some doubt on the generality of this interpretation, because of the occurrence of

divergences in the enhanced charge sector of the attractive case [26]. On the other hand, as

mentioned at the end of Ref. [26], the analysis of that studywas limited by the particle-hole

symmetry constraint, which we are going to release in the course of this chapter.

In particular, wewill focus on the charge channel. Let us begin our discussion by briefly

recapitulating the literature results for the half-filled case of Refs. [12, 18], relevant for our

analysis. We start with the definition of the static local charge response χloc

c (ω � 0), which

can be obtained from χνν
′(ω�0)

c by a summation over all fermionic Matsubara frequencies,

see Sec. 2.2.3. By recasting the corresponding summation for the general case without

particle-hole symmetry in terms of the eigenbasis of χνν
′

c (see Sec. 2.2.4 and in particular



5.1. IS IT ALL JUST SUPPRESSION? 115

Eqs. (2.56) and (2.59)), one obtains [67]:

χloc

c �
1

β2

∑
νν′

χνν
′(ω�0)

c �

∑
i

λc
i wc

i . (5.1)

Note that here a slightly different notation1 is used: χloc

c � 2χ
Eq. (2.27)
c . Consequently,

also the generalized susceptibility is defined here as χνν
′

c � 2(χνν′↑↑ + χνν
′

↑↓ ). Further, the

1

β2
factor is directly included in the eigenvalues λc

i . Accordingly, the weights read as:

wc
i �

[∑
ν V c

i
−1(ν)

] [∑
ν′ V c

i (ν′)
]
(cf. Eq. (2.60)). Since we only consider the charge channel

in this chapter, the c superscript will be omitted in the following.

In order to investigate the possible implications of the appearance of vertex divergences,

we start with an observation, based on the findings of Chapters 3 and 4: The occurrence

of sign-changes of the eigenvalues of the generalized susceptibility, at least of those with

an associated symmetric eigenvector, was always found in cases where the corresponding

response function was suppressed (cf. Sec. 3.1.2). By inverting this logic, one may ask

how crucial the role of negative eigenvalues is for determining the correct behavior of the

physical response function. In general, their importancewas alreadynotedwhen analyzing

the two-particle calculations for the AIM, for which methods such as the fRG (in the 1`K

truncation) and the PA, which lack–per construction–the possibility to describe irreducible

vertex divergences and sign-flips of the corresponding eigenvalues, did not capture the

minimum of the charge response as a function of T (see Sec. 4.5).

A focused study of this role of the negative eigenvalues of χνν
′

c has been performed in

Ref. [12], where the authors considered a HM solved by DMFT on a square lattice (4t � 1 is

the unit of energy). Fig. 5.1 illustrates their results for the local charge response χloc

c (black

line) at half filling for an intermediate temperature of β � 40. Altogether one observes a

progressive suppression of the charge response as a function of U, as one would expect.

The local magnetic response increases with U as the local moment is formed, whereas the

charge fluctuations are significantly suppressed. The kink observed at about U ≈ 2.35

was attributed to the MIT. As outlined in Eq. (5.1), χloc

c can be analyzed by using the

eigenbasis of χνν
′

c . In Fig. 5.1 the sum of those contributions which correspond to positive

eigenvalues, is illustrated as the orange area and “+” signs. The contribution related to

negative eigenvalues is shown in blue and marked by “-” signs. This separation clearly

demonstrates the role played by the eigenvalues of χνν
′

c : As the interaction increases,

the positive eigenvalues reduce in value up until U ≈ 1.9. After this point, negative

contributions appear, which become crucial for the correct description of the suppressed

response function. Neglecting them would lead to a significant overestimation of the local

charge response (orange “+” for large U), and also the kink associated with theMIT would

be absent. Naturally, at half filling, each appearance of a negative contribution corresponds

to a zero-crossing of an eigenvalue and hence a divergence of Γνν
′

c (cf. Sec. 3.1). The inset

shows the value of the eigenvalueswith associated symmetric (antisymmetric) eigenvectors

1All changes of notation are made in order to relate the susceptibilities in a more elegant way to the isother-

mal compressibility, see below (otherwise a factor of 2 would appear in several terms) [67, 73], consistently

with Ref. [67].
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Figure 5.1: Local charge response (solid black line) for the HM solved by DMFT at β � 40 as a

function of U. The yellow (blue) area corresponds to the summed contribution to χloc

c originated by

positive (negative) eigenvalues (cf. Eq. (5.1)). The inset demonstrates the eigenvalues corresponding

to a symmetric / antisymmetric eigenvector as a function of U (solid red / dashed black lines). For

completeness, let us note that the authors did use the regular convention (cf. Sec. 2.2.3 and 2.2.4)

for the
1

β2
factor and for χloc

c . The figure was taken from Ref. [12] (see Fig. 3 therein).

as solid red (dashedblack) lines. Due to theperfect antisymmetry at half filling, eigenvalues

which correspond to an antisymmetric eigenvector do not contribute in Eq. (5.1) (cf. 2.2.4.1).

This means that the lowest U value where the first negative contributions appear is related

to the first orange divergence line, in perfect agreement2 with Fig. 3.8.

In this way it becomes apparent how the negative eigenvalues of χνν
′

c , at least those

corresponding to a symmetric eigenvector, impact the physical response functions in the

nonperturbative regime. The same perspective is also valid for the pp-↑↓ channel and
the pairing fluctuations at repulsive U, or the magnetic ones in the attractive case [26]

(cf. Sec. 3.1.2), i.e., for the channels whose local fluctuation are suppressed by the interac-

tion.

However, also a different viewpoint is possible, as shown in Ref. [160]: Since the irreducible

vertex Γνν
′

c is the core of a BSE, itsmultiple sign-changes (driven by those of λi , see Eq. (3.2))

could be interpreted as a flipping of a repulsive into an attractive interaction (or vice versa).

Heuristically, if we consider a simple RPA-like expression [Γνν
′

c →Γ0 > 0∀ ν, ν′ (constant,
as described in Sec. 4.2)] for the lattice charge (and similarly for the pairing) response, one

gets:

χq �
χ0

q

1 + Γ0χ0

q
. (5.2)

2Following the results discussed at the end of Sec. 3.1.3 one can even make a closer connection to the

results discussed here: As shown in Fig. 3.20, the number of negative eigenvalues changes abruptly at theMIT,

depending on which solution (metallic or insulating) is realized. These results are in perfect agreement with

the kink in Fig. 5.1, which is only observed in the negative contributions.
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Figure 5.2: Sketch representation of the Hubbard model phase diagram in DMFT, based on

Ref. [163]. The coexistence region of the MIT at n � 1 as well as the phase separation at n < 1

is represented by shaded blue regions, the corresponding critical endpoints by the blue dot / the

blue dotted line. First(I)/Second(II) lines of divergences of Γ at half filling: red/orange curves. The

calculations performed in this analysis are illustrated by the green arrow.

Hence, a sign-change of Γ0 would induce an enhancement, instead of a suppression, of the

corresponding susceptibility with increasing interaction.

Though intriguing, this interpretation [160] raises additional questions: It seemshard to

be reconciled with the suppression of charge fluctuations at half filling discussed. Further,

if taken too literally, it would lead to rather bizarre physical predictions: One might then

expect the multiple divergences of Γ, found in the phase diagram of the Hubbard model

(cf. Sec. 3.1), to be reflected in a series of maxima (maybe even of divergences) of the lattice

charge and pairing susceptibilities by increasing U. However, such a peculiar oscillatory

behavior has never been reported [160–169].

5.2 The isothermal compressibility κ

As known [160–163], DMFT calculations show only one major enhancement of the charge

fluctuations: the uniform charge response, which corresponds to the isothermal compress-

ibility κ, is strongly enhanced in the proximity of the critical endpoint of the MIT of the

Hubbard model (blue dot, topping the blue-shaded area in the n � 1 plane of the phase

diagram sketched in Fig. 5.2). Specifically, while at half filling the isothermal compress-

ibility κ decreases monotonically with increasing U, a strongly enhanced compressibility

is observed in the crossover region at finite doping on both sides of the MIT. In fact, κ even

diverges along two curves in the parameter space embracing the critical endpoint of the
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MIT (blue dotted line in Fig. 5.2, shown on one side only) andmarking the onset of a phase

separation at lower T [163].

Aswewill show, this behavior of κ is directly linked to thedivergences of the irreducible

vertex Γc and, specifically, to the first ones encountered [10, 19, 26] in the correlatedmetallic

region, much before theMIT itself. The location is sketched as red (I) and orange (II) curves

in the n � 1 plane of Fig. 5.2 (cf. Sec. 3.1.1.3).

In general, the compressibility κ can be defined (i) at the one-particle level, as the

derivative of the density w.r.t. the chemical potential
3
(

dn
dµ )or (ii) at the two-particle level, as

the static limit (q→0, ω � 0) of the momentum and frequency dependent charge response

function χωc ,q � χωq , obtained through the lattice BSE in the DMFT framework [41]

χωq �
1

β2

∑
νν′

[ [
χ0

q
]−1

νν′ω + Γνν
′ω

c

]−1

, (5.3)

where the bubble term reads χ0,νν′ω
q � −2β

∑
k G(k, ν)G(k+q, ν+ω)δνν′. Here q is the

transferred crystal momentum. In DMFT, where the self-energy and the irreducible vertex

Γ are both extracted from a (self-consistently determined) auxiliary impurity model [41],

the two definitions yield per construction the same value of κ (see Ref. [170] and [56, 57,

160]).

Let us briefly recall the derivation of the momentum and frequency dependent charge

response function in DMFT obtained through the BSE, following Ref. [41]. We discuss its

analytical properties for theHubbardModel on a Bethe-lattice, by going into the eigenbasis

of the generalized local two-particle susceptibility.

In the limit of infinite dimensions d →∞ the irreducible vertex Γνν
′ω

can be expressed

in terms of the local quantities of the auxiliary impurity model (cf. Eq. (2.24))

Γνν
′ω

c �
[
χ−1

c
] νν′ω − [

χ−1

0

] νν′ω
, (5.4)

where χνν
′ω

c � 2(χνν′ω↑↑ +χνν
′ω

↑↓ ), and χ
νν′ω
σσ′ is defined in Eq. (2.17) [33]. Note that although in

d →∞, Γ itself has a residual momentum dependence, this residual dependence vanishes

if Γ is inserted into a BSE [171]. Hence, Eq. (5.4) can be used to rewrite Eq. (5.3) in the

following way:

χωq �
1

β2

∑
νν′

[ [
χ−1

c
] νν′ω

+
[
χ0

q
]−1

νν′ω −
[
χ−1

0

] νν′ω]−1

, (5.5)

where the bubble term reads explicitly

χ0,νν′ω
q �

−2β

V

∑
k

1

ζν − εk

1

ζν+ω − εk+q
δνν′ , (5.6)

3 In thermodynamics, the isothermal compressibility κ is defined as κT � − 1

V
dV
dp �

1

n2

dn
dµ . For an immediate

comparison with χq�0
, we define here κ ≡ dn

dµ in accordance with earlier literature [41, 161], see also Ref. [73].

This does not crucially affect the results, since the doping regions considered here are very close to half filling

n � 1.
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with ζν � iν + µ − Σ(ν) and εk � − 2t√
2d

∑d
i cos ki . The

1

V -factor normalizes the momen-

tum sum over the first Brillouin zone. Note also that the correct scaling of the hopping

amplitude t for d → ∞ is included in the dispersion relation εk (cf. Sec. 2.3.1). We can

reformulate the bubble terms with the Hilbert transform defined as:

H(ζ) �
∫

+∞

−∞
dεD(ε) 1

ζ − ε , (5.7)

where D(ε) is the non-interacting density of states. By summing over all momenta q we

obtain the local bubble term. Here, the sums over the two different momenta factorize and

we get

χνν
′ω

0
�

1

V

∑
q
χ0,νν′ω

q � −2βH(ζν)H(ζν+ω)δνν′ . (5.8)

In our case, the static charge response (q→ 0, ω � 0) is of interest, where the q-dependent
bubble reads

χ0,νν′(ω�0)
q�0

� −2β

∫
+∞

−∞
dεD(ε) 1

(ζ − ε)2 δνν
′

� 2β
dH(ζν)

dζν
δνν′ .

(5.9)

5.2.1 Bethe-lattice

For the Bethe-lattice with a semi-elliptic density of states the Hilbert transform simplifies

to

H(ζ) �
ζ − sgn(Imζ)

√
ζ2 − 4t2

2t2

, (5.10)

and the difference between the two inverted bubble terms for ω � 0 is equal to a con-

stant [172] : [
χ0

q�0

]−1

νν′ −
[
χ−1

0

] νν′
�

t2

2β
δνν′ . (5.11)

Wenote that this result does not depend on the frequency ν or on the filling (or the chemical

potential µ which is encoded in ζ).

The compact expression for thedifference of the bubble inverses is inserted intoEq. (5.5).

By recasting the resulting expression in the eigenbasis of the generalized susceptibility χνν
′

c ,

which is straightforward due to the δνν′ frequency-dependence of Eq. (5.11), one obtains:

κ � χω�0

q�0
�

∑
i

(
1

λi
+
βt2

2

)−1

wi . (5.12)

By a similar derivation, but inserting the particle-particle DMFT bubble at q � 0 or

the particle-hole bubble at q � (π, π, π, ...) into Eq. (5.11), one can show that one gets an

additional minus sign for
t2

2β [172] in Eq. (5.11) and correspondingly also in Eq. (5.12).
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Figure 5.3: Lowest eigenvalue λI of χνν
′

c for different temperatures, computed by DMFT on a half-

filled Bethe lattice (solid lines), compared with the divergence condition − 2

t2
(dashed line) of the

analytical expression for the uniform susceptibility [Eq. (5.12)].

Eq. (5.12) holds exactly for the Bethe-lattice case (here of half-bandwidth D � 2t � 1),

independently of its filling. As we will explicitly discuss below, it also represents a very

good approximation if the DMFT is performed on other, more realistic lattices (see further

Appendix A.2.1).

A quick glance at Eq. (5.12) immediately shows that the only possibility for a divergence
of κ is that the condition βλi � − 2

t2
<0 is verified for one eigenvalue of χνν

′(ω�0)
c . Evidently,

this locates necessarily such divergences of κ on the right side of the first vertex-singularity

line (red curve in Fig. 5.2) and defines precise constraints, calling for a quantitative analysis.

5.3 The half-filled case

We consider first the (particle-hole symmetric) half-filled Bethe-lattice case, computing the

evolution of the lowest eigenvalue λI < λi,I as a function of U for different temperatures,

shown in Fig. 5.3. We use a CT-QMC solver provided by the w2dynamics package [85]

(cf. Sec. 2.3.1.2) to obtain the one- and two-particle quantities (for further numerical de-

tails see the supplemental material of Ref. [67]). As discussed in the literature [22, 26]

(cf. Secs. 2.2.4.1 and 3.1.2) and at the beginning of this chapter, due to the high symme-

try of this case, λI is associated with a real, antisymmetric eigenvector (VI(ν) � −VI(−ν),
hence wI � 0). From the data of Fig. 5.3, we clearly see that λI displays a minimum at

intermediate U, in the crossover region of the Mott MIT. By reducing T the minimum gets

sharper and progressively closer to the necessary condition of a divergence of κ (marked

by the dashed line). Remarkably, the condition is fulfilled at the (second-order) critical
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endpoint of the MIT (at U'2.33, β'38), where the minimum of λI becomes a cusp, before

one starts observing a coexistence of two solutions at lower T (not shown). At half filling,

however, the divergence of (1/λI + βt2/2)−1
does not have any physical effect on κ, because

the associated spectral weight wI in Eq. (5.12) is always zero, due to the perfect antisym-

metry of VI(ν). We note that this behavior can alternatively be understood from the critical

properties of the MIT, as independently proven in a work by E. van Loon et al. [140]. The

second lowest eigenvalue (λII), associated with a symmetric eigenvector (VII(ν)�VII(−ν))
becomes also negative (after the orange curve in Fig. 5.2), but it never reaches the critical

condition βλII�− 2

t2
. In fact, as its spectral weight is positive, it contributes to a progressive

suppression of κ.

5.4 Out of half filling

The results above crucially depend on the high-symmetry properties [26, 113] of the (non-

frustrated) half-filled case. As soon as those are lifted, e.g. by doping the system and/or

adding a next-to-nearest neighbor hopping term (t′) striking changes are observed. Here,

we consider explicitly the case of a hole doped system (µ− U
2
< 0, n < 1, t′�0) on a square

lattice
4
(with half-bandwidth D � 4t � 1) in the crossover region of the phase separation

near the critical endpoint of the half-filling MIT (i.e., U � 2.4, β � 53, as schematically

indicated by the green arrow in Fig. 5.2).

In Fig. 5.4, we report the behavior of the local (χloc) and theuniform (κ) charge susceptibility

as a function of the chemical potential, varying it toward half filling (µ �
U
2

on the

right side). Our data show a clear dichotomy in the behavior of χloc and κ. While χloc,

directly evaluated from Eq. (5.1), gets monotonically suppressed toward half filling, where

correlations are stronger, κ, evaluated both as numerical derivative aswell as fromEq. (5.3),

displays a prominent maximum at a finite doping: This indicates that the parameters

correspond to the crossover region
5
, just slightly above the critical endpoint of the phase

separation (dotted line in the sketch of Fig. 5.2).

