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Abstract

Strongly interacting Fermi gases constitute a very challenging and interesting area within many-
body physics and have received a tremendous amount of theoretical and experimental attention.
Especially in the last decade, when it became possible to probe low-dimensional, ultracold atomic
gases experimentally, many new approaches were developed to understand the physics of reduced
dimensionality.
In this work, we set out to characterize the ground-state of interacting Fermi gases in one and two
spatial dimensions. We calculate quantities across a wide range of interaction strengths and par-
ticle numbers, in order to characterize the crossover from few- to many-body physics. Although
numerous methods exist to treat aspects of the one-dimensional (1D) case analytically, there cur-
rently is no known method to extract results from two-dimensional (2D) systems in such a way.
We therefore need to address this problem numerically and choose to treat the problem by means
of Quantum Monte Carlo (QMC) methods. Specifically, we calculate quantities on the lattice,
using an auxiliary field decomposition, closely related to methods typically used in lattice-QCD
calculations.
In the first part of this work, we introduce the physics of Fermi gases. Furthermore, we provide
an overview of the necessary knowledge and definitions needed to understand this work. In the
second chapter, the concept of stochastic integration is introduced. Starting at the basics of Monte
Carlo integration, we arrive at the specific algorithms used in this work. Subsequently, we present
results for the ground-state of 1D and 2D systems in chapters 3 and 4, respectively. We focus on
equal-time density matrices as well as energetics in both cases. Finally, we conclude our work in
the last chapter and point out possibilities to extend our research in the future.



Kurzfassung

Stark wechselwirkende Fermi-Gase verkörpern einen sehr anspruchsvollen und interessanten Teil-
bereich der Vielteilchenphysik. Aufgrund der vielfältigen Effekte haben diese Systeme enorme
Aufmerksamkeit erhalten, sowohl theoretisch also auch experimentell. Durch die Weiterentwick-
lung experimenteller Techniken in den letzten zehn Jahren wurde es möglich, niedrigdimensionale
Systeme zu untersuchen. Im Zuge dessen wurden viele neue Konzepte und Methoden entwickelt
um die Physik hinter der reduzierten Dimensionalität zu verstehen.
Diese Arbeit beschreibt den Grundzustand wechselwirkender Fermi-Gase in ein und zwei räum-
lichen Dimensionen. Wir führen Berechnungen für schwach bis stark gekoppelte Systeme durch
und untersuchen zudem den Übergang von Wenig- zu Vielteilchenphysik. Während für den eindi-
mensionalen Fall Methoden existieren, die es erlauben, Resultate analytisch zu berechnen, gibt es
für zweidimensionale Systeme bis dato keine Möglichkeit, solche Berechnungen durchzufürhen.
Aus diesem Grund sind wir an eine numerische Herangehensweise gebunden, welche in unserem
Fall mit Quanten-Monte-Carlo (QMC) Methoden durchgeführt wird. Im Speziellen berechnen wir
physikalische Größen auf einem Gitter und benützen eine Aufteilung der auftretenden Integrale
mittels Hilfsfelder - eine Technik die aus Gitter-QCD Berechnungen bekannt ist.
Im ersten Teil dieser Arbeit werden wir in die Fermi-Gase einführen und deren einzigartige Eigen-
schaften diskutieren. Außerdem geben wir einen Überblick über die nötige Theorie, um die ge-
zeigten Resultate zu verstehen. Im zweiten Kapitel wird das Konzept der stochastischen Integra-
tion beschrieben, beginnend mit grundlegenden Konzepten der Monte-Carlo Integration bis hin zu
den speziellen Algorithmen, welche für diese Arbeit angewendet wurden. Nach dem theoretischen
Teil zeigen wir Ergebnisse für den Grundzustand von 1D- und 2D-Systemen in den Kapiteln drei
und vier. Wir präsentieren Einteilchen-Dichtematrizen und Impulsverteilungen für beide Fälle,
außerdem Zweiteilchen-Dichtematrizen für eindimensionale Systeme. Für den zweidimension-
alen Fall wird überdies die Grundzustands- und Wechselwirkungsenergie behandelt. Abschließend
geben wir eine Zusammenfassung über die vorliegende Arbeit und diskutieren Möglichkeiten zur
weiteren Behandlung fermionischer Systeme.
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Chapter 1

Introduction & general formalism

“ In eighteenth-century Newtonian mechanics, the three-body problem was in-
soluble. With the birth of general relativity around 1910 and quantum elec-
trodynamics in 1930, the two- and one-body problems became insoluble. And
within modern quantum field theory, the problem of zero bodies (vacuum) is
insoluble. So, if we are out after exact solutions, no bodies at all is already too
many!

Gerald E. Brown, [1].”Whenever we set out to explore the physics of real world phenomena, we encounter the many-
body problem. It is inherent to any system that is composed by a large number of interacting
particles. For example, electrons in a solid are repelled by each other via the Coulomb force, thus
their motion can strongly depend on the motion of the other electrons in the system. Another
example is the hadronization, that is the process of the formation of composite particles (hadrons)
from quarks and gluons. Moreover, hadrons can form bound states (nuclei) by interacting through
the residual strong-force, constituting another non-trivial few-body problem. Last but not least,
we mention the experimental progress on cold atomic gases, featuring subtle many-body effects
such as Bose-Einstein condensation, superfluidity and transitions to Mott insulating states.
Evidently, the many-body problem is a central challenge on the way to understand the rich variety
of effects observed in nature and experiments. The quite pessimistic initial quote from G.E. Brown
captures the “problematic” aspect very well, stating that at the present time no method is avail-
able to describe many interacting particles exactly. Therefore, one is bound to find approximate
approaches in order to calculate physical quantities for a given system.
Naturally, the easiest “approximation” is to ignore the interaction between particles and study the
dynamics of the system, as if they moved freely. The neglection of electron-electron interaction,
for instance, has led to the Drude model, which was proposed by P. Drude [2] to explain transport
properties in metals. Surprisingly, in spite of the crude theoretical description, some of the predic-
tions made by this model are in very good agreement with experiments. However, it is not always
a good approximation to neglect the interaction between particles and therefore further analysis,
including the correlation between particles, has to be done.
A way to account for the effect of particle interaction on physical quantities, is to consider it as
a perturbation to the noninteracting system. One may introduce a perturbation series in an ar-
bitrary but small parameter, quantifying the discrepancy between the exactly solvable model and
the interacting one. Whenever the perturbative series converges once can try to expand it up to
the desired accuracy and hence, obtain results for any quantity of interest. Although perturbative
methods have been very successful to describe many-body physics, the approach is only applicable
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2 CHAPTER 1: INTRODUCTION & GENERAL FORMALISM

in the weakly interacting regime, where the screened Coloumb interaction modifies the behaviour
of the system only in a controlled way. This is the case for Fermi liquid metallic systems, whose
low energy properties are given by a renormalization of those of noninteracting electrons. These
renormalized properties can be captured - to a large extent - by perturbation theory. However,
materials with partly filled d- or f-orbitals, for example, are subject to strong correlations between
electrons and therefore require a more sophisticated treatment.
Another way to reduce the complexity of the many-body problem is to rewrite it as a one-body
problem in an effective molecular field, generated by the surrounding constituents of the system.
The effective potential, in which the remaining single particle is embedded, can be computed
in several ways and methods based on this technique are categorized as mean-field approaches.
Beyond the pure mean-field theory a very successful aproach is the density functional theory
(DFT) [3, 4], which describes physical systems as a functional of the local electronic density.
The density is not assumed to be uniform and needs to be determined as a function of the spatial
coordinates in order to express the corresponding terms of the Hamiltonian. Thus, the problem of
solving a differential equation for 3N degrees of freedom is reduced to an easier one, depending
only on three spatial coordinates. This approach has been the workhorse of solid-state physics
for a long time and is extremely successful in describing most materials. Effects originating from
strong electronic correlations, however, are still elusive within these methods due to the approxi-
mations made for the DFT functionals.
A great improvement in the characterization of strongly correlated materials was achieved by
means of dynamical mean-field theory (DMFT) [5,6]. The approximation made within this method
is to assume that the self-energy is a purely local quantity i.e. momentum-independent, which is
exact in the limit of infinite dimensions [7]. This problem is then mapped to a so-called impurity
problem, which can be solved by various numerical approaches. Despite the complete neglection
of non-local correlations, DMFT has been applied to many materials with great success, for in-
stance, in describing the Mott metal-insulator transition [8, 9].
The great variety and success of the discussed methods might suggest that mean-field approaches
are the solution so long sought for. In the present work, however, we want to investigate the be-
haviour of strongly coupled fermions in reduced dimensions, where spatial fluctuations beyond
mean-field become increasingly important. Although theoretical studies have been conducted in
the early days of many-body theory, the difficulty of their experimental realization somehow lim-
ited their impact. Only when it became possible to manipulate cold atomic gases in an effective
and controllable way, the theoretical exploration of low-dimensional systems started to gain atten-
tion again. Roughly twenty years ago, it became possible to prepare atomic gases at low enough
temperatures, such that it is possible to observe Bose-Einstein condensation (BEC) [10–12]. These
first advances stimulated an enormous amount of further experimental progress within the field of
ultracold quantum gases, which finally led to the realization of quasi-one-dimensional configura-
tions in highly elongated traps as well as quasi-two-dimensional systems in pancake-shaped poten-
tials. The observation of superfluidity in these configurations stiumlated heavy numerical calcula-
tions, in order to understand the pairing-mechanism involved in the process. Very recent studies
especially focus on two-dimensional configurations, since it is believed that high-temperature un-
conventional superconductivity is a many-body effect triggered by the reduced dimensionality.
It is the enhanced influence of thermal and quantum fluctuations, which greatly limits the accuracy
of mean-field approaches in one and two spatial dimensions. Therefore, alternative methods to de-
scribe the physics of these configurations have to be devised. Indeed, several one-dimensional
models can even be treated in an exact fashion, although heavy mathematical analysis is often
required. Among the exactly solvable models, we find the 1D Hubbard model [13], which be-
comes intractable in higher dimensions. Unfortunately, this is not an exception. In fact, no two-
dimensional many-body model is generally treatable analytically (with the exception of the famous
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2D Ising model solved by L. Onsager [14]), which limits the theoretical study of strongly corre-
lated fermionic systems to numerical calculations away from mean-field approaches.
In this work, we investigate many-body physics at zero temperature by applying a Quantum Monte
Carlo (QMC) method to fermionic systems on a spacetime lattice. While we should recall that not
every QMC calculation is performed without further approximation we want to emphasize here
that the specific approach chosen in this work is in priciple exact, up to stochasic uncertainties,
reducible by improved statistics of the calculations.

1.1 Fermionic systems & the lattice

Systems consisting of large numbers of fermions, commonly referred to as Fermi gases, are a fre-
quently observed phenomenon in nature. In the thermal equilibrium, their energy distribution is
dictated by the Pauli exclusion principle which is a manifestation of Fermi-Dirac statistics. Pauli
states that, unlike bosons, two fermions cannot occupy the same quantum state. This implies that
even at zero temperature, i.e. the ground-state, some fermions are in energetically higher states
than others. Therefore, in contrary to a classical ideal gas, a residual finite pressure remains in
such a quantum gas at T = 0. This explains, for instance, the stability of neutron stars against the
gravitational pull of its mass.
In this work we explore essential properties of the ground-state of interacting Fermi gases. Es-
pecially we focus on dilute Fermi systems characterized by a low particle-density. Approriate
models can be chosen, such that the constraint

r0 � k−1
F (1.1)

is fulfilled, where r0 defines the effective range of the interparticle potential and kF denotes the
Fermi wavevector, which is a measure for the density of the system. In this case, where the
interparticle spacing is much larger than the interaction range, three- and higher-body scattering
effects may be neglected. This allows us to accurately model such a gas of fermions by a small
number of parameters describing the physics of two-body collisions with s-wave scattering. It can
be shown, in fact, that the dynamics of such systems does not depend on the exact form of the
interaction as long the above constraint is not violated. The interaction between fermions in this
regime is thus fully determined by the associated s-wave scattering length aS and, together with
the Fermi wavevector, it is the only physical parameter entering the calculation in homogenuous
systems: The physics in homogenuous dilute Fermi gases is therefore completely described by the
dimensionless quantity (kFaS)−1.
Such systems have been the target of many theoretical studies in recent years, ranging from one
to three spatial dimensions across many interaction strengths and system sizes. In most cases
however, the calculations have been performed in the so-called thermodynamic limit (TL), which
is achieved by taking the particle number N → ∞ and the volume V → ∞ at a constant particle
density n = N/V . While these calculations provide an important connection to macroscopic
observables in classical statistical mechanics, it is often interesting to investigate few-body effects,
for example in light nuclei, consisting of a small number of nucleons. Furthermore, within a
technique called the virial expansion [15] the behaviour of many-body systems can be linked
under certain conditions to the correspoding few-body physics. Specifically, it has been shown that
two-component Fermi gases can effectively be expressed by solutions of the two- and three-body
problem, at least above a certain cutoff temperature [16, 17]. By approaching the ground-state,
however, where the Fermi gas becomes increasingly degenerate, this technique does not yield
accurate results any more and higher-order contributions are needed to explain the physics.



