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Abstract

Strongly correlated electron systems exhibit some of the most fascinating phenomena of condensed matter

physics. Beyond the famous example of the Mott-Hubbard metal-to-insulator transition and the occurrence of

classical phase transitions like magnetic and charge ordering as well as superconductivity, quantum phase

transitions in strongly correlated systems are currently under intense research. These transitions are quite

intriguing, because they occur at zero temperature, where quantum fluctuations dominate the physics in

contrast to their classical, thermal counterparts, but they affect broad sectors of the phase diagram of both

real materials and model systems. Their theoretical description, however, faces big challenges, both analyt-

ical and numerical, so that a comprehensive theory could not be established hitherto.

This dissertation aims at a theoretical understanding of classical and quantum phase transitions by ex-

ploiting cutting-edge field theoretical many-body methods: the dynamical mean field theory (DMFT), which

treats local correlations, but neglects spatial correlations and the dynamical vertex approximation (DΓA), a

diagrammatic extension of DMFT, which additionally incorporates spatial correlations on every length scale.

These state-of-the-art methods are applied to one of the most important and fundamental model systems

in condensed matter physics, the Hubbard model. First, precursor features of phase transitions are ana-

lyzed. They can, in fact, be of very different kind: In the case of the Mott-Hubbard transition they appear as

divergent irreducible vertices, in the case of second order phase transitions as (charge-, spin- and pairing-)

fluctuations. Then, the influence of the vicinity of second order phase transitions on one-particle spectra

is investigated for various dimensionality. Interesting features of self-energies in specific dimensions are

highlighted. In the next step, the fate of the Mott-Hubbard metal-insulator transition is determined for two

dimensions, where the DMFT is known to become an inadequate approximation because it neglects spatial

correlations. Eventually, the magnetic phase diagram of the doped Hubbard model in three dimensions (es-

pecially the region around its magnetic quantum critical point) is analyzed. The simultaneous treatment of

strong local and non-local fluctuations makes DΓA particularly well suited to study the competing processes

which control the physics of a strong-coupling quantum critical point. The DΓA critical exponents of the

magnetic susceptibility and correlation length for the Hubbard model are determined, providing evidence for

a significant violation of the prediction of the conventional Hertz-Millis-Moriya theory.
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Deutsche Kurzfassung (German abstract)

In stark korrelierte Elektronensystemen lassen sich eindrucksvolle Phänomene der Physik der konden-

sierten Materie beobachten: Hier treten neben dem berühmten Mott-Hubbard Übergang von einem Metall

zu einem Isolator auch klassische Phasenübergänge wie Magnetismus, Ladungsordnung und Supraleitung

auf. Darüber hinaus zeigen diese Systeme Quantenphasenübergänge, die Gegenstand intensiver mod-

ernster Forschung sind. Was diese Übergänge so bemerkenswert macht, ist die Tatsache, dass sie im

Gegensatz zu klassischen Übergängen am absoluten Temperaturnullpunkt stattfinden. Dies macht Quan-

tenphasenübergänge zum Einen sehr faszinierend, zum Anderen theoretisch sehr schwer zu beschreiben:

Bis dato existiert keine umfassende Theorie der Quantenkritikalität.

Das Ziel dieser Dissertation ist die theoretische Beschreibung von klassischen und Quantenphasenüber-

gängen durch die Anwendung von hochaktuellen quantenfeldtheoretischen Methoden auf das fundamental-

ste Modell für elektronische Korrelationen, das Hubbard-Modell. Die hierfür verwendeten Methoden sind die

dynamische Molekularfeldtheorie (DMFT), welche in der Lage ist, lokale Korrelationen zu beschreiben, aber

räumliche Korrelationen vernachlässigt, und die dynamische Vertexapproximation (DΓA), welche zusätzlich

räumliche Fluktuationen auf beliebigen Längenskalen berücksichtigt. Zuerst werden Vorboten von Phasen-

übergängen näher untersucht. Beim Mott-Hubbard Übergang werden diese durch divergierende irredu-

zible Vertexfunktionen und bei klassischen Phasenübergängen durch starke Ladungs-, Spin- oder Paar-

fluktuationen repräsentiert. Danach wird der Einfluss von Dimensionalität und Nähe zu Phasenübergängen

auf das Spektrum des Systems untersucht. Spezifische Relationen für die Selbstenergie in verschiedenen

Dimensionen werden herausgearbeitet. Im nächsten Schritt wird das Schicksal des Mott-Hubbard Metall-

Isolator-Übergangs in zwei Dimensionen bestimmt, wo die DMFT zu dessen Beschreibung nicht ausreicht,

weil hier räumliche Korrelationen sehr stark werden. Schließlich wird das magnetische Phasendiagramm

für das lochdotierte Hubbard-Modell in drei Dimensionen berechnet und analysiert. Die DΓA ist hierfür

prädestiniert, weil sie die simultane Behandlung von zeitlichen und räumlichen Korrelationen erlaubt, was

insbesondere wichtig für die Beschreibung eines quantenkritischen Punktes bei starker Wechselwirkung ist.

Die (quanten)kritischen Exponenten der magnetischen Suszeptibilität und Korrelationslänge werden mittels

der DΓA bestimmt. Diese stehen im Widerspruch zur konventionellen Hertz-Millis-Moriya Theorie.

vii
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1
Introduction

“If you want to become a great chef, you have to work with great chefs. And that’s
exactly what I did.”

- Gordon Ramsay (British chef and restaurateur, *1966)

When I was ten years or so, my mother, who is truly a great chef, started to teach me how to cook
Of course, cooking is an art1, but we started out very simply: by boiling an egg. And this is how I
first became interested in phase transitions...

Classical phase transitions are a true every-day phenomenon as one knows from the exam-
ple of boiling water. Specifically, starting in the system’s liquid state and progressively increasing
its temperature while keeping its pressure constant, one can notice that at a certain temperature
the liquid starts to exhibit bubbles of steam, i.e. water in its gaseous phase. In the transition pro-
cess, both, this gaseous phase and the water’s liquid phase can be stabilized, which is a hallmark
of a so-called first-order transition. Here, a certain amount of (latent) heat is necessary to transform
the liquid into the gaseous phase. Fig. 1.1 shows the schematic phase-diagram of water (H2O) as
a function of pressure p and temperature T .

Additionally to the phase transition lines solid-gas (sublimation), solid-liquid (melting) and liquid-
gas (boiling), where first order transitions take place, one can identify a point, where an exact
discrimination of the liquid and gaseous phase is no longer possible anymore. This is the so-called
critical point of the transition line. The coexistence region vanishes and the transition therefore
becomes continuous, i.e. a second-order phase transition, at the point. In the vicinity of such a
continuous phase transition, the system is very susceptible for external perturbations associated
with its particular type. This implies, via the fluctuation-dissipation theorem (see, e.g. [1]), that at

1as one can easily see, e.g., by trying to remember all the draconic Italian rules for appropriately cooking pasta,
which I should also learn during my doctoral studies...

1



2 CHAPTER 1. INTRODUCTION

p

T
Figure 1.1: Schematic phase diagram temperature against pressure of H2O.

this point the system exhibits fluctuations on every length scale. For the case of a liquid-gas transi-
tion this fact is impressively demonstrated by the effect of critical opalescence (see Fig. 1.2). This
phenomenon is nothing else but the scattering of light by the (density) fluctuations of the system at
the critical point of a second-order phase transition, which can make a transparent gas opaque in
the proximity of a critical point.

