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Abstract

Vertex divergences, observed ubiquitously in all fundamental many-electron models, have
important and known consequences on a theoretical and algorithmic level. On the one
hand they are connected to the multivaluedness of the Luttinger-Ward functional, on
the other hand they hamper the use of cutting-edge algorithms, which extend dynamical
mean-field theory (DMFT) solutions to the non-local case. It is understood that vertex
divergences are generally originated by the suppression of local fluctuations. While the
origin is quite clear, the question of their physical implications is still left open.

In this work we unveil a novel physical effect of these divergences for the one-band
Hubbard model on the square-lattice, solved with DMFT. By decomposing the local and
uniform susceptibilities in terms of their spectral representation, we show that certain ver-
tex divergences can be associated to a sign-flip of the effective electronic interaction from
attractive to repulsive. This is ultimately responsible for the enhancement and even the
divergence of the charge compressibility in proximity to the critical endpoint of the Mott
metal-insulator transition in the Hubbard model. Thereby, we gain a deeper understand-
ing of the phase-transitions in the non-perturbative regime of strongly correlated electron
systems. These findings are of possible relevance for the physics of the Hund’s metals and
also explain why no pairing- or charge-density-wave-instabilities can be triggered by this
mechanism in single orbital systems.
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Kurzfassung

Vertexdivergenzen, werden allgegenwärtig in allen fundamentalen Vielelektronenmodel-
len beobachtet und haben wichtige und bekannte Auswirkungen auf theoretischer und
algorithmischer Ebene. Einerseits stehen sie mit der Mehrdeutigkeit des Luttinger-Ward-
Funktionals in Verbindung, andererseits hindern sie die Verwendung von modernsten Al-
gorithmen, die Lösungen der dynamischen Molekularfeldtheorie (DMFT) auf den nicht-
lokalen Fall hin erweitern. Es gilt als verstanden, dass Vertexdivergenzen generell durch
die Unterdrückung lokaler Fluktuationen entstehen, dabei bleibt die Frage ihrer physika-
lischen Implikationen jedoch unbeantwortet.

In dieser Arbeit enthüllen wir einen neuartigen physikalischen Effekt dieser Divergen-
zen für das mit DMFT berechnete Einband-Hubbard-Modell am quadratischen Gitter.
Dabei zeigen wir, dass bestimmte Vertexdivergenzen mit dem Vorzeichenwechsel der ef-
fektiven Elektron-Wechselwirkung zusammenhängen, indem wir die lokale und uniforme
Ladungssuszeptibilität in ihre spektrale Darstellung zerlegen. Letztendlich führt dies zur
Erhöhung und sogar zur Divergenz der Kompressibilität in der unmittelbaren Nähe des
kritischen Punktes des Mott-Metall-Isolator-Übergangs im Hubbard-Modell. Dadurch er-
reichen wir ein tieferes Verständnis für Phasenübergänge im nicht-störungstheoretischen
Bereich stark korrelierter Elektronenysteme. Diese Resultate sind einerseits von möglicher
Relevanz für die Physik von Hundschen Metallen und erklären andererseits, warum dieser
Mechanismus keine Pairing- oder Charge-Density-Wave-Instabilitäten auslösen kann.
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Chapter 1

Introduction

The theoretical description of the many body problem in condensed matter remains a
major challenge in today’s solid-state physics. Although for a wide range of materials
density functional theory (DFT) [1] provides a satisfactory description, by considering in-
dependent (auxiliary) particles in a static mean-field, for materials which exhibit strongly
correlated electrons – such as transition metal oxides and rare earth compounds, with
localised d and f orbitals – DFT fails in correctly describing the physics. This breakdown
of the theory reflects the failure of capturing strong electronic correlations beyond the
independent particle picture. Generally, in these classes of compounds, correlation effects
are so large to render a quantum many-body perturbation similar to that of QED not
formally justified. At the same time, these materials show a rich variety of interesting
phenomena, e.g. Mott metal-insulator transitions, high-temperature superconductivity,
quantum criticality, heavy fermion behaviour and many more [2].

A major theoretical progress achieved in the last three decades was the development of
the dynamical mean field theory (DMFT) [3, 4]. This quantum extension of the classical
mean field concept, which is exact in the limit of infinite dimensions, allows to go be-
yond the perturbative regime and enables to correctly describe the Mott insulating phase,
though still neglecting non-local correlations. These non-local correlations are, however,
of great importance for the high-temperature superconductivity. One way to include these
effects, and to go beyond the limitations of DMFT, is to use its diagrammatic extensions
[5, 6]. These approaches build upon the idea of extracting two-particle (2P) correlation
functions from the DMFT solution. These are then exploited as a starting point to con-
struct Feynman diagrammatic theories, which include non-local correlations on top of the
non-perturbative physics captured by DMFT. However, in the strongly correlated regime,
unexpected divergences in the 2P-irreducible vertex functions, a key ingredient for some
diagrammatic extension schemes, were discovered [7–11]. Evidently, these divergences
represent a problem for these cutting-edge non-perturbative algorithms. They are also
connected to the multivaluedness of the generating functional of the vertex functions, i.e.
the Luttinger-Ward functional [12].

These vertex divergences appear to be not a mere a mathematical peculiarity, having
a physical connection to the suppression of the local charge fluctuations driven by the
strong electronic repulsion [13]. The aim of this work is to investigate this connection
further, by studying the enhancement of the compressibility, and thus the underlying
generalized charge susceptibility (see Fig. 1.1), observed near the Mott transition in the
hole doped Hubbard model [14, 15]. Thereby, we hope to identify an additional, and
possibly stronger, connection between the above-mentioned vertex divergences and true
thermodynamic transitions.
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2 CHAPTER 1. INTRODUCTION

This thesis is organised in the following way: in chapter 2 we give a concise intro-
duction into the theoretical formalism necessary for the understanding of the following
chapters and present our model and method, in chapter 3 we set the stage for the physical
interpretation of our work. In chapter 4 our results are shown. Concluding remarks and
a possible outlook can be found in the last chapter 5.
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FIG. 1.1: Real part of the uniform generalised charge susceptibility χνν′c,q=0 in the Hubbard-model
on a square-lattice at U = 2.4, T = 1/53, µ = 1.1. To be discussed in chapter 4.



Chapter 2

General Formalism

"E sempre questa storia!"
-Umberto Tozzi

In this chapter, the necessary theoretical framework for this thesis is introduced. Starting
with an overview of the Green’s function formalism for one and two-particle interactions
in the first section, we proceed with a description of the electronic model used in our study,
i.e. the Hubbard model. In the third section the key method for studying strong correlations
in this model is presented, namely the Dynamical Mean Field Theory (DMFT). The Mott
Insulator Transition (MIT) in the single orbital Hubbard Model is discussed in section four.
In the last section of this chapter, we briefly illustrate the Continuous Time Quantum
Monte Carlo in the Hybridization Expansion (CT-HYB) as our method of choice for the
DMFT calculations.

2.1 Green’s Functions
In solid state physics – where one is often dealing with huge numbers of particles of order
of 1023 – a microscopic description of single electrons and atoms is in general not feasible,
the computational effort for a direct treatment of such large numbers of interacting par-
ticles exceeds even the capacity of modern supercomputers. But even if the calculations
were possible, an exact microscopic description might not even be of great utility. In
fact, one is rather eager to study the macroscopic or collective properties of the whole
system than the behaviour of single electrons individually. After all, the excitations and
responses of the solid – resulting from external perturbations and forces on the material,
e.g. electromagnetic fields, temperature gradients etc. – reflect its physical properties
and behaviour and correspond to the practical situation occurring in a lab and even in
the all-day life. Although in the general case, mutual interactions between nuclei and
electrons drive important and interesting phenomena. The time scales of their dynamics
are very different. Hence it is often possible to decouple their degrees of freedom and
focus on the electrons in an effective lattice potential of the nuclei, e.g. in approximative
models like the Hubbard model in this thesis.

A natural framework to study such many electron problems is provided by the Green’s
functions formalism in second quantisation, which we will briefly introduce in the follow-
ing. For a more general introduction into the Green’s functions formalism and the fun-
damentals of quantum many body physics we refer the reader to Refs. [16–18]. A more
comprehensive discussion focussing on the two particle formalism discussed in Sec. 2.1.3,
can be found in Refs. [6, 19, 20].
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4 CHAPTER 2. GENERAL FORMALISM

2.1.1 Matsubara Formalism

For an intuitive understanding of the Green’s function formalism let us introduce the
one-particle (time-ordered) Green’s function, which is defined (~ = 1) as

G
(1)
C,σ1σ2

(r1, t1, r1, t2) := −i
〈
Tĉ†σ1(r1, t1)ĉσ2(r2, t2)

〉
. (2.1)

Here, ĉ†σ1(r1, t1) = eiĤt1 ĉ†σ1(r1)e−iĤt1 denotes a creation operator of a particle at time and
position t1, r1 and ĉσ2(r2, t2) = eiĤt2 ĉσ2(r2)e−iĤt2 a corresponding annihilation operator at
t2, r2. Ĥ is the Hamiltonian of the system and 〈...〉 denotes the expectation value at finite
temperature T = 1/β, which is performed as

〈...〉 =
1

Z
Tr
(

e−βĤ...
)

with Z = Tr
(

e−βĤ
)
, (2.2)

by calculating the trace Tr over a complete set of states. For a system where the number
of particles is not fixed, we replace Ĥ in Eq. (2.2) by (Ĥ − µN̂ ), where µ is the chemical
potential and N̂ the particle number operator. T in Eq. (2.1) represents the time-ordering
operator which permutes the operators after its time argument in descending order, by
putting operators at later times to left. Each permutation of two fermionic operators
gives an additional minus sign in Eq. (2.1).

Thus, for t2 > t1 one can understand the one-particle (time-ordered) Green’s function
as the expectation value of a particle which is added to the system at time t1, is propagated
till t2, and will be then removed. Whereas for t1 > t2 the particle will be removed first
and then the remaining hole is propagated until the particle is finally added to the system
again.

In most cases the Hamiltonian can be written as Ĥ = Ĥ0 + V̂ , where only Ĥ0 can
be solved exactly and V̂ contains a perturbation to the system. However V̂ appears in
Eq. (2.1) at two different places. Once in the thermal expectation value in the factor
e−βĤ and also in the time propagation e±iĤt. Performing a perturbation expansion in
both factors is clearly very cumbersome, therefore it is often more convenient to use the
Matsubara formalism by performing a Wick rotation and switching to imaginary times
τ = it. In this way both factors can be treated as depending on real parameters defined
on the same axis.

Omitting spatial arguments ri, we thus define the (n)-particle Green’s function in the
Matsubara formalism now as

G(n)
σ1σ2...σ2n

(τ1, τ2, ..., τ2n) :=
〈
T ĉ†σ1(τ1)ĉσ2(τ2)...ĉσ2n(τ2n)

〉
. (2.3)

ĉ
(†)
σi (τi) = eĤτi ĉ(†)

σi e−Ĥτi is now the (creation)/annihilation operator in imaginary times and
T the imaginary time-ordering operator.