5.5 Diagnostics of κ

A clear-cut theoretical insight into this phenomenology is obtained by decomposing χloc

and κ, computed at several dopings, in terms of the contributions stemming from the

different eigenvalues λi of χνν
′

c , in the spirit of Refs. [18, 58, 59, 122, 138, 153, 156, 173, 174].

Here, this procedure, which is always possible numerically, allows for a very transparent

analytical understanding, based on the Bethe-lattice expression, Eq. (5.12). In fact, the

4In principle, one could have also chosen the Bethe lattice case out of half filling, obtaining similar results

as those presented here. However, the choice of a two-dimensional square lattice allowed to perform a

q-dependent analysis and also make closer contact with previous literature studies on the HM [10, 12, 19, 160].

5Note that this property of the chosen parameter set was carefully checked in various ways, see further

Appendix A.2.2 and the supplemental material of Ref. [67]. In particular, when converging DMFT solutions

as a function of µ from both limiting cases shown in Fig. 5.4, i.e.,half filling and µ −U/2 < −0.15, always only

a single solution could be converged [67].
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κ =

(
1

λI
+

βt2eff

2

)−1

wI +

(
1

λII
+
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2

)−1
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Figure 5.4: Top: Compressibility κ (blue circles from the numerical derivative of n w.r.t. µ; red

squares from theBSE for χq�0) and local charge susceptibility (χloc) of theHubbardmodel computed

in DMFT for β�53 and U �2.4 (on a square lattice with half-bandwidth D � 1). Bottom: Analysis

of the contributions to κ and χloc arising from the lowest two real eigenvalues (“I" in red, “II" in

orange) and from all the remaining terms (“rest" in grey) for four different dopings. The light

background colors in the two panels are just a guide to the eye.

deviations found for the square lattice case aremarginal in the parameter region of interest,

see Appendix A.2.1. Eq. (5.12) can thus be exploited, in an approximated form (t2 → t2

eff
,

where teff weakly depends on µ, cf. Appendix A.2.1), as a key to the interpretation.

We start by separating χloc in termsof the two lowest real λi-contributions and the rest to

the sum in Eq. (5.1). As shown in the bottom panel of Fig. 5.4 at finite doping one observes

a tiny positive contribution from λI (red bar) enhancing χloc, which fully disappears at

half filling where its weight wI � 0, due to symmetry. This is in contrast to the negative

contribution from λII, which suppresses χloc, as in the half-filled case demonstrated in

Fig. 5.1 [12]. The corresponding decomposition for κ shows, instead, that precisely the

contribution originated from λI is responsible for its non-monotonous behavior as well as

for the sharp maximum. By comparing the two decompositions, one immediately notes
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Figure 5.5: Top: Lowest two real eigenvalues (λI in red, λII in orange) of the local generalized charge

susceptibility for the same parameters as Fig. 5.4; the weak frequency dependence of the difference

of the inverse of the bubble terms for the square lattice case is marked, for each µ, by a blue-shaded

area; the values of −2/βt2

eff
by a dashed line (see Appendix A.2.1). Bottom: corresponding spectral

weights (wI and wII) on logarithmic y-axis.

how the dichotomy of the local and the uniform charge response is essentially controlled

by the contributions (red bars) associated with the lowest real eigenvalue λI of χνν
′

c .

The outcome of our analysis can be readily understood in terms of Eq. (5.12), by

studying the behavior of λI and wI for different dopings, as reported in Fig. 5.5. If λI

becomes negative enough, closely approaching the condition βλI ' − 2

t2

eff

, a maximum of

κ is observed. The difference w.r.t. the half-filled case is that the corresponding weight

wI is now finite, and actually negative, thus contributing to an overall enhancement of

the charge response. Because of the small weight wI, such an effect is generally mild,

unless λI gets negative enough to trigger a strong enhancement or even the divergence of

κ. Fig. 5.5 also shows that the weight associated with the second lowest real eigenvalue

(λII) always remains positive, as at half filling. Hence, even if both λI , λII are negative,

the latter is responsible for a suppression of the charge response. In fact, it is the overall

sign of λi wi , which determines, in general, whether the net effect can be interpreted as



124 CHAPTER 5. PHYSICAL IMPLICATIONS OF IRREDUCIBLE VERTEX DIVERGENCES

q
x

0
π/2

π

qy

0 π/2 π
0.0

0.2

χq

q
x

0
π/2

π

qy

0 π/2 π
0.0

0.2

I

q
x

0
π/2

π

qy

0 π/2 π
0.0

0.2

II+rest

Figure 5.6: Left: Momentum-dependence of the charge susceptibility χq computed in DMFT on

a square lattice for U � 2.4, β � 53 for µ − U/2 � −0.1, corresponding to the maximum of the

compressibility κ. Center: contribution stemming from λI. Right: all other contributions summed.

repulsive or attractive in the charge sector, since the sign of wi is no longer positive-

definite (cf. Appendix A.2.3). This result impressively demonstrates the twofold effect that

the negative eigenvalues, originated by the sign-flip associated with a vertex divergence,

can have.

At the same time, the evolution of wi of each λi , is smooth in the phase diagram

(s. Fig. 5.5 and Appendix A.2.2). Hence, crossing the first divergence [10, 12, 19, 26]

line of Γνν
′

c , which is associated with a sign-change of λI, corresponds to flipping the net

action of the corresponding contribution (λIwI) to the charge response from suppressing

to enhancing.
We stress that having wI < 0 is crucial both for the emergence of these strong-coupling

phase-instabilities and for the dichotomy between the local and uniform response: The

sum in Eq. (5.12) can be recasted as

κ �

∑
i

χi
loc

1 + β J i
eff

(5.13)

where χi
loc

� λi wi and J i
eff

�
t2

eff

2wi
χi

loc
. All summands of Eqs. (5.1) and (5.13) are rather

similar, except close to the critical endpoint of the phase separation where the difference

between the local and uniform response is induced by the first term (i � I) mainly. In that

region, as χI

loc
> 0, wI < 0 implies a negative coupling (JI

eff
< 0) in the charge sector.

As a last point we extend our analysis to the entire momentum dependence of χq,

performed at the same parameter set where the maximal κ is found. In the left panel of

Fig. 5.6, χq is plotted, where we observe a rather sharp peak at q � 0. In the central and

right panels, we decompose χq into the contributions stemming from λI and the remaining

eigenvalues, respectively. We immediately see that the nonperturbative enhancement of

the charge response is confined to the small q-sector. Further, we note that without

the critical, effectively attractive, contribution from λI, the charge response would have a

completely different shape, closely resembling the one at half filling, which is shown in
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Fig. 5.7: a rather low χq with a shallowmaximumatq � (π, π). This selective enhancement

of χq around q � 0 increases the corresponding correlation length ξ, which is necessary to

ensure the second-order nature of the critical endpoints of the phase separation as well as

for inducing the strong dichotomy between the local and the uniform response, discussed

above (cf. Ref. [73]).
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Figure 5.7: Comparison of the momentum dependence of χq for the parameter set corresponding

to the maximum of κ (µ −U/2 � −0.1), see Fig. 5.6, and half filling (0).

We expect to find the same underlying mechanism along the entire, highly non-trivial,

path of the phase-separation instability computed in theDMFT phase diagram of Ref. [163]

(dotted blue line in Fig. 5.2). For specific examples at different parameter sets we refer to

Ref. [73].

5.6 Discussion

In this chapter an important link between the appearance of vertex divergences and ob-

servable physical implications could be identified via the analysis of the corresponding

eigenvalues of the local generalized susceptibility [12, 67]. In particular, the eigenvalues λi

and weights wi of χνν
′

c (computed in DMFT) were directly connected to relevant physical

quantities: the local (χloc) and the uniform (χq�0) charge susceptibility, whereas the latter

corresponds to the isothermal compressibility κ.

For the local charge response χloc, suppressing and enhancing contributions were

identified, depending on the overall sign of λi wi . In this way, vertex divergence lines,

which are characterized by positive wi and symmetric eigenvectors at half filling, can be

attributed to a suppression of χloc, as soon as sign-changes of the corresponding λi have

occurred. The red divergence lines on the other hand (with antisymmetric eigenvectors

at half filling), can be related to an enhancing effect, as the associated eigenvectors yield

negative wi as soon as particle-hole symmetry is broken.

As for the uniform susceptibility, depending on the sign of the correspondingweight wi ,

the effect onto κ canbe twofold, similarly as in the local case. A sign-changeofλi corresponds

to a flipping of the nature of the effective electronic interaction. In particular, if the weight

is negative, as it happens out of half filling for the first red divergence line, the effective
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interaction changes from repulsive to attractive. The origin of this effective attraction is thus

directly related with the breakdown of self-consistent perturbation theory [12], formally

marked by the first divergence of the irreducible vertex (cf. Appendix A.2.2). For a positive

weight, such as the one characterizing the orange divergence lines at half filling, the

associated negative eigenvalues have a suppressing effect onto κ.

This effective attraction due to negative eigenvalues (and weights) has significant phys-

ical and conceptual implications. In particular, we have demonstrated that if the lowest

negative eigenvalue of the local charge susceptibility becomes negative enough, a diver-

gence of the isothermal compressibility, and hence a thermodynamic instability of the

systems toward a phase separation, will be triggered [67]. The specific details of the lat-

tice system under investigation determine the negative value that needs to be reached

(cf. Appendix. A.2.1).

It is insightful to generalize our considerations by further extending Eq. (5.12) to the other

physical sectors, specifically to those which are mostly reactive to attractive interactions.

One can show [172] that the corresponding DMFT expressions for the Bethe lattice for any

static particle-hole susceptibility at q�Π � (π, π, π, . . .) (describing charge-density-wave

(CDW) instabilities in the charge or antiferromagnetic (AFM) instabilities in the magnetic

sector), as well as of the pp susceptibility at q� 0 (describing s-wave pairing instabilities)

read

χq�Π � χ
pp
q�0 �

∑
i

(
1

λi
−
βt2

2

)−1

wi , (5.14)

independently of the filling.

The sign of the constant shift rules out the possibility of inducing CDW or s-wave pair-

ing instabilities merely through a strong local repulsion: divergences of the corresponding

responses can only originate from a large and positive λi , a typical hallmark [26] of pre-

formed local pairs, and hence, of the presence of a bare attractive interaction U <0. Here,

we clearly see the difference between a bare (and frequency-independent) attractive inter-

action and an effective one, originating from nonperturbative mechanisms: The effect of

the latter can be regarded as truly attractive only in specific sectors and parameter regions.

In this way, in the DMFT framework, two alternative routes for thermodynamic instabil-

ities are identified, on the basis of the perturbative or nonperturbative mechanisms through

which the corresponding transitions are realized. Fig. 5.8 summarizes and illustrates these

two possibilities for a generic local generalized susceptibility.

The first kind of instabilities (right side in Fig. 5.8) are triggered when the largest positive
eigenvalue λmax of the generalized local susceptibility for the scattering channel under

consideration (e.g. charge, magnetic, pp) becomes large enough, leading to a divergence of

Eq. (5.14). Since for U � 0 (and ω � 0), where χνν
′

loc
reduces to the bare bubble term, all λα

are positive, it is clear that these kind of transitions can also occur in the weak-coupling

regime. Their description is indeed possible by means of perturbative schemes such as,

e.g. the RPA, the fRG [98, 99] or the PA [55, 90–92, 96, 153–157]. One example for this

mechanism is the antiferromagnetic instability for the repulsive Hubbard model [41, 98,
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Figure 5.8: Schematic representation of the different ways how a thermodynamic instability can

be triggered in the framework of DMFT. On the left side Eq. (5.12) is stated for a general uniform

particle-hole susceptibility. On the right side Eq. (5.14) is given. A generic local susceptibility with

the corresponding eigenvalue spectrum is illustrated in the center, where the different key elements

to trigger an instability are highlighted by the arrows.

106, 114, 175, 176] aswell as theCDWor s-wave pairing instability in the attractiveHubbard

model [102, 113, 115, 177–180].

The second kind of transitions are triggered when the lowest negative eigenvalue of the
generalized local susceptibility λmin becomes negative enough, leading to a divergence of

Eq. (5.12). Such requirements would be applicable to the uniform response in all particle-

hole sectors, describing the phase-separation instability studied here in the charge channel,

or the ferromagnetic one in the magnetic sector.

As already discussed in Sec. 4.5 concerning the minimum of the charge response in

the AIM, self-consistent perturbative methods lack the possibility of describing vertex

divergences and hence also directly flipping the sign of the corresponding eigenvalues.

This makes the condition λmin < 0 impossible to reach, starting from the perturbative

regime close to half filling, as this requires to cross at least one divergence of the irreducible

vertex in parameter space.

In this perspective, our analysis opens a new path to investigate phase transitions that

have an intrinsic nonperturbative nature. These transitions, as described here in the DMFT

framework, would be beyond the description of methods such as the fRG and the PA.

However, a word of caution is still required at this stage. When starting from the local

perspective, asDMFTdoes, Eqs. 5.12 and 5.14 determine the instabilities found in the lattice

system under investigation. In this framework negative eigenvalues are crucially needed

to trigger a corresponding instability, which is beyond the description of e.g., fRG and

PA. However, these perturbative methods directly calculate the susceptibility of the lattice

system under investigation χq, without starting from a local perspective, as DMFT does.

Whether or to what extent, transitions of the same classes as those described here, might

be triggered by different mechanisms in perturbative methods such as PA and fRG cannot

be definitely answered yet. Nevertheless, these possible perturbative alternatives, even if
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existing, are certainly not applicable for the description of the phase-separation instabilities

in the proximity of the Mott MIT. This topic will be further discussed in Chapter 7.

Nevertheless, in the DMFT framework, our study provides a clear-cut positive answer

to the third central question of this thesis: Are there physical implications of the appearance of
irreducible vertex divergences? In fact, on a broader perspective, one could even suspect to

find similar relations of negative eigenvalues of local generalized susceptibilities to other

response functions. While these connections together with possible extensions of our

analysis to cases beyond the DMFT framework will be addressed in Chapter 7, we briefly

mention here a very immediate generalization: For parameter sets further in the crossover

region of the MIT, e.g., at temperatures higher than β � 53 in the DMFT calculation

considered in Sec. 5.4, neither a divergence nor a strong enhancement, but amaximum of κ

as a function of µ (or U) at fixed T can be expected [73, 161, 165, 167–169, 181]. In fact, at

finite doping, the maximum of κ for different values of µ (or equivalently n) and T in the

crossover region is used to trace the so-calledWidom line [166–169, 181, 182]. This concept,

originally introduced for fluids, was first applied to strongly correlated electron systems

in a work by G. Sordi et al. [166]. The Widom line emanates from the critical endpoint

of a first order transition through the crossover regime, and hence can be used to identify

a transition that might be hidden by a symmetry broken phase (e.g. superconductivity in

the CDMFT applications of Refs. [181, 182]). For this parameter regime, at the maximum

of κ, one can expect the distance between the lowest eigenvalue λI and the constant βt2

eff
/2

term to be smallest, but not vanishingly small. This means, that the location of the Widom

line throughout the crossover region could be traced by an analysis based on Eq. (5.12),

similarly as above. Naturally, calculations which explicitly confirm this connection, should

be performed in the future.



CHAPTER 6

Possible workarounds

I’m dancing barefoot
In midair I spin

– Patti Smith

So far, we have discussed the problem of vertex divergences from several perspec-

tives, including their appearance in different models, their physical origin, and

eventually, the significant implications that the associated negative eigenvalues of

the generalized charge susceptibility can have for the underlying physics. Instead,

in this chapter, we focus on the algorithmic implications of the breakdown of the

perturbative expansion and present possible strategies for circumventing them. We

put a special emphasis on diagrammatic extensions of DMFT, specifically the com-

bination of DMFT and fRG: the DMF
2
RG. In particular, as an important building

block for future developments of this method, we present a thorough analysis of the

application of the recently introduced multiloop fRG to the AIM, representing the

central part of this chapter.

In the last years, many approximation schemes were developed, aimed at treating com-

plexmany-electronproblems in awide rangeof physically relevant parameter regimes. Per-

turbative methods represent an important group of these approximation schemes, which

include, among the most advanced ones, the truncated functional renormalization group

method (fRG) aswell as the parquet approximation (PA), both introduced in Sec. 2.3. While

many of these methods benefit from a high level of physical transparency, they may be af-

fected, to different extents, by the breakdown of the self-consistent perturbation expansion,

as it occurs in the most fundamental models for strongly correlated systems. For instance,

in the prominent case of the Hubbard model solved in DMFT (discussed also in Chapter 3)

such a breakdown occurs already at intermediate values of the electron-electron coupling.

More in general, in Chapters 3 to 5 we have discussed the appearance, the origin and the

physical implications of the perturbative breakdown in great detail. Here instead, we focus

on the crucial aspect of its algorithmic implications. In particular, we shed light onto theway

129
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the perturbative breakdown has an effect on perturbative methods, and which strategies

can be followed to circumvent these issues.

As discussed in Chapter 3, we briefly recall here that the perturbative breakdownman-

ifests itself in twoways. On the one hand, it is directly associatedwith themultivaluedness

of the Luttinger-Ward functional (LWF) [11, 12, 14–16, 19–21, 23, 24, 27, 28]. On the other

hand, at the branching points of the LWF [12], divergences of the irreducible vertex func-

tions are observed [10, 13, 17–19, 21–23, 25, 26]. At the beginning of this chapter, we

discuss the implications of the multivaluedness of the Luttinger-Ward functional Φ[G] for
numerical treatments, while the second part focuses on the algorithmic issues that arise in

handling infinite vertex functions.