The transition from a liquid to a gas is by far not the only one possible and there exist systems,
especially in the context of strong electronic correlations, that show a whole plethora of them.
Examples range from magnetism in heavy-fermion compounds [3], over superconductivity in iron-
pnictides [4] to the famous Mott-Hubbard transition in, e.g., V2O3 [5]. A class of systems where
this is especially true is the one of copper-oxide (CuO) compounds, which are commonly referred
to as cuprates [6] (see Fig. 1.3). In the basic (stoichiometric) configuration, where the Cu site
hosts one electron on average (half-filling) and at low temperatures, these compounds are Mott
insulators, i.e. in an insulating state which is driven by the Coulomb interaction of the electrons.
Furthermore, the system is magnetically ordered, specifically in an antiferromagnetic (AF) pattern,
where up- and down-spins are alternating.

Figure 1.2: (taken from [2]) The phenomenon of critical opalescence which can be found in, e.g.,
SF6: scattering of light on density fluctuations at every length scale, that are exhibited at the
critical point of the first-order liquid-gas phase transition.
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Figure 1.3: Schematic phase diagram of the high-temperature superconductors of the cuprate
class upon doping. Classically ordered phases with antiferromagnetism (AF), charge density
wave (CDW) and (unconventional) superconducting (SC) order coexist along with their fluctu-
ations reaching well into the unordered phase (shadows). The pseudogap phase and regions
of (non-)Fermi liquid behavior are shown and a potential quantum critical point (QCP) are indi-
cated.

Introducing more holes into the system by doping, one enters the so-called pseudogap regime,
where parts of the Fermi-surface are gapped out, depending on their crystal momenta. However,
this phase is not immediately associated with an ordering phenomenon and the entrance into the
pseudogap phase, thus does not represent an actual phase transition. At higher temperatures
the gradual Fermi surface gapping is dissolved. However, the system does still not behave like
a Fermi-liquid as can be inferred by investigating, e.g., the temperature dependence of the elec-
trical resistivity, which is linear in an extremely broad temperature range. In fact, this part of the
phase diagram exhibits non-Fermi liquid behavior. Lowering the temperature at this doping level,
the famous unconventional superconductivity dome (SC) appears. The highest transition tem-
perature defines the optimal doping level and can be significantly higher than the condensation
temperature of liquid nitrogen (77 K). This is especially interesting for technological applications,
since one of the defining properties of superconductors, their ability to conduct electrical current
without dissipation, in principle becomes available without requiring the system to be cooled with
liquid helium. Almost attached to the superconducting dome, recently [7], a charge-ordered phase
has been found, which is coined charge density wave (CDW). Increasing the doping level further,
one arrives at a metallic Fermi-liquid phase, that exhibits similar properties as a non-interacting
electron gas.

One of the commonalities among the onsets of ordered phases (AF, CDW, SC) is that the existence
of a phase transition is signaled already in the unordered phase by the emergence of fluctuations
associated with the specific kind of order. This is indeed very similar to the phenomenon of criti-
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cal opalescence discussed before: also for other second-order phase transitions than the critical
point of the liquid-gas one, the systems exhibit fluctuations on every length scale in the immediate
vicinity of the transition. Specifically, one will observe strong spin, charge or particle-particle (pair-
ing) fluctuations in the example of Fig. 1.3 (indicated by shadows of the actual ordered phases),
depending on the ordering considered.

All the phase transitions introduced so far are classical phase transitions, which means that they
are triggered by temperature and take place at finite temperatures. An even more intriguing phe-
nomenon is that of quantum phase transitions (QPTs) [8–10]. Here, the ground state of the
system is changed by varying a non-thermal control parameter (like doping or pressure). The point
of change defines a quantum critical point (QCP) at zero temperature. Despite their occurrence
at T = 0 only, quantum phase transitions are by no means a purely academic phenomenon: the
sheer existence of a QCP in a phase diagram can lead to an unconventional excitation spectrum at
finite temperatures giving rise to, e.g. non-Fermi liquid behavior like the linear resistivity previously
discussed for the optimally doped cuprates. This is the reason, why some theoretical approaches
for describing the high-temperature superconductors suggest that a QCP is “hidden” below the
superconducting dome, giving rise to the non-Fermi liquid region above it, the pseudogap phase
and the superconductivity itself.

All these fascinating phenomena naturally raise the question, in which way they can be described
theoretically. For both classes, classical and quantum phase transitions, there exist basic theories,
which lead to somewhat related descriptions. These are the famous Landau-Ginzburg-Wilson
and Hertz-Millis-Moriya theories, respectively, whose general spirit will be outlined in the follow-
ing (for a general introduction see [11] and [9,12–14]).

Usually, the transition from one phase to another is accompanied by a reduction of the symme-
try of the system (spontaneous symmetry breaking)2. Generally, this term describes the lifting of
a degeneracy in the ground state by breaking one of the symmetries, which are present in the
original Hamiltonian, but not respected by one particular choice for the system’s ground state. For
instance, the paramagnetic phase above the AF phase in Fig. 1.3 is SU(2)-symmetric as the mi-
croscopic Hamiltonian of the system, whereas the ordered phase at lower temperatures is not. In
order to discriminate the two phases, it is then useful to introduce the notion of an order parameter,
i.e. a physical quantity that is zero in the unordered and finite in the ordered (symmetry-broken)
phase. As an example, for a paramagnetic to antiferromagnetic transition, the (staggered) mag-
netization can serve as an order parameter. In the Landau-Ginzburg-Wilson approach, the free
energy of the system is being expanded into a power series with respect to this order parameter
near the critical point, where the order parameter is small. This expansion can be used, e.g., to

2With some notable exceptions, e.g. the liquid-gas transition.
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calculate critical exponents of the model, for instance exponents for the temperature dependence
of the respective susceptibilities. For systems that (due to their dimensionality, range of the interac-
tion and symmetry of the order parameter) fall into the same class, these exponents are the same,
i.e. “universal”.

The Landau-Ginzburg-Wilson approach is a very successful general framework for the descrip-
tion of classical phase transitions. However, as it is a classical theory, it completely neglects
quantum fluctuations, which are a necessary ingredient for the description of quantum phase tran-
sitions. The Hertz-Millis-Moriya theory amends the Landau-Ginzburg approach by the introduction
of quantum fluctuations. In his seminal work, Hertz studied itinerant electron systems by applying
a renormalization group (RG) treatment to model systems and concluded that at zero temperature,
static and dynamic properties are interwoven. Later, Millis analyzed how the existence of a quan-
tum phase transition affects properties of these systems at finite temperatures.

Despite all the theoretical efforts for describing classical and quantum phase transitions, these
transitions are far from being understood in strongly correlated electron systems in general and
in the cuprates in particular. The reason for this is twofold: first, the electrons in the cuprates
are strongly correlated and, second, the cuprates are (due to their strongly anisotropic layered
structure) effectively low-dimensional (quasi-two-dimensional, to be specific). Due to the strong
electronic correlations, common perturbative techniques as well as density functional theory, fail
in reproducing their properties and phase diagrams. This implies that (many-body) techniques
must be exploited, among which one of the most prominent is the dynamical mean field theory
(DMFT) [15–19]. The DMFT is a very powerful technique that is able to exactly take into account
all local correlations of the system. However, in cases of low dimensions or in the proximity to
second-order phase transitions, also spatial correlations have to be included, which means that
one even has to go beyond DMFT in order to describe the physics there accurately.

While this discussion highlighted some of the most challenging subjects of contemporary con-
densed matter physics, the aim of the thesis is to make a significant progress in the fundamental
understanding by applying a cutting-edge diagrammatic many-body technique beyond DMFT, the
dynamical vertex approximation (DΓA) [20], to the most famous model system for electron cor-
related systems, the Hubbard model [21] in three, two and one dimensions. By doing so, the
nature of classical and quantum phase transitions in strongly correlated electron systems will be
investigated and their properties be analyzed also in correlated regimes not accessible to the the-
ory hitherto.