To ensure that the expression in Eq. (2.3) remains finite, all time arguments τi must be
located within an interval ∆τ of length β. Otherwise the term e−(β−∆τ)Ĥ in the definition
of the (n)-particle Green’s function would lead to exponential increasing contributions.
By using the cyclic property of the trace, one can then show that the (n)-particle Green’s
function in the Matsubara formalism is periodic/antiperiodic in regard to the transforma-
tion τi → τi + β when ĉ(†)

σi (τi) are bosonic/fermionic operators. Therefore we can restrict
every imaginary time argument τi to the range [19, 20]

0 ≤ τi ≤ β. (2.4)
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This periodic/antiperiodic property of the (n)-particle Green’s function on the finite in-
terval [0, β] has important consequences for the Fourier expansion:

G(n)
σ1...σ2n

(τ1, ..., τ2n) =
1

β2n

∑

ν1,...,ν2n

ei(ν1τ1+...−ν2nτ2n)G(n)
σ1...σ2n

(ν1, ..., ν2n),

G(n)
σ1...σ2n

(ν1, ..., ν2n) =

∫ β

0

dτ1 ...

∫ β

0

dτ2n e
−i(ν1τ1+...−ν2nτ2n)G(n)

σ1...σ2n
(τ1, ..., τ2n),

(2.5)

where we adopted the rather unfortunate notation of G(n)
σ1...σ2n(ν1, ..., ν2n) being the Fourier

transform of G(n)
σ1...σ2n(τ1, ..., τ2n). The νi = π

β
(2ni)/νi = π

β
(2ni + 1) are now discrete

bosonic/fermionic Matsubara frequencies, with ni ∈ Z. For better clarity, we will further
use ωi and νi for the notation of bosonic and fermionic Matsubara frequencies respectively.

If we want to extend Eq. (2.5) again for Green’s functions depending on ri, e.g on lattice
sites Ri, we can replace every imaginary time argument τi by the four-vector (τi,Ri) and
the Matsubara frequencies likewise with (νi,ki). Of course, we then also have to replace

1

β

∑

νi

eiνiτi → 1

β

∑

νi

∑

ki

ei(νiτi−kiRi) and

∫ β

0

dτi →
∑

Ri

∫ β

0

dτi. (2.6)

2.1.2 One-particle Quantities
When considering a system where the Hamiltonian Ĥ is time-independent, the (n)-particle
Green’s functions are invariant under a time shift τi − τ0 and therefore not depending
explicitly on the 2n times τi, but merely on time differences, since we can set τ0 = τ2n

[19]. Thus, for a time independent Hamiltonian Ĥ, we can choose the time arguments of
the one-particle (1P) Green’s function to be τ = τ1 − τ2, 0 and write

G(1)
σ1σ2

(τ, 0) =: G(1)
σ1σ2

(τ). (2.7)

The Fourier transform of the 1P Green’s function G
(1)
σ1σ2(ν1, ν2) will now also depend

only on one Matsubara frequency G
(1)
σ1σ2(ν). If Ĥ is further invariant under SU(2)-

transformations (e.g., paramagnetic systems) and we consider conservation of spin (i.e.
σ1 = σ2), then the 1P Green’s function is also independent of σi [19] and can be redefined
as

G(ν) δσ1σ2 := G(1)
σ1σ2

(ν). (2.8)

To give an explicit example, let us consider the Hamiltonian of a single fermionic orbital
state Ĥ0 = ε0

∑
σ ĉ
†
σ ĉσ, isolated, and of energy ε0. The Green’s function expressed in

terms of Matsubara frequencies reads:

G0(ν) =
1

iν − ε0
. (2.9)

For a lattice of non-interacting fermions with dispersion relation εk, Hamiltonian Ĥ0 =∑
k,σ εk ĉ

†
kσ ĉkσ, and non-fixed number of particles, we will instead obtain [16]

G0
k(ν) =

1

iν + µ− εk
. (2.10)
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The superscript zero of G0(ν) shall indicate that the Green’s functions in Eq. (2.9, 2.10)
describe non-interacting particles. In the general case, however, in the presence of an
interaction term V̂ (e.g. V̂ = Uijkl ĉ

†
i ĉ
†
j ĉkĉl) in Ĥ, the 1P Green’s function cannot be ex-

pressed analytically. One usually calculates such quantities by performing a perturbation
expansion in V̂ and expresses the full Green’s function G(ν) of the interacting Hamil-
tonian Ĥ by means of the non-interacting Green’s function G0(ν) of Ĥ0. Thereby we
take advantage of the very useful Feynman diagrammatic technique, which is described in
great detail in Refs. [16, 17]. In a nutshell: Feynman diagrams are a diagrammatic rep-
resentation of the terms in the perturbation expansion. Each non-interacting/interacting
Green’s function G0(ν)/G(ν) is represented by

G0
k(ν) =

Gk(ν) =
(2.11)

and each interaction with
Uijkl ĉ

†
i ĉ
†
j ĉkĉl = . (2.12)

We can think of each line in a Feynman diagram as a propagating particle and each node as
scattering event. On every node the sum of frequencies and momenta must be conserved.
With this diagrammatic representation, one can show that each disconnected diagram,
will be cancelled by the denominator Z of Eq. (2.2). Further, Gk(ν), consisting of only
connected diagrams, can be separated into two classes of diagrams: (i) those which can be
split by cutting one line � of the diagram (1P-reducible) – which essentially
represent a repetition of lower order processes – or those which cannot be split by cutting
a fermionic line (1P-irreducible). The latter class – after amputating the external legs –
defines the very important concept of the self-energy Σk(ν) :

Σ = + + ... . (2.13)

Thus, for the expansion of Gk(ν) we can write

= + Σ + Σ Σ

+ ... ,

(2.14a)

or Gk(ν) = G0
k(ν) +G0

k(ν)Σk(ν)G0
k(ν) + ... . (2.14b)

This geometric series leads eventually to the Dyson-equation

Gk(ν) = G0
k(ν) +G0

k(ν)Σk(ν)Gk(ν), (2.15)

which using the the explicit expression (2.10) reads

Gk(ν) =
1

iν + µ− εk − Σk(ν)
. (2.16)

The difficult part of the calculation is now hidden in the self-energy Σk(ν). Here, the
physical effect of the interaction term V̂ on the Green’s function appears in the substitution
of εk → εk + Σk(ν). By expanding Σk(ν) near the Fermi-surface

Σk(ν) ' Σk(0) + iν
∂Σk(ν)

∂ν

∣∣∣∣
0

+ . . . , (2.17)
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we can reformulate the 1P Green’s function as

Gk(ν) ' Z

iν + µ− ε̃k + iγ
+ . . . . (2.18)

This expression resembles closely the 1P Green’s function of the free particle, but now
with a renormalization factor Z = (1− ∂Σk(ν)/∂ν

∣∣
0
)−1, finite lifetime γ = −Z Im Σk(0),

and shifted dispersion ε̃k−µ = Z(εk−µ+Re Σk(0)). The finite lifetime can be motivated
heuristically, by substituting e−iεkt → e−iε̃kte−γt, for γ > 0 in the plane wave expression of
the non-interacting Green’s function expressed in the real time-domain.

Eq. (2.18) describes coherent excitations (called quasi-particles) in a Fermi-liquid: for
low temperatures and in the metallic regime, when γ is small enough, they behave like
independent particles with an effective mass [18]

m∗ =
m

Z

(
1 +

∂Σk(0)

∂εk

∣∣∣∣
kF

)−1

. (2.19)

Hence, Eq. (2.16) turns out to have two major advantages: (i) in the calculation less
diagrams have to be considered compared to the direct calculation of the 1P Green’s func-
tion and (ii) since Eq. (2.18) connects the self-energy to more physical intuitive quantities
ε̃k, Z, γ,m

∗, it is more convenient for developing and applying approximation schemes.

2.1.3 Two-particle Quantities
At the two-particle level, the quantity for us more interesting is not the two-particle
(2P) Green’s function G

(2)
σ1σ2σ3σ4(τ1, τ2, τ3, τ4), but rather the generalised susceptibility

χσ1σ2σ3σ4(τ1, τ2, τ3, τ4). The reason lies in the more direct physical interpretation of this
quantity, as we shall see in the following.

The generalised susceptibility is defined with the 2P and 1P Green’s functions as

χσ1σ2σ3σ4(τ1, τ2, τ3, τ4) := G(2)
σ1σ2σ3σ4

(τ1, τ2, τ3, τ4)−G(1)
σ1σ2

(τ1, τ2)G(1)
σ3σ4

(τ3, τ4). (2.20)

As previously mentioned, if the Hamiltonian Ĥ of the system is time-independent, we can
omit one time argument of χσ1σ2σ3σ4(τ1, τ2, τ3, τ4) by shifting τ4 to 0. Then, the Fourier
transform of the generalised susceptibility χ depends only on three fermionic Matsubara
frequencies ν1, ν2, ν3, consistent with the energy conservation of the problem. In general
– especially for relating the formalism to the definition of physical quantities – it is more
convenient to switch to either the so-called particle-hole (ph) or the particle-particle (pp)
notation, which read

ph : ν1 = ν pp : ν1 = ν

ν2 = ν + ω ν2 = ω − ν ′
ν3 = ν ′ + ω ν3 = ω − ν

(ν4 = ν ′) (ν4 = ν ′),

(2.21)

where ω is a bosonic Matsubara (transfer) frequency and ν, ν ′ are fermionic ones. The
term ph-notation arises from the Feynman diagrammatic of the generalised susceptibility.
If we consider a generic diagram of χ in the ph-notation, then we can think of it, as a
scattering event between an incoming quasi-particle with energy ν + ω and a hole
or antiparticle with energy −ν, transferring the energy ω. For the pp-notation the
same physical process is interpreted as scattering event between two quasi-particles with
energy ω − ν ′ and ν ′ [19]. In momentum space this would correspond to
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Symmetry Relation

Complex conjugation (χνν
′ω

ph,σσ′)
∗ = χ

(−ν′)(−ν)(−ω)
ph,σ′σ

SU(2)
= χ

(−ν′)(−ν)(−ω)
ph,σσ′

SU(2)-symmetry χνν
′ω

ph,σσ′ = χνν
′ω

ph,(−σ)(−σ′) = χνν
′ω

ph,σ′σ

Time reversal symmetry χνν
′ω

ph,σσ′ = χν
′ν ω
ph,σ′σ

SU(2)
= χν

′ν ω
ph,σσ′

Particle-hole symmetry (χνν
′ω

ph,σσ′)
∗ = χνν

′ω
ph,σσ′

Table 2.1: Symmetry relations for the susceptibilities in ph-notation [19].

looking at the same scattering event in different reference systems (e.g. laboratory vs.
centre of mass).

ph :

ω

ν + ω

ν ′ + ω

ν

ν ′

pp :

ω

ω − ν ′
ω − ν

ν ′

ν

(2.22)

The choice between these formally equivalent formulations is dictated by the specific
problem/quantity under investigation. Further invariance under SU(2)-transformations
allows for additional simplifications of Eq. (2.20) [19]. The generalised susceptibility,
thus, does no longer depend on four spins independently, but rather just on two degrees
of freedom:

χσ1σ2σ3σ2 = χσσσ′σ′
1 =: χσσ′ . (2.23)

With the considerations made above, we obtain the Fourier transform of the generalised
susceptibility in ph-notation as:

χνν
′ω

ph,σσ′ =

∫ β

0

dτ1dτ2dτ3 e−iντ1ei(ν+ω)τ2e−i(ν′+ω)τ3

×
{
〈T ĉ†σ(τ1)ĉσ(τ2)ĉ†σ′(τ3)ĉσ′(0)〉

− 〈T ĉ†σ(τ1)ĉσ(τ2)〉 〈T ĉ†σ′(τ3)ĉσ′(0)〉
}
.