4 CHAPTER 1: INTRODUCTION & GENERAL FORMALISM

These considerations explain why the few-body regime of strongly interacting fermions is very
interesting to study. We chose to tackle this problem via QMC-methods, as introduced in the next
chapter. We work in the canonical ensemble with the temperature fixed to T = 0, whereas the
particle content and the volume of the system are varied to characterize the crossover from few to
many particles. The Hamiltonian for the systems in d dimensions reads as

Ĥ =
∫
ddx

− ∑
s=↑,↓

ψ̂†s(~x)~
2∇2

2m ψ̂s(~x) + g n̂↑(~x)n̂↓(~x)

, (1.2)

where ψ̂†s(~x) and ψ̂s(~x) are fermionic creation- and anihilation operators, respectively. Further,
the density-operator n̂s is defined by n̂s ≡ ψ̂†s(~x)ψ̂s(~x) and m denotes the mass of the particles.
It is pointed out earlier, that we perform our calculations on a spatial lattice. Therefore, we rewrite
the integral in the above expression into a sum over all lattice sites i:

Ĥ = `d
∑
i

− ∑
s=↑,↓

ψ̂†s,i
~2∇2

2m ψ̂s,i + g n̂↑,in̂↓,i

, (1.3)

where the spatial dependence of the occuring operator is denoted by the subscript i and the factor
`d denotes the volume element originating from the lattice spacing `.
Specifically, we place the system on a lattice with sides L, corresponding to a linear grid in one
dimension and a square lattice in two dimensions. Thus, the reciprocal lattice, i.e. momentum
space, is also discrete with a lattice spacing of ~ 2π/L. Therefore, two momentum cutoffs are
introduced at low and high momenta, respectively. The former is called infrared (IR) cutoff and
originates from the finite size of the lattice

~Λ0 = ~
2π
L
, (1.4)

while the latter ultraviolet (UV) cutoff is a consequence of the lattice spacing

~kc = ~
π

`
. (1.5)

The kinetic energy term T̂ in Eq. (1.3) may now be written in momentum space, as

T̂ = `−d
∑
k

∑
s=↑,↓

~2k2

2m n̂s,k, (1.6)

where n̂s,k denotes the density-operator in momentum space and the sum is over all discrete mo-
menta k. Hereafter, we will omit any factor of `±d, corresponding to the specific choice of units
` = 1.
Evidently, discretization errors affect any discrete lattice calculation. Therefore, the IR-cutoff
needs to be controlled by the choice of a sufficiently small lattice spacing while the the UV-cutoff
sets a lower bound for the size of the grid. The latter effect can be further mitigated by the use of
a quadratic dispersion relation in momentum space

εk = ~2k2

2m , (1.7)

which is defined for momenta smaller than the UV-cutoff. This distinguishes our model from the
Hubbard model, where typically a discrete derivative in real space is used, leading to a dispersion
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law of the form

εk ≈
d∑
i=1

cos(ki`) (1.8)

The drawback of the “exact” dispersion relation in Eq. (1.7) is the necessity to switch between
real and momentum space via fast Fourier tranform (FFT).
This discussion about the calculation on a lattice merely covers the basic aspects one needs to
consider. Of course, effects caused by discretizing the calculation need to be extensively stud-
ied. A detailed discussion of the so-called discrete variable representation (DVR), which repre-
sents the basis of our lattice approach, as well as associated discretization errors can be found
in Refs. [18, 19]. Furthermore, an overview of our method in three dimensions is provided in
Ref. [20].

1.2 Partition functions & observables

In order to characterize the zero temperature behaviour of a system we need to compute expec-
tation values of observables. In a thermodynamically stable many-body system these expectation
values are defined as

〈O〉 = 〈Ω| Ô |Ω〉 . (1.9)

Here, |Ω〉 denotes the ground-state wavefunction, which is not a-priori known for interacting sys-
tems. One way to obtain |Ω〉 is to assume an inital state |Ωo〉, called a trial wavefunction, and
project to the true ground-state of the system:

|Ω〉 = lim
β→∞

Û(β, 0) |Ω0〉, (1.10)

with the definition of the imaginary time evolution operator Û

Û(τ ′, τ) ≡ e−(τ ′−τ)Ĥ . (1.11)

The convergence to the ground-state is guaranteed as long as the initial guess state |Ω0〉 has a
nonvanishing projection to |Ω〉. In this work, we take the trial wavefunction to be of the form of a
Slater determinant in order to account for the antisymmetric nature of the fermion wavefunction.
The Slater determinant is constructed from single-particle orbitals {φk}, which in the case of
periodic boundary conditions correspond to plane waves with momentum k. We note that this
is not the only possible trial wavefunction and in fact, faster convergence can be achieved for
some coupling strengths with an improved choice of the guess state, as discussed in the following
chapter.
The expectation value of an arbitrary operator at finite imaginary time β can be written as

Oβ ≡
〈Ω0| Û(β, β/2)ÔÛ(β/2, 0) |Ω0〉

〈Ω0| Û(β, 0) |Ω0〉
, (1.12)

and it converges to the ground-state expectation value in the limit of infinite β:

〈O〉 = lim
β→∞

Oβ. (1.13)
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The denominator in Eq. (1.12) defines the partition Function

Z ≡ 〈Ω0| Û(β, 0) |Ω0〉 , (1.14)

which we can use to obtain observables through insertion of a source term. Therefore, we rewrite
the Hamiltonian to

Ĥ → Ĥ + ηO, (1.15)

where η is the coupling strength for an arbitrary operator Ô of our system. To obtain the expecta-
tion value, we simply take the derivative at vanishing coupling and normalize with Z:

〈O〉 = 1
Z
∂Z
∂η

∣∣∣∣
η=0

= ∂ lnZ
∂η

∣∣∣∣
η=0

. (1.16)

Specifically for the ground-state energy, we can write

E ≡ 〈H〉 = −∂ lnZ
∂β

. (1.17)

So far, we have discussed the general formalism to obtain any observable of interest. The remain-
ing problem is the actual evaluation of these expresseion which boils down to the determination
of the partition function. From Eq. 1.2, we identify the kinetic energy as

T̂ = −
∑
i

∑
s=↑,↓

ψ̂†s,i
~2∇2

2m ψ̂s,i (1.18)

and the potential energy term as

V̂ =
∑
i

n̂↑,in̂↓,i. (1.19)

It is obvious that the former is a one-body operator which is diagonal in momentum space. The
potential energy is represented by a two-body operator, which marks a difficulty in our calculation,
since V̂ is not trivially diagonalizable in any basis. To deal with this instance we introcude the
auxiliary field quantum Monte Carlo (AFQMC) formalism, which is described in Chap. 2.

1.3 Density matrices & momentum distribution

To fully describe a many-body system it is essential to study the correlation between particles at
different spatial coordinates. In this work we focus on density matrices at equal imaginary times
as well as the associated momentum distribution. A discussion on general properties of density
matrices is omitted at this point, instead it is referred to Ref. [21] for a thorough introduction.
Our main observable of interest is the one-body density matrix, defined as

ρ1(~x, ~x′) ≡ 〈ψ†s(~x)ψs(~x′)〉 (1.20)

It can be interpreted as the anihilation of a particle at the spatial coordinate ~x′ and an simultanuous
insertion of an identical particle at ~x. Because we limit ourselves to the study of unpolarized
systems, i.e. an equal number of fermions in every spin-flavour, the density matrices for different
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x

x′

r

r

Figure 1.1: Representation of spatial one-body correlations (left) and on-site two-body correlations
(right).

species coincide:

〈ψ†↑(~x)ψ↑(~x′)〉 = 〈ψ†↓(~x)ψ↓(~x′)〉. (1.21)

To compute the above expectation value we can introduce a source term according to Eq. (1.15)
and write

〈ψ†s(~x)ψs(~x′)〉 = ∂

∂η
〈Ω|eηψ

†
s(~x)ψs(~x′)|Ω〉

∣∣∣∣
η=0

. (1.22)

This form is used in the next section to derive a suitable expression for our QMC approach. Fur-
ther, the one-body density matrix is connected to the momentum distribution via

nk =
∫
ddx ddx′ ρ1(~x, ~x′)eik(x−x′), (1.23)

where d corresponds to the dimension. Additionally, we compute the zero-size pair density matrix,
defined as

ρ2(~x, ~x′) ≡ 〈ψ†↑(~x)ψ↑(~x′)ψ†↓(~x)ψ↓(~x′)〉, (1.24)

which encodes information about closely bound pairs consisting of two particles of opposite spin
on the same lattice site. Similarly to the one-body density matrix, we can imagine a simultanous
anihilation and creation of a fermionic pair at ~x′ and ~x, respectively. Such correlations are schemat-
ically depicted in Fig. 1.1.

1.4 The contact parameter

The physics of dilute Fermi gases with short range interactions can be described by universal
relations, since it is largely determined by the s-wave scattering length. The first derivation of
such relations was done by Shina Tan in a series of papers [22–24] roughly a decade ago and are
known as the Tan-relations. The quantity occurring in all of these relations is called the contact
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parameter and constitues a central property of such systems. The contact can be interpreted as a
measure of the number of fermion pairs of different spin which are separated by a small distance
and therefore provides information about the short-range behaviour of the system.
To study its behaviour, one usually works with the contact density C, defined as

C =
∫
ddx C(~x), (1.25)

which is an intensive quantity and typically computed in the literature. We will exploit two differ-
ent relations to extract values for the contact. Firstly, we consider the large momentum decay of
the momentum distribution, which is connected to the contact via

lim
~k→∞

nk = C

~k4
, (1.26)

and is valid for both spin species, as shown by Tan. Therefore, we need to compute the momentum
distribution and perform a fit to the tail of the distribution, as shown in chapters 3 and 4 for 1D
and 2D systems, respectively. Secondly, we use an adiabatic relation which connects the contact
and the change of the total energy of the system with respect to the inverse scattering length:

C ∝ ∂E

∂a−1 . (1.27)

This quantity is connected to the particle interaction at constant particle number via the Feynman-
Hellman relation

∂E

∂g
= 〈V̂ 〉N, (1.28)

where the bare-coupling g depends on the s-wave scattering length a0 from Eq. 1.27. We can
exploit Eq. 1.28 as a second way to extract values for the contact.
The above relations show the importance of the contact parameter. Further euqations containing
the contact involve a pressure relation, virial theorems and C also connected to inelastic two-body
losses. An extensive review of the contact and further Tan-relations can be found in Ref. [25].





Chapter 2

Stochastic integration

In the introduction, we have discussed a way to extract observables from the partition functions
of unpolarized Fermi gases at zero temperature, as shown in Eq. (1.16). We are, however, still
confronted with the task of evaluating these expressions, which is the challenging part of this
work. Specifically, in order to be able to diagonalize the interaction operator V̂ we discretize
imaginary time and perform a Hubbard-Stratonovich decomposition of the interaction, following
the standard route of auxiliary-field quantum Monte Carlo (AFQMC) approaches. The price we
have to pay is the occurence of high-dimensional path integrals over the introduced auxiliary
fields. As these integrals cannot be solved analytically, this limits our possibilities to a stochastic
approach. In this section we will show methods to solve such integrals as well as techniques to
improve the quality of the estimates.

2.1 Basic ideas of Monte Carlo integration

In the previous chapter, we have shown how to obtain observables by taking expectation values
using the partition function in a specific way. Expectation values are a statistical concept and take
the generic form:

〈A〉 =
∫
D d~x A(~x)p(~x)∫
D d~x p(~x) . (2.1)

Here, the probability distribution function p(x) has to be non-negative on the integration domain
D but not necessarily normalized via

∫
D d~x p(x) = 1. The integration variable ~x is written in

vector notation to indicate the validity for any dimension. In the following, however, we will limit
ourselves to the one-dimensional notation.
One is able to evaluate such integrals for known probability distributions, e.g. a Gaussian, analyt-
ically. For arbitrary or even unknown distributions one is in general not able to solve the above
expression exactly and is therefore limited to a numerical evaluation. A straightforward approach
would be to slice the integration domain into segments of length ∆xi, calculate the area of these
slices by Ai = f(xi)∆xi and sum them in order to get a value for the integral up to discretiza-
tion errors. Although this simple deterministic strategy can be refined in many ways a serious
dimensionality problem remains: In order to integrate over a d-dimensional domain one needs to
discretize every dimension separately, leading to heavy computational effort since the total number
of integration points grows exponentially in d. Thus, for high-dimensional integrals such as the
path integrals emerging from the AFQMC approach, one still needs to find an appropriate way to
obtain a solution. One possibility is to estimate the value of the integral via a stochastic approach
such as Monte Carlo integration, which typically become the preferred method for a number of
dimensions greater than 5.

10
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There are many strategies and algorithms how this can be done for a vast variety of models.
Therefore, we will only present here an introduction to the specific approach of this work. A very
thorough treatment can be found in Ref. [26].

2.1.1 Simple sampling strategies

Let us assume that we want to stochastically estimate an integral of the form (2.1). A straightfor-
ward way, termed the crude method, is to sample N randomly selected points xi of the integration
domain and calculate the weighted mean by

〈A〉MC =
V
N

∑N
i A(xi)p(xi)

V
N

∑N
i p(xi)

, (2.2)

which will play the part of the Monte Carlo estimate 〈A〉MC for now. Here, V denotes the volume
of the integration domain. This estimate is connected to the real value of A via

〈A〉 = 〈A〉MC +O
( 1
Nα

)
, (2.3)

where one still needs to specify the exponent α of N in the scaling of the uncertainty. For this, we
assume a uniform probability distribution with

p(x) = 1
V

(2.4)

which is trivially normalized to 1. Therefore, expression (2.2) simplifies to

〈A〉MC = 1
N

N∑
i

A(xi). (2.5)

In order to get an estimate for the error, one can exploit the central limit theorem. In one of its
many variants it can be formulated as following: For a sequence of independent and identically
distributed random variables the error ε = 〈A〉MC − 〈A〉 of the estimate follows a normal distri-
bution with variance σ2

MC:

√
Nε→ N(0, σ2

MC). (2.6)

If we now define the variance of the Monte Carlo estimate as

σ2
MC = 〈A2〉MC − 〈A〉2MC, (2.7)

we can identify

σ2
ε = σ2

MC
N

(2.8)

and therefore have determined the exponent from expression (2.3) to be α = 1
2 in the uniformly

distributed case. In principle, such a calculation can be done for any given distribution it is in
general not so straightforward to see and is therefore omitted at this point. We further note that
this is just an estimate for the real error, since the error of the Monte Carlo estimate might not
follow a Gaussian distribution due to systematic effects.
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Assuming that this is the case for the moment we can see the poor scaling of such a calculation:
In order to incerase the accuracy by one decimal place one needs to obtain 100 times as many
samples as before. Clearly, this will eventually limit the achievable precision and one needs to
exploit more sophisticated strategies to achieve lower errors at a comparable number of samples.
Such methods are discussed in the upcoming sections.