The thesis is structured as follows:
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• In Chapter 2 the basic strategies for treating strong electronic correlations are outlined. The
basic models which are used throughout the thesis, the Hubbard model and the Anderson
impurity model, and the many-body techniques exploited to analyze their properties, the
dynamical mean-field theory and the dynamical vertex approximation, are introduced and
described in detail.

• Chapter 3 investigates precursors of phase transitions. In particular, precursor features of
the Mott-Hubbard transition are identified by divergent irreducible two-particle vertex quanti-
ties and the highly non-perturbative landscape of the Mott-Hubbard transition is investigated.
Furthermore, the implication of these precursors on the physical analysis of the one-particle
spectrum via its so-called parquet decomposition is analyzed. To overcome the interpreta-
tional difficulties encountered there, eventually, the fluctuation diagnostics method is intro-
duced.

• In the course of Chapter 4 the impact of the proximity of phase transitions on the one-
particle spectrum is analyzed for strongly correlated systems in various dimensions. Starting
at infinite dimensions, where the DMFT is the exact solution, the dimensionality of the system
is progressively reduced. In three dimensions, the space-time separability of the self-energy
is discussed. Going to two dimensions, it is shown that, under certain circumstances, the
self-energy collapses onto a single curve under the reparametrization with the non-interacting
electron dispersion. Finally, spatial correlations and the applicability of the dynamical vertex
approximation are discussed for (finite-sized) one-dimensional Hubbard nano-rings.

• The fate of the famous Mott-Hubbard metal-insulator transition in two dimensions is deter-
mined in Chapter 5. There it is shown that if, in the (unfrustrated) two-dimensional Hubbard
model on a square lattice, spatial correlations on all length scales are included on top of
DMFT, the paramagnetic phase is always insulating at low enough temperatures. In partic-
ular it is demonstrated, that the critical interaction value is progressively reduced to zero by
antiferromagnetic Slater-paramagnons.

• In Chapter 6, magnetic phase transitions in the three-dimensional Hubbard model are ana-
lyzed. Its phase diagram for half-filling is recalled and extended to the more interesting hole-
doped case by means of DMFT as well as DΓA. If the hole doping becomes large enough,
the system exhibits a quantum critical point. The critical exponents for the magnetic suscep-
tibility and the correlation length are analyzed for the classical as well as the quantum phase
transitions in this model and the influence of the Fermi surface structure (Kohn anomalies) is
pointed out.

• Finally, conclusions from the results of the thesis are drawn in Chapter 7 and an outlook for
future investigations based on the progress triggered by this work will be given.



2
Many-body theory: models and methods

“In theory, the big news is the DMFT which gives us a systematic way to deal with
the major effects of strong correlations. After nearly 50 years, we are finally able to
understand the Mott transition, for instance, at last.”

- Philip Warren Anderson (American physicist, *1923)

The description of the fascinating phenomena taking place in strongly correlated electron
systems is very challenging, not only because of the huge number of involved particles, but
also due to their strong mutual interactions. Therefore, strategies beyond perturbation the-
ory, mean-field theories and density functional theory have to be formulated. In this Chapter,
first the basic strategies to tackle these challenges are outlined: (i) the simplification of the
essence of the problem by setting up model Hamiltonians and (ii) the replacement of wave-
function based methods by other, more “condensed” (one- and two-particle Green function)
quantities, which still allow to access the observables of interest. Specifically, starting from
the full solid state Hamiltonian, the simplest model for treating electronic correlations, the
Hubbard model, is deduced alongside the, methodologically very useful, Anderson impu-
rity model. In the second part of this Chapter, the dynamical mean-field theory (DMFT) is
introduced, which maps the Hubbard model onto a self-consistently determined Anderson
impurity model. DMFT is able to include all temporal fluctuations, but neglects spatial corre-
lations. Subsequently, strategies for extending the DMFT to also include spatial correlations
are discussed and one of its diagrammatic extensions, the dynamical vertex approximation,
is presented. Both of these methods will be extensively used throughout this thesis. There-
fore, the current implementation of the dynamical vertex approximation as used in this thesis
is discussed in details at the end of this chapter.

7
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Unlike in many other areas of physics, in condensed matter theory the governing Hamiltonian can
be written down straightforwardly:

H = H0 + Vee (2.1)

with

H0 =
∑

σ=(↑,↓)

∫
d3rΨ†σ(~r)

− ~2

2m
∂2 −

∑
l

e2

4πε0

Zl∣∣∣~r − ~Rl

∣∣∣
Ψσ(~r)

Vee =
1

2

∑
σ,σ′

∫
d3rd3r′Ψ†σ(~r)Ψ†σ′(~r

′)
e2

4πε0

1

|~r − ~r′|Ψσ′(~r
′)Ψσ(~r)

where Ψ†σ(~r) and Ψσ(~r) are field operators which create or respectively destroy an electron of
charge −e and spin σ at position ~r and l are the lattice ions with charge Zl at the positions ~Rl.
The electron’s mass is denoted by m, ~ is the Planck constant and ε0 is the dielectric constant in
vacuum.

Despite its small number of fundamental ingredients (electrons, protons and the Coulomb inter-
action), Eq. (2.1) cannot be rigorously solved to obtain the quantum mechanical wave function,
due to a two-fold reason: First, condensed matter systems generally consist of ∼ 1023 particles,
and, second, they are heavily interacting mutually, giving rise to a high degree of correlations.

In order to tackle this problem, two complementary strategies can be applied:

• The general many-body Hamiltonian is transformed to a simpler model, which, however, still
contains the essential physics of the original problem.

• The (exact) diagonalization procedure for Eq. (2.1) for obtaining the system’s wave-function is
replaced by other approximate methods which still provide access to the system’s properties
of interest.

In the following sections examples from both routes will be explained that also found the basis of
the methods used in this thesis. First, two basic models for electronic correlations are introduced:
the Hubbard model and the (periodic) Anderson impurity model. Second, two non wave-function-
based methods for the treatment of electronic correlations are discussed in detail: the dynamical
mean-field theory and the dynamical vertex approximation. The dynamical mean field theory and
its cluster extensions in the context of the Hubbard model have already been used in the master
thesis of the author [22], so that in the following, for the sake of self-containment, the relevant parts
are recapitulated from there.
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2.1 Modellization of electronic correlations

In many situations, for interpreting (or predicting) experimental results, it is not necessary to cal-
culate the general solution to the definite problem of interest (i.e. the wave function for the ∼ 1023

particle problem). One way for retrieving valuable informations about the system and, at the same
time, at least approximately, explaining and predicting experimental results is paved by simplifying
Eq. (2.1) in order to build model Hamiltonians. In this section two prototypical model Hamiltoni-
ans will be discussed: the Hubbard model, often considered as the simplest model for electronic
correlations, and the periodic Anderson model as a basic (realistic) model for heavy fermion com-
pounds.