(2.24)

The susceptibilities in the ph-notation fulfil certain properties stemming from the symme-
tries of the system, a subset of them are summarized in Tab. 2.1 [19]. These are evidently
of great importance for the correct description of the physical properties.

For k-dependent Green’s functions the Fourier transform of the generalised suscepti-
bility will read [6]

χνν
′ω

ph,σσ′,kk′q = G
(2)νν′ω
σσ′,kk′q − βGk(ν)Gk′(ν

′)δω0δq0, (2.25)

1A different possibility would be χσσ′σ′σ, which can be derived from χσσσ′σ′ by a permutation of the
fermionic operators and by considering the cyclic property of the trace [19].
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where the momentum q is associated with the bosonic Matsubara frequency ω and k, k′
with the fermionic Matsubara frequencies ν, ν ′, respectively.

The charge "c" and spin "s" components of the generalised susceptibility are then
defined as

χνν
′ω

c,kk′q = χνν
′ω

ph,↑↑,kk′q + χνν
′ω

ph,↑↓,kk′q, (2.26a)

χνν
′ω

s,kk′q = χνν
′ω

ph,↑↑,kk′q − χνν
′ω

ph,↑↓,kk′q. (2.26b)

In SU(2)-symmetric systems, this corresponds to diagonalizing the Bethe-Salpeter equa-
tions in the spin indices (see Eqs. (2.35) below and Ref. [21]).

From these quantities one can calculate the corresponding physical susceptibilities by
performing the summation over all fermionic variables

χrq(ω) =
2

β2

∑

νν′
kk′

χνν
′ω

r,kk′q with r = c, s.2 (2.27)

χrq(ω) are the auto-correlation functions of the physical observables n̂q/ŝ
z
q = n̂q,↑ ± n̂q,↓,

with n̂q,σ =
∑

k ĉ
†
k,σ ĉk+q,σ [4, 19]:

χcq(ω) =

∫ β

0

dτ eiωτ 〈[n̂q,↑(τ) + n̂q,↓(τ)][n̂q,↑(0) + n̂q,↓(0)]〉

− βδω0δq0 〈n̂q,↑ + n̂q,↓〉2 ,
(2.28a)

χsq(ω) =

∫ β

0

dτ eiωτ 〈[n̂q,↑(τ)− n̂q,↓(τ)][n̂q,↑(0)− n̂q,↓(0)]〉

− βδω0δq0 〈n̂q,↑ − n̂q,↓〉2 .
(2.28b)

For ω = 0 one obtains the static susceptibility, whereas by performing the analytical
continuation iω → Ω + i0+ the linear response function in dependence of real frequencies
can be calculated. As the linear response function gives the response of the system upon
external perturbation (up to first order), this quantity is directly related to spectroscopic
experimental measurements, under the assumption that the electronic model of our choice
is a good approximation for a real material.

To calculate the generalised susceptibility in a diagrammatic expansion, we will first
decompose χνν′ωr,kk′q into two parts [6, 19]

χ = − F (2.29a)

χνν
′ω

r,kk′q = χνν
′ω

0,kk′q −Gk(ν)Gk+q(ν + ω)F νν′ω
r,kk′qGk′(ν

′)Gk′+q(ν ′ + ω). (2.29b)

The first term
χνν

′ω
0,kk′q := −βGk(ν)Gk+q(ν + ω)δνν′δkk′ (2.30)

is referred to as bubble contribution and describes the independent propagation of the
particle and hole. For a system of non-interacting particles Ĥ0 =

∑
k,σ εk ĉ†kσ ĉkσ, the

2For a more direct comparison with the compressibility κ ∝ ∂n/∂µ , considered later in this thesis we
have included an additional factor 2 coming from the spin summation directly in the definitions of our
physical susceptibilities, differently from the convention used in Refs. [6, 10, 19, 20, 22].
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generalised susceptibility is given by just by this expression3

χνν
′ω

σσ′,kk′q = −βG0
k(ν)G0

k+q(ν + ω)δνν′δσσ′δkk′ = χνν
′ω

0,kk′qδσσ′ . (2.31)

The second diagram in Eq. (2.29) describes the particle-hole scattering processes, where
F νν′ω
r,kk′q can be interpreted, physically, as scattering amplitude for interacting particles [17].

We also recall that the discontinuity between the static (ω = 0, q→ 0) and the dynamic
limit (q = 0, ω → 0) of Eq. (2.29b) allows to draw a direct connection between the Fermi
liquid parameters and the 2P vertex F [23]. Since our diagrams are now constructed
from the full Green’s function Gk(ν) = , we have to be careful not to count the
same contributions twice. Therefore, we just consider skeleton diagrams, i.e. diagrams
where internal lines do not have the same topological structure as the self-energy Σk(ν)
in Eq. (2.13).

To express χνν′ωr,kk′q by means of χνν′ω0,kk′q in the perturbation expansion, we apply the same
diagrammatic technique as for the 1P quantities, by dividing the full scattering diagram
F νν′ω
r,kk′q into reducible and irreducible contributions. However, there is some ambiguity

to the term of 2P reducibility. F νν′ω
r,kk′q can be split into 2P reducible and irreducible

diagrams of three topological distinct channels: ph, vertical particle-hole (ph), and pp.
We denote diagrams which are reducible in channel l by Φνν′ω

l,r,kk′q and diagrams which are
fully irreducible by Λνν′ω

r,kk′q. Therefore we find the unique decomposition [6, 19]

F νν′ω
r,kk′q = Λνν′ω

r,kk′q + Φνν′ω
ph,r,kk′q + Φνν′ω

ph,r,kk′q + Φνν′ω
pp,r,kk′q (2.32a)

F = +

�

+ � + �

+ ... .

(2.32b)

In Eq. (2.32b) we depicted four exemplary diagrams of F νν′ω
r,kk′q and coloured them like the

corresponding contributing term Φνν′ω
l,r,kk′q or Λνν′ω

r,kk′q in Eq. (2.32a). The 2P reducibility –
which corresponds to cutting two fermionic propagators – in channel l of the diagrams is
indicated by a red cutting line � . Such classification corresponds to the so-called
parquet equations.

However, we can also divide F νν′ω
r,kk′q into only two parts restricting to one channel l

F νν′ω
r,kk′q = Γνν

′ω
l,r,kk′q + Φνν′ω

l,r,kk′q, (2.33)

where we introduced the irreducible diagrams in the selected channel l (Γνν
′ω

l,r,kk′q). Now,
similar to the 1P case, we can separate the generalised susceptibility χνν′ωr,kk′qin two distinct
classes of diagrams, either reducible in channel l, or irreducible in l and obtain [19]

χ = + Γ +

Γ Γ + ...

(2.34a)

= + Γ χ . (2.34b)

3Note that χνν
′ω

0,kk′q depends in general on Gk(ν) and not on G0
k(ν).
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Which is the diagrammatic expression of the Bethe-Salpeter equations [19, 20]

χνν
′ω

c,kk′q = χνν
′ω

0,kk′q −
1

β2

∑
ν1ν2
k1k2

χνν1ω0,kk1q
Γν1ν2ωc,k1k2q

χν2ν
′ω

c,k2k′q, (2.35a)

χνν
′ω

s,kk′q = χνν
′ω

0,kk′q −
1

β2

∑
ν1ν2
k1k2

χνν1ω0,kk1q
Γν1ν2ωs,k1k2q

χν2ν
′ω

s,k2k′q, (2.35b)

with [20]

Γνν
′ω

c,kk′q = Γνν
′ω

ph,↑↑,kk′q + Γνν
′ω

ph,↑↓,kk′q, (2.36a)

Γνν
′ω

s,kk′q = Γνν
′ω

ph,↑↑,kk′q − Γνν
′ω

ph,↑↓,kk′q. (2.36b)

They are the 2P analogion of Eq. (2.15).

2.2 The Hubbard Model

U

t

FIG. 2.1: Illustration of the Hubbard model on a square-lattice, on each lattice site electrons –
indicated by arrows – interact with U . t determines the probability of electron-hopping between
the lattice sites.

The Hubbard model is one of the most fundamental Hamiltonians to describe electronic
correlation effects and study the delicate balance between the kinetic and potential energy
of interacting electrons.

It describes a lattice, where on each site a localised orbital is located, and electrons can
hop from one lattice site to another. In the simplest (one band) case, the Pauli exclusion
principle allows a maximum of two electrons on each site. Whenever two electrons occupy
it simultaneously, they are subject to the mutual repulsion of interaction strength U . All
other (non-local) contributions of the Coulomb interaction are neglected.

A schematic illustration is shown in Fig. 2.1. The Hamiltonian Ĥ of the Hubbard
model reads explicitly

Ĥ − µN̂ = −t
∑

i 6=j,σ
ĉ†iσ ĉjσ − µ

∑

i,σ

n̂iσ + U
∑

i

n̂i↑n̂i↓, (2.37)

where t is the hopping parameter, ĉ(†)
iσ the annihilation (creation) operator at each lattice

site i and n̂iσ = ĉ†iσ ĉiσ the number operator for electrons with spin σ on site i (n̂iσ = 0 or
1). For U = 0 the Hubbard model obviously reduces to the non-interacting electron gas
of the lattice

ĤU=0 = −t
∑

i 6=j,σ
ĉ†iσ ĉjσ =

∑

k,σ

εk ĉ
†
kσ ĉkσ. (2.38)
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In this thesis we will consider the Hubbard model on a square-lattice, the dispersion
relation of the free electron gas can be obtained by a Fourier transform of the hoping
term in Eq. (2.37) and is given by

εk = −2t(cos kxa+ cos kya), (2.39)

where a = 1 is the lattice spacing. The hopping parameter in our model is set to t = 1/4.

2.3 Dynamical Mean Field Theory (DMFT)

FIG. 2.2: DMFT maps the Hubbard model on an effective single site problem in a time-dependent
mean field, i.e. it represents a quantum extension of a classical mean-field approximation.

Despite being a relatively simple model of a solid, the Hubbard model is in general not
analytically solvable (and in most cases not even numerically), thus for gaining some
physical insight, one has to perform approximations. Our approximation of choice is the
Dynamical Mean Field Theory (DMFT). In DMFT we map the Hubbard model onto an
effective single site problem embedded in a time-dependent mean-field or auxiliary bath of
electrons. This, which represents a quantum extension of the classical mean-field concept,
corresponds physically to neglect all spatial correlations which are not completely local.
Such an approximation becomes, thus, exact by taking the limit of large dimensionality4
or large lattice connectivity [24]. Formally, DMFT correspond to replacing the action of
the Hubbard model

S =

∫ β

0

dτ

(∑

i,σ

ĉ†iσ(τ)

(
d

dτ
− µ

)
ĉiσ(τ) +H

(
ĉ†iσ(τ), ĉiσ(τ)

))
(2.40)

with an effective action of a quantum impurity model [4]

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

ĉ†0σ(τ)G−1
0 (τ − τ ′)ĉ0σ(τ ′) + U

∫ β

0

dτ n̂0↑(τ)n̂0↓(τ), (2.41)

where G−1
0 (τ − τ ′) plays the role of the mean field and is the noninteracting Green’s

function of the effective single site (ĉ(†)
0σ ), but not of the original lattice model. In DMFT

a closed set of equations is obtained by relating the local quantities calculated from Seff

to the original lattice. For the limit of infinite dimensions d these equation will become
exact5, for finite d they represent an approximative solution. Seff can be associated with

4In general this is a rather crude approximation for a two-dimensional lattice, however already in
three dimensions this can be a good approximation for strong correlation [24]. Nevertheless, the study
of DMFT in a two-dimensional lattice gives great insight in physical mechanisms and calculations of this
system are less demanding in computational power.