6.1 Multivaluedness of the LWF and algorithmic approaches

Concerning the multivaluedness of the LWF, let us briefly summarize here its manifesta-

tions (see the corresponding Sec. 3.2 for more details). The multivaluedness of Φ[G] has
a peculiar implication: While the physical Green’s function G is always unique, several

non-interacting Green’s functions G0 exist that correspond to it, i.e., the map G0 → G is

not injective [11, 12, 14–16, 19–21, 23, 24, 28]. One of these G0’s represents the physical one

whereas all other showunphysical behaviors, e.g. for the atomic limit (AL, cf. Sec. 2.1.1.1) at

half-filling theymay have a nonzero real part or violate the general relation G0(ν) � G∗
0
(−ν),

see Ref. [12]. Evidently, due to the (inverse) Dyson equation, the existence of these vari-

ous G0’s is directly reflected in the existence of several corresponding self-energies Σ, of

which only one is the physical one. In other words, the intrinsic multivaluedness of the

LWF can be viewed, heuristically, as different “ways” to split the physical Green’s function

between the G0- and the self-energy-terms consistent with the Dyson equation. However,

the existence of unphysical solutions for G0 and Σ would remain essentially irrelevant, if

it was not for crossings between unphysical and the physical values of these quantities. In

fact, there exist several parameter sets where one of the unphysical (or also multiple) and

the physical branch of the LWF “touch”, so-called branching points, which were discussed

in great detail in Sec. 3.2 (see explicitly Fig. 3.27 and 3.30 for the AL). At such branching

points the solution of numerical algorithms, e.g. the ones which directly sample the no

longer single-valued Σ[G], might jump onto the wrong branch. This would, in turn, lead

to qualitatively incorrect results of calculations of physically observable quantities, e.g. an

increase of the double occupation with increasing interaction U for the HA [11, 12]. The

underlying issue is that the perturbative Feynman diagrammatic series turns out to be not
absolutely convergent [11, 16]. In this respect, exploiting a dressed propagator, e.g., for

self-consistently summing skeleton diagrammatic series (so-called “bold schemes”), cor-

responds to a specific reordering of the original series, which becomes highly problematic

in the nonperturbative regime.

From an algorithmic perspective, the multivaluedness of the LWF presents a twofold

challenge: On the one hand, one needs to handle (a) the misleading convergence aspect of

the bold diagrammatic schemes [11], which means that without a warning the numerical
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summation of a skeleton diagrammatic series might converge to an unphysical result. In

the pioneering work by Kozik et al. [11] the bold diagrammatic Monte Carlo method [123,

124] for the atomic limit was investigated. In this work, the authors found that the bold

diagrammatic resummation converged also beyond the first branching point ofΦ[G], yield-
ing an unphysical result. Without a “warning-signal”, the numerical approach showed

convergence in a regime where the summation of the skeleton diagrammatic series is no

longer trustworthy. This issue evidently poses a huge problem to applications of these

method to problems more complex than the AL, where the location of branching points

is not known a priori. On the other hand (b), it is evidently crucial to find a way to apply

the diagrammatic Monte-Carlo and other methods based on the summation of skeleton

diagrammatic expansions also beyond the branching points of Φ[G]. As it turns out in

bold diagrammatic Monte Carlo calculations [11] as well as the so called nested cluster

scheme [21] the numerical calculations jumps onto the unphysical branch after crossing

the first branching point. This can be attributed to the unphysical solution becoming the

attractive fix-point of an iterative scheme to e.g., calculate the self-energy Σ[G] and the

Green’s function G [11]. During such a scheme, unlike in methods as DMFT, or its cluster

extensions, the non-interacting G0 is not fixed to the physical one, leading to noncausal

hybridization functions and, eventually, to unphysical results [21].

Given the importance and versatility of diagrammatic series summations in the last

years a huge effort was made to circumvent the algorithmic issues discussed above, which

is briefly (and without claiming completeness) summarized in the following. Evidently,

as for (a), the identification of a simple and practical criterion that signals the misleading

convergence would be desirable. Important progress in this direction was made in a

work by R. Rossi et al. [16], where, among other advancements, a specific criterion was

introduced, based on which the reliability of a diagrammatic series can be determined.

This criterion was used in a recent study of the bold diagrammatic Monte-Carlo to the

two-dimensional Hubbard model [27], where the unphysical or physical character of the

numerical solutionwas explicitly determined for different parameter sets. Moreover, based

on the analysis of Ref. [16], further advancements were made in a work by K. Van Houcke

et al. [28]. In an application to the Hubbard atom (i.e., the AL), the authors discuss

a simplified criterion which signals the problematic misleading convergence behavior of

the diagrammatic series, by means of a slight modification of it. The divergence of the

modified series is a directmarker ofmisleading convergence of the original series. Problem

(b) can be circumvented, instead, by using bare diagrammatic expansions, i.e., undressed

propagators G0 instead of full G’s [11, 16, 19]. As a complementary route, in Ref. [16], the

authors introduce a shifted-action approachwhichpermits todevise a so-called “semibold”

scheme, where the bold series is only performed up to a truncated finite order. We note

that, regardless of the method chosen, there has been a immense effort in developing

efficient algorithms to determine the expansion coefficients of the diagrammatic series

for the observable under consideration [183–188] as well as techniques to properly treat

its possibly divergent resummation [186, 189, 190], see also a recent work by A. J. Kim

et al. [191] for an approach combining shifted-action and resummation techniques. We
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refer the reader to Appendix D1 of Ref. [52] to obtain an overview of the current technical

advances in this field.

By using the above-mentioned strategies the diagrammaticMonte Carlomethod is able

to overcome the perturbative breakdown, making it possible to apply this approach to

cutting-edge problems, as exemplified by a subset of very recent Refs. [52, 192–195].

Throughout the remaining part of this chapter, we focus on the algorithmic challenges

posed by the other, directly related, manifestation of the breakdown of perturbation theory:

the appearance of divergences of irreducible vertex functions. To this end, we consider the

so-called diagrammatic extensions of DMFT [51], as these use nonperturbative vertices of

converged DMFT solutions as a main input.

6.2 Vertex divergences and diagrammatic extensions of DMFT

The heart of the algorithmic challenge posed by the divergences of the irreducible vertex

functions canbe summarized as follows: Since the irreducible vertex in channel r, Γr , aswell

as the fully irreducible vertex Λ diverge along infinitely many lines in the phase diagrams

of many-electron models, methods that use these irreducible quantities are expected to fail

along these divergence lines. Of course, in practice, calculations are performed at most

in the proximity to a vertex divergence line, but typically not exactly at the parameter set,

where the divergence occurs. Nevertheless, even in their proximity, the irreducible vertices

will assume huge values, posing considerable problems to their numerical treatment (see

e.g., Fig. 3.2, which shows Γνν
′ω�0

c close to a vertex divergence). Additionally, one should

also consider as additional difficulty the increasing “density” of divergence lines at larger

interaction values, see, e.g., Fig. 3.20.

Evidently, diagrammatic methods that do not rely specifically on the irreducible ver-

tices, but only on the full vertex F are, in principle, free of this issue.

It is worth noting a recent work by F. Krien et al. [137], where an alternative strategy for

circumventing this issue for parquet-based methods was pushed forward. The main idea

is to group the different classes of vertices according to another criterion for reducibility:

This is no longer based on cutting two fermionic lines (two-particle reducibility), but on

cutting one interaction line (U-reducibility). We discuss the details and advantages of this

method in Sec. 6.2.2.

In the following we consider explicitly a subset of three pertinent examples of cutting-

edge diagrammatic extensions of DMFT, discussing in particular, how these methods

circumvent the problem posed by the ubiquitous presence of vertex divergences.

6.2.1 DΓA

Thebasic ideaof thedynamical vertex approximation (DΓA) [95], aswell as theQUADRILEX [196]

approach, is to raise the central DMFT approximation to the next level of complexity. In-

stead of the one-particle irreducible vertex, i.e., the self-energy Σ, which is purely local in

DMFT, it is the fully irreducible two-particle vertex which is assumed to be local (within
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Figure 6.1: Algorithm flow diagrams of the diagrammatic extensions of DMFT, which explicitly

use the irreducible vertex (fully or in channel r) of a DMFT solution as initial input. Left part,

full/parquet DΓA and QUADRILEX schemes: While for the outer self-consistency of the DΓA

approach (black arrow, right) only the Green’s function is necessary, for the QUADRILEX method

also the generalized susceptibility is used, ensuring the two-particle self-consistency. Right part,

ladder DΓA approach: In the central grey box the DMFT algorithm (cf. Sec. 2.3.1) is sketched. In the

rightmost part arrows (blue objects) highlight the input extracted from the DMFT solution (from

the AIM). This figure was taken from Ref. [51] (see Fig. 11 therein).

QUADRILEX this is done in a functional-integral framework, which ensures a more ad-

vanced kind of self-consistency). While, for a recent review of these approaches, we refer

the reader to Ref. [51], in the left panel of Fig. 6.1 we present a flow diagram, taken from

Ref. [51], summarizing both approaches. Starting from an AIM corresponding to a self-

consistent DMFT solution, an impurity solver (e.g. w2dynamics [85]), is used to obtain

the local Green’s function as well as the generalized susceptibility χνν
′ω
. Employing the

inverse parquet equations the fully irreducible vertex Λνν
′ω

is calculated, which is the

starting point for the parquet equations of the lattice system under investigation (whose

dispersion is encoded in G0,kν). In thisway, among other objects, ak-dependent self-energy
Σk is obtained at the end of a DΓA/QUADRILEX procedure, which includes all nonlocal

correlations generated by the parquet diagrams on top of the DMFT solution.

Whileparquet (or full)DΓAcalculationshavebeenemployed in some relevant cases [153,

156], the considerable numerical effort has made another flavor of DΓA, i.e., its ladder ver-

sion [197, 198] more exploited for numerical applications [51]. This ladder version of the

DΓA is illustrated in the right panel of Fig. 6.1. Here the nonlocal correlations beyond

DMFT are only taken into account in selected channels r. The grey box represents a flow

diagram, illustrating the DMFT algorithm used as a starting point. Instead of an inversion

of the parquet equations, here the BSE are inverted to obtain the irreducible vertex in chan-

nel r, Γνν
′ω

r (The l-index in Fig. 6.1 represents the particle-hole or particle-particle sectors).
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Subsequently the BSE together with the equation of motion (EOM) is used to obtain Σk.

Evidently, close to a vertex divergence, the crucial step of the inversion of the parquet or

Bethe-Salpeter equations becomes problematic, hindering a reliable numerical treatment

of all vertex functions in the following steps of the algorithms. To circumvent this issue, a

reformulation of the corresponding equations would be necessary, preventing the explicit

manipulation of irreducible vertices. So far no such reformulation has been found for

the full/parquet DΓA or the QUADRILEX approach. The situation is more favorable for

ladder DΓA, whose equations can be completely recast in terms of the full vertex F instead

of Γr [51, 54].

This formal property has been exploited in a recent work by J. Kaufmann et al. [199],
where the self-consistent version of the ladder DΓA algorithm was implemented and

tested. As the authors explicitly showed, the reformulation using full vertices, instead of

irreducible ones, allowed for applying a fully self-consistent version of ladder DΓA also at

interaction values larger than those of the first vertex divergence lines. It should be noted,

however, that just in the direct proximity of the divergence lines, the convergence of the

self-consistent method could not be achieved, for reasons which are not fully clarified yet.

6.2.2 Dual fermion

The dual fermion approach [200–202] is based on rewriting the lattice problems in terms

of a collection of Anderson impurity models, which are each numerically exactly solvable,

and whose mutual coupling is treated in a perturbative manner [51]. To this end the

original lattice actionS is expressed in terms of a local reference actionSloc and decoupled

by introducing new fields, the so-called dual fermions. In particular, this is achieved

by applying a Hubbard-Stratonovic transformation to the Gaussian part of S. In order to

obtain a generating functional W , which is completely expressed in terms of dual variables,

W is expanded in terms of the local coupling between physical and dual fermions. This

introduces the effective dual fermion interaction Veff, which is fully determined by the

local n-particle vertices of the impurity systems. In principle, Veff includes interaction

terms of higher particle order than the usual two-particle one. In practical applications,

however, usually only the two-particle terms are retained. Using the generating functional

W expressed in dual variables, relations between dual and original correlation functions

can be identified, allowing one e.g. to obtain the physical self-energy from the dual one.

The main advantage of this procedure lies in the improved starting point for perturbative

expansions, which produces nonlocal correlations on top of the nonperturbative local ones

already included via the auxiliary impurity models. The central approximation of the dual

fermion method, beyond the choice of the dual interaction, is the diagrammatic expansion

made in dual space. For a concise review of dual-fermion-based approaches we again refer

the reader to Ref. [51].

Concerning the subject this thesis, the crucial advantage of the dual fermion method

lies in the form of Veff, where only the full local vertices enter, e.g., on the two-particle

level, the full (one-particle-irreducible) local vertex F of an AIM, corresponding to a self-

consistentDMFT solution. In thisway thedual fermion approach automatically circumvents
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Figure 6.2: Single-boson exchange decomposition (SBE) [137] of the full vertex Fα in channels

α � c ,m into the fully U-irreducible vertex (ϕfirr,α
) and the U-reducible contributions from the

three diagrammatic channels (∇ph/ph/pp,α), which are constructed upon the Hedin vertex λα and

the screened interaction wα
(wiggly line). The last term is a double counting correction of the bare

interaction. The figure is taken from Ref. [137] (see Fig. 1 therein) where the SBE is introduced.

Note that f α corresponds to Fα in our notation.

the explicit usage of irreducible vertex functions of the auxiliary AIM and, hence, all the

related algorithmic problems posed by the appearance of vertex divergences.

While many flavors of the dual fermionmethodwith different levels of approximations

are known in the field [51], we want to focus here on a specific version, which was intro-

duced only recently: The boson-exchange parquet solver for dual fermions (BEPS) [203].

This cutting-edge realization of the dual fermion approach has an important characteristic:

The approach is based upon the so-called single-boson exchange (SBE) formulation, which

we briefly sketch in the following.

The SBE [137] defines a convenient decomposition of the full vertex F, formally similar

to the parquet decomposition (mentioned briefly in Sec. 3.1.4.2). However, instead of being

based on the notion of two-particle reducibility by cutting two fermionic lines, it groups

the diagrams contained in F according to reducibility with respect to the bare interaction

— the so-called U-reducibility. This corresponds to the following equation (cf. Eq. (4) in

Ref. [137]):

Fα � ϕfirr,α
+ ∇ph,α + ∇ph,α + ∇pp,α − 2Uα . (6.1)

Here, the full vertex in channels α � c ,m is decomposed into a fully U-irreducible part

ϕfirr,α
and U-reducible diagrams ∇α in the three different diagrammatic channels ph, ph

and pp. These U-reducible diagrams are given by Hedin three-leg vertices λα and the

screened interaction wα � Uα + 1

2
Uαχα(ω)Uα

[137]. The remaining term in Eq. (6.1) is a

double-counting correction. InFig. 6.2we reproduce afigure fromRef. [137], illustrating the

SBE decomposition. While the two-particle nature of the electronic interaction considered

(here the Hubbard one) allows to directly relate the classes of 2P-reducible diagrams in the

parquet decomposition to the corresponding U-reducible ones of the SBE one (the ph,ph

and pp sectors respectively), the number of diagrams belonging to these classes is very

different between the two decompositions. In particular, it can be easily verified that there

are many diagrams which are two-particle reducible but not U-reducible. This leads to

the fact that the U-irreducible vertex, ϕfirr,α
, contains much a larger number of Feynman

diagrams than the fully irreducible vertex of the parquet decomposition [137]. Note that
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similarly as for the parquet decomposition a system of self-consistent equations for a given

ϕfirr,α
can be defined [139] as well as simplified schemes based on approximations of ϕfirr,α

can be formulated [204].

It is important to stress that in the SBE decomposition all vertices are obtained from

algebraic relations, hence not requiring any kind of inversions [137]. In this way the

SBE approach should be protected from the problem of vertex divergences, allowing for

a decomposition of the full vertex also in the nonperturbative regime, as opposed to the

parquet decomposition [18, 58, 59] (see Sec. 3.1.4.2).

In the BEPS method [203] the full vertex encoding the two-particle interaction between

the dual fermions, is decomposed into SBE diagrams and the corresponding U-irreducible

part, as discussed above. For the U-irreducible part the parquet equations are used,

splitting it into multi-boson exchange processes and a remaining irreducible part. This

formulation proved to be advantageous concerning the numerical performance, allowing

for several interesting applications [205, 206] (for an formulation of this idea for real

fermions see Ref. [207]). Among them the BEPS approach has recently offered a new

viewpoint on the still highly controversial topic of the strong-coupling pseudogap in the

2D Hubbard model [206]. In particular this BEPS-based study allowed to identify the

emergence of a non-negligible imaginary part of the spin-fermion coupling, which acts as

a key player in the opening of the gap close to the antinodal point and, at the same time,

in the protection of the Fermi arcs.

6.2.3 DMF2RG

The DMF
2
RGmethod [51, 208–211] is an extension of DMFT, which exploits the functional

renormalization group approach, for a review see Ref. [98], as a means to systematically

include nonlocal correlations on top of the nonperturbative local ones already included in

the DMFT starting point.