2.1.2 Importance sampling

A first approach to reduce the variance in Monte Carlo calculations besides increasing the statistics
is to sample the random configurations in a more favorable way. To do so, we want to draw
the random variables from an arbitrary distribution g(x) unlike before, where we assumed the
probability distribution p(x) to be uniform. If g(x) is chosen appropriately, we can diminish the
amount of samples drawn from regions which are not significant to the value of the integral, hence
the name Importance Sampling. Quantitatively, we need to reweight the probability distribution
as:

〈A〉 =
∫
D dxA(x)p(x)∫
D dxp(x) = 〈A〉 =

∫
D dx

A(x)p(x)
g(x) g(x)∫

D dx
p(x)
g(x)g(x)

(2.9)

which corresponds to the absorption of the weight g(x) into the random numbers. This changes
the variance, which now reads

σ2
ε = 1

N
σMC

(
Ap

g

)
(2.10)

where the notation σMC(Apg ) indicates the dependence on the reweighted distribution. It can be
shown that the optimal choice for the new probability distribution is given by

g(x) = |A(x)p(x)|∫
D dx|A(x)p(x)| (2.11)

This minimum in the variance corresponds to the probability distribution that follows the func-
tional A(x)p(x) as closely as possible.
Unfortunately, this method has a major drawback in many cases: for the generation of random
numbers according to a desired probabilty distribution g(x), we need to know the inverse of the
cumulative distribution function G(x). This becomes especially problematic for QMC calcula-
tions, where we use the partition function Z as the weight. Computing Z and inverting it consti-
tutes a very challenging problem and therefore would result in an equally heavy or even heavier
numerical workload, if possible at all. For this reason, we need to introduce methods to overcome
these difficulties, which is done in the next sections.

2.1.3 Rejection sampling

An algorithm to sample an arbitrary distribution function without having to compute the cumu-
lative distribution is provided by rejection sampling. This concept is the basis of the Metroplis
algorithm discussed below.
Assume that sampling the target distribution function p(x) is very difficult. The main idea behind
rejection sampling is to use a proposal distribution g(x) which fulfills the constraint

p(x) < Mg(x) (2.12)
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x
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1

Figure 2.1: Calculation of π as an example for hit-or-miss sampling.

and is easier to sample than p(x). Here, M denotes a non-negative but finite constant. As a first
step, we sample a random point xi according to the proposal distribution. Next, we uniformly
draw a value u from the interval [0, 1] and accept the value if it fulfills the constraint

u <
g(x)
Mp(x) , (2.13)

i.e. we only accept values that fall below the target distribution and therefore sample according to
p(x).
A simple, yet very prominent example of rejection sampling is the calculation of π, as depicted
in Fig. 2.1: Following the strategy described above, one counts how many of the corresponding
coordinates in the xy-plane fall below the curve. This allows us to estimate π by calculating

π ≈ 4Nh

N
, (2.14)

where N is the total number of random coordinates and Nh counts the ones that hit the target.
This method constitutes an improvement to the previously discussed concepts, but still suffers
from a dimensionality problem. To generalize our example, we now want to calculate the volume
of a hyper-sphere in d-dimensions. The largest contribution to its value for large d originates from
the vicinity of the surface which, when sampling uniformly along the “radius”, leads to a large
amount of rejects, thus an increased numerical effort.

2.1.4 Markov chains, detailed balance & ergodicity

In order to describe a stochastic process, e.g. a random walk in some configuration space C, it
is sometimes sufficient to consider only the current configuration to calculate the future state of
the system. This corresponds to a loss of memory for earlier configurations and such a sequence
of random variables is called a Markov chain. We can model such a random walk as jumps
from a configuration x to a configuration x′, with the transition probability t(x → x′). Then the
probability to find the system in the state x, when it previously was in the state x′, is given by

p(x|x′) = t(x→ x′)p(x′). (2.15)
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This sequence is designed to asymptotically reach the probability distribution p(x) if the detailed
balance constraint is satisfied, that is

t(x′ → x)p(x) = t(x→ x′)p(x′), (2.16)

which corresponds to the reversibility of the chosen path. Furthermore, the principle of ergodicity
should also be fulfilled, meaning that every state can be reached with a finite number of jumps.
In other words, if the system is ergodic no region of the configuration space will be neglected.
Then, the Monte Carlo average 〈A〉MC converges to the true expectation value 〈A〉 of the desired
observable:

lim
N→∞

〈A〉MC → 〈A〉. (2.17)

2.1.5 Metropolis algorithm

Although a state from the configuration space C might have a complicated structure it is in principle
straightforward to construct a random sample from scratch. Computationally, on the other hand,
the creation of a single state implies many operations, accumulating to a significant computation
time when the process is iterated for every new configuration. In order to keep the numerical effort
at a minimum, one can exploit the properties of Markov chains and combine it with the rejection
sampling strategy discussed above, which is the main idea behind the Metropolis algorithm [27,
28]. Starting out from a randomly generated state, one may proceed by updating the configuration,
e.g. by changing the local value of an auxiliary field introduced in Sec. 2.2, and accept it with a
certain probability depending on the current state of the system.
In order to compute the value of an observableO, again a number ofN samples have to be selected
according to the desired distribution function. Then we can calculate

〈O〉MC = 1
N

∑
N

O(Σ) (2.18)

where Σ denotes a state from the configuration space C. We assume that such a state collects
every possible variable available in the system. The remaining problem is to produce the states Σ
according to the desired probability distribution p(Σ).
In practice, one starts out with an inital state Σ and picks out a number of M random variables,
e.g. values of spatial auxiliary fields, for which the numerical value will be altered. An updated
state Σ′ is obtained by this updated process and the probability to accept this new configuration is
given by

p = min
(

1, p[Σ
′]

p[Σ]

)
. (2.19)

The above expression states that the new configuration is accepted if it is more probable than the
old one or accepted with a certain probability if it is less likely. This corresponds to a random
walk in configuration space where we use the intermediate steps as samples to obtain an expec-
tation value for the desired observable. The configurations created by this procedure follow the
desired probability distribution p(Σ) in the limit of N →∞.
The benefit from this approach is that we do not have to build a new state for every sample but
rather update a number of variables and use the existing structure to save computation time. Of
course, one has to be very careful upon performing such random walks, since the finite number
of local updates evidently limits the distance one can move in configuration space. In the limit
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of only one local update, in fact, it could be very hard to move away from a local minimum, i.e.
ergodicity might be violated, which would result in a bias of the obtained estimate. Hence, for all
calculations the choice of the sweep-size M needs to be done carefully in order to get accurate
results.

2.2 Quantum Monte Carlo

After the introduction of basic concepts of Monte Carlo integration, we will now focus on the way
to evaluate the expressions previously obtained in Sec. (1.2). We will, however, limit ourselves to
consider the specific problem of interest in this work. For a more sophisticated treatment of lattice
quantum Monte Carlo methods see Refs. [30, 31].
We start here by recalling the definition of the expectation value of an operator at finite imaginary
time from Eq. (1.12):

Oβ = 〈Ω0| Û(β, β/2)ÔÛ(β/2, 0) |Ω0〉
〈Ω0| Û(β, 0) |Ω0〉

, (2.20)

where |Ω0〉 denotes the initial Slater-determinant as introduced in Sec. 1.2 and the evolution
operator Û(τ, τ ′) is defined as

Û(τ, τ ′) ≡ e−(τ−τ ′)Ĥ . (2.21)

The Hamiltonian Ĥ of the system is given by

Ĥ = T̂ + gV̂ . (2.22)

The kinetic and interaction parts T̂ and V̂ of Ĥ are in general non-commuting, which makes a
simultaneous diagonalization a priori impossible. There exist, however, numerous strategies in
order to deal with the computation of the evolution operator Û and hence, the dynamics of the
system. One way to do so is to discretize the imaginary time into small slices according to a
Suzuki-Trotter-decomposition

Û(τ + ∆τ, τ) = e−∆τ T̂2 e−∆τV̂ e−∆τ T̂2 +O(∆τ3) (2.23)

which corresponds to an approximation of the evolution operator whose error diminishes with
decreasing discretization length

∆τ = β

Nτ
. (2.24)

Details on the derivation of the above expression are shown in App. C. Here we simply note that
methods were devised recently, which overcome the systematic effect of such a time-discretization.
Such methods are often referred to as continuous-time QMC (CTQMC) methods, see e.g. Ref. [29].
We will, however, work with a discretized time since we utilize the hybrid Monte Carlo (HMC)
approach which is not yet adapted for a continuous time variable.
Although we have split the Hamiltonian into the kinetic and interaction part, we still have to deal
with the problem that we cannot diagonalize the two-body interaction operator V̂ . To overcome
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this difficulty we introduce auxiliary fields σ, which decouple the particles of different flavour:

e−∆τV̂ =
∫
C
Dσ(~x) e−∆τV̂↑,σe−∆τV̂↓,σ . (2.25)

This is called a Hubbard-Stratonovich transformation and constitutes the basis of a class of meth-
ods called auxiliary-field QMC (AFQMC). In the above expression, Vs,σ are one-body operators
which depend on the Hubbard-Stratonovich field σ(x) and

∫
C Dσ(~x) is a sum over all possible

configurations at a specific time-slice τ . Further, we notice that the path-integral over all possible
auxiliary fields could be done in a discrete way, as a consequence of Fermi-statistics. We will, for
reasons discussed below, use the continuous notation and refer to App. D for the exact expres-
sions, as well as for further details about the decomposition of the interaction.
The above decomposition of the interaction allows us to compute the partition function and ob-
servables at the cost of evaluating the introduced path integrals. In other words: instead of solving
one very complicated many-body problem, we reduce it to a large number of one-body problems
in the presence of an external field. The occurring integrals are extremely high-dimensional, since
we introduce one spatial auxiliary variable per temporal lattice site. In order to evaluate these
integrals, we will use the Hybrid Monte Carlo (HMC) algorithm which will be introduced in Sec.
2.2.2.

2.2.1 Partition function & observables

With the decomposition of the interaction introduced in the previous section, we are now able to
expand the expressions for the partition function as obtained in Sec. (1.2) as

Z ≡ 〈Ω0| Û(β, 0) |Ω0〉 =
∫
C
Dσ(~x, t) P [σ] (2.26)

where we again used the schematic notation of the integral. We note that the integration now also
covers the temporal extent of the lattice. The integrand is the probability measure defined by

P [σ] ≡ 〈Ω0| Ûσ(β, 0) |Ω0〉 (2.27)

with

Ûσ(τ + ∆τ, τ) = e−∆τ T̂2 e−∆τV̂↑,σe−∆τV̂↓,σe−∆τ T̂2 . (2.28)

Rewriting Eq. (2.27) in terms of the single-particle wavefunctions {φk} yields

P [σ] = (det [Mσ(β)])2 , (2.29)

where

[Mσ(β)]ij ≡ 〈i| Ûσ(β, 0) |j〉 (2.30)

is the single-particle representation matrix of the product operator Ûσ(β, 0). The square in Eq. (2.29)
originiates from the fact that we consider two distinguishable but otherwise identical species of
fermions. This ensures the non-negativity of the integration measure and therefore avoids an oth-
erwise occuring sign-problem, as it will be descussed more extensively below.
In the same way, we can rewrite the expression for an arbitrary operator. Eq. (1.12) then becomes

Oβ = 1
Z

∫
C
Dσ(~x, t) P [σ]O[σ] (2.31)
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and we identify

O[σ] = 〈Ω0| Ûσ(β, β/2)ÔÛσ(β/2, 0) |Ω0〉
〈Ω0| Ûσ(β, 0) |Ω0〉

(2.32)

as the contribution to the operator O for a specific value of the auxiliary field σ. As we are work-
ing at finite β, the expectation values in the true ground-state of the system is only obtained by an
extrapolation to infinite imaginary time according to Eq. (1.13).

Ground-state energy

For the ground-state energy, we can differentiate the partition function with respect to β

Eβ = −∂ lnZ
∂β

= − 1
Z
∂Z
∂β

(2.33)

and rewrite it in terms of the single-particle matrix representation Mσ(β):

Eβ = − 1∫
C Dσ det [Mσ(β)]2

∂

∂β

∫
C
Dσ det [Mσ(β)]2. (2.34)

Using the relation

ln detA = Tr lnA (2.35)

for arbitrary matrices A and perfom the differentiation, we can further rewrite Eq. (2.34) to

Eβ = − 2∫
C Dσ det [Mσ(β)]2

∫
C
Dσ det [Mσ(β)]2 Tr∂ lnMσ(β)

∂β
. (2.36)

Since Mσ(β) depends on the auxiliary fields, which in turn depend on the time-discretization, we
need to perform the differentiation in τ and get

Eβ = − 2
Nτ

1∫
C Dσ det [Mσ(β)]2

∫
C
Dσ det [Mσ(β)]2 Tr

[
M−1
σ (β)∂Mσ(β)

∂τ

]
, (2.37)

Finally, we can absorb the prefactor 1/Z into the probability measure and obtain a normalized
estimator for the ground-state energy:

Eβ = − 2
Nτ

∫
C
Dσ P̃ [σ] Tr

[
M−1
σ (β)∂Mσ(β)

∂τ

]
(2.38)

with

P̃ [σ] = det [Mσ(β)]2∫
C Dσ det [Mσ(β)]2 . (2.39)

The form of this expression allows us to sample the ground-state energy stochastically. Addition-
ally, it is straightforward to see that the differential operator in Eq. (2.34) separates the contribu-
tions from the kinetic and the interaction part of the Hamiltonian. Therefore, we obtain expecta-
tion values not only for the total energy of the system, but also separately for its constituents. This
allows us to calculate further quantites, e.g. the contact parameter, as introduced in Sec 1.4.
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Density matrices

We will now compute the estimator for the one-particle density matrix, closely following the
derivation given in Ref. [21]. The one-body density matrix for a specific auxiliary field configura-
tion is given by

ρ1,σ(x, x′) = 〈ψ†(x)ψ(x′)〉σ. (2.40)

Here and in the following, the spin-index was omitted for a more compact notation. To obtain the
observable, we again need to perform a path integral over all auxiliary field configurations σ:

ρ1(x, x′) =
∫
C
Dσ P [σ] ρ1,σ(x, x′). (2.41)

Rewriting Eq. 2.40 with a source term and taking the derivative according to Eq. 1.16 yields

ρ1,σ(x, x′) = ∂

∂η
ln 〈Ω0| Ûσ(β, β/2) eηψ†A(x,x′)ψ Ûσ(β/2, 0) |Ω0〉

∣∣∣∣
η=0

(2.42)

where A(x, x′) can be written as |x〉 〈x′|. Now we can exploit some properties of Slater de-
terminants which are derived in Ref. [21]. Since our Hamiltonian was rewritten such that only
single-partilce operators occur, we are able to use the fact that the application of an exponential
of a single-particle operator on a Slater determinant again results in a Slater determinant. Further,
the contraction of two Slater determinants can be written as a determinant of the evolved waves

φ1,σ(β) ≡
N/2∏
i=1

φσ,i(β) ≡
N/2∏
i=1

Ûσ(β) |i〉 (2.43)

where |i〉 is a single-particle state. Applying these properties gives

ρ1,σ(x, x′) = ∂

∂η
ln det

[
φ†σ(β/2) eηA(x,x′) φσ(β/2)

] ∣∣∣∣
η=0

. (2.44)

Now we can again rewrite this expression via Eq. 2.35

ρ1,σ(x, x′) = ∂

∂η
Tr ln

[
φ†σ(β/2) eηA(x,x′) φσ(β/2)

] ∣∣∣∣
η=0

. (2.45)

Applying the differential operator yields

ρ1,σ(x, x′) = Tr
[
M−1
σ (β)φ†σ(β/2)A(x, x′)φσ(β/2)

]
(2.46)

and finally we use the cyclic property of the trace to write

ρ1,σ(x, x′) =
N/2∑
i,j=1

φ∗σ,i(β/2, x) [M−1
σ (β)]ij φσ,j(β/2, x′), (2.47)

whith the definition

φσ,i(β, x) ≡ 〈x| Ûσ(β) |i〉 . (2.48)
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Figure 2.2: Schematic movement in the configuration spaces Cσ and Cπ as performed by the HMC-
algorithm. The left panel shows the propagation of the Hubbard-Stratonovich fields σ while on the
right the evolution of the introduced momentum field π is depicted. Solid lines represent on-shell
propagation from σn(πn) at time tn to σn+1(πn+1) at tn+1, whereas the dashed lines indicate a
discontinuous jump between energy shells. The latter only occur in the momentum fields, due to
resampling at every new configuration of σ.