5By taking the limit d → ∞, the hopping parameter t = tconst/
√

2d must be rescaled accordingly to
ensure a non-trivial limit of the kinetic energy and density of states.
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an auxiliary Hamiltonian of the Anderson impurity model (AIM) – i.e. a model of a local
impurity (ĉ(†)

0σ ) interacting with a bath of free electrons (â(†)
lσ ) –

ĤAIM =
∑

l,σ

ε̃lâ
†
lσâlσ +

∑

l,σ

Vl

(
â†lσ ĉ0σ + ĉ†0σâlσ

)
+ Un̂0↑n̂0↓. (2.42)

This can be verified by integrating out the free electrons (â(†)
lσ ) in the action of the AIM

SAIM [4]. In doing so one obtains Eq. (2.41) with

G−1
0 (ν) = iν + µ−∆(ν),

∆(ν) =
∑

l

V 2
l

iν − ε̃l
.

(2.43)

For the AIM various numerical solvers can be applied to calculate the interacting impurity
Green’s function GAIM(ν) for a given G−1

0 (ν). In practice, one starts typically with an
initial guess of G−1

0 (ν) for the calculations. Then, with G0 and GAIM(ν) the self-energy
can be calculated by

Σ(ν) = G−1
0 (ν)−G−1

AIM(ν). (2.44)

From the self-energy the lattice Green’s function will be obtained through the Dyson
equation of the lattice

Gk(ν) =
1

iν − εk + µ− Σ(ν)
, (2.45)

and a summation over the k-space yields the (new) local Green’s function of the lattice

Gloc(ν) =
∑

k

Gk(ν), (2.46)

which is then compared with the previously calculated GAIM(ν) of the AIM. If they do
not coincide,

Gnew
0 (ν) = [Gloc(ν)]−1 + Σ(ν) (2.47)

gives a new input for the AIM solver. These calculations are repeated until convergence.
This calculation procedure is shown in Fig. 2.3. Since the self-energy Σ(ν) of the lattice
Green’s function Gk(ν) in Eq. (2.45) does not depend on the lattice momenta k, DMFT
can be in fact also understood as approximation of Σk(ν) ≈ Σ(ν).

start

?
=

finish

G0(ν)

GAIM(ν)

Σ(ν) Gk(ν)

Gloc(ν)

AIM solver

G−1
0 (ν)−G−1

AIM(ν)

Dyson Eq.

∑
kGk(ν)

[Gloc(ν)]−1 + Σ(ν)

FIG. 2.3: Flow diagram of the DMFT algorithm.
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Uc1(T ) Uc2(T )

(Uc, Tc)

T

U

Uc(T )

FIG. 2.4: Schematic plot of the Mott metal-insulator transition at half-filling (n = 1, µ = U/2)
in DMFT for the one band Hubbard model on the square-lattice. Violet line: bifurcation lines
Uc1(T ); blue line: Uc2(T ); black dot: critical endpoint (Uc, Tc); dotted line: first order transition
Uc(T ).

2.4 Mott Insulator Transition in DMFT

One great success of DMFT is the successful description of the Mott transition. The
Mott transition is a metal-insulator transition (MIT) without a change in symmetry
which is appearing e.g. in the paramagnetic-to-antiferromagnetic transition or the Peierls
transition [2]. The Mott transition is driven by the mutual electron-electron repulsion in
the localized d- and f- orbitals. This marks the difference with band insulators, where the
insulating is caused by a complete filled valence band and a gap between the next empty
band and the Fermi level, purely resulting from the Pauli principle and the influence of
the ionic lattice potential and not by electron-electron interactions.

In the single-band Hubbard model, the Mott-transition is driven by the interaction U .
If we consider the half filled

n =

〈∑

σ

n̂iσ

〉
= 1 (2.48)

case, when µ = U/2 and the model is particle-hole symmetric, increasing U – i.e. the
energy cost of having double occupied sites – will eventually lead to a state where every
lattice site is only occupied once (localized moments). When the energy cost for double
occupation is too high hopping processes in the Hubbard model get completely supressed
stabilising the Mott insulating phase.

In DMFT the MIT in the Hubbard model can be viewed, more formally, as bifurcation
points of a functional of the local Green’s function Gloc(ν) [25]. Then, the phase diagram
of the Hubbard model (Fig. 2.4 at n = 1) displays a region where two coexisting solutions
of the calculations, a metallic and insulating Green’s function are obtained (delimited
by the bifurcation lines Uc1(T ) and Uc2(T )). A first order transition Uc(T ) topped by a
second order critical endpoint (Uc, Tc) – similar in many respects to the Van der Waals
gas phase transition – takes place where the free energies of the two solutions cross.

2.5 Monte Carlo in Continuous Time Hybridization Ex-
pansion

Our DMFT calculations of the one- and two-particle quantities were performed with the
w2dynamic-package [26]. w2dynamics is a continuous-time quantumMonte Carlo solver in
the hybridization expansion (CT-HYB) for the AIM. For a detailed review on continuous
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time quantum Monte Carlo (QMC) methods we refer the reader to the literature e.g.
Ref. [27].

The basic idea of QMC in CT-HYB is to split the Hamiltonian of the AIM in Eq. (2.42)
in two parts

ĤAIM = Ĥrest + Ĥhyb, (2.49)

the hybridization term
Ĥhyb =

∑

l,σ

Vl

(
â†lσ ĉ0σ + ĉ†0σâlσ

)
(2.50)

and the rest Ĥrest to expand the Green’s function or e.g. the partition function Z =

Tr
(

e−βĤ
)
in powers of Ĥhyb:

Z = Tr

(
T e−βĤrest exp

(
−
∫ β

0

dτĤhyb(τ)

))

=
∑

m

(−1)m
∫ β

0

dτ1...

∫ β

τm−1

dτm Tr
(

e−βĤrestĤhyb(τm)× ...× Ĥhyb(τ1)
)
.

(2.51)

The trace Tr is then evaluated by the Monte Carlo method by sampling over all orders m,
all distinct configurations (topological distinct Feynman diagrams), and all times τ1...τm
in the same calculation [27].



Chapter 3

Uniform and Local Response in DMFT

"You know what’s weird? Day by day, nothing seems to change, but pretty
soon...everything’s different."

-Bill Watterson

In this chapter, we set the stage for our theoretical considerations motivating the work
presented in this thesis. In the first part we consider the charge compressibility and its be-
haviour in the proximity of the MIT of the Hubbard model, for single orbital systems as well
as for multiorbital systems. The key equation of our study – the Bethe Salpeter Equation
(BSE) in DMFT – is discussed afterwards, with a particular focus on its thermodynamic
consistency. Thereafter, we introduce the topic of the vertex divergences occurring in all
fundamental many-electron models and discuss the formal relation with the suppression
of local fluctuations. Finally, in the last section, we illustrate a new physical scenario in
which the occurrence of vertex divergencies in the charge section might induce a strong di-
chotomy between the local and the uniform response and even a thermodynamic instability
towards a phase separation.

3.1 Charge Compressibility and the Landscape of the
Mott Insulator Transition

The electronic isothermal compressibility or charge compressibility is defined as

κ =
1

n2

∂n

∂µ

∣∣∣∣
T

, (3.1)

with n being the density and µ the chemical potential. An alternative formulation1 of
Eq. (3.1) – most commonly used for describing fluids – is given by κ = − 1

V
∂V
∂P

∣∣
T,N

.
The compressibility is proportional to the static charge susceptibility

χcq=0(ω = 0) = ∂n/∂µ = β
(
〈n̂2〉 − 〈n̂〉2

)
, (3.2)

which measures the change of the density n in response of a variation of the chemical
potential µ and is also the auto-correlation of n (for a proof see appendix 6.2). Hence, it
is also a measure of the density fluctuations in the system. In the following we will drop
the bosonic transfer frequency ω of the susceptibility and consider the static case only:

1The derivation of Eq. (3.1) from the well-known formula κ = − 1
V

∂V
∂P

∣∣
T,N

is given in the appendix
6.1.

16
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χcq=0(ω = 0) =: χcq=0.
In the DMFT phase-diagram of the Hubbard model – which is schematically illus-

trated in Fig. 3.1 – also out of half filling (n 6= 1) a thermodynamic phase transition,
with a coexistence region (blue shaded area) is found [14]. However, in this case (e.g.
if n < 1) – unlike at half-filling (see Sec. 2.4) – no MIT takes place, instead one finds
a phase transition between a (lower density) metal and a (higher density) bad metallic
phase, which gradually becomes more insulating towards the Mott insulator at half-filling.

The charge susceptibility χcq=0 characterizes the thermodynamics of this phase tran-
sitions: χcq=0 = 0 describes the Mott insulator, χcq=0 → ∞ a second-order transition or
critical endpoint of a phase separation (blue dots)2, and a discontinuity in χcq=0 a first-
order transition. The transition is equivalent, to a large extent, to the Van der Waals
liquid-gas transition: the metallic regime - corresponding to the Van der Waals gas phase
– shows a fairly constant compressibility κ, while the insulating-like phase – the liquid
phase – has nearly zero compressibility [29]. By going above the critical endpoints T > Tc
two phases change continuously into each other (crossover region).

By going closer to the critical endpoints, where χcq=0 and, thus, κ is diverging, also
the correlation length ξ – a measure of the length over which the density on the different
sites are correlated [30] – diverges. In this regime, χcq around q = 0 behaves as predicted
by the Ornstein-Zernike function [31]:

χcq '
A

q + ξ−2
. (3.3)

Directly above (T > Tc) the critical endpoint(s) (dotted line in Fig. 3.1), out of half-
filling, an enhancement of the compressibility has been indeed observed in DMFT [15].
However, we are interested to clarify here, how this enhancement in the compressibility is
triggered on the level of two particle scattering processes. Instead, the increase in κ can
be interpreted [15], to a given extent, as an attractive effect in a parameter region were a
strong electronic repulsion – high interaction U – is prevalent.

Such an interpretation can be heuristically motivated by the random-phase-approximation
(RPA), which simply replaces the irreducible vertex Γνν

′ω
c,kk′q ' U in the Bethe-Salpeter

equation. Hence, Eq. (2.35a) can be solved straightforwardly for the physical susceptibil-
ity χcq = 2

β2

∑
νν′
kk′
χνν

′ω=0
c,kk′q :

χcq =
2χ0

q

1 + Uχ0
q

, (3.4)

with χ0
q = 1

β2

∑
νν′
kk′
χνν

′ω=0
0,kk′q . Evidently an enhancement in this expression occurs only for

an attractive U → −U , which is not possible in our case since we are in a region where
U is strongly repulsive.