As summarized in Sec. 2.3.3, in the fRGmethod [98] a scale dependenceΛ is introduced

in the bare propagator and hence in the many-body actionSΛ. This defines aΛ-dependent
generating functional, which can be used to obtain an infinite hierarchy of coupled differen-

tial equations for one-particle irreducible quantities, the so-called Wetterich equations [98,

100]. In practical applications, this hierarchy is typically truncated at the two-particle level,

i.e., only the differential equations for the self-energyΣ and the full vertex F are considered.

These coupled equations are however not closed, because the latter still explicitly depends

on the three-particle vertex. Different approximation schemes of the fRG approach usu-

ally concern the extent to which the three-particle vertex is included in the differential

equation for F and Σ. For example, a commonly used scheme, the so-called one-loop (1`)

approximation, neglects the effect of the three-particle vertex entirely.

Eventually, once the set of differential equations is defined, it is solved starting from

an initial condition, which often corresponds to an explicitly known limiting case. By

doing so, the approximate fRG solution of the many-body problem under consideration is

obtained. This process is often referred to as “flowing”.

In the case of DMF
2
RG the fRG method is formulated to represent the "turning on"
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Figure 6.3: Schematic representation of the DMF
2
RGmethod. At the scale Λini the flow starts from

the DMFT solution by using the bare local Green’s function of the corresponding AIM, GAIM(ν),
as bare propagator GΛini

0
of the initial action SΛ�Λini

. As Λfin is reached, nonlocal correlations are

included and the bare lattice Green’s function (Glatt(k, ν)) is fully included in the final actionSΛ�Λfin
.

The figure is taken from Ref. [211] (see Fig. 2 therein).

of non-local correlations as Λ flows from the initial Λini to the final value Λfin [208]. For

instance, during theDMF
2
RGflow, the scale-dependent bare propagatorGΛ

0
is turned from

the one corresponding to the AIM of the self-consistent DMFT solution [GAIM(ν)] to the

one corresponding to the full lattice problem [Glatt(k, ν)], as illustrated schematically in

Fig. 6.3, reproduced from Ref. [211]. To avoid double-counting of local correlations GΛ
0
is

chosen such that the following condition for the interacting Green’s function is preserved

throughout the flow [210, 211]:

GΛ
loc
(ν)

��
ΣΛ�ΣDMFT

�

∫
k

GΛ(k, ν)|ΣΛ�ΣDMFT

� GDMFT(ν) (6.2)

Importantly, similarly as in the dual fermionmethod, the DMF
2
RG requires the Green’s

function and the full vertex F of DMFT as an input. They provide the initial conditions

for the differential equations describing the fRG flow of the self-energy and the one-

particle irreducible vertex F. Evidently, in this way, the problem of vertex divergences

is also automatically circumvented, as the irreducible vertex functions are never explicitly

manipulated in any step of the procedure.

While the DMF
2
RG approach combines two very powerful methods, extending the

applicability of truncated fRG to the strong coupling regime [208, 210, 211], its current

implementations, exploiting the 1` fRG, face an important limitation at low-temperatures.

Inparticular, amagnetic instability is foundbelowaso-called“pseudocritical” temperature,
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Figure 6.4: Inverse magnetic susceptibilities for ω � 0 and Q � (π, π) of the 2D Hubbard model as

obtained by DMFT and DMF
2
RG in two independent implementations. The left figure was taken

from Ref. [210] (see Fig. 6 therein) and shows the case of U � 4t, the right figure has been extracted

from Ref. [211] (see Fig. 9 therein) and refers to the case of U � 8t. While one of the main focuses of

Ref. [211] was to investigate the effect of the inclusion of the restfunction of the SBE (RΛ) on the final

results, for our discussion (s. text) the observation of a rather marginal reduction of TN w.r.t. the

corresponding one of the DMFT solution is mostly relevant.

which corresponds to a violation of the MerminWagner theorem [210, 211]. We recall that

according to this theorem [212], in a purely two-dimensional system with short-ranged

interactions, such as the Hubbard model, there should exist no finite-temperature phase

transition associatedwith an order parameter of two ormore components [51]. This means

that critical temperatures, e.g., of antiferromagnetic orders, where the order parameter has

three components, must be zero as long as the Mermin-Wagner theorem holds.

Recent studies applying the DMF
2
RG approach to study the 2D Hubbard model an-

alyzed this aspect among many others. In Fig. 6.4 we reproduce the results of Ref. [210]

(left) and Ref. [211] (right) showing finite values of TN (both) and no significant reduction

as compared to DMFT (left). Both studies used the 1` implementation of the DMF
2
RG

scheme, whereas the latter study, Ref. [211], incorporated also the SBE decomposition

introduced above, which had crucial numerical advantages.

On a different note, a recently developed extension of the fRG, the so-called multiloop

fRG (mfRG) [103–105], was formally proven to reconstruct thediagrammatics of theparquet

approximation, which is expected to guarantee the fulfillment of the Mermin-Wagner

theorem [213]. The mfRG implementation, which is utilized in the following section, is

concisely introduced in Sec. 2.3.3. For a recent description of the mfRG approach based on

the SBE formalism, rather than onparquet-like diagrams, we refer to Ref. [214]. As opposed

to the 1` scheme, inmfRG, a specific class of the three-particle vertex diagrams are included

in the flow of Σ and F such that the corresponding differential equations represent a total

derivative of the corresponding diagrammatic quantity. This way, all the diagrams of the

PA are correctly reconstructed at the end of the mfRG flow. As another recent work by

A. Tagliavini et al. [106] showed, applying the mfRG method to the 2D Hubbard model,

has indeed allowed for a significant reduction of the pseudocritical temperatures. The



6.3. MULTILOOP FRG 139

1 2 3 4 5 6

U

0.0

0.1

0.2

0.3

T

Figure 6.5: Parameters used for themfRGcalculations (turquoise stars) plotted in theT-U diagramof

the specific AIM considered (see Sec. 2.1.1), where the corresponding divergences of the irreducible

vertices (see the discussion in Chapter 3 and in particular Fig. 3.13) are reported as red and orange

lines.

application of the mfRG method, without the self-energy Σ and the full vertex F of DMFT

as a starting point, corresponds to the PA, and thus yields a quantitatively reliable weak-

coupling approximation, which as shown in Ref. [94], displays remarkable agreement with

exact methods in the weakly interacting regime.

6.3 Multiloop fRG

Parts of this chapter, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. Research 4, 023050 (2022)

On the basis of the argumentation made above, it appears to be a very promising idea

to extend the DMF
2
RG approach, used so far at the 1` level, to the multiloop case [105].

In particular, it can be argued that such a multiloop DMF
2
RG solution would formally

correspond to a parquet-DΓA solution [51]. Hence, by including all nonlocal correlations

at the level of the parquet diagrams, this improved scheme would eliminate the issue of

finite pseudocritical transition temperatures in the case of the 2D Hubbard model. In this

way, themultiloopDMF
2
RGwould open a newpath to diagrammatically extend theDMFT

solution to the non-local case, with two important advantages w.r.t. similar other schemes:

(i) The avoidance ofmanipulating the possibly divergent irreducible vertex functions at any

point of the procedure, and (ii) the guarantee to fulfill theMermin-Wagner theorem. In fact,

this procedure could be regarded as an alternative way to recast the parquet equations for

real electrons in terms of the full vertex F, without resorting to the dual fermion formalism.

In pursuing this goal, it is clear that many technical problems may arise, e.g. ranging

from a sufficiently precise treatment of the k-grid, to the choice of a suitable regulator for
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the flow, up to the performance of the mfRG loop resummation at intermediate to strong

coupling.

As a crucial preliminary step, we investigate in the following how the simple mfRG

scheme performs when applied to a fundamental case: the AIM, used throughout this

work (see Sec. 2.1.1 for details) for increasing interaction values fromweak to intermediate

to strong coupling, as explicitly marked in Fig. 6.5 by turquoise stars. Regarding the choice

of themodel, we emphasize that using theAIMhas the following advantages: (i) no further
approximations for the application of the mfRG procedure are necessary. This is different

w.r.t the Hubbard model case, where the mfRG algorithm needs to be adapted to account

for an approximate treatment of thek-dependence, see further Ref. [94]; (ii) the numerically

exact CT-QMC solution of the AIM provides a rigorous benchmark for the overall accuracy

of the mfRG scheme. In this way our investigation allows for a systematic inspection of

the multiloop convergence in different coupling regimes, which is a particularly important

aspect for future applications of the DMF
2
RG in the non-perturbative regime.

Beyond these mostly “practical” issues, we also investigate a more profound feature

of the mfRG resummation and different loop-truncated versions of it (see Sec. 2.3.3): We

analyze to which extent the solutions of these approximate methods fulfill fundamental

properties of the exact solution, specifically sum rules associated with the Pauli principle
as well as Ward identities. This investigation represents an important comparison not only

in respect of future DMF
2
RG applications, but also for approximate quantum many-body

approaches in general.

Parts of the following section that aremarked by a vertical bar, are taken fromRef. [215].

We note as a side remark that in this work a different convention for the diagrammatic

channels as well as the sign of the vertex function was used. The parts, which are taken

from this reference, have been adapted to match the conventions chosen in this thesis.

Additionally, negative vertices (e.g., −Φm) are shown in the following figures, to match

more closely the plotting conventions of Ref. [215].

6.3.1 Multiloop fRG solution of the AIM
In this section, we present a detailed discussion of the results obtained by applying the

mfRG approach, summarized in Sec. 2.3.3, to the half-filled AIM introduced in Sec. 2.1.1

at the inverse temperature β � 10. For further details on the implementation, we refer

the reader to Refs. [96, 106]. We just note here that, for the reducible vertices, we adopt

the parametrization Φr(ν, ν′, ω)�K1r(ω)+K2r(ν, ω)+K2
′r(ν′, ω)+K3r(ν, ν′, ω) proposed in

Ref. [96]. The K1r and K
2
(′)r functions with one and two frequency arguments, respectively,

describe the high-frequency asymptotics, while the remaining full dependence, relevant

at low frequencies, is contained in K3r . This reduces the computational cost, allowing for

the calculation of the vertices on a larger Matsubara frequency range (see Ref. [215] for

computational details). The flowing susceptibilities are conveniently extracted through

χr � −K1r/U2
.

We start the presentation of our numerical results by showcasing the central quanti-
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Figure 6.6: Comparison of the results of different approaches for the self-energy ImΣ(ν) (left), the
magnetic susceptibility χm(ω) (center), and the reducible vertexΦm � K1m+K2m+K2

′m+K3m (right)

of the half-filled AIM considered, for U � 1, β � 10. The fRG results shown here are computed

with theΩ-flow, see Eq. (2.73). The shaded turquoise areas in the first two panels and the frame in

the right one mark the specific frequencies used to study the loop convergence in Secs. 6.3.2 and

6.3.3.

ties of interest for this analysis, i.e. the self-energy Σ, the magnetic susceptibility χm , and

the reducible vertex Φm of the impurity site in the magnetic channel, computed in the

weak-coupling regime (U � 1) by means of the PA (see Sec. 2.3.2), the numerically exact

QMC (see Sec. 2.3.1.2) and all fRG-based approaches introduced in Sec. 2.3.3. Figure 6.6

displays our results for Σ, χm and −Φm as a function of fermionic (bosonic) Matsubara fre-

quencies. The corresponding numerical data would also allow one to estimate important

physical quantities (e.g., the quasiparticle mass renormalization and life time) relevant

for the description of the Fermi-liquid state of the impurity problem [9, 30, 146] as well

as to quantify the temporal fluctuations of the local magnetic moment on the impurity

site [61–63]. Consistent with the small U value of these illustrative calculations, all ap-

proaches yield qualitatively the same behavior and deviations to numerically exact QMC

data are hardly visible. In particular, we note that the converged mfRG solution (orange

squares), perfectly matches the PA (dashed black line) for all quantities, ImΣ, χm , and Φm

(not shown). The results at the highlighted Matsubara frequencies are then used in the

following Sec. 6.3.2 for a quantitative study of the mfRG convergence as a function of loop

order `. There, we also showcase two hallmark qualities of the converged mfRG solution:

(i) It is cutoff-independent, reflecting the fact that it reproduces the PA solution, which, as

a self-consistent diagrammatic resummation, by construction is defined without reference

to any cutoff. (ii) For quantities that can be computed either via their own RG flow equa-

tions, or via post-processing (PP) relations, the results agree. These PP relations refer to the

Schwinger-Dyson equation of motion, which allows to obtain the self-energy Σ from the

full vertex F (see Eq. (2.72)), as well as the Bethe-Salpeter equations, relating the general-

ized susceptibilities and the full vertex F, see Sec. 2.2.2. The magnetic response function

χm is then obtained by summing all fermionic Matsubara frequencies (cf. Eq. (2.30)).

In Sec. 6.3.3, we extend our analysis to larger values of U.
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6.3.2 Multiloop convergence to PA
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Figure 6.7: Ω-flow (red) and U-flow (blue) mfRG results as a function of loop order ` in comparison

with the PA (black, dashed) and the numerically exact QMC data (green), for the half-filled AIM

at U � 1. Upper panels: ImΣ(ν � πT) and χm(ω � 0), showing perfect agreement between post-

processed (PP) and flowing results of both cutoffs and the PA result. Lower panels: asymptotic

vertex functions K2m and K3m for the lowest Matsubara frequencies. Insets show a zoom for ` ≥ 4.

The gray areas mark 1% deviation from the PA result, the blue ones in the insets 0.1%. The label

‘∞’ represents the fully converged mfRG result. In this and similar figures below, the data points

plotted between those at ` � 1 and ` � 2 represent the 1`K results (Katanin substitution, see

Sec. 2.3.3).

In Fig. 6.7, we analyze in detail the loop convergence of the mfRG flow for U�1. The four

panels display both the flowing and PP results for ImΣ(ν � πT) and χm(ω � 0) as well as

the flowing results for −K2m(ν � πT, ω � 0) and −K3m(ν � ν′ � πT, ω � 0), as a function

of loop order ` obtained with the two cutoffs, i.e., the Ω-flow, see Eq. (2.73) (red circles)

and the U-flow, see Eq. (2.74) (blue triangles). For comparison, the PA (black dashed line)

and QMC (green solid line) solutions are also reported. One readily notices that the mfRG

solution for both cutoffs converges to the PA for all considered quantities. Throughout

the paper, the label ‘∞’ refers to the infinite loop-order mfRG solution, see [216]. The

high quality of the mfRG convergence can be appreciated by looking at the corresponding

insets, showing the data restricted to higher loop orders. While the gray area in the main
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zoom for ` ≥ 6. The gray area indicates 1% deviation from the PA. For `�11, 12 we were unable to

converge the U-flow calculations.

panels marks 1% deviation with respect to the PA, the blue area in the insets corresponds

to 0.1%.

It is worth stressing that for some quantities and specific values of `, the mfRG and

PA solution may be accidentally close, e.g. the 3` Ω-flow result for χm(ω � 0) or the 3`

U-flow result for K3m(ν � ν′ � πT, ω � 0). Of course, this does not mean that the mfRG

procedure has already converged at 3`: Full convergence implies the equivalence of mfRG

and PA for all quantities and both cutoffs up to differences smaller than a given ε, e.g., here

0.1%. For the U � 1 calculations, this is clearly achieved for ` ≥ 8. Looking at the insets,

the Ω-flow appears to converge systematically faster than the U-flow. We note that all

U-flow results shown in the paper are obtained via a frequency extrapolation (see further

the Appendix of Ref. [215]), which is required to achieve the highly precise convergence to

PA demonstrated in the insets.

Another important property of the converged mfRG solution is the equivalence of the

flowing and PP results, shown both for ImΣ(ν � πT) and χm(ω � 0) in the upper panels

of Fig. 6.7. Except for the 1` and 1`K results for the self-energy, the PP data (dotted lines

with ‘×’ or ‘+’ symbols) are always found to be closer to the PA than the flowing data

(for the susceptibility, this trend was previously reported in Ref. [94]). For both cutoffs,

flowing and PP results agree with the PA for ` ≥ 8, highlighting the perfect convergence of

the mfRG scheme in this parameter regime. The loop convergence can also be seen from

calculations with a single cutoff, as there are no more changes larger than a small ε in all

quantities when going from ` to ` + 1, and flowing and PP results agree with one another.

Finally, let us note that adopting the PP procedure has also important implications for the

fulfillment of sum rules, which are studied in Sec. 6.3.7.

6.3.3 Toward strong coupling
We now analyze how the convergence of the mfRG flow is affected by increasing the

interaction U. In Figs. 6.8 and 6.9, we focus on the results for the physical quantities
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Figure 6.9: Relative difference betweenΩ-flowmfRG calculations (flowing) and the corresponding

PA solutions for ImΣ(ν � πT) (left) and χm(ω � 0) (right), as a function of loop order ` and different

values of the interaction U. Main panels show U ≤ 2, insets U ≥ 2.

ImΣ(ν�πT) and χm(ω�0), but we also checked for convergence of K2m(ν�πT, ω�0) and
K3m(ν�ν′�πT, ω�0) (not shown).

For values of U slightly larger than U � 1, the convergence behavior is qualitatively

the same (see Fig. A.10 in Appendix A.3 for U � 1.5), albeit with increasing interaction, as

expected, more loop orders are required to reach convergence.