2.1.1 The Hubbard model

If one considers a lattice of ions which are separated by a distance larger than the Bohr radius, one
can approximate the original lattice problem in the tight-binding approximation (see e.g. [23]). In
a first step the Hamiltonian is represented by a superposition of atomic orbital states or Wannier
states. These Wannier states constitute an orthonormal basis of the one-particle Hilbert space,
meaning that there exists a (unitary) transformation from real to Wannier space. This implies that
the field operators in real space in Eq. (2.1) can be written in terms of field operators at each lattice
site i:

Ψ†σ(~r) =

N∑
i=1

ψ∗~Ri(~r)c
†
iσ (2.2)

Furthermore one can Fourier transform the Wannier state operators c†iσ to momentum space

c†kσ =
1√
N

N∑
i=1

ei
~k ~Ric†iσ (2.3)

so that the single particle part of the Hamiltonian in Eq. (2.1) becomes (see [23])

H0 =
∑
~k

εkc
†
kσckσ =

∑
ii′

tii′c
†
iσci′σ (2.4)

where

tii′ =
1

N

∑
~k

ei
~k(~Ri−~Ri′ )εk =

∫
ddr ψ∗~Ri

~2∂2

2m
ψ∗~Rj

denotes the hopping amplitude for a particle to transit from site i to site i′. Similarly one can apply
this procedure to the electron-electron interaction term in Eq. (2.1) and finally obtains for the fully
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transformed Hamiltonian:

H =
∑
ii′

tii′c
†
iσci′σ +

∑
ii′jj′

Uii′jj′c
†
iσc
†
i′σcjσcj′σ. (2.5)

If the overlap of neighboring orbitals becomes weak, the dominant electronic interaction is the on-
site Coulomb interaction, or Hubbard interaction. In this limit one finally arrives at the simplest
model for the description of electronic correlation in solid state physics, the Hubbard model (see.
Fig. 2.1, [21]). For the single band case (and only considering nearest neighbor hopping), the
Hamiltonian of the Hubbard model reads

H = −t
∑
〈i,j〉σ

c†i,σcj,σ + U
∑
i

ni↑ni↓ (2.6)

where −t is the hopping amplitude of the electron to hop from lattice site i to j, c†i,σ and cj,σ are
the creation and annihilation operators for creating or destroying an electron with spin σ on site i
or j respectively, and 〈i, j〉 denote nearest neighbor sites which are counted once in the sum. The
Coulomb energy (or Hubbard interaction) U has to be paid whenever a single site is occupied by
two electrons. The interpretation of the two ingredients of this model is quite transparent as they
correspond to the two competing energy scales of a correlated electron system, i.e. the kinetic
and the potential energy.

Figure 2.1: Illustration of the Hubbard model as a description of correlated electrons in solids
(from [24]). The electron can hop from one site to another with the hopping amplitude −t. An
energy U has to be paid whenever a double occupation occurs.
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It is worth noting at this point that, although this model represents already a great simplification
compared to real material systems described by Eq. (2.1), it is still not solvable except for trivial
or quite specific (e.g. one-dimensional) cases. However, the challenging task of working with the
Hubbard model is highly rewarding, since most of the interesting physics in highly correlated elec-
tron systems indeed originates from the (direct or indirect) result of the competition of kinetic
and potential energy, which is well captured by this model Hamiltonian.

In the next sections, the Anderson impurity and the periodic Anderson models are introduced.
They are doubly related to the Hubbard model: the Anderson impurity model is the key algorith-
mic ingredient for a powerful tool to analyze the Hubbard model (within the dynamical mean-field
theory) and the periodic Anderson model is the minimal extension to the Hubbard model aiming to
cover the basic physics of heavy fermion compounds.

2.1.2 The Anderson impurity model

Originally introduced for describing the properties of an magnetic atom embedded in a metallic en-
vironment [25], the applicability of the Anderson impurity model (AIM) is much broader today, as it
provides the key to the treatment of local correlations, also in the Hubbard model. The Hamiltonian
of the AIM can be interpreted as an interacting impurity hybridizing with non-interacting (conduction
band) electrons. In its second quantized form it reads

H =
∑
kσ

εka
†
kσakσ +

∑
kσ

Vk(c
†
σakσ + a†kσcσ) + Un↑n↓ − µ(n↑ + n↓). (2.7)

Here, a†kσ (akσ) creates (annihilates) an electron with spin σ at a bath of energy εk, c
†
kσ (ckσ) creates

(annihilates) an electron with spin σ at the impurity site. Vk quantifies the hybridization strength
between impurity and bath and U is the purely local repulsion between two electrons at the impurity
site. nσ = c†σcσ counts the number of electrons with spin σ on the impurity site.

If the hybridization of the conduction band electrons and the impurity is maintained and, simul-
taneously, the single impurity of the AIM is extended to a periodic lattice of interacting impurities,
one arrives at the periodic Anderson model.

2.1.3 The periodic Anderson model

The periodic Anderson model (PAM) is the minimal model for the description of f-electron systems,
especially heavy-fermion compounds [26]. In this model, the (realistic) conduction bands are rep-
resented by a single band with dispersion εkd and one degenerate atomic level εf representing the
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f-electrons. The Hamiltonian of the PAM reads as

H =
∑
kσ

εkd
†
kdσdkσ + εf

∑
iσ

f †iσfiσ +
∑
kσ

Vk(d
†
kσfkσ + f †kσdkσ)+

Uf
∑
i

nfi↑nfi↓ − µ
∑
iσ

nfiσ + ndiσ,
(2.8)

where d†kσ (dkσ) creates (annihilates) a conduction electron with momentum k and spin σ and f †kσ
(fkσ) creates (annihilates) an impurity electron with momentum k and spin σ. ndiσ (nfiσ) is the
number operator of the conduction (impurity) electrons.

The Hubbard model, as well as the PAM, cannot be solved exactly in arbitrary dimensions. How-
ever, there exists a powerful tool for retrieving physical observables from these model, the dynam-
ical mean field theory, which is introduced in the following section.

2.2 Dynamical mean-field theory and its extensions

The essence of dynamical mean field theory (DMFT) is to map the whole many body problem of
Eq. (2.1) onto a single site Anderson impurity model (AIM) to be determined self-consistently [15].
For retrieving physical quantities (e.g. via the calculation of the self-energy) one has to solve
a self-consistency cycle based on the single-site (AIM) quantity and the local component of the
same quantity of the original lattice. This corresponds to treating the spatial degrees of freedom of
a given system at a mean-field theory level (like in a classical mean or Weiss field theory), whereas
fully retaining local temporal fluctuations (or “quantum fluctuations”). The mapping becomes exact
in the limit of infinite coordination number and DMFT, therefore, is an exact theory in this asymp-
totic regime [16, 17]. More formally, for a fixed lattice geometry the limit of infinite coordination
corresponds to the limit of high spatial dimensions or high temperatures.

2.2.1 The diagrammatic content of DMFT

If one considers the expectation value for the kinetic energy part of the Hubbard Hamiltonian in-
cluding next neighbor (NN) hopping only

〈Hkin〉 = −t
∑

(i,j),σ

〈
c†i,σcj,σ

〉
(2.9)

and the coordination number (i.e. the number of next neighbors for each lattice site) of the lattice
is z, the probability (i.e. the absolute square of the hopping amplitude) that an electron hops from
a site j to a next neighbor site of j is P ∝ 1

z . From this consideration one can deduct that in
the limit of infinite coordination z → ∞ the proper scaling of the kinetic energy in the Hubbard
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model (Eq. (2.6)) is t ∝ 1√
z
. Indeed, as it was shown by W. Metzner and D. Vollhardt, the only

scaling, for which the Hubbard model physics remains non-trivial in the limit of infinite coordination
is t ∝ 1√

z
, whereas the proper scaling of the potential energy is trivial because it is purely local [16].

The crucial point, however, is, that with this scaling also all self-energy skeleton diagrams become
purely local in the limit z →∞ (see Fig. 2.2) [16,18], and, hence:

Σ(ν,~k)→ Σ(ν). (2.10)

Therefore, from the diagrammatic point of view, DMFT corresponds to regarding all completely
local one-particle irreducible diagrams as the electronic self-energy (see also Fig. 2.2), which
physically corresponds to consider only the local part of the electronic correlation, but without
any perturbative restriction.

Σ
i i i

Figure 2.2: Diagrammatic content of the DMFT (taken from [27]). The thick red dot denotes the
local interaction U , the single lines the non-interacting and the double lines the dressed Green
functions. All local one-particle irreducible diagrams are regarded as the electronic self-energy.