2For a particle-hole symmetric Hubbard model – e.g. in the Bethe or in the unfrustrated square-lattice,
directly at half-filling – no divergence in κ ∝ χcq=0 is observed [14, 28].
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FIG. 3.1: Schematic phase diagram of the Hubbard model in DMFT. The different layers illus-
trate different filling (density) n, in the back n = 1 (half-filling) is depicted, the layers in the
front show n < 1. In each layer one finds a coexisting region (shaded in blue) as a function of
U and T , gradually shifted towards higher Uc away from half-filling and extending to smaller
and smaller temperatures Tc. The blue dots illustrate the critical endpoints (Uc, Tc) of each
layer. The blue dotted line connects the critical endpoints of each n. The green arrows show
the parameter region were the calculations were performed, see chapter 4. The red (I) and the
orange (II) line marks the position of the first two divergence lines of the irreducible vertex at
half-filling, discussed in Sec. 3.4. Taken from Ref. [28].

3.2 Charge Compressibility in Multiorbital Systems
Thus far, we focused only on the single-band Hubbard Hamiltonian, however we can
extend the physical phenomena described in our model by including multiple correlated
orbitals on each lattice site. Such multiorbital Hubbard models can account for the
description of transition-metals compounds (typically oxides) – with their localised 3d-
orbitals – and rare-earth elements, with localised 4f/5f -orbitals [32, 33].

The general form of a multiorbital Hubbard Hamiltonians is [34]:

Ĥ =
∑

ij,mm′,σ

tmm
′

ij ĉ†imσ ĉjm′σ +
∑

i,mm′m′′m′′′,σσ′

Umm′m′′m′′′ ĉ
†
imσ ĉ

†
im′σ′ ĉim′′′σ′ ĉim′′σ, (3.5)

wherem, m′, m′′, m′′′ are orbital indices and i and j site indices. Umm′m′′m′′′ represents the
projection of the Coulomb (screened) interaction onto the localised orbitals and encodes
several processes: additional to the mutual intra-orbital repulsion U of the electrons in the
same orbital, also an inter-orbital repulsion U ′ between different orbitals is introduced.
The Hund’s effect in this materials – i.e. the tendency to first occupy different orbitals
with electrons of the same spin – is encoded in the Hund’s-coupling term J , which re-
duces the inter-orbital repulsion U ′ between different orbitals by U ′− J for identical spin
[35, 36].

In general, the inter-orbital repulsion is expected to be smaller than the intra-orbital
repulsion U ′ < U , if rotational invariance in a cubic lattice is considered: U ′ = U − 2J
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[35, 36]. Further, also pair hopping and spin exchange between orbitals is included in
Eq. (3.5).

The physics of this multiorbital model gets largely influenced by the interplay between
the repulsion U – favouring single occupation – the Hund’s exchange J – favouring large
momenta as well as by the electron density. Out of half-filling (e.g. for integer filling
n = N/2 ± 1, where N is the number of correlated orbitals) for large U and low J even-
tually a Mott insulating-like metal is observed, where every site has the same electronic
density and orbital double occupancy is suppressed.

On the other hand, for large J and small U an insulating phase is also observed, but
now favouring high spin configurations on the lattice sites. This induces a charge dispro-
portion (charge-density-wave-like structure), often called Hund’s insulator3: orbitals are
either fully single occupied (yielding a large momenta) or empty.

Directly at half-filling one cannot distinguish between this two insulating states, as
the high-spin configuration corresponds also to the Mott state, instead, the critical point
Uc of the Mott insulator is observed at much lower U values.

Out of half-filling for specific values of J e.g. J = U/3, one does instead find an
intermediate metallic regime emerging by the competition between those two insulating
states, where the interplay between U and J cancels the different insulating tenden-
cies. This regime can survive even for very strong interaction and is called Hund’s metal
phase[36, 37].

For constant J/U near the Mott insulating state at half-filling, an enhancement of
the compressibility κ has been observed – seemingly to occurring at the crossover region
between a Hund’s metal and a regular metal – eventually diverging at the border of a
whole zone of phase instability (negative κ) [36, 38, 39].

Hence, also in multiorbital systems, the divergence of the charge compressibility out
of half-filling is directly rooted in a parameter regime of strong interaction or correlation,
whose effects might get further enhanced by the larger maximal size of local magnetic
moment.

Throughout this work we will focus on the single-band Hubbard model. The goal is
to gain also a deeper insight in these intriguing physical processes, which could be later
useful for the interpretation of the multi-orbital cases.

3.3 Bethe-Salpeter Equation in DMFT
The Bethe-Salpeter equation (BSE) – here for the charge-channel –

χνν
′ω

c,kk′q = χνν
′ω

0,kk′q −
1

β2

∑
ν1ν2
k1k2

χνν1ω0,kk1q
Γν1ν2ωc,k1k2q

χν2ν
′ω

c,k2k′q (3.6)

can be crucially simplified in the limit of infinite dimensions d→∞ (DMFT) [4, 40]: all
the fully irreducible 2P diagrams become completely local Λνν′ω

r,kk′q → Λνν′ω
r , the irreducible

vertex Γνν
′ω

c,kk′q instead displays still a residual momentum dependence4 for special k-points,
however their relative measure in the summation over k in the Brillouin zone scales to
zero in the limit of d → ∞. Therefore, in DMFT we can replace the irreducible vertex

3The Hund’s insulator displays some similarity to an insulator for attractive −U , here also a charge-
density wave like structure is observed.

4For the d =∞ hypercubic lattice, the momentum dependence is entering only through the quantity:
lim
d→∞

1
d

∑d
i=1 cos ki, which is zero for a generic k-vector, exept for special k-points, such as (0, 0, 0, . . . )T

or (π, π, π, . . . )T [4].
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by a purely local quantity Γνν
′ω

c . Since we will consider the static limit (ω = 0) for the
susceptibility, we will drop the ω indices. With the considerations above we can rewrite
the BSE in DMFT in the following form:

χνν
′

c,q = χ0
q(ν) δνν′ − χ0

q(ν)
1

β2

∑

ν1

Γνν1c χν1ν
′

c,q , (3.7)

with χνν′c,q =
∑

kk′ χ
νν′
c,kk′q and χ0

q(ν) δνν′ =
∑

kk′ χ
νν′
0,kk′q calculated from the lattice Green’s

function: χνν′0,kk′q = −βGk(ν)Gk+q(ν)δνν′δkk′ . The q-dependence of the susceptibility χνν′c,q

originates thus entirely from the bubble-term χ0
q(ν).

Eq. (3.7) can be interpreted as a matrix equation summed over Matsubara frequencies.
By multiplying the expression with the matrix inverse [χνν

′
c,q ]−1 and

(
χ0
q(ν)

)−1
δνν′ , we can

solve Eq. (3.7) for χνν′c,q and obtain

χνν
′

c,q =
[
Γνν

′
c + (χ0

q)−1 δνν′
]−1

, (3.8)

which we will refer to as the BSE of the uniform charge susceptibility. We recall that in
DMFT only the local part of Γνν

′
c survives in the BSE, and thus can be can be extracted

from the impurities as:
Γνν

′
c = [χνν

′
c,loc]

−1 − (χ0
loc)
−1δνν′ , (3.9)

with the bubble-term coefficient χ0
loc(ν) = −βGloc(ν)Gloc(ν) and the generalized charge

susceptibility χνν′c,loc = χνν
′

ph,↑↑,loc + χνν
′

ph,↑↓,loc:

χνν
′ω

ph,σσ′,loc =

∫ β

0

dτ1dτ2dτ3 e−iντ1ei(ν+ω)τ2e−i(ν′+ω)τ3

×
{
〈T ĉ†0σ(τ1)ĉ0σ(τ2)ĉ†0σ′(τ3)ĉ0σ′(0)〉

− 〈T ĉ†0σ(τ1)ĉ0σ(τ2)〉 〈T ĉ†0σ′(τ3)ĉ0σ′(0)〉
}
.

(3.10)

which are the output of the impurity solver, after the DMFT self-consistency is reached.
Therefore, in DMFT the uniform generalized susceptibility χνν′c,q can be expressed in terms
of the local charge susceptibility χνν′c,loc by

χνν
′

c,q =
[
[χνν

′
c,loc]

−1 +
(
(χ0

q)−1 − (χ0
loc)
−1
)
δνν′
]−1

. (3.11)

Whenever DMFT is used as an approximation for finite dimensional systems, several sum
rules for the physical susceptibilities (e.g, those related to the Pauli-principle) are violated
[21]. For example

∑
q χ

c
q 6= χcloc, with χcq = 2

β2

∑
νν′ χ

νν′
c,q and χcloc = 2

β2

∑
νν′ χ

νν′
c,loc. If one

wants to overcome this problem one may perform a Moriyasque λ correction [41, 42]. This
correction accounts for the overestimated correlation length ξ in DMFT of the Ornstein-
Zernike function in Eq. (3.3). Thereby, one applies the transformation

(χcq(ω))−1 → (χcq(ω))−1 + λ (3.12)

in such a way that the sum rules are fulfilled. However, we are not interested in this
aspect here.

On the other hand, although several sum rules are violated, DMFT is still a conserving
theory at the 2P-level, i.e. the self-energy Σ and the irreducible vertex Γc can be both
derived as functional derivative of a generating functional Φ[Gloc] (the Luttinger-Ward
functional), by Σ = δΦ[Gloc]/δGloc and Γc = δΣ[Gloc]/δGloc [4, 13, 17] which corresponds
to the DMFT self-consistency. This guarantees that the condition of Eq.(3.2) – χcq =
∂n/∂µ – for the uniform susceptibility holds in DMFT [43].
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3.4 Vertex Divergences

FIG. 3.2: Divergence lines of Γr in the U − T phase diagram of the attractive (negative x-axis)
and repulsive (positive x-axis) Hubbard model at half-filling (n = 1, µ = U/2). Red lines
denote divergence lines in the charge channel (here denoted as density), green lines in the spin
channel (denoted as magnetic), and orange lines both in the charge (density) and particle particle
(pairing) channel. The table on the lower right compares the degrees of freedom (D.o.F.) of the
corresponding channels and the symmetry (symmetric/anti-symmetric: λS/λA) of the associated
eigenvectors of λ = 0 of χνν′r,loc at the divergence line. The figure has been taken from Ref. [11].

Taking a quick glance at Eq. (3.9):

Γνν
′

c = [χνν
′

c,loc]
−1 − (χ0

loc)
−1δνν′

we notice that whenever χνν′c,loc has an eigenvalue λ = 0, becomes a singular matrix, making
Γνν

′
c divergent.
The divergence of the local irreducible 2P vertex Γνν

′
r in different channels r has

been found in all fundamental many-body models [7–11], along several lines (divergence
lines, in fact infinitely many) in the corresponding phase diagrams (see Fig. 3.2 for the
Hubbard model). Somewhat surprisingly, they are already present in the metallic Fermi-
liquid regime (where the 1P irreducible vertex – i.e. the self-energy Σ – is still Taylor
expandable at low frequencies). These vertex divergences have severe impact on the
cutting edge many-body algorithms, such as extensions of DMFT to the non-local case
(DΓA, QUADRILEX) [6], Bold Diagrammatical Monte Carlo [12, 13, 44], and Nested
Cluster Schemes [9].

What happens is the following: the eigenvalues λ of χνν′r,loc – associated to the divergence
of Γνν

′
r – have been observed to become negative after crossing zero. At half-filling,

this trend has been related to the suppression of the associated physical susceptibility
[11, 13]: for the repulsive Hubbard model a higher repulsion U will lead to a local moment
formation, thus, to a suppression of the local charge response (χcloc). At intermediate U ,
increasing the repulsion will lower positive eigenvalues of the generalized susceptibility,
however for larger U – in the strongly interacting regime – the suppression is mostly made
by the contribution of the negative eigenvalues λ of χνν′c,loc appearing after the divergence
lines.