Eq. 2.47 can now be used to sample the one-body density matrix for particles with equal spin.
Since we performed a HS-transformation, the operators for different spin-species decouple and
we can simply write the zero-size pair-correlation as a product of the corresponding single-particle
density matrices:

ρ2,σ(x, x′) =
∫
C
Dσ P [σ] ρ1,σ,↑(x, x′)ρ1,σ,↓(x, x′) =

∫
C
Dσ P [σ]

[
ρ1,σ(x, x′)

]2
. (2.49)

2.2.2 Hybrid Monte Carlo

As discussed earlier, the computationally expensive creation of many random samples from the
configuration state is avoided by introducing the Metropolis algorithm. For a very complicated
structure of the phase-space, however, the efficiency of such methods, often referred to as Deter-
ministic Monte Carlo (DMC), suffers from a very low acceptance rate. The obvious solution is
to reduce the sweep-size, i.e. to reduce the number of random local updates. While this raises
the acceptance rate, the correlation between subsequent samples increases, leading to a bias in
the computed expectation values. The competition of sweep-size reduction at a sufficient decor-
relation between the samples have the consequence of a minimal computational cost for a useful
configuration, limiting the efficiency of such methods.
A way to reduce the cost for a full sweep is given by the Hybrid Monte Carlo (HMC) algorithm,
introduced in Ref. [32]. Unlike in DMC, where updates of states are done locally, in HMC an up-
date is done globally, affecting the entire configuration at each point on the spacetime lattice. The
resulting states are then accepted or rejected according to the Metropolis algorithm. The global
update is done by introducing molecular dynamics (MD) as shown in the following.
As a first step towards the HMC algorithm, we expand the probability measure from Eq. (2.26)
with a Gaussian-distributed momentum field π:

P [σ, π] = e
−
∑

n,τ

π2
n,τ
2 P [σ] (2.50)



20 CHAPTER 2: STOCHASTIC INTEGRATION

The path-integral then becomes

Z =
∫
DσDπ P [σ, π]. (2.51)

The sum in Eq. (2.50) is over all spacetime lattice sites and therefore traces out any degree of
freedom of this fictitious field. The resulting multiplicative factor is constant, thus, does not change
the dynamics of the problem. Hence, the probability measures defined in Eq. (2.27) and Eq. (2.50)
are physically equivalent.
Thus far, it might seem counter-intuitive to expand the integration measure by further degrees of
freedom, which makes sampling even more complicated. The advantage of this, however, can be
understood by inspecting the definition of a corresponding Hamiltonian

HMD =
∑
n,τ

π2
n,τ

2 − lnP [σ] ≡
∑
n,τ

π2
n,τ

2 + Seff[σ], (2.52)

where Seff is an effective action. The introduced integration measure can then be written as

P [σ, π] = e−HMD (2.53)

allowing us to treat the problem with the classical equations of motion, which allow for a straight-
forward to integration:

d

dtMD
σn,τ = πn,τ (2.54a)

d

dtMD
πn,τ = −δSeff[σ]

δσn,τ
(2.54b)

The timescale tMD for the MD-calculation is purely fictitious allowing us to tweak the parame-
ters such that both accuracy and performance are optimized. For a sufficiently long trajectory in
tMD, a fully updated configuration is generated. Although many methods exist to integrate the
above equations of motion, which are typically very accurate, there are numerical errors. For this
reason we need to verify if the new, globally updated states correspond to the desired probability
distribution, i.e. perform a rejection-check according to the Metropolis algorithm. The accuracy
of the integrators leads to very high acceptance rates, often in the region of 99%. In order to
move between energy shells, we randomize the introduced momentum-field at the begin of a new
MD-evolution, corresponding to a sampling of the π-integral in Eq. (2.51). The random walk
in configuration space is schematically depicted in Fig. 2.2. Additionally, a flow-diagram which
contains an overview of the implemented HMC-method is provided in Fig. 2.3.

2.2.3 The negative sign problem

To conclude this chapter, we will now discuss the problem of a negative sign in the probability
measure, which is inherent to QMC simulations of fermions. Part of the reason for the so-called
negative sign problem is the Grassmann-nature of fermionic fields, which fulfill anticommutator
relations. Unlike in the bosonic case, where the commutation of creation- and annihilation opera-
tors always yields a positive sign, the corresponding fermionic anticommutator relations produce
an oscillating sign. A straightforward way to overcome this issue is to include the sign in the
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calculated observable (p(x) = s(x)|p(x)|) and then sample the absolute value of the weights:

〈A〉MC =
∑
xA(x)p(x)∑

x p(x) =
∑
xA(x)|p(x)|s(x)/

∑
x |p(x)|∑

x |p(x)|s(x)/
∑
x |p(x)| ≡ 〈As〉MC

〈s〉MC
(2.55)

Although reweighting enables the use of Monte Carlo methods the associated statistical error of
the expectation value scales exponentially with increasing particle number due to the cancella-
tion of the mean sign 〈s〉. This leads to an exponential increase in computation time to achieve
reasonably small errors. In many models it is possible to overcome this issue by an appropriate
choice of parameters, e.g. half-filled (i.e. particle-hole symmetric) Hubbard model or unpolarized
Fermi gases. This, however, limits the explorable physics greatly and raises the need for a general
solution for this problem which is, in fact, NP-hard [33] and therefore unlikely to be solved.
To demonstrate the sign-problem in our formalism, we write the general form of Eq. (2.29), lifting
the assumption of equally populated spin-species:

P [σ] =
∏
s

detMσ,s(β) (2.56)

where the product includes all spin flavours s. As mentioned above, P [σ] will stay positive for
an even number of species with equal population and attractive interaction. For an unequal pop-
ulation of the spin states the matrices do not coincide and we can not simply take the square of
the determinant any more. Furthermore, for repulsive interactions, the matrix contains imaginary
elements, which could yield negative contributions even in the unpolarized system. In such cases
the measure is not guaranteed to be non-negative and therefore Eq. 2.56 does not provide a good
probability distribution. A possible extension is to introduce an imaginary imbalance followed by
an analytic continuation in order to explore a larger region of the associated phase-diagram, as e.g.
done in Ref. [34].
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Figure 2.3: Flow Diagram of the discussed QMC method. A random field configuration is created
and globally updated by means of Molecular Dynamics. If the generated intermediate step is ac-
cepted corresponding observables are calculated. This process is iterated until a sufficient number
of MC-steps is reached. Finally, the MC-average is computed.



Chapter 3

The one-dimensional Fermi gas

In this section we discuss the physics of a nonrelativistic, one-dimensional (1D) Fermi gas on
a lattice at zero temperature. Although the Bethe ansatz technique provides a way to solve this
problem, we choose to use Monte Carlo methods to investigate this system. In fact, while the
first approach is restricted to one-dimensional calculations with no external potential, the latter
does not face this limitation. Moreover, the presented calculations are not only interesting for
themselves, but they also provide a benchmark for subsequent studies in higher dimensions, as
discussed in the next chapter.
In particular, we focus on systems represented by a one-dimensional box with periodic boundary
conditions (i.e. a ring) for an equal number of spin-up and -down fermions to avoid sign problems.
To characterize the response of the system, we calculate the one- and two-particle density matrices
at equal imaginary times. Furthermore, we compare momentum distributions for a wide range of
attractive couplings, from which we extract the contact parameter and perform a comparison to
previous results, wherever possible. Finally, we will analyze systematic errors mostly originating
from the finite lattice size and effective inverse temperature of the system.

As mentioned in the introduction, low dimensional systems exhibit a fundamentally different be-
haviour as compared to their more familiar counterparts in three dimensions. The modified be-
haviour becomes evident especially in 1D systems, where the Fermi surface reduces to two points
located at ±kF (see Fig. 3.1), with kF being the Fermi momentum. Moreover, the available
phase-space for 1D systems is so limited that the concept of Fermi liquids is no longer applicable
due to effects like the Peierls-instability and spin-charge separation. The elementary excitations
in 1D can no longer be interpreted as quasi-particles, but are rather represented by collective os-
cillations (i.e. density waves), which display a radically different behaviour than noninteracting,
renormalized fermions (i.e. Landau quasi-particles).

Although our world is clearly three-dimensional, it is for such a fundamentally different be-
haviour that 1D systems are interesting to investigate. Moreover, there are important experiments
and devices, where the electronic motion is effectively confined to 1D. One very prominent ex-
ample is the carbon nanotube, which is believed to have many industrial applications. More im-
portantly, there has been recent experimental progress in confining ensembles of ultracold atoms
to effectively one dimension [37]. The interparticle interaction is then controlled via so-called
Feshbach-resonances [36], resulting in the possibility to study 1D systems ranging from strongly
repulsive to strongly attractive interaction.
Theoretically, a variety of methods is available to deal with interacting fermions in 1D. It is possi-
ble, for example, to apply a perturbative approach with the limitation of weakly interacting systems
only. A thorough overview can be found in Ref. [35].
Another, more general approach, is the concept of bosonization, which especially is used for so-

23
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Figure 3.1: Momentum space for 1D- and 2D-systems with discrete momentum states. In the 1D
case (left), the Fermi surface consists only of the two points at k = ±kF whereas in 2D systems
(right) the fermi surface is continuous, in this case collapsing to a circle with radius kF .

called Tomonaga-Luttinger liquids (TLL) [38, 39], but not limited to such systems. The main idea
behind it is to use bosonic operators to describe fermions, assuming the equivalence between non-
interacting bosons and interacting fermions. The TLL picture describes the low energy physics
of such systems via parameters similar to the Landau parameters in Fermi liquids. There are,
however, systems with non-Luttinger behaviour, requiring more sophisticated approaches.
Probably the most successful approach to obtain exact solutions for one dimensional systems
is based on the Bethe ansatz [40]. Its foundation is the choice of a particular form for the 1D
wavefunction suitable to obtain the energy eigenspectrum. Although many models can be solved
exactly by exploiting this procedure, they are restricted to systems without an external trapping
potential [41]. Furthermore, the resulting expressions tend to be very complicated and often re-
quire heavy mathematical analysis in addition to extract physical quantities. In any case, after the
initial success of solving the 1D Heisenberg spin chain, the approach was used to deal with several
systems. A review, linking these advances also to experimental progress, can be found in [42].
Despite the availability of several established methods, we have chosen to tackle this problem
numerically, by means of the QMC-algorithms discussed in the previous chapter. The reasons
are several: first of all, this approach is very general and is not restricted to systems without ex-
ternal potential or zero temperature calculations, like most of the exact methods. Moreover, this
approach allows us to exploit established results from the literature as a reliable benchmark and
therefore justifies a latter application of the method in more challenging systems, such as higher
dimensional models.
In the following, we will introduce the model with its associated scales, discuss results for systems
in the ground state and draw a compare to results from the literature, where available.
In 1D we consider the Hamiltonian

Ĥ = −
∑
k

∑
s=↑,↓

~2k2

2m n̂s,k + g
∑
i

n̂↑,in̂↓,i (3.1)

where the first sum ranges over all occupied momentum states k and the latter sums over all lattice
sites i. Although our QMC approach is not limited by these contraints, we will restrict ourselves to
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unpolarized systems with two particle species, represented by the use of a periodic boundary con-
dition and an equal number of particles N/2 in every flavour, respectively. Furthermore we focus
on systems without an external trapping potential. Corresponding numerical results relying on the
same method for harmonically trapped models, polarized systems, and problems with imaginary
chemical potential and mass imbalance can be found in Refs. [44–46].