For U � 2, the dependence on loop order is shown in Fig. 6.8. While the mfRG solution

quickly approaches the PA for low `, the path toward full convergence for higher ` becomes

visibly slower as the curves describing the loop dependence of the mfRG calculations keep

oscillating around the PA solution. The Ω-flow results are generally found to be more

accurate than the U-flow data (note that for the U-flow at ` � 11, 12, no solution could

be obtained; see further Ref. [215]). Yet, even with the Ω-flow, we did not reach perfect
convergence up to ` � 40. Different from the situation at U � 1 and U � 1.5, the results

obtained by PP do not show a clear improvement. Instead, they seem to follow a slightly

different oscillation pattern, somewhat shifted from the flowing data (see insets of Fig. 6.8).

Further insight on the oscillations characterizing the mfRG convergence with increasing

interaction can be gained from Fig. 6.9. Here, we show the relative difference between the

mfRG results and the corresponding PA solutions for different values of U. By comparing

the (flowing) results of the Ω-flow for different interaction strengths U �1, 1.5 and 2, one

notices the presence of “nodes" in the multiloop oscillations, i.e., of loop orders at which

mfRG and PA yield numerically very similar results for the quantity under consideration.

The location of these nodes, however, depends on the observable. (While, e.g., ` � 7 for

χm(ω � 0) is close to the PA for all values of U, for ImΣ(ν � πT) this is not the case.)

For larger interactions, the oscillations become stronger. Already for U �2, the amplitude

of the self-energy oscillations hardly decreases with increasing loop order, making a full

convergence numerically challenging as discussed above. (The U-flow shows similar

behavior, see Fig. A.12 in Appendix A.3.) This effect gets even more pronounced for
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Figure 6.10: The restfunction −K3m(ν, ν′, ω) for fixed ω � 0 and ν′ � πT calculated from mfRG

Ω-flow calculations of the AIM with different loop orders for the half-filled AIM at U � 2. To

facilitate the comparison across different loop orders in the lower right panel a comparison across

different ` is shown.

U � 3 displayed in the insets, together with U � 2 for comparison. There, higher loop

orders, especially for χm(ω � 0), yield a progressively enhanced deviation from the PA for

increasing loop order. Therefore, we conclude that, within our current implementation and

the given settings of the AIM, the mfRG loop resummation ceases to converge for U � 3.

Such a lack of loop convergence serves as a built-in red-flag indicator that a parameter

regime lies outside the zone of safe applicability of the approach. This outcome, however,

is not entirely unexpected since, for the specific AIM considered, the interaction strength

U � 3 already corresponds to the strong-coupling regime, where nonperturbative [11, 12,

67, 68] divergences of two-particle irreducible vertices [10, 13, 17, 19, 21, 23, 25, 26], which

are—per construction—beyond the PA, were detected by means of QMC calculations [22,

68], as discussed in Chapter 3 and shown in Fig. 6.5.

As for the peculiar “node” structure of the multiloop oscillations, it should be noted that

it is also observed, essentially unaltered, for different temperatures, see Appendix A.3.1

where we complement the discussion made above with results for β � 5. This might

suggest that the occurrence of nodes in the multiloop oscillations is not a mere accidental

feature of a specific parameter set.

6.3.4 “Breathing” of the rest function

In the previous section we discussed the way the multiloop oscillations affect the conver-

gence of the mfRG scheme for ImΣ(ν � πT) and χm(ω � 0). In this section we present
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more details on how the oscillations observed for U � 2 are reflected in the restfunc-

tion K3m(ν, ν′, ω) for ω � 0, where the full fermionic frequency dependence is taken into

account.

As a first step we fix ω � 0 and ν′ � −πT and show cuts in ν for different loop orders

using the Ω-flow in Fig. 6.10. Starting from the upper left panel it can be seen how the

results oscillate as a function of loop order around the PA result (black dashed lines). The

last loop order seen in each panel is replotted again in the following one for all panels

but the last, where a comparison across several loop orders is shown. In the upper right

panel the maxima and minima of the multiloop oscillations are particularly visible, as the

loop orders ` � 5, 6, 7, 8 almost coincide. In the lower left panel we also report the ` � 32

result, which shows a convincing agreement with the PA for the rest function, but not for

all other quantities such as ImΣ(ν � πT) (not shown), indicating that, as discussed before,

the multiloop convergence is not fully reached.

As a second step we analyze the full fermionic frequency dependence of K3m(ν, ν′, ω).
In Fig. 6.11 and 6.12 we present the results corresponding to the loop orders shown in

the lower right panel of Fig. 6.10 as a function of both ν and ν′ for ω � 0. Fig. 6.11

exploits a color map, which is optimized for highlighting differences in the range of small

values of −K3m(ν, ν′, ω � 0). This allows to easily identify the qualitative changes in ν

and ν′, where the shape of K3m(ν, ν′, ω � 0) changes from a diamond-like structure at

low loop orders toward the butterfly-like structure of the PA solution. In Fig. 6.12, for

a more quantitative analysis, we plot the differences of the Ω-flow results and the PA

solution, i.e., −
(
KmfRG

3m (ν, ν′, ω � 0) − KPA

3m(ν, ν′, ω� 0)
)
. One readily notices that the trend

observed in the fixed-ν′ cuts is coherent with the evolution of the full ν, ν′ dependence of

K3m(ν, ν′, ω � 0).
Overallweessentially obtain the samepicture for themultilooposcillationsofK3m(ν, ν′, ω �

0) as for the ones of ImΣ(ν � πT) and χm(ω � 0) discussed in the section above: One ob-

serves how the low-loop order results quickly approach the PA solution as well as the

residual oscillations around it for larger loop orders. Since the entire K3m(ν, ν′, ω � 0)
function oscillates around the PA result, we figuratively refer to these multiloop oscilla-

tions as “breathing” of the restfunction.

The corresponding plots for the U-flow calculations are shown in Appendix A.3.2,

where qualitatively the same behavior is observed, albeit with quantitatively larger oscil-

lations.

Our results of Figs. 6.10, 6.11 and 6.12, which demonstrate how the multiloop oscil-

lations affect K3m(ν, ν′, ω � 0), have also important practical implications. Specifically,

the usage of the high-frequency parametrization of the reducible vertex [96] allows for a

speed-up of the numerical calculations as the full frequency-dependent restfunction needs

to be taken into account only for a small finite frequency box (the so-called boxsize). In

the choice of the number of frequencies to be included the “breathing” behavior of the

restfunction needs to be carefully considered, since the boxsize might vary significantly

during the multiloop procedure (see Ref. [215] for the specific choice made for this work).
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Figure 6.11: Ω-flow mfRG results for −K3m(ν, ν′, ω � 0) as a function of ν and ν′ for the AIM with

U � 2 and β � 10. The color map is optimized to better highlight the range of small values.
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6.3.5 Physical quantities: comparison from weak to strong coupling
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Figure 6.13: ImΣ(πT) (top), ImΣ(πT) − ImΣ(3πT) (center) and χm(ω � 0) (bottom) as a function of

U, obtained from Ω-flows at low loop order, the PA, and QMC.

Here, we compare the results for some of the physical quantities considered, as a function

of U for low loop order mfRG to the PA and the exact solution. Before we analyze the

numerical data, it is worth noting that at very low values of U, the deviations of mfRG and

PA schemes from QMC can be qualitatively understood from general perturbation-theory

considerations. Already forU > 1, however, the interpretation becomesmore complicated,

and the accuracy of the different schemes depends on the observable considered. Among

the Ω-flow results up to U � 4 in Fig. 6.13, the plain 1` flow performs worst for all

quantities. Comparing 1`K and the PA to the exact QMC for large U ≥ 2, we find the best

results for ImΣ(ν � πT) with 1`K , similar deviations for ImΣ(ν � πT) − ImΣ(ν � 3πT)
with 1`K and the PA, and the best results for χm(ω � 0) with the PA. This is consistent

with the results of Chapter 4, where we discussed how the truncated fRG, mfRG or PA

resummations of diagrams describe the formation of a local moment but without the

intrinsic physical implications onto the charge channel. This can be regarded [68] as an

insufficient transfer of information between the magnetic and the charge sector, formally

corresponding to the impossibility of generating the irreducible vertex divergences in these

approximate methods.
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On a more general perspective, we note that the loop convergence of the mfRG proce-

dure is mostly controlled by the ratio between the local interaction U and other relevant

energy scales of the system under consideration (e.g., in the case of the AIM: π∆ or the

temperature T) rather than by the ratio between the temperature and the Kondo tem-

perature [68]. In future dedicated studies, it may be interesting to verify to what extent

the grade of the loop convergence itself might be regarded as an additional independent

marker of central physical aspects of the underlying exact solution of the problem.

After analyzing the performance of themultiloop scheme and its convergence behavior

for the different parameter sets shown in Fig. 6.5, we now turn to the investigation of the

fulfillment of fundamental properties of the exact solution in approximate methods.

6.3.6 Pauli principle and Ward identity
Both the Pauli principle and the Ward identities (WIs) are fundamental features of the

many-electron physics. They are deeply rooted in quantummechanics and pose important

constraints onmany-body correlation functions. An exact solutionmust evidently obey all

such constraints. In approximate treatments, however, their fulfillment is not guaranteed a
priori. It is commonly reckoned [55] that approximate many-body approaches either obey

sum rules imposed by the Pauli principle or satisfy WIs. Hence, fulfilling both the Pauli

principle and the WIs would represent a specific hallmark of the exact solution. On a

more formal level, a pertinent example of such a trade-off in the context of parquet-based

approximations can be obtained by exploiting explicit relations between the self-energy

and four-point vertices [105, 217, 218] in the parquet formalism.

In the following, we utilize our converged numerical results for theAIM to analyze, on a

quantitative level, to what extent the Pauli principle andWIs are fulfilled for the important

class of approximate many-body approaches ranging from the conventional fRG to the

mfRG and PA.

6.3.7 Pauli principle

Sumrule of χσσ: Formal aspects —ThePauli exclusionprinciple states that two electrons

cannot occupy the same quantum state. On the operator level, this corresponds to the fact

that a fermionic occupation-number operator can only have eigenvalues zero and one. On

the diagrammatic level, such a constraint affects the many-body correlation functions in

several ways, e.g., through sum rules they must obey.

In this context, a relevant correlation function for the physics of the AIM is the equal-

spin density-density susceptibility (cf. Sec. 2.2.3),

χσσ(τ) � 〈Tτ n̂σ(τ)n̂σ〉 − n2

σ . (6.3)

Here, nσ � 〈n̂σ〉, and Tτ denotes (imaginary) time ordering, as discussed in Sec. 2.2 (for

brevity, we omit here the particle-hole channel label). This susceptibility is directly affected
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by the Pauli principle through the operator identity n̂2

σ � n̂σ. Indeed, an evaluation at τ � 0

yields

χσσ(τ � 0) � 〈n̂2

σ〉 − n2

σ � nσ(1 − nσ), (6.4)

a value, which is fully determined by the single-particle expectation value nσ. Further-

more, as the equal-time correlator χσσ(τ � 0) is identical to the sum over all its Fourier

components χσσω , the following sum rule [219] must hold:

1

β

∑
ω

χσσω � χσσ(τ � 0) � nσ(1 − nσ). (6.5)

At SU(2) spin symmetry and half filling, the result is 1/4.
For the purposes of the subsequent discussions, it is useful to elaborate on the quantum-

field-theoretical relations which underlie Eq. (6.5). To this end, we recall that the Pauli

principle can be translated from an operator identity ({ĉσ , ĉσ′} � 0, {ĉσ , ĉ†σ′} � δσσ′) to the

crossing symmetry of four-point correlators. For illustration, let us briefly use a compact

notation where all arguments of an electronic operator are summarized in a single index

i. Then, for G2,i1 ,i2 ,i3 ,i4
∝ 〈Tτc†i1

ci2

c†i3

ci4

〉 (cf. Eq. (2.13)), the crossing symmetry implies

G2,i1 ,i2 ,i3 ,i4
� −G2,i3 ,i2 ,i1 ,i4

� −G2,i1 ,i4 ,i3 ,i2
.

Furthermore, the susceptibility can be represented through (full) propagators G and

the (full) two-particle vertex F by

χσσω � −1

β

∑
ν

Gσ
ν+ωGσ

ν

− 1

β2

∑
νν′

Gσ
ν+ωGσ

νGσ
ν′+ωGσ

ν′F
σσ
νν′ω , (6.6)

see Sec. 2.2 for details. The first term of Eq. (6.6) summed over all frequencies ω, i.e., taken

at τ � 0, gives

χσσGG(τ � 0) � −Gσ(τ � 0
−)Gσ(τ � 0

+). (6.7)

Upon inserting Gσ(τ) � 〈Tτ ĉ†σ(τ)ĉσ〉, one finds

χσσGG(τ � 0) � 〈cσc†σ〉〈c†σcσ〉 � (1 − nσ)nσ , (6.8)

which yields already the entire sum rule, see Eq. (6.5). Consequently, the vertex contribu-

tions must vanish when summed over all frequencies ω. This is indeed guaranteed by the

crossing symmetry, as we show below.

Consider the summed vertex contribution of Eq. (6.6),

1

β

∑
ω

χσσ
vtx;ω�−

1

β3

∑
ωνν′

Gσ
ν+ωGσ

νGσ
ν′+ωGσ

ν′F
σσ
νν′ω . (6.9)
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Figure 6.14: (a) The multiloop corrections to the flow of χσσ do not vanish when summed over ω,

since Ia itself is not crossing symmetric. (b) Totally irreducible ‘envelope’ vertex diagrams inserted

into the standard self-energy flow contribute to the 1/ν asymptote of Σ. Red colors indicate

propagators that carry the large frequency ν.

For Fσσ, the vertex with equal spins on all legs, the crossing symmetry simply gives

Fσσνν′ω � −Fσσ
ν(ν+ω)(ν′−ν) [54]. After inserting this into Eq. (6.9), we relabel the summation

indices according to ω̃ � ν′ − ν, ν̃ � ν + ω:

1

β

∑
ω

χσσ
vtx;ω �

1

β3

∑
ωνν′

Gσ
ν+ωGσ

νGσ
ν′G

σ
ν′+ωFσσν(ν+ω)(ν′−ν)

�
1

β3

∑̃
ωνν̃

Gσ
ν̃Gσ

νGσ
ω̃+νGσ

ω̃+ν̃Fσσνν̃ω̃ . (6.10)

This reproduces the original expression for the summed vertex correction
1

β

∑
ω χ

σσ
vtx;ω

[Eq. (6.9)] with opposite sign, so that

1

β

∑
ω χ

σσ
vtx;ω � − 1

β

∑
ω χ

σσ
vtx;ω ⇒ 1

β

∑
ω χ

σσ
vtx;ω � 0. (6.11)

Sum rule of χσσ: Numerical results — As mentioned earlier, there are two ways [98,

106] of computing susceptibilities in fRG: (i) one can use Eq. (6.6) to obtain χ from Σ and

F in a PP fashion, or (ii) one can deduce χ from its own flow equation (or that of K1 as

employed here). In the former approach the sum rule of χσσ is fulfilled per construction,

as long as the vertex used in the computation obeys the crossing symmetry, see Eqs. (6.8)

and (6.11), while, in the latter scheme, this property is not guaranteed.

Not surprisingly, strategies (i) and (ii) then yield different results within 1` fRG (see

Figs. 6.7 and 6.8), suggesting that the susceptibility computed from a 1` flowdoes not fulfill

the sum rule. Indeed, one can easily convince oneself that the multiloop vertex corrections

to the flow of χσσ do not vanish when summing over all frequencies, cf. Fig. 6.14(a). On

the other hand, we already noted that, for a converged mfRG calculation, both schemes of

computing susceptibilities become equivalent [105, 106]. Therefore, the sum rule of χσσ

will be consistently fulfilled, no matter the strategy employed.

On the basis of these considerations, we now turn to our numerical mfRG data. In

Fig. 6.15, we show the loop dependence of
1

β

∑
ω χ

σσ
ω for the flowing susceptibility (obtained

in the Ω-flow) for different values of U. With increasing loop order, the fulfillment of the

sum rule (see Eq. (6.5)), indicated by a dashed black line, is approached. Altogether, we

observe a similar behavior as in Sec. 6.3: While, at low interaction values, the exact value

is quickly reached, multiloop oscillations characterize the behavior at larger interaction
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Figure 6.15: The frequency sum of χσσω obtained for different values of U and loop order ` (in theΩ-

flow). The multiloop corrections systematically improve the fulfillment of the sum rule [Eq. (6.5)].

Upon multiloop convergence, the sum rule is exactly fulfilled, as in the PA (dashed black line).

(U � 2). Nevertheless, even for large U, the results at large ` are much closer to the

fulfillment of the sum rule than the ones at low loop order. As for the PP susceptibility

(not shown), we confirmed numerically that it fulfills the sum rule for all `, consistent with

the above explanations.