In this respect, we note that at half-filling, χνν′r,loc (r = c, s) is a centrosymmetric
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matrix5, due to the particle-hole symmetry of the model (see Tab. 2.1 by combining it with
complex conjugation) [11], which leads to either completely symmetric or antisymmetric
eigenvectors (v(ν) = v(−ν) or v(ν) = −v(−ν)) of χνν′r,loc. In the calculation of the physical
susceptibility χrloc = 2

β2

∑
νν′ χ

νν′
r,loc the eigenvalues corresponding to the antisymmetric

eigenvectors λA, yield no contribution since [
∑

ν′ v
−1(ν ′)] × [

∑
ν′ v(ν)] = 0. Therefore,

only the eigenvalues λS of the symmetric eigenvectors lead to the physical suppression
of the susceptibility. This peculiar property has striking consequences for the divergence
lines: By performing a pseudo-spin to spin transformation: ĉi↑ → ĉi↑ and ĉi↓ → (−1)−1ĉ†i↓,
with i being the index of the lattice site, the repulsive Hubbard model can be mapped to
the attractive Hubbard model U → −U at half-filling.

For the attractive Hubbard model, the local moment gets gradually suppressed by
increasing interaction strength U , and hence also the local spin susceptibility χsloc does
so. One thus, expects and does actually observe a mapping of the divergence lines of the
charge channel to the spin channel (orange to green lines in Fig. 3.2). This is however
only true for the divergence lines of λS. The divergence lines of λA (red lines) are instead
completely mirrored and appear for both cases in the charge channel, the supressing effect
of the vertex divergences can be only associated with λS.

3.5 Proposed Connection
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FIG. 3.3: Lowest eigenvalue λ (in this figure 2λ/β =: βλI) for different inverse temperatures
β = 1/T and U of the Hubbard model at half-filling for the Bethe lattice (t = 1/2). The dashed
line indicates the proximity to the condition λ = −β/t2 (here βλI = −2/t2). The figure has been
taken from Ref. [28].

We already showed in Sec. 3.1 – by using the RPA – that he enhancement of the com-
pressibility κ as well as the uniform charge susceptibility χcq=0 near the critical endpoint
out of half-filling, can be interpreted as an effective attraction. In Ref. [15] it has been
proposed that, indeed, a large negative irreducible vertex Γνν

′
c – which appears also right

5In fact, due to the additional time reversal symmetry (see Tab. 2.1) χνν
′

r,loc is even a real bisymmetric
matrix at half-filling and has therefore only real eigenvalues.
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after a divergence line – might be responsible for this phenomena. However, then impor-
tant questions remain: why not such an enhancement is observed after each divergence
line, and how can this be connected to the previous understanding of the correspondence
of the divergence lines with the suppression of the local susceptibility χcloc.

In order to address these questions further, we express Eq. (3.11) in the spectral de-
composition of the generalised susceptibility matrix

χνν
′

c,loc =
∑

j

λjv
−1
j (ν ′)⊗ vj(ν), (3.13)

where λj are the eigenvalues and vj(ν) the eigenvectors of χνν′c,loc.
In the calculation of the physical susceptibility χcloc = 2

β2

∑
νν′ χ

νν′
c,loc we then can express

the sum over the eigenvectors as spectral weights wj = [
∑

ν′ v
−1
j (ν ′)] × [

∑
ν vj(ν)]. For

the Bethe lattice6 in the limit of infinite connectivity, it can be shown [4] that (χ0
q=0)−1−

(χ0
loc)
−1 is equivalent to the constant t2/β independent of the filling n, and hence we end

up with the expression

χcq=0 =
2

β2

∑

j

(
1

λj
+ t2/β

)−1

wj, (3.14)

this means that χcq=0 →∞ if λj → −β/t2 , but only if wj 6= 0
In such case, a strong dichotomy in the behaviour of χcloc and χcq=0] in the proximity of

this condition must be expected. Computations for the Bethe lattice at half-filling, with
t = 1/2, show (Fig. 3.3) that only the lowest eigenvalue, corresponding to an antisym-
metric eigenvector and thus zero weight meets this condition. Remarkably, the DMFT
results also demonstrate that this precisely happens at the critical endpoint of the MIT.
The centrosymmetry of χνν′c,loc explains, why χcq=0 is neither enhanced and (of course) nor
divergent at half-filling.

In order to investigate this further, we aim to extend our study out of half-filling,
where the matrix is no longer centrosymmetric and the strict condition of either symmet-
ric or antisymmetric eigenvectors does not apply. For this study, we chose a more realistic
(2d-square) lattice although Eq. (3.14) is then no longer rigorously valid, this will allow
for a momentum resolved analysis. The results which represent the main original findings
of the Master thesis are presented in the next chapter.

6The Bethe lattice has the following definition: every lattice site has the same number of neighbours
(connectivity), thereby no closed loops can be obtained.



Chapter 4

Results and Discussion

"Wer sich Ziele setzt, geht am Zufall vorbei."
-Stefan Zweig

After discussing in chapter 3.5 the general idea, and the open questions regarding the
connection of vertex divergences and the increase of the compressibility κ, we present
here our numerical results. In particular two regions of the phase-space of the one-band
Hubbard model on a square-lattice (t = 1/4) are analysed by means of DMFT, in close
proximity of the Mott MIT. Thereby, we first take a cut in parameter space very close
to the critical end point of the MIT at half-filling, interaction strength U = 2.4, and
relatively high T (T = 1/50, 1/53). An additional region of interest – where the phase-
separation instability is slightly more far away from half-filling at U = 2.8 and lower T
(T = 1/120) – will be discussed in the second section. Calculations in the latter regime
present increased numerical difficulties, which will be explicitly discussed. Both regions of
interest are marked in Fig. 3.1 by green arrows. The DMFT calculations were performed
with the w2dynamics package [26].

4.1 U = 2.4
For the analysis of Eq. (3.14) we aim at calculating χcloc and χcq=0 via the generalised
2P quantities χνν′c,loc, χνν

′
c,q=0 out of half-filling right above Tc where the compressibility

κ = 1
n2

∂n
∂µ

is enhanced or almost divergent and compare the different contributions of their
respective eigenvalues λj. Since for U = 2.4, the critical endpoint of the phase-separation
(Tc, nc, µc) should be relatively near at half filling (n = 1, µ = U/2 = 1.2) we expect
to have the best chance, here, to relate the corresponding eigenvectors vj(ν) to the half-
filling case, where they are well understood [11].

However, since the exact parameters of the critical endpoint are not well known for
the square-lattice case, we first have to locate the region of interest by numerically less
demanding computations. Therefore, we calculate the density n in respect to the chemical
potential µ for various temperatures, the results are shown in Fig. 4.1. As already stated
in Eq. (3.2), the derivative ∂n/∂µ is equal to the charge susceptibility χcq=0.

In Fig. 4.1 at the high temperature T = 1/β = 1/30 we observe a monotonic decrease
of ∂n/∂µ towards half-filling (n = 1, µ = U/2 = 1.2). At lower µ (µ ' 1.0) the rather
linear dependence of n and, thus, constant slope is typical for the more metallic regime,
whereas the plateau behaviour around n ≈ 1 with an approximately zero slope near
half-filling (µ ' 1.175) indicates a strong suppression of the electron mobility, i.e. s bad
metallic, almost insulating behaviour. By lowering T we observe a decrease of n in the

24
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FIG. 4.1: Density n as a function of the chemical potential µ for U = 2.4 at different temperatures
T computed in DMFT, by using w2dynamics. The data for T = 1/53 has been calculated by P.
Chalupa.

metallic regime in contrast to the bad-metal near half-filling, where n is hardly changed.
This difference in the behaviour of the two regimes eventually leads to an increase of the
slope (T = 50, 53) in the middle at µ ' 1.09 until the coexistence region is reached and
the line gets discontinuous (diverging κ ∝ ∂n/∂µ , not shown here).

Using the data shown in Fig. 4.1 the charge compressibility κ = 1
n2

∂n
∂µ

was calculated as
the numerical derivative (described in 6.3 in the appendix). In Fig. 4.2a κ(µ) is displayed:
for high-T = 1/30 the previously mentioned monotonic decrease of the compressibility is
clearly visible. For T = 1/53, being just slightly above the critical endpoint Tc, a sharp
maximum of κ is visible around µ = 1.1, having an approximately three times higher
value than for µ = 1.05. Already at µ = 1.11, κ rapidly decreases against half-filling at
µ = 1.2. By decreasing the temperature further, we expect the divergence of κ exactly at
the critical endpoint at Tc.

Fig. 4.2b shows κ(n), here we see how close to half-filling n = 1 this enhancement takes
place. In addition the maximum appears to be nearly at the same values of n ' 0.997 for
T = 1/50, 1/53.

In the following we focus on T = 1/50 and calculate χcq=0 = 2
β2

∑
νν′ χ

νν′
c,q=0 for five

different µ: (i) in the more metallic regime at µ = 1.105, (ii) at the maximum of κ
at µ = 1.088, (iii) right after the maximum towards half-filling at µ = 1.1, (iv) in the
bad-metal phase at µ = 1.15 and (v) exactly at half-filling at µ = 1.2. In Fig. 4.3 the
calculated χcq=0 is shown for those data points (red squares) and compared with the nu-
merical derivative ∂n/∂µ (blue circles), which should formally coincide [43]. The minor
differences observed, can be explained by the numerical of the Monte Carlo data and the
approximated high frequency dependence of χνν′c,q=0

1. In addition Fig. 4.3 also compares
the uniform χcq=0 with the local χcloc charge susceptibility (grey pentagons) directly calcu-

1The high frequency asymptotic of χνν
′

c,q=0 in the calculation of χcq=0 was accounted for as summarized
in the appendix, see Sec. 6.5.
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FIG. 4.2: Charge compressibility κ = 1
n2

∂n
∂µ as function of the chemical potential µ (a) and as

function of the density n (b) for U = 2.4 (in unit of 4t = 1) at different temperatures T obtained
from numeric derivation of the data in Fig. 4.1.
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lated in w2dynamics. The dichotomy between the uniform and the local susceptibility is
clearly visible: In χcloc we see a monotonic suppression going towards half-filling, whereas
χcq=0 is clearly enhanced around µ = 1.1, and then quickly suppressed to nearly zero
afterwards.

Both response functions can be calculated by Matsubara summation of the generalised
susceptibilities χcloc = 2

β2

∑
νν′ χ

νν′
c,loc, χcq=0 = 2

β2

∑
νν′ χ

νν′
c,q=0. In this respect, it is insightful

to take a closer look at the lower Matsubara frequencies of those matrices, since they tend
to give the larger contributions. Fig. 4.4 shows heat maps of χνν′c,loc (bottom panels), χνν′c,q=0

(top panels): (i) before (µ = 1.05, left panel), (ii) at (µ = 1.088, middle panel), and (iii)
right after the maximum (µ = 1.1, right panel) of χcq=0. For χνν′c,loc a dominant negative
diagonal (ν = ν ′ in blue) is seen, getting more and more negative towards half-filling.
For χνν′c,q=0 the middle panel at µ = 1.088 shows more intense colours at the maximum
of χcq=0. Although negative and positive values in χνν′c,q=0 are significantly larger than for
the local susceptibility, the slight asymmetry between diagonal and skew-diagonal entries
– with the latter ones being larger than the former – accounts for the overall positive
contribution of the inner Matsubara frequencies. This can be also observed by summing
over larger and larger 2n × 2n submatrices of χνν′c,q=0, where n is the maximal number of
positive/negative Matsubara frequencies considered in the partial summation. For χνν′c,loc

the inner matrix elements give an net negative contribution to the sum and the overall
positive value of the susceptibility is then guaranteed by the positive contributions of the
high frequency asymptotic. On the contrary, χνν′c,q=0 shows a positive contribution in the
inner part, which is then reduced by the intermediate frequency elements.