2.2.2 Self-consistency cycle and impurity solvers

From the practical point of view, one of the keys for explaining the success of DMFT is the above
mentioned mapping of the original lattice problem onto an Anderson impurity problem. Such a
mapping is possible because the same diagrams which constitute the (purely local) DMFT self-
energy can also be obtained from the Anderson impurity model in Eq. (2.7) [28] provided the
on-site interaction U coincides with the one of the original Hubbard model in Eq. (2.6) and the
interacting Green functions are the same. In the definition of the Anderson impurity model, a†~klσ
and a~klσ are the creation and annihilation operators of conduction band electrons with dispersion

εl(~k), c†imσ′cinσ′ are the creation and annihilation operators of the impurity site and Vlm(~k) defines
the hybridization between conduction band and impurity site electrons.

2.2.2.1 The DMFT self-consistency cycle

As pointed out by Georges and Kotliar [17], due to the equivalence of the (purely local) diagrams
which constitute the self-energy of both DMFT and Anderson impurity model, one is able set up a



14 CHAPTER 2. MANY-BODY THEORY: MODELS AND METHODS

Gloc(ν) Σloc(ν)
AIM

G0(ν) AIM

solver

inverse

Dyson eq.

Dyson

equation

DMFT

G(ν)loc,new= G(ν,k)

G(ν,k)

G0(ν,k)

Figure 2.3: Self-consistency cycle of the DMFT. The bottleneck of the algorithm is given by the
solution of the impurity problem.

self-consistency cycle for the Green function of the Anderson impurity model GAIM(ν) and the local
DMFT Green function

Gloc(ν) =
1

VBZ

∫
1st BZ

ddk GDMFT(ν,~k) =
1

VBZ

∫
1st BZ

ddk
1

iν − εk + µ− Σ(ν)
(2.11)

where VBZ is the volume of the first Brillouin zone. The local self-energy Σ(ν), which defines the
local Green function via the Dyson equation

Σ(ν) = G−1
0 (ν)−G−1(ν), (2.12)

can be obtained from the AIM via

Σ(ν) = G−1
0 (ν)−G−1

AIM(ν) (2.13)

where the electronic bath function of the AIM

G−1
0 (ν) = iν − t−

∑
~kn

V †nl(
~k)Vnm(~k)

iν − εn(~k)
(2.14)

can be considered as the quantum (dynamical) counterpart of a classical Weiss mean-field. Fig.
2.3 schematically shows all the steps for performing a self-consistency loop of DMFT. Among these
steps one can note that the computational bottleneck of the algorithm is given by the solution of
the impurity problem.
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Common impurity solvers are based on exact diagonalization (ED) or Lanczos algorithms [15],
numerical renormalization group (NRG, [29]), quantum Monte Carlo (QMC) or semi analytical
methods like iterated perturbation theory (IPT, see e.g. [30]). In this work mainly ED and QMC
will be used, those impurity solvers will be briefly discussed in the following sections.

2.2.2.2 Exact diagonalization (ED)

In exact diagonalization (ED) one solves the AIM by approximating the Hamiltonian of the AIM with
an Hamiltonian built up by a finite number of orbitals nS (discretization of the bath) [15]. The
matrix-represented Hamiltonian is then diagonalized by standard algorithms.

Specifically, for solving the AIM in ED, one has to perform essentially three steps:

1. The Weiss function

G0(ν)−1 = iν −
∞∫
−∞

dω′
∆(ω′)
iν − ω′ (2.15)

is approximated by a discretized bath:

GnS0 (ν)−1 = iν −
nS∑
p=2

V 2
p

iν − ε̃p
(2.16)

2. The obtained Hamiltonian of Eq. (2.16) is diagonalized exactly. The corresponding Green
function is calculated via its Lehmann (spectral) representation [57].

3. The DMFT self-consistency condition provides a new Weiss function G0 which is again ap-
proximated by a function GnS0 with a new set of Vp and ε̃p.

ED provides very accurate and stable numerical results on the Matsubara axis (see again [15]).
However, the scaling of the ED algorithm with nS is very costly, which makes the calculation of
two-particle vertex quantities (see Sec. 2.3.1) already quite challenging even for the single-band
Hubbard model. A detailed discussion of possible accuracy issues and checks of ED algorithms
can be found in Appendix A.

2.2.2.3 Hirsch-Fye Quantum Monte Carlo (QMC)

An efficient and well-established approach of an impurity model solver is the Hirsch-Fye Quan-
tum Monte Carlo method [31]. Hirsch and Fye mapped the interacting Anderson impurity model
of Eq. (2.7) onto a sum of non-interacting problems with a single particle under the influence of
a time-dependent field, whereupon this sum is evaluated by Monte Carlo sampling. The most
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important steps of Hirsch-Fye QMC (HF-QMC) are summarized in the following, for more details
see [18,32,33].

The Hamiltonian H for the (single or cluster) impurity is assumed to be expressed in two parts

H = H0︸︷︷︸
non-interacting

+ H1︸︷︷︸
interacting

(2.17)

and the interaction on the impurity cluster to be local. In a first step, the imaginary time interval
[0, β] is divided (Trotter discretization) into L steps of size

∆τ =
β

L
(2.18)

Now the thermodynamic partition function can be expressed in terms of these time slices

Z = Tr(e−βH) = Tr(
L∏
i=1

e−∆τH) (2.19)

and one can apply the Trotter-Suzuki decomposition [34]

e−∆τH = e−
∆τH0

2 e−∆τH1e−
∆τH0

2 +O(∆τ3) (2.20)

Using the cyclic property of the trace one arrives at

Z ≈ Tr(
L∏
i=1

e−∆τH0e−∆τH1) (2.21)

with an error of the order ∆τ2. With the use of Hirsch’s identity for a purely locally interacting
Hamiltonian,

e−∆τU(ni↑ni↓− 1
2

(ni↑+ni↓)) =
1

2

∑
si=±1

easi(ni↑−ni↓) (2.22)

where
cosh(a) = e

∆τU
2 (2.23)

one introduces an auxiliary Ising field (so called Hubbard-Stratonovich field) so that the interact-
ing problem has been mapped onto the sum over all possible configurations of the auxiliary field of
non-interacting Ising-spins. The partition function becomes [15]

Z =
∑

{s1,...,sL}
det
[
G−1
↑ (s1, ..., sL)

]
det
[
G−1
↓ (s1, ..., sL)

]
, (2.24)
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which requires the summation over 2L configurations. Therefore, in HF-QMC, the interacting Green
function is calculated by stochastic Monte Carlo sampling, where

det
[
G−1
↑ (s1, ..., sL)

]
det
[
G−1
↓ (s1, ..., sL)

]
is the stochastic weight and the configurations {s1, ..., sL} are the outcome of a Markov process
which visits configurations of Ising variables with a single spin-flip dynamic. For a more rigorous
derivation of the Hirsch-Fye QMC algorithm see Sec. VI. A1b in [15].

From the description and practical applications of the HF-QMC method three immediate draw-
backs emerge [35]:

1. It requires an equally spaced time discretization.

2. At large interactions and low temperatures difficulties in managing the discretization and equi-
libration arise and particular care should be taken to treat the systematic errors introduced
by the Trotter discretization (see [33]).

3. In the multi-orbital case, treating the SU(2)-invariant local interactions becomes very chal-
lenging.

At least parts of those drawbacks can be overcome by another QMC technique called continuous
time QMC (CT-QMC), whose fundamental concept is avoiding the time discretization by sampling
in a diagrammatic expansion, instead of sampling the configurations in a complete set of states
(see [35–38]).