3.1 Units, scales & dimensions

As typical for ultracold atomic systems, we work in units such that ~ = m = kB = 1, where m is
the mass of the fermions. With these atomic units and the fact that we work in 1D, the coupling g
in Eq. (3.1) is connected to the 1D s-wave scattering length a0 via

g = 2
a0
, (3.2)

with the dimension of an inverse length. In order to obtain a dimensionless quantity to describe
the physics, we define consistently with the literature,

γ = g

n
, (3.3)

where n = N/L denotes the particle density. In the following, we provide results for multiple
values of γ ranging from the weakly attractive region at γ = 0.2 well into the strongly interacting
regime up to γ = 4.0.
In practice, besides particle number N and the bare coupling g, the effective inverse temperature
β and the box-size Nx need to be specified. Although an extrapolation to infinite β needs to be
performed to extrapolate to the true ground state, we rely on previously used values for β for
which the observables of interest are converged [43]. This allows us to limit the calculations to a
few values of β for which we can peform an average to extract the converged result.
We also note, that energies and momenta will be expressed in units of the Fermi energy εF and the
Fermi wavevector kF in order to present dimensionless quantities. The definitions read as

εF = 1
2k

2
F (3.4)

and

kF = π

2
N

L
, (3.5)

respectively. The definition of the Fermi wavevector is dependent on the dimension and this ex-
pression is only valid in 1D.
The lattice-spacing for all subsequent results is set to ` = 1 so that the length of the box is given by
L = `Nx, with Nx being the number of lattice sites. As discussed in the previous section, we dis-
cretize the imaginary time into Nτ timesteps via a Suzuki-Trotter decomposition. After a thorough
investigation of time-discretization effects, we found it sufficient to set the temporal lattice spacing
to ∆τ = 0.05. In the following, we present results obtained by calculating 5× 104 auxiliary-field
configurations and considering every tenth state in order to arrive at 5000 decorrelated samples.
This allows us to reach sufficiently small errorbars in the order of 1%− 2%.
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Figure 3.2: The connected points show the single-particle density matrix ρ1(kFr) normalized by
ρ1(0) as a function of kFr for several couplings γ = 0.2, 1.0, 2.0, 3.0, 4.0 and for the particle
numbers N = 4, 8, 12, 16 at fixed system size of Nx = 80.

3.2 Equal-time density matrices

In the following, we will discuss the one- and two-particle density matrices at equal imaginary
time for unpolarized systems. The use of periodic boundary conditions and the absence of ex-
ternal potentials imply spatial translational invariance of the investigated systems. Therefore, we
consider ρn(r) with r ≡ |x − x′| being the spatial distance. Furthermore, we present the data
as a function of kFr, in order to eliminate the density scale set by kF. The dimensionless quan-
tity kFr can be interpreted as a measure for the interparticle distances, up to a normalization factor.

3.2.1 One-body correlations

Here we discuss our results for the one-body density matrix ρ1(x, x′) which is defined as

ρ1(x, x′) = 〈Ω| ψ̂†↑(x)ψ̂↑(x′) |Ω〉 = 〈Ω| ψ̂†↓(x)ψ̂↓(x′) |Ω〉 (3.6)

where ψ̂†(x) and ψ̂(x) denote fermionic creation and anihilation operators and |Ω〉 is the projected
ground-state, as introduced in Chap. 1.
In Fig. 3.2 we show ρ1(kFr) for N = 4, 8, 12 and 16 unpolarized fermions on a 1D lattice
with Nx = 80 sites. In the weakly interacting regime, at γ = 0.2, the curves only slightly
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deviate from the noninteracting curve derived in App. B. The oscillations are a direct consequence
of the existence of a Fermi surface, which in 1D corresponds to two points at ±kF. Although
the oscillations tend to flatten with increasing coupling they stil prevail even at strong coupling,
indicating that the feature of the Fermi surface is not entirely lost in this regime. This is further
affirmed by the study of the momentum distribution shown further below.
With increasing coupling the curves tend to be moderately more local, suggesting the pairing of
fermions. In the limit of infinite attractive interaction the form of the density matrix approaches a
delta distribution in the continuum. On the lattice, however, the form of this curve deviates from
the delta peak due to the introduced UV-cutoff set by the lattice spacing.
As mentioned, the curves corresponding to weakly coupled systems very closely resemble the
form sin(x)/x as it is expected for noniteracting fermions in the continuum. Therefore, we use
the expression

ρ1(kFr) ≈
N

2 e
−akFr

sin (kFr)
kFr

(3.7)

to perform a fit to the data. The fit parameter a is used to interpolate across the coupling strength
and is motivated by a similar analysis in 2D. As the coupling increases, it is expected that the
functional form in the above expression becomes increasingly influenced by the exponential factor
which in the limit of a→∞ shows the anticipated delta peak. Values for a representative system
with N = 12 particles are provided in Tab. 3.1.

γ a σ(a)
0.2 0.05 0.006
1.0 0.061 0.006
2.0 0.111 0.004
3.0 0.224 0.008
4.0 0.316 0.011

Table 3.1: Fit parameter a obtained by fitting Eq. (3.7) to theN = 12 data of Fig. 3.2, as a function
of the dimensionless coupling γ. The rightmost column contains the standard deviation for the fit
parameter. These values of a exemplify the typical numbers obtained across all particle numbers.

3.2.2 On-site pair correlation

Additionally to the one-body density matrices we will now discuss our results for the on-site two-
body density matrix, i.e. the correlation of zero-size pairs of spin-up and spin-down fermions. The
general definition reads

ρ2(x, x′) = 〈Ω| ψ̂†↑(x)ψ̂↑(x′)ψ̂†↓(x)ψ̂↓(x′) |Ω〉 , (3.8)

describing the insertion of a fermion pair at x and the annihilation of the same pair at x′. In
unpolarized systems the computation of this quantity simplifies greatly since the on-site two body
density matrix is given by the square of the one-body quantity after the introduction of the auxiliary
fields:

ρ2(x, x′) =
∫
C
Dσ P [σ] [ρ1(x, x′, σ)]2 (3.9)
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Figure 3.3: Two-body density matrix ρ2(kF r) normalized by ρ2(0) as a function of kF r for several
couplings γ = 0.2, 1.0, 2.0, 3.0, 4.0 and for the particle numbers N = 4, 8, 12, 16 at fixed system
size of Nx = 80.
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Results for ρ2(kF r) are shown in Fig. 3.3, again for the particle numbers N = 4, 8, 12, 16 and
across couplings from γ = 0.2 to 4.0. With increasing interaction strength the fermions get more
tightly bound annd form stable composite bosons. It can be seen that these bosons interact re-
pulsively by the slightly more delocalized shape of the curves with increasing interaction. This
agrees well with the observations in Ref. [47], which state that the ground-state of strongly attrac-
tive fermions can be described by a so-called super Tonks-Girardeau gas (STG).
As apparent from the plots, the results are subject to significantly higher noise, since this is am-
plified by taking the square of the observable. In principle, one could use higher statistics in order
to reduce the statistical error and obtain smoother curves. Here, however, the main interest was
to calculate one-body correlations, for which sufficiently small errorbars can be achieved with a
similar effort.

3.3 Momentum distribution

In this section we discuss our results for the single-particle momentum distribution nk defined as

nk = lim
k→k′

∫ L

0
dx dx′ρ1(x, x′)ei(kx+k′x′) (3.10)

where ρ1(x, x′) denotes the single-particle density matrix, as defined in Eq. 3.6. Since we are
working on a 1D lattice in real space, the corresponding allowed values for the momenta are
discretized to kj = 2πj/L.
In Fig. 3.4, our results for systems of N = 4, 8, 12 and 16 particles at a fixed lattice with Nx = 80
sites are shown. Further, we investigate the weakly interacting regime starting at γ = 0.2 and move
progressively to the strongly attractive region up to γ = 4.0. In the limit of the noninteracting case
the momentum distribution features a discontiuous drop at k = kF which is still clearly visible for
the weakly coupled curves. States with momenta k > kF are occupied for increased couplings,
however, the curves still feature a relatively sharp drop above the Fermi wavevector. Although
the concept of a Fermi surface does not apply in 1D, the effect is similar to higher dimensions:
below a certain value of k states are mostly occupied whereas states with higher momenta a much
less likely. Moreover, we observe that this structure is altered only moderately and the Fermi
wavevector still provides the scale in the strongly coupled regime. This shows that even in the
strongly coupled systems, fermion pairing predominantly includes states in the vicinity of the
Fermi points.
As mentioned before, the allowed values for the momentum are discretized here, and the amount
of momentum states below the Fermi surface is proportional to the number of particles in the
system. This limits the resolution of low-density systems (N = 4) and we therefore can not
fully characterize the smoothing in the vicinity of the fermi vector, as it would be possible with
continuous or analytic approaches.

3.4 Contact parameter

We will now present our results for the contact parameter C, which is a measure of the fermion-
pairing in the system. It can be shown analytically [22], that the high-momentum tail of the
momentum distribution obeys the law

nk ≈
C

k4 . (3.11)
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Figure 3.4: Momentum distribution nk as a function of |k|/kF for Nx = 80 lattice sites and
particle numbers N = 4, 8, 12, 16. The inset shows the asymptotic behaviour in a log-log scale,
solid curves represent a linear fit used to extract the contact paramter.
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Figure 3.5: Contact density obtained from the C/k4 decay in the momentum distribution (red)
compared to results obtained from [43] (blue) for a representative few-body system with N = 12
particles at a fixed lattice size of Nx = 80.

Considering Eq. (3.11), we can extract C by applying a fit of the form nk = bx4 to the high mo-
mentum part of the momentum distributions obtained earlier. To avoid a systematic underestima-
tion originating from the plateau at values |k| < kF , we typically consider the region |k|/kF & 2.0
for the fits, which is remarkably close to the value used in studies for 3D systems [48]. In prin-
ciple there should not be any further constraints on the momentum tail but, as evident from the
insets of Fig. 3.4, the asymptotic part of the momentum tail is subject to heavy noise due to lattice
artifacts. Therefore, we need to chop off this part of the decay at |k|/kF ≈ 8.0 in order to stabilize
the fitting procedure. In Fig. 3.5 we show the contact density as a function of the dimensionless
coupling γ. We see a rising contact density as the attractive coupling increases, which reflects the
expectation to find more tightly bound pairs in strongly interacting systems. Furthermore, C is
compared to results calculated in an earlier study using the Feynman-Hellman relation discussed
in Sec. 1.4. In general, we observe a good agreement between the methods, although our result
differs slightly in the strongest coupled case. This, again, is an effect originating from the fact that
we work on the lattice, which especially becomes problematic in the strongly coupled regime due
to the achievable resolution for tightly bound pairs.

3.5 Finite volume effects

A very important point to consider in numerical calculations is the finiteness of the observable
systems. Although the infinite volume can be mimicked - to a certain extent - by the use of peri-
odic boundary conditions, one still needs to perform extrapolations to obtain the desired physical
quantity. In Fig. 3.6 we show this effect in the momentum distribution for two representative sys-
tems of N = 16 particles. As apparent from Fig. 3.6, there is no noticable finite volume effect for
systems with γ set to 0.2, representing the free case up to a very small deviation. In the strongly
interacting regime on the other hand, the finite volume effect is more pronounced, yet straightfor-



32 CHAPTER 3: THE ONE-DIMENSIONAL FERMI GAS

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  1.0  2.0  3.0  4.0  5.0

N = 16

γ = 0.2

n
k

|k|/kF

Nx = 20
Nx = 30
Nx = 40
Nx = 60
Nx = 80

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  1.0  2.0  3.0  4.0  5.0

N = 16

γ = 3.0

n
k

|k|/kF

Nx = 20
Nx = 30
Nx = 40
Nx = 60
Nx = 80

Figure 3.6: Momentum distribution for values of the box sizeNx = 20, 30, 40, 60 and 80. The top
panel shows the very weakly coupled case of γ = 0.2. Strongly coupled systems at γ = 3.0 are
shown in the lower panel. Clearly, finite volume effects are more pronounced in the latter case.
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ward to control. Starting out at Nx = 20, gradually higher volumes were taken into account until
a sufficient convergence at a system size of Nx = 80 was achieved.
Evidently, the momentum distribution is not the only quantity influenced by finite size effects.
Other computed quantities, such as the density matrices, however, feature the very same type of
convergence and, hence, will not be considered separately at this point.

3.6 Finite imaginary time

As mentioned in the beginning, we evaluate expectation values up to a finite value of the imaginary
time, which would correspond to a finite effective inverse temperature. Since our approach exploits
an inital guess state (in our case taken to be a Slater-determinant) and projects to the ground state,
we need to make sure that the obtained results are fully converged to the limit β → ∞. In Fig.
3.7 we show this effect for two systems in the weakly and strongly interacting regime. In order
to minimize computational effort, the lower bound of βεF was chosen to be 0.65, as motivated by
results for the ground state energy from Ref. [43]. Again, as expected, the (almost) free case at
γ = 0.2 shows no dependence on β and is converged almost immediately, whereas strongly inter-
acting systems need longer projection times to be converged to the approriate limit. As depicted
in Fig. 3.7, we find a reasonable convergence for βεF = 2.5 in the latter case and therefore we
use this value throughout this work.
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Chapter 4

The two-dimensional Fermi gas

In a similar fashion as for the 1D case, we will now analyze the ground-state of nonrelativistic,
two-dimensional (2D) Fermi gases on a lattice. In particular, we focus on the crossover from
Bardeen-Cooper-Schrieffer (BCS) pairing in the weakly coupled regime to Bose-Einstein conden-
sation (BEC) on the strongly interacting side.
As discussed before, 1D models can be treated effectively by numerical means and sometimes are
even solvable analytically. On the other hand, mean-field theory can accurately capture results
for many aspects of the physics in three- or even higher-dimensional systems, because the effect of
correlations beyond mean-field diminishes with increasing dimension. Two-dimensional systems
represent, thus, the challening middleground between “accessible” dimensions: the observed ef-
fects are often strongly influenced by both thermal and quantum fluctuations. This raises the need
for very careful numerical calculations for strongly correlated fermions in a 2D confinement.
As in the previous sections, we focus on unpolarized systems in the dilute limit with periodic
boundary conditions. We characterize the system via the one-particle density matrix at equal
imaginary times. Moreover, we present equations of state for the total and interaction energies in
the crossover from few- to many-body systems. Again, finite size effects need to be investigated to
ensure the validity of the obtained results and to justify an extrapolation the continuum limit (CL).

Parts of the following discussion and results have been already published in the APS Journal
“Physical Review A”: 93, 033639 (2016) (see Ref. [49]).