Further insight is obtained by the spectral decomposition of the generalised suscepti-
bility matrices: χνν′ (χνν′c,q=0 and χνν′c,loc) is diagonalized for the different parameter sets in
the following way:

∑

νν′

χνν
′
=
∑

j
λj

[∑
ν′
v−1
j (ν ′)

]
×
[∑

ν
vj(ν)

]
=
∑

j
λjwj. (4.1)

The corresponding eigenvalues λj are shown in ascending order of Reλj in Fig. 4.5. In the
top two panels the real (left) and imaginary part (right) of λj of χνν

′
c,q=0 are displayed, while

in the bottom panels the eigenvalues of χνν′c,loc are shown. Since χνν′ is a centrohermitian
matrix out of half-filling, its eigenvalues are either real λ ∈ R or complex conjugate pares
λ, λ̄ ∈ C [45] (see Tab. 2.1 and appendix, Sec. 6.4). Interestingly, we always found at least
two real eigenvalues. The two lowest real eigenvalues, with negative sign, are denoted by
λI := λα and λII := λδ in the following. In the top left panel we see that λα = λI gets
extremely negative right at the maximum of χcq=0 at µ = 1.088, whereas the other λj do
not differ much from the eigenvalues of χνν′c,loc

2.
This supports the original idea in Eq. (3.14): the most negative eigenvalue is negative

enough to get close, or even to fulfil the condition β/t2.
An objection to this interpretation, here, could be that this formula is valid for the

Bethe lattice but not for the square-lattice used in our calculations. Nevertheless, we
see that Eq. (3.14) holds approximately by defining an effective constant t2 → t2eff , thus
providing a good key for the interpretation. In Fig. 4.6, the real (left panel) and imaginary
part (right panel) of t2eff/β := (χ0

q=0)−1− (χ0
loc)
−1 as function of Matsubara frequencies is

displayed. Although this term is no longer just a constant, it only shows small variations
in ν for different µ at the lowest Matsubara frequencies in the real and imaginary part out
of half-filling. We might also substitute the single valued condition β/t2 with an effective

2Note that for half-filling all eigenvalues are real, since χνν
′
is centrosymmetric [11].
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FIG. 4.3: Comparison between the numerical derivative ∂n/∂µ and the static (ω = 0) charge
susceptibility χcq=0 in contrast to the static local charge susceptibility χcloc of the auxiliary AIM
as function of of the chemical potential µ for U = 2.4 and T = 1/50.
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FIG. 4.4: Heat maps of the generalised charge compressibility χνν′c,q=0 and the generalised local
charge susceptibility χνν′c,loc of the auxiliary AIM as function of of the chemical potential µ for
U = 2.4 and T = 1/50.

area β/t2eff , marking the overall variation in ν. We expect that the lowest eigenvalue λI
will reach this effective area in the proximity of the critical endpoint Tc. This idea is
displayed in Fig. 4.7. Indeed for µ = 1.088 – at the maximum of χcq=0 – λI(χcloc) (red line)
hits this region of teff (blue area), however λII(χcloc) (orange line) does not.

So far, these considerations do not explain why χcq=0 is positively enhanced since
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by λj(χcq=0)/ λj(χcloc) in the the top/bottom panels. Left: real part; right: imaginary part, for
different chemical potentials µ (µ = 1.2 – half-filling), at U = 2.4 and T = 1/50.

λI(χ
c
q=0) has a huge negative value. Fig. 4.8 resolves this: in the top panel λI (red) and

λII (orange) of both χcq=0, χcloc, and in the bottom panel the corresponding weight wI

(red) and wII (orange) are shown. The key ingredient is the negative weight wI(χ
c
q=0) of

λI(χ
c
q=0) which can be seen in the bottom panel (red line). For both local and uniform

χνν
′ , wI is negative out of half-filling, which is only possible because χνν′ is no longer a

hermitian matrix. Since the imaginary part of the corresponding physical susceptibilities
χc has to be zero (χνν′ is centrohermitian), the following condition has to be fulfilled:

Re
[∑

ν′
v−1
j (ν ′)

]
Im
[∑

ν
vj(ν)

]
= −Re

[∑
ν
vj(ν)

]
Im
[∑

ν′
v−1
j (ν ′)

]
, (4.2)
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and χc can only be negative if both summands in

wj = Re
[∑

ν′
v−1
j (ν ′)

]
Re
[∑

ν
vj(ν)

]
− Im

[∑
ν′
v−1
j (ν ′)

]
Im
[∑

ν
vj(ν)

]
(4.3)

yield negative contributions. However wII still remains positive, and hence λIIwII < 0
contributes to a suppression of χcq=0.

λIwI > 0, thus, explains the positive enhancement of χcq=0 created by a large negative
λI(χ

c
q=0) in the vicinity of λI(χcloc) = −β/t2eff . We note that the approximation of t2eff

as a constant is further supported, a posteriori, by the almost identical weights of χνν′ in
the lower panel of Fig. 4.8.

We can substantiate further our analysis by analysing the different contributions in
the overall sum of the physical susceptibility χc (χcq=0 and χcloc) by splitting χc into the
two contributions of the lowest two real eigenvalues and the rest:

χc =
2

β2
λIwI

︸ ︷︷ ︸
I

+
2

β2
λIIwII

︸ ︷︷ ︸
II

+rest. (4.4)

We denote the first two contributions in the following simply by I and II. In Fig. 4.9 the
results of this analysis is shown for five parameter sets, where the high frequency depen-
dence of both χc has been approximated in the calculation. In the top/bottom panels
the contributions of χcq=0/χcloc are displayed. The major difference between the two stems
from contribution I, which has a positive value and becomes largest at the maximum of
χcq=0 at µ = 1.088. II yielding a negative contribution, which is getting enhanced in χcq=0

for µ = 1.1, but since the lowest complex conjugate pair λβ, λγ is getting also slightly
increased the overall contribution of II and the rest does not change. Towards half-filling
both contributions vanish.

Still, the question remains if the contributions I and II, stemming from the negative
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real eigenvalues λI, λII, can be linked to the divergence lines at half-filling. As stated
already in chapter 3.4 – at half-filling – two classes of eigenvalues λj are observed: (i)
λS corresponding to symmetric eigenvectors (vj(ν) = vj(−ν)) and linked to supressing
the physical susceptibility after the divergence of Γ and (ii) λA corresponding to anti-
symmetric eigenvectors (vj(ν) = −vj(−ν)) which do not contribute because of their
zero weight wj = 0. In Fig. 4.10a the gradual development of vI(ν) towards half-filling
is displayed. At half-filling (µ = 1.2), the eigenvector becomes real and perfectly anti-
symmetric, out of half-filling the real part as a function of frequency remains rather similar,
but is not strictly anti-symmetric anymore. For vII(ν) in Fig. 4.10b a similar development
is seen, but now towards a symmetric eigenvector at half-filling. Out of half-filling again
an approximately symmetric shape in the real part persists.

We observe, again, that in this way, we can associate unambiguously the lowest real
eigenvalue λI, leading to the increase in the compressibility κ, and ultimately to its di-
vergence at the critical endpoint out of half-filling by fulfilling the condition λI(χ

c
loc) =

−β/t2eff , to a red divergence line. The second lowest real eigenvalue λII is connected with
an orange divergence line and is contributing to the suppression of χcloc as well as κ.

We expect that for T = 1/53 where the maximum of κ is larger in value, λI will
become more negative and contribution I will get more enhanced. Indeed, this can be
observed in Fig. 4.11a and Fig. 4.11b. Fig. 4.11a compares –similar to Fig. 4.3 – ∂n/∂µ
with χcq=0 and χcloc and Fig. 4.11b shows the different contributions I, II, and rest of χc
for T = 1/53. Further calculations are planned for this parameter set.

4.1.1 q-Dependence of the charge susceptibility

It is insightful to compare χcq at the maximum of χcq=0 with the half-filling case and also
determine the impact of contribution I, i.e. stemming from λI, onto the q-dependent
susceptibility. The results are displayed in Fig. 4.12. We see that the enhancement takes
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place at q = 0 only (top left), and that it stems entirely from I (bottom left). Without
this contribution χcq at µ = 1.1 (bottom right) shows a remarkable similarity with χcq
at half-filling (top right). At half-filling a minimum at q = 0 and a weak maximum at
q = (π, π)T is seen, where the asymmetric eigenvector results in a zero weight wI. For
an interpretation see Ref. [28]. At q = 0 a fit to a Ornstein-Zernike function was made
to extract the corresponding correlation length ξ. This is illustrated in Fig. 4.13a for
T = 1/50. By going from T = 1/50 (orange) to T = 1/53 (green) ξ is increasing near
the critical endpoint, as shown in Fig. 4.13b. At Tc ξ → ∞, as expected due to the
second-order phase transition nature of the critical endpoint(s).
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4.2 U = 2.8
For U = 2.8 the critical endpoint of the phase-separation is found at lower T and at a
slightly higher doping level (smaller n), as schematically illustrated in Fig. 3.1. This can be
also seen in Fig. 4.14a, where the calculated numerical derivative ∂n/∂µ as function of the
chemical potential µ is shown (blue circles) for T = 1/120. The enhancement indicating
the position of the critical endpoint lies further away from half-filling µ = U/2 = 1.4 than
for U = 2.4 in Fig. 4.3 though always within the small range of 1%. When performing
the same decomposition of χc = I + II + rest as for U = 2.4 in Fig. 4.14b the qualitative
outcome does not change: The dominating contribution in χcq=0 is found to be originated
by λI and for U = 2.8 it is even more dominant.

However, in the bad-metal regime, already at µ = 1.07, only complex-conjugate pairs of
λj are found, which is the reason why no contribution of I and II for µ = 1.07 in Fig. 4.14b
is shown. This result is an artefact of the Monte-Carlo solver. In fact, directly at half-
filling all eigenvalues and eigenvectors must be real, since χνν′ is real and bisymmetric
[11], however imaginary parts in the eigenvectors (but real eigenvalues) with an unusual
oscillatory behaviour are also found at this temperature. This clearly indicates ergodicity
problems in the CT-HYB Monte Carlo solver used for the calculations, for the bad-
metallic/Mott insulating regime and low temperatures as T = 1/120.
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Chapter 5

Conclusion and Outlook

In this thesis we have clarified the direct relation between the divergences of the irreducible
vertex functions and the enhancement of the compressibility κ in the close proximity to
the critical endpoint of the Mott MIT in the single-band Hubbard model (on a square-
lattice with t = 1/4, and out of half-filling)

For our analysis, we compared the physical static charge susceptibility χcq=0 – obtained
from the two-particle generalised susceptibility χνν

′
c,q=0 – with the numerical derivative

∂n/∂µ . Thereby we performed DMFT calculations for two different parameter sets:
(U = 2.4, T = 1/50, 1/53) very close to the critical endpoint of the MIT and (U =
2.8, T = 1/120) slightly more far away from half-filling (n = 1). The DMFT calculations
for the one and two-particle quantities were performed with the w2dynamics package.