2.2.3 Successes and limitations of the DMFT

DMFT nowadays is a well-established, successful and applicable technique in the field of strongly
correlated electron systems. In fact, the non-perturbative nature of DMFT has allowed, for the first
time, for a coherent and general description of the Mott-Hubbard transition. However, the success
of this theory should not lead to forget that there exist some important limitations of DMFT:

1. While local quantum fluctuations are fully taken into account by DMFT, due to its mean field
nature in space, spatial correlations are totally neglected. This has the immediate con-
sequence that DMFT will perform poorly in all situations in which these correlations become
crucial, e.g. in the vicinity of (second-order) phase transitions where the correlation length
is diverging. Also for the description of low dimensional systems, such as layered, surface-
and nano-systems non-local spatial correlations play an important role and have to be con-
sidered.
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2. If DMFT is applied to not infinitely coordinated systems, its self-consistency is guaranteed
at the one-particle level only. This means that for d 6= ∞ the momentum-integrated density-
density correlation function of the lattice computed in DMFT is not equal to the corresponding
quantity of the associated AIM: ∑

~q

χ(~q) 6= χAIM
loc (2.25)

leading to an intrinsic ambiguity in the calculations at least of the local response functions.

To overcome these limitations, one has to take a step beyond DMFT, as it is discussed in the
following section.

2.2.4 Going beyond DMFT

Among all existing extensions of DMFT, one can essentially individuate two classes: cluster ex-
tensions and diagrammatic extensions. In a nutshell the former are based on a simple general-
ization of the DMFT algorithm from a single site to a cluster of sites (either in real or in momentum
space), whereas the later aim at including the most relevant non-local diagrams to the DMFT.

2.2.4.1 Cluster extensions of DMFT

Several methods of cluster extensions of DMFT have been proposed, for instance

• cellular dynamical mean field theory (CDMFT), based on clusters in real space and

• dynamical cluster approximation (DCA), based on clusters in momentum space.

This section will focus on the DCA, more details on CDMFT (as well as on DCA) can be found
in [39]. This introduction essentially follows [40].

Quantum cluster approaches systematically include non-local correlations to DMFT by mapping
the infinite periodic lattice onto a finite sized cluster problem. This implies that spatial correlations
are fully included up to the size of such a cluster, while spatial correlations on larger scales are
treated still at a mean-field level.

In DMFT the Green function Gloc is coarse grained over the whole Brillouin zone

Gloc(ν) =
∑

~k∈1st BZ

G(ν,~k), (2.26)

which results in a momentum-independent self-energy. In DCA instead, the reciprocal lattice is di-
vided into Nc cells of size ∆k (see Fig. 2.4). Different common patching schemes can be obtained
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Figure 2.4: Coarse graining cells in DCA for Nc = 8 that partition the first Brillouin zone. The
cells are centered at a cluster momentum ~K. To construct the DCA cluster ~k is mapped to the
nearest cluster center ~k so that ~̃k = ~k − ~K remains in the cell around ~K (taken from [40]).

from Fig. 2.5. Note that the coarse graining is only performed within each cell so that non-local
spatial correlations up to a length of ξ ≈ π

∆k are taken into account. This new cluster problem
can be solved again by techniques as HF-QMC [31] or CT-QMC (especially in its weak-coupling
version, [35]), until the (in this case DCA) self-consistency is reached.

DCA, as well as other cluster extensions of DMFT, have been successfully applied in many cases
(see [39]). However, if the inclusion of spatial correlations on all length scales is needed, one
has to abandon the cluster extension schemes and adopt the complementary treatment of the
diagrammatic methods described in the next section.

2.2.4.2 Diagrammatic extensions of DMFT - an overview

To overcome the limitations of cluster extensions of DMFT, several so-called diagrammatic exten-
sion have been proposed, which are in principle able to include spatial correlations on every length
scale. The dynamical vertex approximation (DΓA), which will be introduced and discussed in

Figure 2.5: Different DCA patching schemes (taken from [41]).
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detail in Sec. 2.3.2, is based on the assumption of the locality of the fully irreducible vertex Λ.

A different approach for including long-range spatial correlations beyond DMFT is the dual fermion
approach (DF). In DF these correlations are treated systematically by introducing additional aux-
iliary degrees of freedom via a Hubbard-Stratonovich transformation for the non-local degrees of
freedom, which are called dual fermions. A subsequent integration of the local degrees of free-
dom yields a new problem in terms of the dual fermions which interact via the reducible local 4-point
full vertex F (see Sec. 2.3.1) of the AIM1. For a detailed description of the DF approach and its
application to the two-dimensional Hubbard model see [43] and also [44].

An approach which aims at the unification of DΓA and DF is the recently proposed one-particle
irreducible functional approach (1PI, [45]). Similarly to DF, the 1PI is also based on functional
integral methods. The difference lies in the type of vertices utilized: in DF, the basic object is the
reducible vertex, whereas it is the full vertex in case of the 1PI.

Recently, also a completely different path to the access to spatial electronic correlations has
been proposed by the unification of DMFT with the functional renormalization group (fRG), coined
DMF2RG [46]. In this method, local correlations are fully taken into account by DMFT. On top of
these, non-local correlations are systematically included by means of the functional renormaliza-
tion group flow equations.

Most recently, an extension of DMFT was proposed, that interpolates between the spin-fluctuation
or GW approximations at weak coupling and the atomic limit at strong coupling by approximat-
ing the dynamical three-leg interaction vertex γ (see next section) by its purely local counterpart.
This approach has been coined TRILEX [47]. A different method exploits the local expansion of the
functional construction of the fully irreducible four-point vertex Λ, hence its name QUADRILEX [48].

Common to all of these methods is, that they heavily rely on the ability to access two-particle
(i.e. vertex) quantities. This is why, in the next section, an introduction to two-particle quantities
precedes the detailed discussion of the diagrammatic extension of DMFT which is used throughout
the rest of this thesis, the dynamical vertex approximation.

1Note, that in principle the exact integration of the local degrees of freedom would yield also higher vertex function
(6-point, 8-point etc.) for the dual fermion interaction. These contributions are, however, usually neglected. In this
context, see also the discussion in [42].
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2.3 The dynamical vertex approximation - a step beyond DMFT

2.3.1 A two-particle quantity crash course

The sum of all connected (one-particle irreducible, 1PI) two-particle (2P) diagrams, i.e. all con-
nected diagrams which two fermionic particles enter and leave, defines the physical scattering
amplitude between two electrons (or holes) and is formally denoted as full vertex F . It is im-
portant to note that the knowledge of the full vertex fully determines the one-particle spectrum
(self-energy) of the many-body problem via an exact relation: the Dyson-Schwinger equation of
motion [49]. For the Hubbard model, this relation reads

Σ(k) =
Un

2
− U

β2

∑
k′q

F kk
′q

↑↓ G(k′)G(k′ + q)G(k + q) (2.27)

and is depicted in Fig. 2.6. Here, U is the (purely local) Hubbard interaction, n is the filling (n = 1

corresponds to the half-filled case) and β is the inverse temperature. The indices k, k′ and q are
four-indices, i.e. k = (ν,~k) and q = (ω, ~q), where ν = (2j+ 1)πβ is a fermionic Matsubara frequency,
whereas ω = 2j πβ is a bosonic one (j ∈ Z).

k, σ k, σ

k′,−σ

k′ + q,−σ

k + q, σ

F kk′q
σσ′

k, σ k, σ
= +

Σ
k, σ k, σ

Figure 2.6: Dyson-Schwinger equation of motion as an exact relation between the two-particle full
connected vertex F and the one-particle self-energy Σ.

As explained in Ref. [50] and adopting the notation of Ref. [51], the sum for the full vertex F

can be subdivided in terms of the 2P reducibility of the diagrams contained. Reducibility at the
two-particle level (2PR) means that a diagram with two ingoing and two outgoing legs will fall
apart in two by cutting two fermionic propagator lines, i.e. separating two legs from two other ones.
It is possible to decompose the full vertex F into reducible contributions Φ` in specific particle-hole
or particle-particle channels (` = pp,ph,ph) and in fully 2P irreducible (2PI, i.e. irreducible in every
channel) contributions Λ in the following way:

F kk
′q = Λkk

′q + Φkk′q
pp + Φkk′q

ph + Φkk′q

ph
(2.28)
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which is called parquet equation [50,52–55]. Exemplary diagrams of such a classification can be
found in Fig. 2.7.