High-frequency asymptote of Σ: Formal aspects — Beside its natural link to the sus-

ceptibility, the Pauli principle also affects the self-energy, albeit more indirectly. From

the moments of the single-particle spectral function, known through expectation values

of operators, one can determine the high-frequency expansion of the propagator G, and

thereby of the self-energy Σ [219]. One finds

Σσν � Unσ̄ +
U2nσ̄(1 − nσ̄)

iν
+ O

(
1

ν2

)
. (6.12)

Next to the constant Hartree shift Unσ̄, the 1/ν coefficient coincides with the r.h.s. of

the sum rule for χσ̄σ̄ (see Eq. (6.5)). Indeed, Eq. (6.12) can be equivalently rewritten [198]

as

Σσν � Unσ̄ +
U2

iν
1

β

∑
ω

χσ̄σ̄ω + O
(

1

ν2

)
. (6.13)

More insight about the quantum-field-theoretical relations underlying the asymptotic

behavior of Σ can be gained from the Schwinger-Dyson equation (SDE) restated here,

Σσν � Unσ̄ −
U
β2

∑
ων′

Gσ
ν+ωGσ̄

ν′+ωGσ̄
ν′F

σσ̄
νν′ω , (6.14)

see Sec. 2.2.1 for a diagrammatic representation. To this end, let us replace the vertex by
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frequency νl≈19.16 (νlImΣ(νl)/U2 → − 1

4
for νl →∞), for U�1. Left: Flowing result as a function
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to the self-energy flow, compared to the PA (black dashed). The gray area represents 1% deviation

from PA. Right: Frequency dependence around νl for different methods, with QMC, PA, andmfRG

following the exact asymptote.

its bare contribution, Fσσ̄
0

� U, and use the first propagator in Eq. (6.14), Gσ
ν+ω, to factor

out the dominant contribution for large ν � ω, Gσ
ν+ω ∼ 1/(iν). The remainder is a GG

bubble summed over both frequencies ω and ν′. Hence, we find that the second-order

contribution,

Σσν
2

nd

∼ −U2

iν
Gσ̄(τ�0

−)Gσ̄(τ�0
+)� U2nσ̄(1−nσ̄)

iν
, (6.15)

already provides the correct asymptotic behavior (6.12). This is similar to the sum rule

of χσσ, where Eqs. (6.7)–(6.8) give the entire result, while the summed vertex corrections

vanish (see Eq. (6.11)). Via Eq. (6.13), the same cancellation of vertex corrections occurs for

the self-energy asymptote, as is explicitly shown in the Appendix of Ref. [215].

Within an fRG treatment, the standard flow equation for the self-energy ÛΣstd in terms of

the vertex F is in principle exact, as long as the exact vertex F is available. As this is almost

never the case, the flow ÛΣstd must be considered approximate. In mfRG, the multiloop

corrections to the self-energy flow, see Sec. 2.3.3, effectively generate contributions to ÛΣstd

whichwould require—whenusing the term ÛΣstd only—vertex diagrams beyond the PA (and

thus beyond 1` fRG). Indeed, one can generally show that vertex diagrams beyond the PA

(and thus beyond 1` fRG), such as the envelope diagram, do contribute to ÛΣstd to order

1/ν in the large-frequency limit (see Fig. 6.14(b)). Therefore, the Σ asymptote (Eq. (6.12)) is

violated when using a 1` or multiloop vertex flow while keeping the standard self-energy

flow. This problem is circumvented by including the multiloop corrections to the self-

energy flow [104], which guarantee a perfect equivalence to the SDE and, thereby, that the

correct asymptote will be restored.

High-frequency asymptote of Σ: Numerical results — In Fig. 6.16, we show (flowing)

results for the asymptotic behavior of Σ as obtained from Ω-flow calculations for U � 1.
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The left panel displays νImΣν/U as a function of ` for a fixed, large value of νl ≈ 19.16.

At this frequency, νImΣν is expected to be slightly lower (in absolute value) than the

corresponding asymptotic value of −1/4 for ν→∞. The correct asymptotic description

of the mfRG results (red circles) for large ` is demonstrated by their perfect match with

the corresponding PA results, as the latter yield the correct high-frequency asymptotic by

construction. As explained above, this would have not been the case without multiloop

corrections to the self-energy flow. In fact, the gold pentagon line shows results which are

obtained by ÛΣstd without multiloop additions to the self-energy flow (these start at ` � 3)

and notably deviate from the correct value.

The right panel shows the frequency dependence of νImΣν in a frequency window

around νl (νl is represented by the vertical blue line). For fRG results at lower loop order,

the high-frequency asymptote is incorrect, reflecting the fact that the SDE relation is not

fulfilled. For the same reason, all approaches satisfying the SDE lie on top of each other,

i.e., the PA (black dashed line), mfRG (orange solid line), and QMC (green line) yield

the correct high-frequency behavior of Σ. Note that the QMC result was obtained using

w2dynamics [85] with Worm sampling [87, 88] and symmetric improved estimators [89],

designed to reduce the high-frequency noise. However, the noise cannot be suppressed

completely, and thus the QMC result oscillates around the PA and mfRG solution. While

the improvement of the high-frequency results is not monotonous for the lowest loop

orders, we observe that rather accurate results are obtained already at the 3` level, where

the first multiloop corrections to the self-energy flow appear.

6.3.8 Ward identities

Formal aspects — The WIs play an essential role in the many-electron theory as they

define how the information encoded in the continuity equations at a microscopical level

is reflected onto response functions and macroscopic quantities. More specifically, a

continuity equation is an operator relation of the form ∂τ ρ̂ � −[ρ̂, Ĥ]. If ρ̂ is a symmetry

of the Hamiltonian, [ρ̂, Ĥ] � 0, then ρ̂ is a conserved quantity, ∂τ ρ̂ � 0. In this case, the

continuity equation describes a conservation law. However, even if this is not the case,

continuity relations can be used for deriving relevant WIs, in particular when [ρ̂, Ĥ]—
albeit nonzero—yields a simple expression. Let us point out, that WIs are closely related

with the Luttinger-Ward functional and the notion of Φ-deriveability, see Sec. 2.2.5.

In practice, WIs can be derived for n-point correlation functions of arbitrary n. If ρ̂ and

[ρ̂, Ĥ] involve n1 and n2 � n1 + δn fermionic operators, respectively, then

〈Tτ ĉ1 · · · ĉ†n−n1

∂τ ρ̂〉 � −〈Tτ ĉ1 · · · ĉ†n−n1

[ρ̂, Ĥ]〉 (6.16)

relates an n to an (n+δn)-point function. Typically, onemostly considers theWI connecting

two- and four-point functions (i.e., the WIs ensuring the physical consistency between the

one- and the two-particle description) and restricts oneself to the (local or global) charge

or spin operators, substituting them for ρ̂. A recent derivation, applicable to lattice and
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impurity systems, as well as references to prior work can be found in Refs. [56, 220].

Here, we consider explicitly the (local) charge, ρ̂ �
∑
σ n̂σ, as done in several preceding

works [101, 221]. The resulting WI for the AIM reads

Σν+ω − Σν

WL

�
1

β

∑
ν′
Γc
νν′ω(Gν′+ω − Gν′)

WR

. (6.17)

We introduce the short-handWL(ν, ω) for the left andWR(ν, ω) for the right side of the

above equation. For a more general formulation of the WI, which remains valid also for

cases with broken SU(2) symmetry, as well as a diagrammatic representation, we refer to

Ref. [215].

Numerical results — Since the Pauli principle is preserved in the PA as well as (loop-

converged) mfRG, one expects—on general grounds—these approximate schemes to vio-

late the WIs to a certain extent. Arguably, the size of such violation should increase for

increasing interaction strength, driven by the leading terms of the exact solution (where all

fundamental relations are fulfilled) which are neglected in either approximate approach.

Furthermore, it is known [98, 222] that the 1` truncation leads to violations of the WIs.

Katanin [101] proposed schemes to mitigate this deficiency. In particular, the 1`K flow is

widely used and often argued to better fulfill WIs. However, no explicit numerical studies

were presented thus far. Here, we intend to fill this gap and investigate quantitatively the
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fulfillment of WIs in fRG using our numerical results for the AIM. We focus on flowing

(m)fRG results obtained with the Ω-flow, in order to avoid the frequency extrapolation

required for the U-flow (see further Ref. [215]).

We start with Fig. 6.17, where the top row showsWL(ν, ω) (squares) andWR(ν, ω)
(hexagons) for ω � 2πT as a function of ν for U � 1, as obtained from the flow. We find

that the 1` result exhibits the strongest deviation in the WI for all ν; 1`K yields already a

visible improvement at the lowest Matsubara frequency. However, the 2` and mfRG/PA

results show an overall much more accurate description of the WI for all frequencies. In

particular, we note that while, at the lowest Matsubara frequency, the deviation in 2` is

smaller than in mfRG/PA, the trend is reversed for larger frequencies.

To better quantify the deviations between both sides of theWI, we focus on the quantity

δW(ν, ω) �WL(ν, ω) −WR(ν, ω) at ω � 2πnT (n ∈ N) for two different choices for ν: In

the first case, we fix ν to νs �−dn/2e2πT +πT, which gives the fermionic frequency closest

to the symmetry axis ν � −ω/2, where the largest absolute deviations are found (e.g.

νs �−πT for ω� 2πT in Fig. 6.17, see also Fig. 6.18 discussed below). In the second case,

we sum |δW| for ν in a finite frequency box. Specifically, we sum over 11 frequencies to the

left and 11 frequencies to the right of the symmetry axis, adding also the contribution right

at ν � −ω/2 if n is odd. In thisway, we incorporate the behavior at larger frequencies, while

avoiding numerical inaccuracies from the finite-frequency box effect of the high-frequency

parametrization in our implementation [96] (see also Ref. [215]). When comparing results

for different transfer frequency ω � 2πnT, we divide by n to obtain more comparable

results. The bottom row of Fig. 6.17 shows δW for the n � 1 data reported at the top.

The plot confirms that, at weak-coupling, already the first multiloop corrections strongly

improve the fulfillment of the WI. In particular, the minimal value for δW at ν � −πT
(left panel) is found at ` � 2 and for |δW| summed over ν (right panel) at ` � 3. Hence,
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Figure 6.19: δW in mfRG as a function of loop order at U � 1 for different values of ω � 2πnT
and different choices for ν. Left: ν � νs � −dn/2e2πT + πT, which gives the fermionic frequency

closest to the symmetry axis ν � −ω/2 where the largest absolute deviation is found. Right: ν is

summed over a finite box (see text). Larger values of ω are shown in yellow, smaller ones in violet.

The insets show a zoom starting at ` � 2, using a linear (logarithmic) scale for the left (right) panel.

our U � 1 calculations show that the finite deviation from the exact fulfillment of the WI

expected to occur in the loop-convergedmfRG/PA results is notably smaller in comparison

to 1` or 1`K , and that it quantitatively represents a marginal effect in the weak-coupling

regime. This trend is also confirmed regarding relative deviations |δrW| � |δW/WL |, as
explicitly shown in the Appendix of Ref. [215].

Next, we extend the analysis to larger values of ω � 2πnT and show in Fig. 6.18 loop-

converged mfRG results for 1 ≤ n ≤ 5. The plot demonstrates that the mfRG data provide

satisfactory agreement betweenWL (empty squares) andWR (filled symbols) for all values

of ω and ν, and that the largest absolute deviation indeed occurs for ν around νs , i.e. the

frequency closest to the symmetry axis ν � ω/2 (see above). Figure 6.19 presents δW as

a function of ` for n up to 40. Again, the fulfillment of the WI is slightly improved when

going from 1` to 1`K and strongly improved starting from 2`, for all values of ω. However,

the details in the change from ` � 2 to∞ depend on ω. In general, we observe that the WI

is better fulfilled for larger values of ω. In fact, a perfect match is given for ω → ∞ and

` → ∞, since the WI reproduces the SDE for ω → ∞ (see Appendix of Ref. [215]), which

is exactly fulfilled in mfRG and the PA. This can be clearly seen in both insets of Fig. 6.19.

The inset of the right panel uses a logarithmic scale, where one can also spot the onset of

oscillations in the multiloop convergence, in spite of their small amplitude.

Finally, we analyze the effects of the interaction strength, by progressively increasing

its value up to U � 4. In Fig. 6.20, we examine δW for ω � 2πnT at n � 1 and n � 11,

comparing results of (m)fRG flows at low loop order with the PA. At large interaction, the

pure 1` flow is evidently unreliable, violating the WI with very large values of δW. The

situation visibly improves in 1`K , 2`, and PA. In particular, for U ≤ 2, 1`K is farther off than

2` and PA. Interestingly, however, the 1`K deviations display a highly non-trivial behavior

with increasing U—they are non-monotonous in the top left panel and have a decreasing
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Figure 6.20: δW for increasing U obtained with different methods. Solid lines in shades of red

denote (m)fRG schemes (Ω-flow) at low loop order; the PA solution is shown in dashed black. In

the top (bottom) panels, ω � 2πnT is fixed at n � 1 (n � 11). In the left panels, we use ν � −πT
(ν � −11πT). In the right panels ν is summed over a finite box.

slope in the other panels—and thereby yield comparatively small values of δW at larger

U. By contrast, for the PA results, |δW| starts rather small but increases monotonously

with increasing U.

For the n � 1 case the individual calculations for thedifferentU values are shown for the 1`K

(upper row) and thePA (lower) case in Fig. 6.21. Thepink circles represent δW(ν, ω � 2πT)
as a function of ν. In the upper row one readily notices that the frequency structure of

δW(ν, ω � 2πT) changes significantly for the 1`K solution as U is increased. In particular,

the sign change of δW(ν, ω � 2πT) at low frequencies, observed betweenU � 3 andU � 4,

corresponds to the non-monotonous trend of the 1`K data shown in Fig. 6.20. For the PA

instead, the frequency structure of δW(ν, ω � 2πT) does not display significant qualitative
changes for different values of U, instead it quantitatively grows with increasing U, as one

would expect.

To summarize, we observe that at intermediate to strong coupling, the 1`K shows the

smallest deviations in the fulfillment of theWI at small frequencies, e.g., for n � 1 [215]. The

PA and mfRG solution instead provide a more accurate description for larger frequencies,

see e.g., the results for n � 11 [215]. Further details on the individual deviations ofWL

andWR in comparison with the conserving exact solution can be found in the Appendix

of Ref. [215].
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Figure 6.21: Comparison ofWL(ν, ω � 2πT) (teal, squares),WR(ν, ω � 2πT) (brown, hexagons)

and δW(ν, ω � 2πT) (pink, circles) for different values of U for 1`K (upper row) and PA (lower)

calculations of the AIM.

As a last step, we compare the numerical deviations δW as a function of U focusing

on small interaction values U < 1. Figure 6.22 shows δW, similarly as in Fig. 6.20, but

on a log-log scale. Using a f (x) � α x + d fit, we extract the exponents of the deviations

of the WI, δW ∼ Uα
, for the (m)fRG flow and PA scheme. Our analysis shows perfect

agreement with the theoretical predictions of Ref. [101]: the 1` scheme displays deviations

that growwith the third power of U (α ≈ 3, solid lines), and the 2` results are in agreement

with a U4
growth (α ≈ 4, dotted lines). The 1`K results at small U also manifest O(U3)

deviations. This is in agreement with the analytic arguments of Ref. [101] since, for the

commonly used 1`K scheme, only part of the 2` corrections are included by substituting

S → ÛG. Hence, some terms violating the WI at O(U3) remain, as seen in our numerical

data in Fig. 6.22 (α ≈ 3, dashed-dotted lines). Note that the behavior at larger interaction

values, as discussed above, is beyond the reach of the present analysis applicable at small

values of U.

Further, concerning the loop-converged mfRG/PA results, we find deviations of the

WI, which behave as O(U5) (dashed lines). In general, one expects the PA/mfRG schemes

to deviate from the exact solution as O(U4). However, at half filling, the combination of

the particle-hole symmetry and spin symmetry of our problem causes the contributions

to the WI from the forth-order “envelope” diagrams to exactly cancel, as can be shown

explicitly (see the Appendix of Ref. [215]). For completeness, we also note that the same
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Figure 6.22: Same as Fig. 6.20 for n � 1, but including data for very small interaction values U < 1,
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between U � 0.1 and U � 0.5, yielding the exponents of the ∼ Uα
behavior.

behavior as in Fig. 6.22 is found for other frequency choices as well (e.g. for n � 11 used in

the lower panel of Fig. 6.20).

6.3.9 Discussion

Our thorough investigation of the performance of the mfRG scheme has ranged from the

weak- up to the strong-coupling regime, where the first divergences of the irreducible

vertex functions appear in the exact QMC solution of the problem, as shown in Fig. 6.5. In

the former case, the convergence of themfRG scheme could be achieved quicklywithin few

loop orders and a perfect match with the corresponding PA results was found. At stronger

coupling multiloop oscillations appeared, eventually hampering the mfRG convergence at

high loop orders.

Beyond this purely numerical study, we also investigated fundamental properties that

characterize the exact solution of the many-body problem highlighting important features

of the mfRG scheme: As opposed to flowing results of loop-truncated approximations, the

full mfRG solution, as well as the PA, preserve the Pauli principle and the corresponding

sum rules. As detailed above, this also relates to the fact that the self-energy exhibits

the proper high-frequency behavior in the mfRG/PA case. As for the Ward identities

the non-conserving nature of all approximation schemes investigated became apparent.

Nevertheless for weak interaction a systematic improvement of the fulfillment of WIs for

thePA/mfRGsolutionwas found in comparisonwithother loop truncated approximations.

At larger interaction values a more diverse picture emerged, as the magnitude of the WI

violation depends crucially on the considered bosonic frequency ω.

Our results are relevant in light of future DMF
2
RG applications, since they allow to

foresee possible issues one might have to face. In particular, the following considerations

can be made: On the one hand, by choosing the DMFT solution as a starting point for

intermediate-to-strong coupling applications, one is closer to the exact solution of the

lattice problem than onewould be starting from the non-interacting case [208, 209]. Indeed,
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the flow of the DMF
2
RG scheme, see Sec. 6.2.3, is generating non-local correlations on

top of the local ones already included in the DMFT starting point. Consequently, one

could expect that a swift convergence in loop order is found, in all cases where non-local

correlations remain reasonably well treatable by an advanced perturbative approach, even

in a context of strong (nonperturbative) local correlations. Evidently, this might boost the

applicability of truncated fRGmethodswell beyond the regime of small-to-intermediateU.