A great theoretical insight was achieved by considering the spectral decomposition
of the generalised local charge susceptibility

∑
νν′ χ

νν′
c,loc =

∑
j λj wj. The major role was

played by two real and most negative eigenvalues, which can be unambiguously associated
at lower U values with the first two divergences of the irreducible vertex Γ. Thereby, the
lower of the two, λI – corresponding to an antisymmetric eigenvector with zero weight
at n = 1 – yields an overall positive contribution λIwI > 0 to the local physical charge
susceptibility χcloc = 2

β2

∑
j λj wj. This is possible, because wI < 0 at n < 1 due to the

violation of the particle-hole symmetry upon doping. The second λII, however – associated
to a symmetric eigenvector with positive weight at half-filling – still yields a negative
contribution λIIwII < 0. By applying this spectral decomposition to the Bethe-Salpeter
equation in DMFT:

χcq=0 =
2

β2

∑

j

(1/λj + t2eff/β)−1wj (5.1)

we discovered, that indeed λI → −t2eff/β drives the enhancement and eventually the
divergence of χcq=0 ∝ κ close to the MIT at n < 1. Since a negative λI is crucial for this
mechanism, this can only occur after a divergence of the irreducible vertex Γ. This way,
we have unveiled the exact mechanism controlling the enhancement of the uniform charge
response in the non-perturbative regime, which can be interpreted, to a certain extent,
as an effective attraction emerging from a strong local repulsion. At the same time, this
means that approximation schemes where the irreducible vertex does not diverge (such as
RPA, FLEX, fRG, the parquet approximation, etc.) cannot – per construction – capture
this behaviour.

By extending this spectral analysis to the q-dependence of the charge susceptibility,
we showed that for the single-band Hubbard model in DMFT, the attractive effect is
confined in an narrow region very close to q = 0.

It is insightful to consider, eventually, also the spin and pairing (particle particle)

40
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susceptibilities. The corresponding DMFT expression for the pairing susceptibility at
q = 0 (and also for the charge and spin susceptibility at q = π) reads χppq=0 = 2

β2

∑
j(1/λj−

t2eff/β)−1wj [46]. This shows that possible divergences here are triggered by large positive
eigenvalues. Therefore, the same effective attraction driven by negative eigenvalues of the
local susceptibilities cannot result in charge density waves or s-wave pairing. However,
the situation may be different in the case of multiorbital systems, strongly motivating
further research in this direction.

Another open question, requiring further investigation, is how this attractive effect,
driven by λIwI > 0, gets encoded in the full vertex F , as this quantity can be directly
connected to the Fermi liquid parameters.



Chapter 6

Appendix

6.1 Derivation of the Compressibility

The electronic compressibility is defined as the relative volume change against pressure
for a fixed number of particles N and fixed temperature T :

κ = − 1

V

∂V

∂P

∣∣∣∣
T,N

. (6.1)

It can be expressed depending on chemical potential µ and density n = N/V by

κ =
1

n2

∂n

∂µ

∣∣∣∣
T

. (6.2)

Following Ref. [47] we prove Eq. (6.2). Since P and µ are intensive variables of the system,
scaling the system size by a factor a will leave them unchanged, whereas extensive variables
like V and N will be scaled with a:

P (T, V,N) = P (T, aV, aN) and µ(T, V,N) = µ(T, aV, aN). (6.3)

Taking the derivative with respect to a and evaluating at a = 1 will give

V
∂P

∂V

∣∣∣∣
T,N

+N
∂P

∂N

∣∣∣∣
T,V

= 0 and V
∂µ

∂V

∣∣∣∣
T,N

+N
∂µ

∂N

∣∣∣∣
T,V

= 0. (6.4)

From the total derivative of the Helmholtz free energy

dF = −SdT − PdV + µdN (6.5)

we find

− ∂P

∂N

∣∣∣∣
T,V

=
∂2F

∂N∂V
=

∂2F

∂V ∂N
=

∂µ

∂V

∣∣∣∣
T,N

(6.6)

which leads together with Eq. (6.4) to

1

κ
= −V ∂P

∂V

∣∣∣∣
T,N

= N
∂P

∂N

∣∣∣∣
T,V

= −N ∂µ

∂V

∣∣∣∣
T,N

= n2 ∂µ

∂n

∣∣∣∣
T

. (6.7)

�
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6.2 Static Physical Charge Susceptibility
For the density fluctuations in a grand canonical ensemble we recall the relation

〈N̂ 2〉 − 〈N̂ 〉2 =
1

β2

1

Z

∂2Z

∂µ2
−
(

1

β

1

Z

∂Z

∂µ

)2

=
1

β

∂

∂µ

(
1

β

1

Z

∂Z

∂µ

)
=

1

β

∂ 〈N̂ 〉
∂µ

, (6.8)

where Z is the partition sum
Z = Tr

(
e−β(Ĥ−µN̂ )

)
. (6.9)

This coincides with the physical charge susceptibility for q = 0, since

χcq=0(ω) =

∫ β

0

dτ eiωτ 〈n̂(τ)n̂(0)〉 − βδω0 〈n̂〉2 , (6.10)

where n̂ =
∑

σ,k ĉ
†
k,σ ĉk+0,σ. By evaluating the expectation value in the Eigenbasis |m〉 of

Ĥ and inserting a complete set of states
∑

l |l〉 〈l| we find

〈n̂(τ)n̂(0)〉 =
1

Z

∑

m,l

e−βεm eεmτ 〈m|n̂|l〉 e−εlτ 〈l|n̂|m〉

=
1

Z

∑

m

e−βεm 〈m|n̂|m〉2 =
〈
n̂2
〉
,

(6.11)

since 〈m|n̂|l〉 = δml 〈m|n̂|m〉. Thus, for ω = 0 we get

χcq=0(0) = β
(
〈n̂2〉 − 〈n̂〉2

)
=
∂ 〈n̂〉
∂µ

=
∂n

∂µ
. (6.12)

6.3 Numerical Derivative
The numerical derivative used for the calculation of ∂n/∂µ stems from the Taylor ex-
pansion around some calculated data point n(µ0) and neighbours at n(µ0 + ∆µ) and
n(µ0 − ∆̃µ):

I : n(µ0 + ∆µ) = n(µ0) + ∆µ n
′(µ0) + ∆2

µ n
′′(µ0) + ...

II : n(µ0 − ∆̃µ) = n(µ0)− ∆̃µ n
′(µ0) + ∆̃2

µ n
′′(µ0) + ...

Gaussian elimination of the terms of second order in Eq. I and II by discarding any
higher order terms in the calculation leads to

∂n

∂µ

∣∣∣∣
µ0

= n′(µ0)

≈ ∆̃µ

∆µ + ∆̃µ

n(µ0 + ∆µ)− n(µ0)

∆µ

+
∆µ

∆µ + ∆̃µ

n(µ0)− n(µ0 − ∆̃µ)

∆̃µ

,

(6.13)

which becomes the better known central derivative for ∆µ = ∆̃µ:

n′(µ0) ≈ 1

2

n(µ0 + ∆µ)− n(µ0 −∆µ)

∆µ

. (6.14)

For the delimiting data points a simple difference quotient ∆n/∆µ has been used.



44 CHAPTER 6. APPENDIX

6.4 Centrohermitian Matrices
Here we recall the properties of centrohermitian matrices following Ref. [45]. In this
thesis we consider a centrohermitian matrix M ∈ C2n×2n, where n is the number of
positive/negative Matsubara frequencies. M is called centrohermitian if it fulfils the
following condition:

JMJ = M (6.15)

where J1 is the counter identity matrix (J2 = 1), given by

J =




0 . . . 0 1
... . . . 1 0

0 1
. . . ...

1 0 . . . 0


 =

(
0 J
J 0

)
. (6.16)

Thus, we can write M in the following partitioned form:

M =

(
A JBJ
B JAJ

)
, (6.17)

where A,B ∈ Cn×n. Eigenvalues λ of M are either real or appear in complex conjugate
pairs [45]:

λ

{
∈ R

∈ C, ∃λ̄ . (6.18)

If M fulfils the stricter condition:

JMJ = M (6.19)

M is called centrosymmetric. Then, the corresponding eigenvectors of λ are either sym-
metric Jv = v or anti-symmetric Jv = −v. If M also satisfies M = MT the matrix is
bisymmetric [48].

6.5 Asymptotic of the generalised Susceptibility
The w2dynamics calculations of the generalised susceptibilities χνν′c,loc, χνν

′
c,q resolve only a

finite 2n×2nmatrix in Matsubara space, where n is again the number of positive/negative
Matsubara frequencies (ν(n) = π/β(2n+ 1)). To account for the missing high frequency
dependence of χνν′c,q in the calculation of the physical susceptibility χcq = 2

β2

∑
νν′ χ

νν′
c,q we

use the fact that the higher Matsubara frequency dependence of χνν′c,loc, χνν
′

c,q is dominated by
the asymptotic of the bubble contribution χνν′0 : β

ν2
δνν′ . Therefore we can extrapolate the

high frequency asymptotic in two ways: (i) by gradually increasing the matrix size 2n×2n
and summing over more and more Matsubara frequencies, we can fit the resulting curve
via the least-square-error method to an approximative function a + b/n with the correct
asymptotic behaviour. For n → ∞ we obtain the physical susceptibility as χcq ' a. Or
(ii) by calculating the contribution of the asymptotic summation of the bubble explicitly
by χcq ' 2

β2

(∑±n
νν′ χ

νν′
c,q + 2

∑∞
n δνν′

β
ν2

)
, where 4

β2

∑∞
n δνν′

β
ν2

= 4β
π2

(
π2

8
−∑n

ñ=0
1

(2ñ+1)2

)
.

1Note that M → MJ corresponds to flipping every row in M = (Mij) – (Mi1Mi2 . . .Mi2n) →
(Mi2n . . .Mi2Mi1) – and M → JM flips every column, thus M → JMJ corresponds to a flip of each
entry of M around the center.
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2
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∑n=±130
νν′ χνν

′
c,loc + 2

∑∞
n=130 δνν′

β
ν2 )

a+ b/n

a

FIG. 6.1: Here we compare the different methods for accounting the high frequency dependence
of χνν′c,loc in the calculation of χcloc. The green line represents the direct calculation in w2dynamics,
the blue curve shows the summation over finite 2n×2n Matsubara space, where n is the number
of positive/negative Matsubara frequencies. The orange line accounts for the asymptotic in the
calculation of χcloc by approximating χνν′c,loc with β

ν2
δνν′ for n > 130 and the red line shows the

least-square-error fitted function a + b/n onto the asymptotic of the blue curve. Hence, a is an
approximative value for χcloc.

Since the local physical susceptibility χcloc = 2
β2

∑
νν′ χ

νν′
c,loc can be directly calculated

in w2dynamics it makes sense to compare here the two methods (Fig. 6.1): both methods
yield identical results for the considered parameters (U = 2.4, β = 50, µ = 1.025) and
have a relative error in comparison with the directly calculated χcloc of the order of ≈ 10%.
For the calculation of χcq we favoured method (ii).
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