F kk′q
σσ′

k + q, σ k′ + q, σ′

k, σ k′, σ′

2

1

3

4 1 4

2 3

e.g.

F Λ= + +Φpp Φph +

2 3 3 32 2

1 1 14 4 4

Φph

Figure 2.7: Parquet equation and two-particle reducibility.

An alternative decomposition of F can be performed in terms of irreducible vertices in a specific
channel Γ`:

F kk
′q = Φkk′q

` + Γkk
′q

` (2.29)

which corresponds to the Bethe-Salpeter equation [50]. Its graphical representation for one spe-
cific channel is displayed in Fig. 2.8.

F kk′q
↑↓

k + q, σ k′ + q, σ′

k, σ k′, σ′

2

1

3

4

=

F Γph= + Φph

2
k + q, σ k′ + q, σ′

3

1 k, σ k′, σ′
4

Γkk′q
ph,↑↓ F k1k

′q
σ1↓Γkk1q

ph,↑σ1

1 k, σ k′, σ′
4

k′ + q, σ′
32

k + q, σ

k1 + q, σ1

k1, σ1

+

Figure 2.8: Bethe-Salpeter equation in the ph-channel.

Extraction of two-particle vertex functions in DMFT

All the vertex functions introduced above can be calculated from the local generalized susceptibil-
ities of an auxiliary Anderson impurity model, associated with a DMFT self-consistent solution, by
using the above relations Eq. (2.28) and (2.29). Following the notation of Ref. [51] we define the
local generalized susceptibility in particle-hole notation as

χνν
′ω

ph,σσ′ =

β∫
0

dτ1dτ2dτ3e
−iντ1ei(ν+ω)τ2e−i(ν

′+ω)τ3

×
[〈
Tτ c
†
σ(τ1)cσ(τ2)c†σ′(τ3)cσ′(0)

〉
−
〈
Tτ c
†
σ(τ1)cσ(τ2)

〉〈
Tτ c
†
σ′(τ3)cσ′(0)

〉]
(2.30)
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where β = 1/T is the inverse temperature, Tτ is the imaginary time-ordering operator and ν, ν ′

and ω denote the two fermionic and the bosonic Matsubara frequencies, respectively. Note that
this expression contains both one-particle (1P) and two-particle (2P) Green functions and that the
connection to the full vertex F can be established via

χνν
′ω

σσ′ = χνν
′ω

0 δσσ′ −
1

β2

∑
ν1ν2

χνν1ω
0 F ν1ν2ω

σσ′ χν2ν′ω
0 (2.31)

where
χνν

′ω
0 = −βG(ν)G(ν + ω)δνν′ (2.32)

is the product of two one-particle Green functions (“bubble term”). For an easier physical interpre-
tation one usually builds linear combinations of the above expression to obtain

χνν
′ω

c(s) = χνν
′ω

ph,↑↑ ± χνν
′ω

ph,↑↓, (2.33)

i.e. the generalized susceptibilities in the charge and spin channel, respectively. Similarly, one
can equally well define local generalized susceptibilities in the particle-particle notation, see e.g.
[50,51,56]:

χνν
′ω

pp,σσ′ =

β∫
0

dτ1dτ2dτ3e
−iντ1ei(ω−ν

′)τ2e−i(ω−ν)τ3

×
[〈
Tτ c
†
σ(τ1)cσ(τ2)c†σ′(τ3)cσ′(0)

〉
−
〈
Tτ c
†
σ(τ1)cσ(τ2)

〉〈
Tτ c
†
σ′(τ3)cσ′(0)

〉]
(2.34)

Out of the generalized susceptibilities the physical (i.e. measurable in conventional spectroscopy
experiments) susceptibilities in the (spin-diagonalized) channels r = c, s, pp ↑↓ can be calculated
by summing over the fermionic Matsubara frequencies

χr(ω) =
1

β2

∑
νν′

χνν
′ω

r . (2.35)

At the same time, from the generalized susceptibilities, the 2P irreducible vertices in a given chan-
nel can be extracted by inverting the corresponding local Bethe-Salpeter equations:

χνν
′ω

c(s) = χνν
′ω

0 − 1

β2

∑
ν1ν2

χνν1ω
0 Γν1ν2ω

c(s) χν2ν′ω
c(s) (2.36)

where Γνν
′ω

c(s) denotes the vertex function irreducible in the selected (c(harge)- or s(pin)-) channel.
Making the inversion explicit, the irreducible vertex reads

[
Γνν

′

c(s)
]ω

= β2
([
χνν

′

c(s)
]−1 −

[
χνν

′
0

]−1
)ω

(2.37)
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Gloc(ν) inverse

B.-S. eq.

parquet

equations

inverse parquet

Figure 2.9: Flow-chart inverse parquet.

and, similarly, for the particle-particle channel one has [56]

[
Γ̃νν

′
pp,↑↓

]ω
= β2

([
χ̃νν

′
pp,↑↓ − χνν

′
0,pp
]−1

+
[
χνν

′
0,pp
]−1
)ω

(2.38)

where χ̃νν
′ω

pp,↑↓ = χ
ν(ω−ν′)ω
pp,↑↓ , Γ̃νν

′ω
pp,↑↓ = Γ

ν(ω−ν′)ω
pp,↑↓ and

χνν
′ω

0,pp = −βG(ν)G(ω − ν)δνν′ (2.39)

This derivation shows that, once one obtained the 1P and 2P Green functions from a DMFT cal-
culation, the irreducible vertex in a specific channel can be calculated by a simple inversion of
the generalized susceptibility χ represented as a matrix of the fermionic Matsubara frequencies,
keeping the bosonic one fixed.

Please note that the calculation of the fully irreducible vertex Λνν
′ω requires the inversion of the

parquet equation (Eq. 2.28) and, therefore, cannot be represented as a simple inversion of the
generalized susceptibility χ. The extraction of the fully irreducible vertex is a procedure coined in-
verse parquet. It can be schematically seen in Fig. 2.9. Specifically, for a DMFT vertex-calculation,
it consists of the following steps:

1. A DMFT calculation is performed until self-consistent convergence. The (local) Green func-
tion Gloc(ν) as well as the (local) generalized susceptibility χνν

′ω
loc are extracted from the self-

consistently determined Anderson impurity model.

2. The (local) irreducible vertices in each channel Γνν
′ω

loc,r are calculated via the Bethe-Salpeter
equations (2.29). These can be written also directly for the generalized susceptibilities in-
stead of the full vertex F νν

′ω
loc (see [56]).

3. The reducible vertices Φνν′ω
loc,r are determined again by usage of the Bethe-Salpeter equations

(2.29). Eventually, the (again local) fully irreducible vertex Λνν
′ω

loc can be obtained via the local
parquet equation, i.e. Eq. (2.28) for local quantities without momentum index.



2.3. THE DYNAMICAL VERTEX APPROXIMATION 25

Many-body approximation schemes on different diagrammatic levels

It turns out to be quite illustrative for the purpose of classifying the different types of vertices intro-
duced in the previous section, to connect well-known many-body approximation schemes with
the corresponding approximations of vertices on different levels of the diagrammatics Vkk′q =

(F,Γr,Λ)kk
′q (see also [51]). These can be roughly separated in schemes which approximate

these vertices by a constant Vkk′q ≈ U or by their purely local counterparts Vkk′q ≈ Vνν′ωloc .

Starting at the shallowest level of the diagrammatics, if one substitutes the full vertex F kk
′q = U ,

after inserting into the Dyson-Schwinger equation of motion (2.27), one arrives at second order
perturbation theory for the electronic self-energy. For the full vertex F there does not exist an ob-
vious approximation scheme which uses only its local counterpart, although, one may be tempted
to classify the dual fermion approach into this category. However, one has to keep in mind, that
the dual fermion approach relies on a transformation to dual space, which makes its classification
rather delicate here.