On the other hand, by increasingU and/or reducing the temperature, onemight encounter

similar oscillation patterns as a function of loop order, since the local DMFT vertices on

which the DMF
2
RG is build are large compared to the bare interaction U. It remains to

be seen in practical calculations, which scenario will be eventually realized. Nevertheless

let us emphasize that, even in the case of multiloop oscillations and slow convergence

in loop order, the multiloop scheme leads to systematic improvements of fundamental

properties of the approximative solution, as clearly observed in our case for the sum rule

at intermediate coupling in Sec. 6.3.7.



CHAPTER 7

Conclusion and Outlook

... Take a walk on the wild side
– Lou Reed

In this thesis, significant aspects of the divergences of irreducible local vertex func-

tions were thoroughly discussed, including their occurrence in several fundamental many-

electron models, their connection to the multivaluedness of the Luttinger-Ward functional

(LWF), their physical origin, and, finally, their physical and algorithmic implications. Based

on the presentation made, the following conclusion can certainly be drawn: Irreducible ver-
tex divergences are more than a mere mathematical peculiarity of the QFT formalism applied for
describing correlated electron systems. In fact, at the beginning of this thesis, one could

have had the misconception that the main topic was essentially hunting mathematical

ghosts [223] without any deeper physical meaning or impact. In the end, however, one is

certainly convinced of the opposite (or at least the author hopes so).

In this respect, let us summarize the essential insights gained throughout this work by

concisely answering the central questions of this thesis, which were posed in the Introduc-

tion.

• In which cases are the different manifestations of the breakdown of perturbation theory (ir-
reducible vertex divergences and crossings of solutions of the LWF) appearing, and how are
they connected?

Following the detailed discussion in Chapter 3, one would be almost tempted to

answer: Everywhere, where there is correlation. Indeed, after the analysis of several

fundamental many-electron models in cases with and without particle-hole symme-

try, the following systematic seems to emerge: On the two-particle level, in channels

whose local fluctuations are suppressed by the electronic interaction, this suppression

is reflected in the decrease of eigenvalues of the local generalized susceptibilities. De-

pending on zero or nonzero imaginary parts of the singular eigenvalues, divergences
of the corresponding irreducible vertices are triggered or not. This scenario is, how-

ever, not the whole story since a second kind of irreducible vertex divergences exists,

which can even affect the dominant fluctuation channel. While at perfect particle-

163
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hole symmetry, these divergences are decoupled from the corresponding physical

response, out of half filling they are related to its enhancement.

Moreover, the divergences of the irreducible vertex functions are related to the mul-

tivaluedness of the LWF [11]. The corresponding branching points, i.e., crossings of

unphysical and physical solutions, were similarly observed ubiquitously throughout

all models studied in this thesis [11, 19, 21]. For half filling, the connection among

these nonperturbative manifestations is even understood on an analytic level [12].

Out of half filling, an analytic proof is still missing, but overwhelming hints to a

possible underlying connection are found [21].

• What is the underlying physical mechanism that triggers the perturbative breakdown?

Here, a clear-cut picture emerges from Chapter 4: On the local level for repulsive

interaction, the formation of the localmoment is reflected in a characteristic frequency

structure of the generalized charge susceptibility–its fingerprint: strongly suppressed

diagonal entries and an emerging off-diagonal structure. This is thewayhow the local

moment formation originates the appearance of negative eigenvalues in the charge

channel and, hence, the associated irreducible vertex divergences. Additionally,

thanks to this investigation, another characteristic frequency structure–labeled as

the “onion” structure–could be identified and related to the screening of the local

moment in the Kondo regime. Based on this analysis, an alternative criterion for the

determination of the Kondo temperature TK on the two-particle level in the charge
channel could be identified.

• Are there physical implications of the appearance of irreducible vertex divergences?

Yes! The associated negative eigenvalues of the local generalized susceptibilities are

crucial for the correct description of the local physical response function, as pointed

out in Chapters 4 and 5. Even more so, these negative eigenvalues can trigger a

strong enhancement and ultimately the divergence of the uniform charge response

of correlated electrons on a lattice. In particular, in Chapter 5, the divergence of

the isothermal compressibility in the proximity of the Mott-MIT of the Hubbard

model [161] (solved byDMFT) could be directly linked to a negative enough eigenvalue
of the local generalized charge susceptibility. Such an effect can be interpreted, to a

certain extent, as a sign flip of the effective interaction in the charge channel, from

repulsive to attractive, representing a mechanism of purely nonperturbative nature.

• What are the algorithmic implications of the breakdown of the perturbative expansions, and
are there possible strategies for circumventing them?

While the multivaluedness of the LWF poses significant hurdles to the application

of corresponding bold diagrammatic resummation techniques [11], the associated

divergences of the irreducible vertices hinder their direct usage for diagrammatic

extensions of DMFT [51]. Concerning the former, working with bare propagators

instead, allows to go beyond the many branching points of the LWF [11]. For

the diagrammatic extensions of DMFT, the solution can be summarized briefly as:
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“do not open Pandora’s box”–i.e., rewrite or base the diagrammatic approach upon the

full one-particle irreducible vertex F, instead of its irreducible counterparts. InChap-
ter 6, several examples of approaches that circumvent the explicit usage of the irre-

ducible verticeswerepresented,with aparticular focus on theDMF
2
RGmethod [208].

In this respect, the performance of the multiloop fRG [103, 104], as applied to the

AIM, was thoroughly analyzed, as it can represent an important basis for possible

applications of a multiloop DMF
2
RG method [105] (or D(MF)2RG) in the future.

The considerations of all these results outline, for the local case with repulsive inter-

action, the emergence of a well defined mechanism associated to nonperturbative physics,

which we refer to as “the circle of suppression and enhancement”.

The circle of suppression and enhancement Enhanced magnetic fluctuations1 are re-

flected in a suppressed local charge response with associated suppressed positive or even

negative eigenvalues of the generalized charge susceptibility. The communication between

these channels is “transmitted” via irreducible vertices, which diverge if the corresponding

eigenvalues are real and undergo a sign change. These negative eigenvalues of the local

generalized susceptibility, after becoming negative enough, can trigger an instability in the

uniform charge response, representing a nonperturbative pathway to phase transitions.

In thisway, a true nonperturbative feat, or similarly, another “perfect espresso” of strong

local electronic correlation, could be identified throughout this thesis.

7.1 Outlook

In this section, we elaborate on possible future investigations, which are directly inspired

by the different results presented throughout this work.

Beyond DMFT The intuitive picture of the “circle of suppression and enhancement” we

have presented above naturally calls for extensions to cases beyond the DMFT treatment

of the single-band HM.

On the one hand, one can think to include nonlocal correlations on top of DMFT. As a

pertinent example, let us consider the two-dimensional (2D) HM solved by cluster exten-

sions of DMFT, e.g., CDMFT or DCA [121]. In these cases, several studies have highlighted

the crucial role played by antiferromagnetic fluctuations for the physics of the 2D HM [51,

52, 58, 59, 122, 173, 174, 224–226]. In this particular case, also all other basic “ingredients”

for the mechanism described above are present: (a) In the study by J. Vučičević et al. [21],

which was summarized in Sec. 3.1.4.2, the occurrence of irreducible vertex divergences in

the charge channel at intermediate coupling was identified in a CDMFT treatment. Simi-

larly, in the DCA analysis performed in Ref. [18], negative eigenvalues in the generalized

1Here, this role is played by the local moment formation, which effectively increases the magnitude of χ↑↓,
see Fig. 4.5. In this way, the magnetic response (χm � χ↑↑−χ↑↓) is increased and, at the same time, the charge

response is suppressed (χc � χ↑↑+χ↑↓), due to the overall negative sign of χ↑↓.
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momentum-dependent charge susceptibility were found, and related to corresponding di-

vergences of irreducible vertex functions. At the same time, (b) CDMFT calculations for

the 2D HM have shown a strong increase of the compressibility κ in the proximity of the

corresponding MIT, see e.g. Refs. [166–168]. Based on these cornerstones, one can safely

assume to find an extension of the “circle of suppression and enhancement” to cases where

strong nonlocal correlations are included.

On the other hand, extending the study to a multiorbital system, where the Hund’s

coupling can be taken into account, certainly represents another case where strong local

magnetic fluctuations can be expected [61, 227, 228]. As the Refs. [229, 230] have shown,

also in these situations, an increase of the compressibility can be observed in the proximity

of the Hund’s-Mott MIT. Hence, the study of a multiorbital HM would represent another

possible extension of the “circle of suppression and enhancement”.

Let us underline that one should not limit these investigations to the charge sector

and the associated phase-separation instabilities only: The impact of negative eigenvalues,

occurring also in the particle-particle sector, should be also systematically inspected in all

cases where nonlocal correlations beyond DMFT or multiorbital systems are considered.

Some of these possible extensions are currently being worked on by Matthias Reitner

in the group of Alessandro Toschi, aiming to identify the link between phase instabilities

and negative eigenvalues of the local or short-ranged generalized susceptibility in themore

general situations. In this context, we also want to stress that for both cases an analysis

of the frequency and the momentum/orbital structures of the generalized susceptibilities

would certainly be of interest. In thisway, a similar identification of characteristic structures

might be pursued, as the ones presented in this work.

On a more general perspective, it would be interesting to see, whether the “circle of

suppression and enhancement” really is a pathway to phase transitions of purely non-
perturbative nature. In this respect, one would need to analyze the fully k-dependent
case, without starting from a local/short-ranged perspective. Here, one needs to clarify

whether a situation of adivergingnegative eigenvaluewith a correspondingnegativeweight

of the fully k-dependent generalized susceptibility, leading to an instability of a general

q-dependent response χq, would be imaginable. This naturally seems likely, following

also the discussion of the case of cluster extensions of DMFT made above. As a second

step, it would be necessary to check if such negative eigenvalues λ
q
α could be, in principle,

obtained in a self-consistent perturbative treatment such as, e.g., fRG or PA. In particu-

lar, one would need to investigate whether such negative eigenvalues are always preceded
by a divergence of the corresponding momentum- and frequency-dependent irreducible

vertex. From the analysis presented so far, this seems indeed possible. As another hint

for the existence of this mechanism for the fully k-dependent case, without using DMFT

as a starting point, consider also Fig. 4 of Ref. [11]. Here, unphysical solutions, i.e., the

existence of branching points of the LWF, are observed in the fully k-dependent result
obtained by bold diagrammatic Monte-Carlo calculation for a 2D-HM at half-filling. This

result underlines that the multivaluedness, and likely also the divergences of irreducible

vertex functions, will indeed affect also the fully k-dependent solution of e.g., the 2D-HM.
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Physical implications of vertex divergences –Widom line and Fermi-Liquid theory As

alreadydiscussed at the endofChapter 5, the connectionof negative eigenvalues of the local

generalized charge susceptibility to the maximum of the isothermal compressibility for

temperatures further in the crossover region, which defines the Widom line [166–169, 181,

182], would be an interesting extension of the work presented there. As another possible

future project, let us also mention the Fermi-Liquid parameters of the AIM [30]: It would

be interesting to clarify on a fundamental theoretical level, whether in these quantities

an impact of negative eigenvalues of χνν
′

c could be identified. This investigation would

follow the direction of defining a distinction between a perturbative and a nonperturbative

Fermi-Liquid.

Fingerprints of the local moment formation – unequivocally identifying the culprit
While at the moment, fluctuation diagnostic techniques are mostly defined and applied

to the electronic self-energy [58, 59, 122], one could exploit the single-boson exchange

decomposition [137] (introduced briefly in Sec. 6.2.2), to analyze directly, how the diagonal

(ν � ν′) as well as the counter-diagonal (ν � −ν′) of χνν
′(ω�0)

c are determined by the

different diagrammatic channels. The goal here would be to relate χν�±ν
′(ω�0)

c to the

physical magnetic response function χm(ω � 0), in which the local moment formation is

explicitly encoded. In this way, the impact of the progressive enhancement of χm(ω � 0) as
the local moment is formed, could be directly connected with the appearance of negative

entries in the diagonal of χνν
′

c . Further, one could also attempt to identify the microscopic

processes responsible for the increase of the off-diagonal elements of χν�−ν
′(ω�0)

c , which

was shown for the first Matsubara frequency (χ(ν�πT)(ν′�−πT)(ω�0)
c � χO

) in Figs. 4.3 and

A.4. In an upcoming work by Severino Adler, working in the group of Alessandro Toschi,

several aspects of this question will be investigated.

Irreducible vertex divergences – extending the “zoo” Chapter 3 already discussed the

appearance of irreducible vertex divergences in many situations – representing a diverse

“zoo” of nonperturbative manifestations throughout various many-electron models in dif-

ferent physical channels. However, it would be intriguing to extend the analysis to more

complex cases. Here we have in mind: (i) a more focused study of the case of bro-

ken particle-hole symmetry, for example, at different temperatures or larger values of U
(e.g. what happens to the multiple negative eigenvalues seen in Fig. 3.20, when the half fill-

ing constraint is lifted). In this respect, let us also note the relevant extension of the proof

linking a crossing of the physical with unphysical solutions to the occurrence of vertex

divergences [12] to cases out of half filling. This goes hand in hand with a closer inspec-

tion of the boundaries of the nonperturbative regime, as identified by bold resummation

techniques [11, 21, 28], and the different divergence lines observed for this case.

On a more general perspective (ii), a systematic investigation of vertex divergences for

symmetry broken phases (e.g., the antiferromagnetic solution of the HM in DMFT) would

be very intriguing, which is currently being worked on by Matthias Reitner.

Finally, let us in this respect also mention (iii) the idea to investigate vertex divergences
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directly on the real frequency axis, as already outlined at the end of Sec. 3.1.3. Here, the

pioneering Refs. [141] and [142], certainly play an important role as a possible starting

point.

Two-particle criterion forTK Naturally, itwouldbealso interesting to investigatewhether

the two-particle criterion forTK can be adapted and applied tomore complex cases, e.g., out

of half filling, multiorbital systems, or even cases of nonlocal correlations, all discussed

at the beginning of this section (hand in hand with the hunt for possible fingerprints, see

“Beyond DMFT”). Here, the temperature identified by this criterion would most likely

provide an estimate of the coherence temperature. More generally, an analytic foundation

of the two-particle criterion pinpointed in Chapter 4 in the general QFT formalism would

be most desirable, as already discussed at the end of Sec. 4.6. Here a possible connection

to the full vertex F could represent a first step, also in light of the NRG results presented

in Fig. 9 of Ref. [141].

Existence of theminimumof the charge response in the perturbative regime Following

the analysis made in Chapter 4 and the latest results of Ref. [158], the question arises

whether amore strict statement about the presence of vertex divergences and theminimum

of the local charge response χc as a function of T can be made. In particular: At which

interaction value does the minimum of χc as a function of T vanish and is this related to

the lowest U value where irreducible vertex divergences are found?

MultiloopDMF2RG A clear future perspective of themfRG analysis presented in Sec. 6.3

is to perform multiloop DMF
2
RG calculations for, e.g., the two-dimensional Hubbard

model. Based on the arguments presented in Secs. 6.2 and 6.3, one should expect a

significant decrease of the pseudocritical temperatures with increasing loop orders. First

steps into this direction are currentlymade byAimanAl-Eryani and SarahHeinzelmann in

the group of Sabine Andergassen, by applying the mfRG (without a DMFT starting point)

to the attractive Hubbard model.

As a much more speculative outlook (following mainly the author’s gut feeling), it

would also be interesting to investigate further the “node”-structure of the multiloop

oscillations described in Sec. 6.3.3. On the one hand, one could analyze how robust the

position of the “nodes” is as the parameters of the system change, e.g., the temperature

(in a broader range than discussed in Chapter 6). On a more general level, however, the

question arises whether resummation techniques [16, 191], introduced to handle divergent

resummations of bare diagrammatic series (see Sec. 6.1), could be in some way applied to

the multiloop series. Here, the challenge would certainly be to connect these resummation

techniques, which work mainly on the level of the action S and concern summations of

diagram orders, to a summation of loop orders on the level of one-particle irreducible

vertices Σ and F.
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This rich and multifaceted list of possible future research developments, inspired by

the investigations made in this work, highlights the significance of the results obtained

for the forefront description of correlated many-electron systems and their puzzling but

fascinating physics.
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APPENDIXA

Additional results and considerations

In order to provide an insightful and focused reading experience of the main text, some

supplemental results and additional considerations are shown in this Appendix.

A.1 Additional results for Chapter 4

Parts of this chapter, marked by a vertical bar, have already been published in the APS journal
Phys. Rev. Lett. 126, 056403 (2021), specifically as the corresponding supplemental material.

A.1.1 Frequency structures in χ̃νν′c

In this section, additional results on the frequency structures of χ̃νν
′

c , discussed in the main

text, are provided. First, the fingerprints of the local moment formation and the Kondo

regime are shown for the case of the AIM at a different value of U than the one considered

in Chapter 4. Second, the presence of the characteristic Matsubara frequency structures

is confirmed also for the cases of the PAM and the HM. Finally, the particular structure

of the partial summation of χ̃νν
′

c , which was discussed in Sec. 4.1, is reported also for the

lowest-T (Tcold) case shown in Fig. 4.11.