Recently, it became possible to realize two-dimensional Fermi gases experimentally in a control-
lable and precise way [50,51]. These advances make it possible to understand several fundamental
aspects of the few- and many body physics generic to 2D quantum mechanics, which exhibits many
exciting effects.
A central phenomenon of interest is the fermion pairing, because it is responsible for supercon-
ducting and superfluid behaviour. The stability of the superfluid phase is correlated with the ro-
bustness of the fermion pairs, which is determined, in turn, by the interaction strength, i.e. the
s-wave scattering length. As opposed to 3D, two-body bound states always are present in 2D
systems, even for arbitrarily small interaction strenghts. Strictly speaking, pair condensation can
only occur at T = 0, as dictated by the Mermin-Wagner theorem [52–54], which states that con-
tinuous symmetries in 2D systems cannot be spontaneously broken at finite temperature (with
sufficiently short-ranged interactions). Nevertheless, a superfluid phase can actually be observed
below a critical temperature Tc, where the system ungergoes a Berezinskii-Kosterlitz-Thouless
(BKT) transition [55–57].
The great interest in such systems is especially motivated by the belief that unconventional high-
temperature superconductivity in cuprates is essentially a 2D effect [58]. Therefore, a lot of exper-

36
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imental effort has been put forward to find materials with a strong pairing mechanism. The formal
description of 2D Fermi gases, however, is mostly limited to numerical studies, since analytic tools
to treat this problem are very scarce at this time [59].
For the earliest theoretical investigaion of the crossover from BCS to BCS pairing, mean-field
methods were used [60, 61]. Such an approch is problematic, since in 2D systems observables
are highly influenced by quantum- and thermal fluctuations. The former could be captured, as for
ther local part, by means of DMFT calculations [62,63] although the predominant (spatial) part of
the fluctuations was still neglected. In the last decade, however, progress was achieved to include
spatial correlations beyond DMFT in 2D by means of cluster [64–66] and diagrammatic [67–73]
extensions of DMFT. So far, their application was mostly restricted to the case of repulsive inter-
actions and finite temperature. Thus, for 2D systems, the most widespread treatement is usally
based on Monte Carlo schemes. In particular, studies based on the diffusion Monte Carlo method
improved the poor accuracy of the mean-field estimates for the ground-state energy and also com-
puted the contact parameter [74]. This approach [75], as well as auxiliary field Monte Carlo
methods [76], was used to further characterize the ground-state of polarized and spin-imbalanced
systems. Moreover, energies and contact at finite temperature as well as the the BKT-transition
point have been explored [77–79].
Thus, some light has been shed on the ground-state of 2D Fermi systems. However, most of this
calculations were done at high particle numbers, i.e. in the “many-body” regime. Hence, much
less information about the behaviour at low particle numbers and the convergence to the thermo-
dynamic limit is available. It is the purpose of the work presented in this chapter, to fill this gap.
Since we are considering dilute gases, the interaction can be modeled as a zero-range potential.
Therefore, our Hamiltonian can be written as

Ĥ = T̂ + gV̂ , (4.1)

where

T̂ = − ~2

2m
∑
s

∑
~k

ψ̂†
s,~k
ψ̂
s,~k

(4.2)

constitutes the kinetic term and the potential part is given by

V̂ =
∑
i

n̂↑,in̂↓,i. (4.3)

where the lattice spacing ` was set to 1. The index s denotes spin-species, ranging over the values
s =↑ and s =↓ with an equal number of N/2 particles per flavour. Further, ψ̂†s,i and ψ̂s,i are

fermionic creation- and anihilation operators at lattice site i, respectively. As usual, n̂s,i = ψ̂†s,iψ̂s,i
denotes the associated particle density. In the following, we compute many essential properties to
describe the crossover between few- and many-body physics in such systems.

4.1 Units, scales & dimensions

As in the 1D calculations, we present all our results in dimensionless quantities. Energies are
therefore rescaled with the energy of the noninteracting gas on the lattice

EFG = 1
2NεF (4.4)
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Figure 4.1: Bare coupling g as a function of the dimensionless coupling η for a particle number
of N = 4 and N = 40. Higher particle numbers correspond to increased values of g at the same
coupling η, whereas the increase of the lattice size Nx shows an opposite trend.

whith particle number N and Fermi energy εF. The definition of the latter reads the same as in 1D

εF = 1
2k

2
F = πn (4.5)

whereas the occuring Fermi wavevector differs from the expression in 1D and is given in 2D by

kF =
√

2πn =

√
2π N
L2 . (4.6)

By setting the units ~ = m = kB = 1, as already done in the one-dimensional case, we notice that
the bare coupling g in Eq. (4.1) becomes dimensionless. Thus, no dimensionful parameters enter
the dynamics of the system, making it classically scale invariant. This invariance, however, is
broken by quantum fluctuations, resulting in a non-zero binding energy of the two-body problem,
which we can use as a physical scaling parameter instead. Since the bare coupling is a direct input
to the calculation, we need to provide a mapping between g and the associated binding energy εB
of the two-body problem. It is therefore necessary, to numerically compute εB as a function of
g. Furthermore, in order to investigate systematic grid-size effects, the calculation of εB has to
be performed for each lattice size separately. We found, however, that for the two-body problem
these effects are negligible implying that the binding-energy on the lattice solely depends on the
bare coupling g.
For the sake of conciseness, the dimensionless coupling η is introduced, defined as

η ≡ 1
2 ln

(2εF
εB

)
. (4.7)

This definition is consistent with the literature and η is constructed such that the BCS-regime is
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approached with a large positive value of η. Large negative values of η mark the BEC area, where
the binding-energy dominates the scale. In Fig. 4.1, the map between η, i.e. the binding energy,
and the bare coupling is shown across the BCS-BEC crossover. It is apparent that an increase of
the system size favors lower bare couplings. Although larger systems take a longer computation
time, the lowered value of g allows us to use a more coarse time-discretization length ∆τ , which,
in turn, lowers the numerical effort. The opposite effect takes place for systems with the particle
content, which correlates with a higher value of g. Therefore, the numerical effort increases sig-
nificantly, since the computation time already scales linearly with N . This has the implication that
such calculations are limited to dilute systems.
The lattice properties are unchanged with respect to the 1D calculations presented in the previous
chapter, aside from the fact that the calculation now scales with N2

x due to the increased dimen-
sions. The time-discretization has been extensively studied due to the exponential increase of the
bare coupling with decreasing η. Systems with a coupling of roughly η ≈ 0.5 or higher are treat-
able with a temporal spacing of ∆τ = 0.05, where the exact cutoff in η depends on the system size
and particle content. Calculations for systems with a value of 0.5 < η < −2.0 can be performed
with ∆τ = 0.01 within a reasonable computational time. In principle, even stronger couplings
are tractable with a finer timestep, with the effect of an exponential increase of computational
effort. To characterize the BCS-BEC crossover, we found it sufficient to calculate results for cou-
plings in the interval η ∈ [−2.0, 3.0] and therefore limit ourselves to a time-discretization length
of ∆τ = 0.01− 0.05.
The number of samples was fixed to 500, where again every tenth accepted configuration in the
Markov-sequence was considered as a decorrelated sample, as done in 1D. This allows us to calcu-
late quantities up to a uncertainty of roughly 5%, yielding an acceptable estimate for the energies,
momentum distributions and density matrices, which are computed for the first time in the 2D
few- to many-body crossover.

4.2 Energetics of the ground state

In this section, we present results for an equation of state (EOS) of the system, connecting the
number of particles with the total and interaction energies of the ground-state. In particular, we
characterize the BCS-BEC crossover for several particle numbers, starting in the few-body case
at N = 4 particles ranging well into the many-body regime up to N = 40 particles extrapolated
to an infinite lattice size. In the latter case, our results are within reasonable agreement with erlier
studies carried out in the thermodynamic limt [74].

4.2.1 Extrapolations

Unlike in the 1D case, where useful parameter values for the convergence of observables are avail-
able, there is hardly any prior information accessible for 2D systems [77]. For this reason, the
exploration of the parameter space proved to be very challenging due to the extended computa-
tional effort as compared to 1D calculations. Since the EOS only considers the dependence on the
particle number N for various couplings η, we need to eliminate all other scales, namely the large
time β and the volume V = N2

x .

Large effective inverse temperature

First, we need to make sure that the results are converged to the true ground state by taking the
limit

〈O〉 = lim
β→∞

〈O(β)〉. (4.8)
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Figure 4.2: Decay as a function of β of the total and interaction energies (in units of EFG) for
N = 20 particles on a 28 × 28 lattice, coupled with η = 1.0. The interaction energy 〈V 〉 takes
slightly longer to decay to a plateau.

Carrying out calculations at increasing imaginary times β, we can perform a fit of the form

E(β) ≈ E0 + aebβ, (4.9)

as motivated by the derivation in App. A. In Fig. 4.2 we show the typical convergence behaviour of
the total and interaction energies for a representative system ofN = 20 particles at a 28×28 lattice
coupled with η = 1.0. At very low effective inverse temperature the data slightly deviates from the
proposed form in (4.9). After a certain value of β, strongly depending on the system parameters,
the neglected effects in the derivation vanish and the computed data decays as expected. In the
BCS-BEC crossover region at around η = 0.5, this extrapolation requires the computation of data
up to significantly larger β due to a slow decay. This reflects the use of a Slater-determinant as
the initial guess-state, which is the best choice, close to the noninteracting case. The stronger
the interaction, the more the actual ground-state wavefunction will deviate from such a trial state.
This explains the slower decay. In principle, this effect could be minimized by a better choice of
the initial guess-state, e.g. by a coupling dependent interpolation between a BCS and a Jastrow-
Slater (JS) trial wavefunction [80]. The use of a trial wavefunction which is not in the form of a
determinant, however, greatly changes the method introduced in Sec. 2.2 since e.g. the probability
measure cannot be expressed as a determinant in such a case. Furthermore, at very high couplings
in the region η ≤ −1.0, the interaction is strong enough to overcome this issue and favors a fast
decay to the ground-state. For this reasons, we found it sufficient to use a Slater determinant as
our noninteracting guess state for a first characterization of such systems.
Fig. 4.4 additionally shows the decay of the interaction energy for the same system. Although this
follows the same functional form as the total energy, we note a slower convergence in imaginary
time. As a result, the extraction of the converged values becomes more challenging which is
reflected by slightly larger errors for the obtained values.
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Infinite volume

With the data extrapolated to the ground-state (β → ∞), we can now eliminate the volume scale
by another extrapolation. Therefore, we need to look at the data as a function of the inverse volume
(V −1 = N−2

x ) and perform a fit of the form

E(V −1) = a+ bV −1. (4.10)

The value at vanishing inverse volume represents the extrapolated result in the infinite volume
limit, i.e. the dilute limit at constant particle number. The fit parameter a then corresponds to the
value in this limit. In Fig. 4.3, curves for representative calculations in the BCS and BEC regimes
are shown.

4.2.2 Equation of state

After extrapolating the lattice results to the appropriate limits, we now discuss these quantities as a
function of the remaining parameters of interest. In the following, we show how the ground-state
and interaction energies are behaving with increasing particle content starting in the few-body
regime at N = 4. Gradually increasing the particle number up to a value of N = 40 displays a
convergence to the many-body limit across all investigated couplings.

Ground-state energy

Fig. 4.4 displays the computed ground-state energy as a function of particle number. To show the
molecular structure of the fermions, the binding energy εB is used as a scale in the BEC limit. In
the weakly interacting BCS regime, we show the results in units of the energy of the noninteracting
system EFG.
To compare these results with the literature, values from Ref. [76] are shown at a value ofN = 50.
Strictly speaking, the values correspond to infinite particle number since the thermodynamic limit
is reached by taking N → ∞ and V → ∞ at constant density n = N/V . We formally approach
this limit by taking the dilute limit for each particle number separately and present these values as
a function of N . As evident from Fig 4.4, the few-body results converge to the TL at a particle
content of N ≈ 24, consistent with observations in Ref. [74] and even at lower particle numbers
for very strongly coupled systems. The values for the highest populated systems show very good
agreement with the TL results, indicating that we have reached the many-body regime.
In addition to the interacting results, a curve for the noninteracting system (η =∞) on the lattice
is shown. The structure of this curve resembles the oscillations of the lowest coupled systems,
which originate from so-called closed-shell (CS) effects, discussed more extensive below.
Curves for the strongly interacting regime are shown in the bottom panel, where we see a clear
dominance of the binding-energy. This indicates that tightly bound pairs form immediately upon
turning on the interaction.
More importantly, the curves corresponding to the BCS-BEC transition region, at η = 0.5 and η =
1.0, still show covergence in the particle number. The calculation for these parameters becomes
numerically very challenging, due to the choice of the initial guess state |Ωo〉. As mentioned above,
these values could in principle be refined by a more suitable choice of the initial wavefunction,
which would lower the numerical effort significantly, allowing a determination of observables at
even higher particle numbers within a reasonable computational time.
The numerical results plotted in Fig. 4.4 are provided in Tab. 4.1.
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η
N -1.5 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 ∞
4 -37(2) -12.8(3) -3.4(7) 0.6(2) 1.34(7) 1.30(2) 1.34(1) 1.45(3) π/2
8 -43.0(3) -13.8(4) -4.66(5) -0.6(2) 0.64(4) 0.80(3) 0.96(1) 1.03(2) 3π/8

12 -41(2) -14.7(3) -5.0(2) -1.4(2) 0.3(1) 0.61(2) 0.80(3) 0.89(1) 4π/12
16 -40.6(2) -15.0(3) -4.70(4) -1.65(9) 0.1(1) 0.52(2) 0.74(1) 0.80(0) 5π/16
20 -39(1) -15.2(4) -4.72(6) -1.65(9) -0.0(1) 0.53(2) 0.74(1) 0.80(1) 8π/25
24 -38.0(8) -15.1(2) -4.9(1) -1.69(9) -0.15(4) 0.59(1) 0.78(0) 0.84(1) 4π/12
28 -37.6(3) -15.3(2) -4.91(8) -1.79(4) -0.25(5) 0.58(2) 0.77(1) 0.86(1) 33π/98
32 -38(1) -14.9(3) -4.99(1) -1.70(8) -0.31(4) 0.52(3) 0.78(1) 0.86(1) 43π/128
36 -38.5(6) -14.6(1) -5.01(7) -1.6(1) -0.38(3) 0.48(3) 0.75(1) 0.82(0) 53π/162
40 -39.8(9) -15.2(2) -5.00(9) -1.58(4) -0.40(2) 0.40(3) 0.70(0) 0.80(1) 63π/200