We start by showing in Fig. A.1 a similar analysis as made in Sec. 4.2, but for a different

value of U � 7.25 (U/∆ ≈ 11.54). As the temperature is reduced, the same characteristic

qualitative changes of the Matsubara frequency structure of χ̃νν
′

c are observed, confirming

the generality of our discussion made in the main text. We note that for this interaction

value, the Kondo temperature is TK � 1/158, which is very close to the calculation of

β � 160 shown in central bottom panel of Fig. A.1, where the equality of the 2×2 submatrix

elements of χ̃νν
′

c can be seen immediately. For temperatures slightly below TK (β � 200,

bottom row right panel), the onion structure is still clearly visible.

As already mentioned in Chapter 4, the specific frequency features, coined fingerprints,
can also be observed for the PAM and the HM, as shown in Fig. A.2. The top panels

display the results for the generalized charge susceptibility χ̃νν
′

c (again normalized by T2
)

at intermediate temperatures (U/D/V > Tint > TK), the bottom panels nicely show the

171
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Figure A.1: Similarly as Fig. 4.3 of the main text, T2χ̃νν
′

c (ω � 0) for the AIM at different inverse

temperatures β � 1/T and fixed U � 7.25, where TK � 1/158.

“onion-structure" observed for both, the PAM (left column) and the HM (right column), in

the Kondo regime (Tlow ≈ TK).

The precise parameters of the DMFT calculations for the HM and the PAM shown in

Fig. A.2 are the following: For the PAM the hybridization constant was fixed to V � 0.91t
and Tint � 1/52, Tlow � 1/100. For the HM on the Bethe-lattice the interaction was fixed to

U � 2.2 in units of the half-bandwidth D, and Tint � 1/40, Tlow � 1/50.

Finally, in Fig. A.3, the result of a partial summation of χ̃νν
′

c , as defined in Sec. 4.2, is

shown for the Tcold case presented in Sec. 4.6. As discussed therein, the fingerprints of the

suppression of the charge channel due to the local moment are no longer directly visible in

χ̃νν
′

c . Nevertheless, as Fig. A.3 shows, the overall suppression due to negative eigenvalues

is still present, and distinguishes the Tcold case clearly from perturbative cases, e.g. the one

of Thigh discussed in Sec 4.2.

A.1.2 Low-frequency criterion of χ̃νν′c for TK

Aswe discussed in themain part, at T ≈ TK the generalized charge susceptibility acquires a

typical “onion"-structure. Beyond this qualitative feature, the value of TK can be extracted

for large interaction values, by a precise condition on the lowest frequency entries of χ̃νν
′

c :

χ̃D � χ̃O
, where χ̃D � T2χ̃ πT,πT

c and χ̃O � T2χ̃ πT,−πT
c . We note in passing, that a practical

quality of this criterion resides in the possibility of performing a bisection.

Since the singularity of the innermost 2 × 2 submatrix of χ̃νν
′

c is a precise reference-

point on the two-particle level, TK can be obtained either by a scan in temperature for

fixed interaction values (as shown in the lower panel of Fig. 4.3), or vice versa. The second

possibility is shown in Fig. A.4, where the temperature is fixed to T � 1/80 � 0.0125, and

the interaction value is varied in a broad range. By monitoring the value of χ̃D − χ̃O
(black
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Figure A.2: Comparison of the frequency structure of T2χ̃νν
′
for the PAM (left column) and the

HM (right column). At intermediate temperatures Tint > TK (top panels) one observes the local

moment structure, described above for the AIM. The same holds for the Tlow ≈ TK regime (bottom

panels), where one recognizes for both cases the characteristic “onion-structure".

line) as a function of U, one can readily identify the singularity of the 2 × 2 submatrix of

χ̃νν
′

c (black triangle), see also the inset, where a zoom around U(TK) (blue vertical line) is

shown. The value U(TK) refers in this context to the interaction value where TK is equal to

the temperature T � 0.0125.

As mentioned in Sec. 4.3, the condition χ̃D � χ̃O
turns out to be the most accurate one

to match the value of TK for large interaction values and low-temperatures. Here, we

compare the criterion (i) χ̃D � χ̃O
to other reasonable low-frequency criteria one could

think of, in particular (ii) χ̃D � −χ̃O
and (iii) χ̃D � 0. The results of this comparison are

shown in Fig. A.5. The second singularity of the 2×2 submatrix, χ̃D � −χ̃O
, is represented

by the grey plus symbols. We note that, for high temperatures, this coincides with the

singularity of the whole matrix χ̃νν
′

c , which leads to the second vertex divergence observed

in the AIM (orange divergence line, cf. Fig. 3.13 or 3.14). At the same time, the brown

diamonds denote the parameter set where χ̃D � 0 holds, which lies in between (i) and (ii).
As one notices readily in the inset shown in Fig. A.5, all these low-frequency criteria are

fairly close to the Kondo temperature for large interaction values and low-temperatures.

However they can be clearly distinguished from χ̃D � χ̃O
, which lies on-top of TK.
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′

c of the AIM, as in Fig. 4.4 for U � 5.75, but for

Tcold � 1/300 � TK. As a comparison, also the result for Tlow & TK of Fig. 4.4 is reproduced.
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Figure A.4: Behaviour of χ̃D
(violet) and χ̃O

(green) as a function of U for T � 0.0125 for the AIM.

The black line represents the first eigenvalue of the 2 × 2 submatrix of χ̃νν
′

c (χ̃D − χ̃O
), which is

singular (black triangle) closely to U(TK). The second low-frequency criterion obtained from the

second eigenvalue (χ̃D + χ̃O
) is shown as a grey line.
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Figure A.5: T − U diagram of the AIM, the blue solid line represents the Kondo temperature

TK. Several low-frequency criteria are shown: (i) χ̃D � χ̃O
(black triangles), (ii) χ̃D � −χ̃O

(grey

plus symbols) and (iii) χ̃D � 0 (brown diamonds). Only the first criterion (i) lies on-top of TK for

large interaction values and low-temperatures, as discussed in the main part. The others are close,

but not on-top, see the logarithmic inset. The first and the second vertex divergence line for the

AIM are shown as red and orange line, respectively, which coincide with conditions (i) and (ii) for
high-temperatures.
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A.2 Additional considerations for Chapter 5

Parts of this chapter, marked by a vertical bar, have already been published in the APS journal
Phys. Rev. Lett. 125, 196403 (2020) and the corresponding supplemental material.

A.2.1 Square lattice
As discussed in the main text, the results for the one-band Hubbard model on a square

lattice can be readily understood using Eq. (5.12) of the main text, where t2 → t2

eff
. In this

section we discuss the validity of this approach for our parameter set.

In Sec. 5.2.1 we demonstrated that the term [χ0

q�0
]−1

νν′ − [χ−1

0
]νν′ of Eq. 5.5 is equal to the

constant
t2

2β δνν′ for the Bethe-lattice (cf. Eq. (5.11)). Using the approximation t2 → t2

eff
hence

boils down to assuming that the difference of the q-dependent and local inverted bubble

terms for the square lattice is constant in Matsubara frequency space. Furthermore, other

than for the Bethe-lattice case, the difference of the inverted bubble terms is in principle

also depending on the filling. The behaviour of [χ0

q�0
]−1

νν′ − [χ−1

0
]νν′ is explicitly shown in

Fig. A.6 (we recall that this quantity only depends on oneMatsubara frequency ν since both

matrices are diagonal in the fermionic frequency space). The results of these calculations

are illustrated in the upper panel of Fig. 5.5 of themain text. There, for each µ, the variation

of the real part of [χ0

q�0
]−1

νν′ −[χ−1

0
]νν′ as a function of Matsubara frequency ν is represented

by the blue-shaded area. It can clearly be seen that this variation is small with respect

to the difference of the two lowest real eigenvalues of χνν
′(ω�0)

c (which are central to our

study). This allows us to restrict the analysis of the phase-separation instability in DMFT
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Figure A.7: Comparison of the eigenvectors VI(ν) of the lowest real eigenvalue of χνν
′

c (� χνν
′) and

χνν
′

q�0 at the maximum of κ (U � 2.4, β � 53, µ−U/2 � −0.1). Left: real part. Right: imaginary part.

to the lowest eigenvalue λI. In the right panel of Fig. A.6 one can also clearly see that

the imaginary part (zero in the Bethe lattice case) is nonzero, but vanishingly small and

therefore negligible. These considerations demonstrate that using Eq. (5.12) of the main

text as a basis for the explanation is a valid approach.

This assessment can be further strengthened by comparing the eigenvectors Vi(ν)
of the local χνν

′(ω�0)
c and the uniform generalized charge susceptibility χνν

′(ω�0)
q�0 , where

κ �
1

β2

∑
νν′ χ

νν′(ω�0)
q�0 . The comparison is made for the parameters corresponding to the

maximum of κ and focused on the eigenvector corresponding to λI, i.e. the eigenvector

associated to the most negative eigenvalue of χνν
′(ω�0)

q�0 (as discussed in the main text). A

perfect agreement of the two eigenvectors is obviously only found in the Bethe-lattice case,

but as it is shown in Fig. A.7, also for the square lattice the agreement is very convincing.

In this context, where one restricts the analysis to the lowest eigenvalues of χνν
′(ω�0)

c , it

is possible to provide a precise definition of βt2

eff
/2: For each value of µ, we determine the

value of λ̃I, that would trigger κ(λ̃I ∈ R) → ∞ by using the BSE (Eq. (5.5)). Then the value

of teff is determined from: 1/λ̃I − βt2

eff
/2 � 0.

This definition is used to mark the blue dashed line in the upper panel of Fig. 5.5 of the

main text. Evidently the physical maximum of κ corresponds to the minimal difference

between λI and the value of −2/(βt2

eff
). Since λI never reaches this condition, we confirm

our statement in the main text that for β � 53, U � 2.4 we are just slightly above the onset

of the phase separation (see further section II of the supplemental material of Ref. [67]). It

is interesting to note that the value βt2

eff
/2 corresponds, with a satisfying level of agreement

to the value of [χ0

q�0
]−1

νν′ − [χνν
′

0
]−1

for the lowest Matsubara frequency (not shown). This

is consistent with the observation that the eigenvector VI(ν) of λI (see Fig. A.8 below) is
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FigureA.8: Upper: Gradual evolution of the eigenvectorVI(ν), corresponding to λI, fromhalf filling

(µ−U/2 � 0) to finite doping (µ−U/2 � −0.15). Lower: Evolution of the symmetrized eigenvector

1

2
(VI(ν) + VI(−ν)), corresponding to λI, highlighting the antisymmetry of VI(ν) at half filling. At

finite doping, the condition VI(ν) � −VI(−ν) is violated, and the symmetrized eigenvector shows

non-zero values. Left: corresponding real parts. Right: corresponding imaginary parts.

extremely localized in the frequency domain.

As both, the overall frequency dependence and the µ-dependence are weak compared

to | λI − λII | the approximation based on the Bethe-lattice expression works reasonably

well for the square lattice. As a result, the fulfilment of the condition for the enhance-

ment/divergence of κ matches to a good approximation the minimum value of λI.

A.2.2 Correspondence with vertex divergences
In this section we demonstrate that the eigenvalues λI and λII, discussed in the main text,

are directly related to the first and second vertex divergence lines of the Hubbard model,

respectively (line I and II in Fig. 5.2 of the main text).

Afirst indication is the smoothbehaviour ofλ
I/II andw

I/II, seen inFig. 5.5. Nevertheless,
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Figure A.9: Gradual evolution of the eigenvector VII(ν), corresponding to λII, from half filling

(µ −U/2 � 0) to finite doping (µ −U/2 � −0.15). Left: real part. Right: imaginary part.

to make a definite connection, we study the continuous evolution of the eigenvectors

V
I/II(ν) (corresponding to the eigenvalues λ

I/II) of the local charge susceptibility χνν
′(ω�0)

c

as a function of filling, see Fig. A.8 and A.9. As stated in the main text, at half filling, i.e.

µ−U/2 � 0.0, χνν
′(ω�0)

c is a real, bisymmetricmatrix. This implies [26] that the eigenvectors

V
I/II(ν) are real and either symmetric, or antisymmetric, with respect to ν ↔ −ν (see

Secs. 2.2.4.1 and 3.1.2). Fig. A.8 readily shows that the real part of VI(ν) is antisymmetric

at half filling (left panels), whereas the imaginary part is vanishing (right panels). The

same holds for VII(ν) (see Fig. A.9), whereas it is symmetric at half filling. As discussed in

several works [22, 23, 26] on the appearance of vertex divergences in fundamental models

of many-electrons systems, the first divergence line is associated with an antisymmetric

eigenvector, the second line with a symmetric one (cf. Sec. 3.1). For high- and intermediate

temperatures [19, 22, 26] the eigenvector of the first divergence line resembles the one of

the atomic limit [19, 23] (
1√
2

(δνν̄ − δνν̄)), where ν̄ � πT (cf. Sec. 3.1.1.1). This is clearly

recognizable in Fig. A.8. On the other hand the eigenvector of the second divergence

line [22, 26] has similarities with the symmetric combination (
1√
2

(δνν̄ + δνν̄)) (cf. Fig. 3.17),
also apparent in Fig. A.9. Hence, the eigenvalues λI and λII and their corresponding

eigenvectors VI(ν) and VII(ν) are those that also originate the divergence lines I and II at

lower values of U at half filling.

As a last point, let us also point out the overall similarity between V
I/II(ν) and the

eigenvectors of the first two divergence lines in the charge channel of AIM out of half

filling, see Fig. 3.22, which is an additional confirmation of the assessment made above.

A.2.3 Negative weights

In Sec. 2.2.4.2 the nature of the generalized susceptibility in the ph-channels for cases out

of half filling was discussed in detail. As pointed out there, the eigenvalues can either be
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real or form complex conjugate pairs, due to the centrohermitian property of χνν
′(ω�0)

c [72]

(cf. Eq. (2.58)). At the same time, the correspondingweights are either real (non necessarily

positive) or complex conjugates.

Hence, we briefly discuss, which terms originate the negative weights.

Focusing on the case of a real eigenvalue λI its real weight [67] reads:

wI � Re

[∑
ν

V−1

I
(ν)

]
Re

[∑
ν′

V
I
(ν′)

]
− Im

[∑
ν

V−1

I
(ν)

]
Im

[∑
ν′

V
I
(ν′)

]
,

(A.1)

and is thus determined by both, the real as well as the imaginary part of the corresponding

eigenvector. In the numerical calculations, both parts were found to yield negative con-

tributions, where the imaginary part was found to be the dominant one (not shown), see

further Ref. [73].
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A.3 Additional results for Chapter 6

Parts of this section, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. Research 4, 023050 (2022)

In this part we provide additional results for Chapter 6, especially calculations for β � 5

(Sec. A.3.1) and results for the U-flow (Sec. A.3.2), completing the discussion made in

earlier sections.

In Fig. A.10, we report the results for U � 1.5 (β � 10, half-filling), which were

anticipated in Sec. 6.3.3. For this parameter set, too, the mfRG scheme converges perfectly

in loop order. For ` ≥ 15, both regulators lead to identical results for all quantities, and the

PP (dotted lines with ‘×’ or ‘+’ symbols) and flowing data coincide. As stated in the main

text, no qualitative difference in the convergence behavior is observed, apart from the fact

that, for U � 1.5, more loop orders are necessary to reach it.

A.3.1 β=5

In Fig. A.11 we show a direct comparison of β � 5 and β � 10 data, obtained from Ω-flow

calculations with respect to the corresponding PA solution for U � 2. The plot is done in

a similar fashion as Fig. 6.9. Also for the higher temperature β � 5 one finds multiloop

oscillations. Surprisingly, not only the “node”-structure remains the same, but also the

amplitude of the oscillations seems to be almost temperature independent. We note,

however, that this comparison was only done for a quantitatively different temperature,

not one where a qualitatively different physical situation is to be expected.

A.3.2 U-flow
In Fig. A.12, the relative comparison between U-flow results and the PA for U � 1, 1.5, 2

is shown in the same fashion as in Fig. 6.9 for the Ω-flow. While there is no qualitative

difference, quantitatively the U-flow shows larger relative differences with respect to the
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Figure A.11: Ω-flow calculations for different loop orders for β � 5 (violet) and β � 10 (red) at

U � 2. Each data set is shown in comparison with the corresponding PA result, similarly as in

Fig. 6.9. The PP data is shown in the insets.
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Figure A.12: Relative difference between U-flow mfRG calculations and the corresponding PA

solutions for ImΣ(ν � πT) (left) and χm(ω � 0) (right), as a function of loop order ` and different

values of the interaction U, as in Fig. 6.9. Insets show a zoom for ` ≥ 3.

PA. Note that we were unable to converge the U-flow calculation for ` � 11, 12; see further

Ref. [215].

In Figs. A.13–A.15, we show the “breathing” of the restfunction for the U-flow in the

same way as shown in Sec. 6.3.4 for the Ω-flow. The trend, as already anticipated in the

corresponding section, continues to the restfunction. For high loop orders, qualitatively

the same “breathing” is observed, with quantitatively larger amplitudes of the multiloop

oscillations. At low loop order a sign change in −KU-flow

3m (ν, ν′ � −πT, ω � 0) is observed,
which is absent in the PA result.
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FigureA.13: AsFig. 6.10 forU-flowcalculations. By comparing the twofigures the larger amplitudes

of the multiloop oscillations in the U-flow can be readily seen.
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