Table 4.1: Ground-state energy E on the lattice, in units of the continuum noninteracting energy
EFG = NεF /2 of the N -particle system, as a function of N and the dimensionless coupling η.
(Reproduced from Ref. [49])

η
N -1.5 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 ∞
4 -39(2) -19.7(6) -7.0(7) -1(1) -0.1(2) -0.34(5) -0.50(1) -0.6(2) -1/(2π)
8 -28(2) -15(1.5) -7.9(7) -2.7(5) -0.86(9) -0.55(9) -0.41(1) -0.5(1) -1/(2π)

12 -21(2) -14.1(9) -7.8(3) -4.0(1) -1.47(4) -0.59(1) -0.42(4) -0.44(7) -1/(2π)
16 -17.7(1) -12.2(5) -6.8(1) -3.9(1) -1.2(2) -0.58(1) -0.38(2) -0.43(2) -1/(2π)
20 -16(1) -11.7(6) -6.8(3) -3.8(1) -1.44(8) -0.59(4) -0.41(2) -0.52(6) -1/(2π)
24 -14.0(9) -10.4(6) -6.4(3) -3.8(1) -1.55(1) -0.60(1) -0.41(1) -0.50(5) -1/(2π)
28 -12.5(9) -9.5(6) -6.0(4) -3.6(2) -1.67(3) -0.64(1) -0.44(1) -0.48(5) -1/(2π)
32 -11.4(9) -8.5(6) -5.6(3) -3.4(1) -1.68(1) -0.69(4) -0.41(1) -0.46(4) -1/(2π)
36 -11.5(1) -8.4(6) -5.6(3) -3.3(1) -1.65(1) -0.68(3) -0.40(2) -0.45(4) -1/(2π)
40 -10.5(9) -8.0(6) -5.4(3) -3.1(1) -1.59(2) -0.71(3) -0.41(2) -0.43(3) -1/(2π)

Table 4.2: Ground-state interaction 〈V̂ 〉N, in units of the energy of the noninteracting gas EFG, as
a function of N and the dimensionless coupling η. (Reproduced from Ref. [49])

Interaction energy

To further characterize the properties of the ground-state, specifically its short-range behaviour,
we present the expectation of the potential part V̂ of the Hamiltonian, denoted as 〈V̂ 〉N at fixed
particle number N . As shown in Sec. 1.4 we can use the Feynman-Hellman relation to write

〈V̂ 〉N = ∂E

∂g

∣∣∣∣
N=const

. (4.11)

This relation is connected to the contact, which fulfills an adiabatic theorem [81] and is therefore
proportional to the change in the ground-state energy with respect to the s-wave scattering length
a0 at fixed particle content:

C ∝ ∂E

∂ ln(kFa0)

∣∣∣∣
N=const

. (4.12)
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Figure 4.5: Expectation value of the density-density operator V̂ for N = 4,8,12,...,40 fermions, in
units of the ground-state energy of the noninteracting gas, for several values of the dimensionless
coupling η = −1.5,−1.0, . . . , 3.0, along with the noninteracting case η → ∞. The solid black
line shows −1/(2π), which is the result in the noninteracting limit. (Reproduced from Ref. [49])

The scattering-length controls the behaviour of the system via the UV-lattice cutoff and the bare
coupling g. Since the former is held constant, we only need to consider the effect of g in the
derivative. Rewriting Eq. (4.12) to

∂E

∂ ln(kFa0)

∣∣∣∣
N=const

= ∂E

∂g

∂g

∂ ln(kFa0)

∣∣∣∣
N=const

= 〈V 〉N
∂g

∂ ln(kFa0)

∣∣∣∣
N=const

(4.13)

yields a form which splits into two parts. The second factor in Eq. (4.13) only depends on two-
body physics, since we used the binding-energy, i.e. the scattering length, to fix the desired value
of g while the first factor contains valuable information about the short-ranged behaviour of the
ground-state mandy-body problem.
In Fig. 4.5, results for 〈V̂ 〉N are shown as a function of particle number and coupling. Again, the
results are scaled with EFG so that the values effectively represent the interaction energy per par-
ticle. As expected, 〈V̂ 〉N increases greatly with the interaction strength, suggesting more tightly
bound pairs as η approaches the BEC-limit. Further, we note convergence to a plateau as the
particle content increases, which is especially evident for the weakly coupled systems under con-
sideration.
The numerical values for 〈V̂ 〉N are presented in Tab. 4.2.

Shell effects

As mentioned before, in Fig. 4.4 we observe mild oscillations in the ground-state energy for
weakly coupled systems. This is a direct consequence of the Pauli exclusion principle, which
can be demonstrated by considering the noninteracting Fermi gas. The single-particle states in
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Figure 4.6: Lowest fully occupied energy shells at N = 2, 10 and 18.

this case reduce to plain waves with momentum

~k = ~kx + ~ky. (4.14)

Within an isotropic lattice, i.e. the lattice spacing does not depend on the direction, it is obvious,
that multiple combinations of kx and ky, yielding the same energy contribution E~k = ~k2

2 , exist.
In order to populate the system with N/2 particles in every spin-flavour, gradually higher energy
levels up to the Fermi energy, are occupied. For some values of N , states which preserve the
square symmetry in ~k-space occur, corresponding also to a total momentum of

~K =
∑
|~k|<|~kF |

~k = 0. (4.15)

These configurations correspond to the full occupation of all available degenerate energy levels,
i.e. the full occupation of energy shells comparable to a full shell of atomic orbitals in the ground-
state (noble gases). The first few closed-shell configurations are pictured in Fig. 4.6, which in
2D occur at the “magic” particle numbers N = 2, 10, 18, 26, 42, · · · for unpolarized systems.
The energy for the noninteracting gas is shown in Fig. 4.4, labeled as η = ∞. We notice, that
at particle numbers corresponding to fully occupied shells, the energy per particle features local
minima. Strictly speaking, these configurations exist only in the noninteracting case, since states
with higher momentum contribute immediately upon switching on the interaction. Nevertheless,
for weakly bound systems in the BCS-regime, the remnants of the closed-shells are still visible in
the EOS. For increasing interaction strength, however, this effect gets washed out entirely, as also
observed in Ref. [75]. The lack of oscillations in the BEC-region is not surprising, since the struc-
ture of the wavefunction changes drastically and single-particle states are no longer eigenstates of
the Hamiltonian.

4.3 Momentum distribution

In this section, we discuss our results for the momentum distribution nk, which in 2D is defined as

nk =
∫ L

0
d~x d~x′ρ1(~x, ~x′)ei~k(~x−~x′). (4.16)

The momentum distribution is experimentally accessible and typically measured in ultracold-
atoms experiments [84,85]. Although such studies are necessarily conducted at finite temperature
they are comparable, at least qualitatively, with the ground-state, which constitutes the limit for
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Figure 4.7: Momentum distributions as a function of |~k|/|~kF | for N = 12, 24, 36 unpolarized
fermions with grid sizes of 28 × 28 for 12 particles and 32 × 32 otherwise. Inset: momentum
distribution on a log-log scale, featuring the asymptotic (|~k|/|~kF |)−4 behaviour.
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the lowest temperatures.
In Fig. 4.7, we show nk for couplings across the entire BCS-BEC crossover with particle numbers
N = 12, 24 and 36. While reasonable convergence was achieved for a 28 × 28 lattice for 12
particles, the grid size was increased to 32 × 32 for the latter cases. Additionally, the curve for
noninteracting Fermi gases, i.e. a step function with a drop at |~k| = |~kF |, is shown. All results are
shown as a function of |~k|/|~kF |.
As expected, the weakly interacting curves in the BCS regime feature a relatively sharp drop,
showing only minor modifications in the region |k| ≈ |kF| with respect to the noninteracting case.
This indicates, that only particles near the Fermi surface participiate in the formation of pairs.
Increasing the coupling leads to a broadening of the distribution, most pronounced in the strongly
coupled BEC region, where the momentum distribution loses its features of a drop almost entirely.
The wavefunction includes many ~k-values, leading to a more localized form in real-space. In this
limit, we no longer observe a Fermi surface, suggesting the formation of molecule-like bound
pairs, i.e. composite bosons. A qualitatively similar trend for n(εK) with increasing interaction is
found in Ref. [83] for the case of 2D Hubbard model wirh repulsive interaction in the high density
limit of half-filling. In this study, the formation of bosonic bound pairs can be mapped to the
formation of localized magnetic moments.
As the particle number increases, the effect of the interaction becomes smoother such that the
momentum distribution “decays” slower with increasing coupling.
Additionally, the insets in Fig. 4.7 show the momentum distribution on a log-log scale, featuring
the asymptotic behaviour as k approaches∞. In the lowest populated systems, nk takes on values
below 10−6 which are subject to numerical inaccuracies in the weakest coupled cases. In prin-
ciple, higher statistics could solve these problems. Fortunately, as coupling and particle density
increase, these numerical issues vanish. In analogy to the 1D case, we perform a fit of the form

nk ≈
a

|~k|4
(4.17)

to the tail of the distribution, where we cut off the values at |~k|/|~kF | ≈ 1.8 − 2.2, depending on
the system size. The fitted functions are shown as solid lines in the insets of Fig. 4.7 and show
very good agreement with the computed data.

4.3.1 Extrapolation to infinite β

The results discussed in the above, are extrapolated to infinite effective inverse temperature. Since
no analytic form for the behaviour of the momentum distribution is known in the interacting case,
we have chosen a Gaussian fit to catch the asymptotic behaviour. The extrapolation is shown in
Fig. 4.8. We see, that for the convergence to the ground-state, values of β ≈ 8.0 are needed, espe-
cially in the region |~k| < |~kF |. As mentioned before, the rate of convergence could be improved
by the use of improved trial states for the inital wavefunction as done in Refs. [75, 76].

4.4 One-body density matrix

Here, we present results for the one-body, equal-time density matrix ρ1(kF r) for spin unpolarized
fermions, defined as

ρ1(~x, ~x′) = 〈Ω| ψ̂†↑(~x)ψ̂↑(~x′) |Ω〉 = 〈Ω| ψ̂†↓(~x)ψ̂↓(~x′) |Ω〉 . (4.18)
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Figure 4.8: Momentum distribution extrapolated to infinite imaginary time β for N = 36 unpo-
larized fermions on a 32 × 32 lattice and at fixed dimensionless coupling η = −0.5. The black
points corresponding to the extrapolated values in the ground-state.

The definition coincides with the one 1D, except for the fact that we now have to consider the
vector-character of the coordinates.
Results for systems with a particle number of N = 12, 24 and 36 across the BCS-BEC crossover
are presented. Again, we plotted the results for a 28 × 28 lattice in the first case and used a
32 × 32 grid otherwise. To eliminate the scale set by the density, we present our results as a
function of kF r. Due to the use of periodic boundary conditions, the investigated systems become
translationally invariant. This allows us to use the distance

r = |~x− ~x′| (4.19)

instead of considering results for every lattice point separately. Furthermore, we present the den-
sity matrix normalized to the respective value ρ(r = 0) with the associated couplings.
By looking at Fig. 4.9, we observe the occurence of statistical noise for long-range correlations.
To smoothen the curve, a three-point moving average was performed.
Since the single-particle density matrix is connected with the momentum distribution via Eq. (4.16),
we can draw similar conclusions as discussed above. In the weakly interacting regime, the curves
only slightly deviate from the noninteracting result, derived in App. B. As the coupling grows,
the density matrix shows strong localization of particles with an exponential form for the highest
coupling computed. This agrees well with the expectation in the infinitely attractive case, where
one would expect the correlations to be a δ-distribution located at r = 0, as the composite-bosons
would collapse in the same quantum-state.
The oscillations, associated with the existence of a well defined Fermi surface, become weaker
with increasing interaction, until they vanish completely at the onset of the BEC phase around
η = −0.5. This is another indication for the formation of tightly bound pairs, as it is expected
in this limit and is in contrary to 1D systems, where the oscillations prevailed even in the highest
coupled cases.
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Figure 4.9: Single-particle density matrix ρ1 as a function of kF r for N = 12, 24, 36 unpolarized
fermions with grid sizes of 28 × 28 for 12 particles and 32 × 32 otherwise. The solid black line
corresponds to the limit η →∞, i.e. the noninteracting case.
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η a mean absolute deviation
−2.0 0.45(3) 0.001
−1.5 0.44(3) 0.002
−1.0 0.42(3) 0.004
−0.5 0.27(6) 0.03
0.0 0.11(4) 0.02
0.5 0.06(4) 0.02
1.0 0.05(7) 0.02
2.0 0.0(1) 0.02
3.0 0.0(1) 0.02

Table 4.3: Fit parameter a obtained by fitting Eq. (4.20) to the N = 36 data of Fig. 4.9, as a
function of the dimensionless coupling η. Similar trends in a have been obtained for systems with
a different number of particles, i.e. beyond the data of Fig. 4.9. (Reproduced from Ref. [49])

We can interpret the square of the inverse particle density n−
1
2 as the mean partricle spacing. Now

we can think of the x-axis in Fig. 4.9 as a measure of how many average distances fit into the
system. Although the curves for different particle contents coincide with this renormalization, the
scale is extended for systems with higher density, therefore featuring more oscillations in the BCS
limit.
Finally, in order to encode the short-ranged behaviour of the response, fits to the shown data were
performed. The transition from the noninteracting case to the strongly coupled regime can be
described by the introduction of a dimensionless parameter a, as

ρ1(kFr) ≈ 2e−apBr
J1(kFr)
kFr

, (4.20)

which describes the interpolation between the two limits. The second factor in Eq. (4.20) cor-
responds to the noninteracting result in the continuum limit, as derived in App. B. The Bessel
function originates from the fact, that only states up to the Fermi wavevector are occupied in the
noninteracting case. The first factor is motivated by the deeply bound state shown in Fig. 4.9. In
this limit, correlations are expected to decay with the inverse binding momentum pB. For nonzero
interactions states with k > kF are occupied and in the limit of infinite attraction, the momentum
distribution approaches a constant, which corresonds to a delta peak for the correlation. Therefore,
it is expected that for increasing coupling the form of the correlation is dicated by an increasing
value of a. Numerical values, which underpin this behaviour, are provided in Tab. 4.3.



Chapter 5

Summary and Outlook

“ I call our world Flatland, not because we call it so, but to make its nature
clearer to you, my happy readers, who are privileged to live in Space.

Edwin A. Abbott, [86].”Since our world is three-dimensional, naturally most of the experimental and theoretical effort
was put forward to explain and investigate such materials and effects. Nevertheless, configura-
tions exist where the motion of particles is confined effectively to lower dimensions and therefore
behaviour generic to the reduced dimensionality is observed. Specifically, in solid-state physics,
where the dynamics of the system is largely influenced by the motions of electrons, the explanation
of these effects corresponds to the solution of a many-body problem. While in three-dimensions
mean-field approaches yield reasonable results in several cases, lower dimensions are heavily in-
fluenced by quantum and thermal fluctuations, making mean-field approaches inapplicable and
raising the need for more detailed calculations. In this work we have characterized the ground-
state of systems with low dimensionality by the means of an auxiliary-field quantum Monte Carlo
approach.
Although exact methods for the solution of one-dimensional Fermi gases exist, we have presented
numerical results to describe the zero temperature behaviour. Specifically, we investigated the
one- and two-body equal-time correlations for a broad range of couplings, showing a moderately
increased particle localization for growing interaction strength. In order to further learn about
the energetic structure in such systems, we investigated the momentum distribution across many
particle numbers to show the effects of strong correlations on the “Fermi surface”, which in 1D
is constituted by two points. While the 1D results are of intrinsic interest, they were also used to
benchmark our method for more challenging calculations carried out in two dimensions.
For the two-dimensional case, we set out to characterize the crossover from few- to many-body
physics in the ground-state across a great range of interaction strengths. Typcially these systems
are treated in the thermodynamic limit, neglecting the effects of few-body physics. To the best of
our knowledge, the results presented in this work constitute the first determination of the few- to
many-body crossover in two dimensions. We computed the equation of state for the ground-state
energy, connecting the energy per particle to the particle content and showing the convergence to
the thermodynamic limit, as calculated in previous studies. Similarly, we provided such an equa-
tion of state for the interaction energy aming at learning about the short-ranged behaviour of these
systems. We observe a domination of the dimer binding-energy in the strongly coupled regime,
showing a clear hallmark of the formation of tightly bound pairs, i.e. composite bosons. This is
further underpinned by the study of the momentum distribution as well as one-body correlations,
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which show an exponential form in the BEC limit as expected for a deeply bound molecular state.
In conclusion, we have provided a thorough study of the ground-state of one- and two-dimensional
unpolarized Fermi gases on the lattice. Although the ovservables studied in this work already
clearly show the effects of pairing in the BCS-BEC crossover a complete characterization of the
system requires further studies. Several other quantities still need to be investigated, such as the
condensate fraction, pair-momentum distribution, dynamic response functions etc. In order to
fully characterize the phase-diagram of interacting Fermi gases in the ground-state, it would be
also interesting to study the dependence on mass- and spin-imbalance as well as the influence
of external trapping potentials. Combined with the extension to finite temperatures, the need for
different approaches such as e.g. cluster and diagrammatic extensions of DMFT arises, with the
goal to eventually nail down completely the peculiar behaviour of Fermi systems in reduced di-
mensions.
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ii APPENDIX

A Ground state energy

In this appendix we provide a derivation for the decay of the interacting ground-state energy in
imaginary time. In order to extract the ground-state energy, we can use the resulting functional
form and apply a fit to the data.
The total energy at imaginary time β is given by

E(β) = 〈Ω(β)| Ĥ |Ω(β)〉
〈Ω(β)|Ω(β)〉 , (A.1)

where Ĥ is the Hamiltonian of the system and |Ω(β)〉 denotes the projected state at fixed β. It is
connected to the initial state |Ω0〉 via

|Ω(β)〉 = e−βĤ |Ω(0)〉 ≡ e−βĤ |Ω0〉 , (A.2)

so that the energy reads

E(β) = 〈Ω0| e−βĤĤe−βĤ |Ω0〉
〈Ω0|e−2βĤ |Ω0〉

(A.3)

An expansion of |Ω0〉 in occupation number basis states |n〉

|Ω0〉 =
∑
n

cn |n〉 (A.4)

and insertion into the above expression yields:

E(β) =
∑
nm cnc

∗
m 〈m| e−βĤĤe−βĤ |n〉∑

nm cnc
∗
m 〈m| e−2βĤ |n〉

. (A.5)

Applying the operators

E(β) =
∑
nm cnc

∗
mEne

−β(En+Em) 〈m|n〉∑
nm cnc

∗
me
−2βEn 〈m|n〉

(A.6)

and exploiting the orthonormality property of the basis states 〈n|m〉 = δmn results in:

E(β) =
∑∞
n=0 |cn|2Ene−2βEn∑∞
n=0 |cn|2e−2βEn (A.7)

Further, we can separate the dominating factor in the sum, namely the ground-state energy, and
rewrite the expression as

E(β) = E0|c0|2 +
∑∞
n=1 |cn|2Ene−2β(En−E0)

|c0|2 +
∑∞
n=1 |cn|2e−2β(En−E0) . (A.8)

We can now assume that the factor xn ≡ e−β(En−E0) is small and hence perform an expansion

f(~x) = f(~x)|~x=0 +
∞∑
n=1

∂f(~x)
∂xn

∣∣∣∣
xn=0

xn +
∑
nm

O(xnxm) (A.9)
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which results to

E(β) = E0 +
∞∑
n=0

(En − E0) |cn|
2

|c0|2
e−β(En−E0) +

∑
nm

O
(
e−β(Em−E0)e−β(En−E0)

)
. (A.10)

Again, we can assume that the sum is dominated by the first term and write the approximate form

E(β) ≈ E0 + (E1 − E0) |c1|2

|c0|2
e−β(E1−E0). (A.11)

This form in general allows the calculation of the ground and first excited energies. Nevertheless,
one has to be careful upon performing the fits, since the first excited energy is very sensitive to the
decay constant, which is often hard to obtain within small error margin.

B Noninteracting one-body density matrix

Here we want to derive the noninteracting density matrices for 1D and 2D systems at zero temper-
ature. The derivation is very similar in both cases and only differs in the evaluation of the occuring
integrals.
Following the definition given in Sec. (1.3), we can write ρ1(x, x′) as

ρ1(~x, ~x′) = 〈Ω0| ψ̂†(~x′)ψ̂(~x) |Ω0〉 . (B.1)

With the vacuum state |0〉 we can write the noninteracting ground state:

ρ1(~x, ~x′) = 〈0|
∏

|~k|<|~kF |

â†~k
ψ̂†(~x′)ψ̂(~x)

∏
|~k′|<|~kF |

â†~k′ |0〉 . (B.2)

Equivalently, in momentum-space we write

ρ1(~x, ~x′) = 〈0|
∏

|~k|<|~kF |

â†~k

∑
~q~q′

φ∗~q′(~x′)φ~q(~x)â†~q′ â~q
∏

|~k|′<|~kF |

â†~k′ |0〉 . (B.3)

After some anticommutator-arithmetic, we finally arrive at the sum

ρ1(~x, ~x′) =
∑
|~k|<|~kF |

φ∗~k(~x
′)φ~k(~x). (B.4)

B.1 One dimension

In 1D we can approximate the above sum with an integral considering the correction factor L/2π
to account for the volume:

ρ1(x, x′) ≈ L

2π

∫ kF

−kF
dk φ∗k(x′)φk(x). (B.5)

In free system, represented by the use of periodic boundary conditions, the single-particle contri-
butions are given by plane waves. Therefore the integrand can be explicitly written and the integral
becomes

ρ1(|x− x′|) = L

2π

∫ kF

−kF
dk eik(x′−x). (B.6)



iv APPENDIX

We are able to evaluate this integral to

ρ1(kF r) = 2
|x′ − x|

sin (kF |x′ − x|) (B.7)

and use |x′ − x| = r to obtain the final form as

ρ1(kF r) = N

2
sin (kF r)
kF r

. (B.8)

B.2 Two dimensions

In the 2D case the sum can be approximated by

ρ1(~x, ~x′) ≈
(
L

2π

)2 ∫
|~k|<|~kF |

d2k φ∗~k(x
′)φ~k(x). (B.9)

The evaluation of this expression is more subtle since we have to consider the vector character of
the integral kernel. We need to rewrite the integral to

ρ1(r) =
(
L

2π

)2 ∫ kF

0
dk

[
k

∫ 2π

0
dϕ eikr cosϕ

]
. (B.10)

where we used r = |~x′−~x|. The inner integral corresponds to a representation of Bessel functions
Jn(x) of order n, up to a normalization. We get

ρ1(r) = L2

2π

∫ kF

0
dk kJ0(kr) (B.11)

which leaves with the evaluation of the k-integral. By using the properties of Bessel functions,
and integrating by parts, we arrive at the final form

ρ1(r) = N
J1(kF r)
kF r

. (B.12)

C Suzuki-Trotter decomposition

In many problems of numerical physics we encounter the problem of evaluating an exponential
operator as e.g. in the partition function introduced in Sec. (1.2)

Z = Tr[e−βĤ ] = Tr[e−β(T̂+V̂ )], (C.1)

where T̂ and V̂ correspond to the kinetic and interaction part of the Hamiltonian, respectively.
These two operators do not commute in general, which makes the use of the simple form

e−β(T̂+V̂ ) = e−βT̂ e−βV̂ (C.2)
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impossible. In fact, by expanding these two exponential operators, we can calculate the error if we
use Eq. (C.2) as an approximation:

e−β(T+V ) = I − β(T + V ) + β2

2 (T + V )2 +O(β3) (C.3a)

= I − β(T + V ) + β2

2 (T 2 + TV + V T + V 2) +O(β3) (C.3b)

e−βT e−βV =
(
I − βT + β2

2 T 2 +O(β3)
)(

I − βV + β2

2 V 2 +O(β3)
)

(C.4a)

= I − β(T + V ) + β2

2 (T 2 + 2TV + V 2) +O(β3) (C.4b)

Comparing these two expressions, we note that in the latter T always occurs before V , whereas
switched terms occur in the former case. Carrying out the calculation, we obtain

e−βT e−βV = e−β(T+V )+β2
2 [T,V ]+O(β3) (C.5)

which corresponds to the well known Trotter-formula [87]

e−βT e−βV = e−β(T+V )+O(β2). (C.6)

In order to keep the approximation error at a minimum, the expansion parameter β should be as
small as possible. Introducing the Trotter-number n, we can discretize the expansion parameter β
into slices (

e
β
n
T e

β
n
V
)n

= ex(T+V )+O β
2
n (C.7)

for which the correction term vanishes in the limit n → ∞. Although this is already a form one
could use computationally, it would be more feasible if the correction term vanishes faster than
O(β

2

n ). In order to do this, we can wite the general form of such a decomposition, as done in
Ref. [88]:

e−β(T+V ) = e−βp1T e−βp2V · · · e−βpmV +O(βm+1). (C.8)

The simplest improvement is obtained by the expansion to the order of m = 2 followed by equat-
ing the coefficients. We get

e−β(T+V ) = e−
β
2 T e−βV e−

β
2 T +O(β3), (C.9)

which is the approximation we use in this work.

D Hubbard-Stratonovich transformation

The Hubbard-Stratonovich (HS) transformation [89, 90] is based on the expression

e
1
2A

2 =
√

2π
∫
dσ e−

1
2σ

2−σA, (D.1)
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where A is an arbitrary quantum-mechanical operator and σ constitutes a newly introcudced aux-
iliary field. It allows us to rewrite the Hamiltonian from Eq. (2.23) to a more suitable expression,
containing only one-body operators, diagonalizable in real-space. The operator of interest is given
by the exponential

e−∆τV̂ = e−∆τg
∑

i
n↑,in↓,i =

∏
i

e−∆τgn↑,in↓,i , (D.2)

where the summation (product) streches over all lattice sites i and the density at a lattice site xi is
written as ns,i. Further, we define

V̂i ≡ g n↑,in↓,i (D.3)

and write

e−∆τV̂ =
∏
i

e−∆τV̂i . (D.4)

In order for Eq. (D.1) to be of use, we need to rewrite the interaction into a quadratic form.
Therefore we write

n↑n↓ = −1
2(n↑ − n↓)2 + 1

2(n↑ + n↓), (D.5)

which holds since the value of the fermionic density is either zero or one. Inserting Eq. (D.5) into
Eq. (D.3) yields

e−∆τV̂i = e−
∆τg

2 (n↑,i+n↓,i) e
1
2 [√τg(n↑,i−n↓,i)]2 . (D.6)

The first factor in this expression is already in the desired one-body form, whereas the square in
the second factor produces quadratic density terms. We can use Eq. (D.1) and rewrite it to

e−∆τV̂i =
√

2π
∫
dσi e

− 1
2σ

2
i e−

∆τg
2 (n↑,i+n↓,i) e

√
τg(n↑,i−n↓,i)σi . (D.7)

Now, any occuring density operator only occurs linearly, which we can diagonalize separately in
real-space. We further rewrite the above expression to separate the contributions from different
spin-species to

e−∆τV̂i =
√

2π
∫
dσi e

− 1
4σ

2
i−(∆τg

2 −
√
τgσi)n↑,i e−

1
4σ

2
i−(∆τg

2 +√τgσi)n↓,i (D.8)

and with

V̂↑,i = e−
1
4σ

2
i−(∆τg

2 −
√
τgσi)n↑,i (D.9a)

V̂↓,i = e−
1
4σ

2
i−(∆τg

2 +√τgσi)n↓,i , (D.9b)

we arrive at

e−∆τV̂i =
√

2π
∫
dσi e

V̂↑,i eV̂↓,i . (D.10)



D. Hubbard-Stratonovich transformation vii

Finally, we collect the factors of every lattice site into one integral and obtain

e−∆τV̂ = (2π)
Ndx
2

∫
Dσ e−∆τV̂↑,σ e−∆τV̂↓,σ , (D.11)

where Nd
x is the number of lattice sites and the integration variable is written as as

Dσ =
∏
i

dσi. (D.12)

Eq. (D.11) corresponds to the interaction operator at a given time-slice. To produce the full
interaction operator, one needs to combine such an integration for every step in the temporal
latiice, as introduced in Sec. 2.2.
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