Diving into a deeper level of the diagrammatics, one can approximate the irreducible vertex in
a specific channel by a constant Γkk

′q
r = U . Here, in order to obtain the self-energy, one has to

calculate F using the Bethe-Salpeter equations (2.29), followed by the Dyson-Schwinger equation
of motion (2.27). The ladders that are built with the bare interaction U in one specific channel lead
to the random phase approximation (RPA) in this channel (see e.g. [57]). In other schemes,
like the fluctuation exchange approximation (FLEX) [58] or the pseudopotential parquet ap-
proximation [50], the ladders are built with the same or different values for the static interaction,
respectively. A different path is chosen for the ladder-version of the dynamical vertex approxi-
mation, where Γkk

′q = Γνν
′ω

loc . This method will be described in detail in Sec. 2.3.2.2.

Finally arriving on the deepest diagrammatic level, one can aim to approximate the fully irreducible
vertex. In order to define the vertices on all levels of the diagrammatics (and, eventually, the self-
energy) consistently with the choice of Λ, one has to iterate the so-called parquet scheme until
self-consistency [59, 60]. This scheme is depicted in Fig. 2.10. As one can see, it consists of two
nested loops, whose steps are the following:

1. The lattice system’s 1P and 2P quantities (G, F and Γr) are initialized.

2. Inner Loop

(a) F is updated from Γr and G via the Bethe-Salpeter equations (2.29).

(b) The updated reducible vertices Φr are calculated from F and Γr, again via the Bethe-
Salpeter equations.
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Figure 2.10: Flow-chart parquet.

(c) From the parquet equation (2.28), with the input of a certain choice of the fully irreducible
vertex Λ, the irreducible vertices Γr are updated.

(d) The inner loop is iterated for a fixed G, until self-consistency for F and Γr is reached.

3. The self-energy Σ is calculated for the self-consistently determined full vertex F by means of
the Dyson-Schwinger equation of motion (2.27).

4. The Green function is updated via the Dyson equation (2.12). Now the inner loop (2.)
is entered again with the updated Green function G. The procedure is iterated until self-
consistency for G is reached (outer loop).

Depending on the choice of the fully irreducible vertex, two approximation schemes can be defined:
(i) the so-called parquet-approximation (PA), where Λkk

′q = U [50,53,61], and (ii) the dynamical
vertex approximation (DΓA), where Λkk

′q = Λνν
′ω

loc , which is at the very heart of this thesis and
will be introduced and discussed in detail in Sec. 2.3.2 [20].

2.3.2 The dynamical vertex approximation

The approach for diagrammatically including non-local correlations to cluster extensions of DMFT,
that serves as the basis of this thesis, is the dynamical vertex approximation (DΓA). A proposal
advanced by A. Toschi, K. Held and A. Katanin in 2007 was to push the requirement of locality one
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Figure 2.11: Diagrammatic content of the dynamical vertex approximation (DΓA). The
DΓA assumes the locality of the two-particle fully irreducible vertex Λ, whose lowest order dia-
grammatic contributions are shown. They can be calculated directly from the single-site AIM.
The (local) vertex Λ represents the crucial input for the DΓA calculations, which can, in this way,
include spatial correlations at all length scales beyond DMFT (taken from [27]).

level higher in the hierarchy of diagrams, namely at the two-particle level [20]. More specifically,
the two-particle quantity corresponding to the self-energy for which the assumption of locality is
made, is the two-particle fully irreducible vertex Λ (Fig. 2.11), often also indicated by Λ = Γirr,
from which the name dynamical vertex approximation (DΓA) originally stems from. Note that
the locality at the two-particle level does not imply the locality at the one-particle level at all (see
Sec. 2.3.1), so that spatial correlations at all length scales can now be included systematically and
in a fully non-perturbative way.

Diagrammatic variants of the dynamical vertex approximation

As already discussed in Sec. 2.3.1 about the relationship of many-body approximation schemes
with diagrammatic levels, there are currently two schemes of the DΓA conceivable: the (parquet-
based) DΓA, where the assumption of locality is done at the level of the fully irreducible vertex Λ as
well as the ladder-DΓA where the irreducible vertex in a specific channel (usually the ph-channels,
Γph) is assumed to be purely local. In the next two subsections both calculational algorithms are
described and advantages and drawbacks are discussed.

2.3.2.1 The parquet formulation of the DΓA

As previously stated, the DΓA takes the DMFT-assumption of locality of the fully irreducible one-
particle quantity (i.e. the self-energy) to a higher level of the diagrammatics (i.e. to the fully irre-
ducible vertex Λ). The fully irreducible vertex Λ serves as a basic building brick for the construction
of the non-local full (connected) two-particle vertex F and the non-local Green function. Fig. 2.12
shows the schematic flow of a (fully self-consistent, parquet-based) DΓA-calculation, which con-
sists of the following steps:
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Figure 2.12: Flow-chart DΓA.

1. An Anderson impurity model is solved and its local Green function Gloc(ν) as well as its local
generalized susceptibilities χνν

′ω
loc are extracted.

2. From Gloc(ν) and χνν
′ω

loc the (local) fully irreducible vertex Λνν
′ω

loc is calculated by means of an
inverse parquet scheme (see Sec. 2.3.1 and Fig. 2.9).

3. In this step, the actual DΓA assumption is implemented: together with the non-interacting
lattice Green function G0(ν,~k), Λνν

′ω
loc is used as an input for the (self-consistent) parquet

scheme, depicted in Fig. 2.10 in Sec. 2.3.1. The final result of the parquet scheme is a
(non-local) self-energy Σ(ν,~k) from which one obtains the non-local Green function G(ν,~k).

4. Eventually, the new local Green function Gnew,loc(ν) =
∑

~k
G(ν,~k) is calculated and serves as

the local Green function of a new auxiliary Anderson impurity model. The iteration scheme is
closed with 1. and iterated until convergence.

In comparison with the ladder-implementation, which will be discussed in detail in the following
subsection, the parquet-based version of DΓA certainly has some advantages:

• The starting AIM does not need to be a fully converged DMFT solution, as all local and
non-local correlations are generated by the DΓA algorithm itself.

• All channels (the (ph,pp)-channels or density/magnetic/singlet/triplet channels) are treated
on equal footing. This might be a crucial advantage in cases were the leading instability is
unknown or in cases of competing instabilities.

The drawbacks in comparison with the ladder-version of DΓA are:

• The parquet algorithm is computationally very demanding in comparison with the task of the
solution of an AIM as well as constructing simply Bethe-Salpeter ladders in a certain channel.
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• Parquet solvers are also numerically very demanding and asymptotic behavior of vertex func-
tions has to be exploited in order to be able to set up a proper numerical environment to
perform the calculations [59,60].

If, however, a physical channel is dominant in a certain parameter regime, a computationally and
numerically much simpler implementation of the DΓA can be exploited to treat non-local correla-
tions: the ladder-version of the DΓA. This version is utilized predominantly in this thesis, which is
the reason why it is discussed in more detail in the subsequent subsection.

2.3.2.2 The ladder-DΓA

As discussed in the previous subsection, the computational costs of the full parquet-implementation
of DΓA are quite heavy. If one of the physical channels can be singled out a-priori to be the dominat-
ing one, however, a simpler scheme than the full-parquet one can be proposed: the ladder-version
of the DΓA, which will be introduced in the present subsection.

Starting at recalling the full momentum- and frequency-dependent parquet-equation

F kk
′q

↑↓ = Λkk
′q

↑↓ + Φkk′q
pp,↑↓ + Φkk′q

ph,↑↓ + Φkk′q

ph,↑↓ (2.40)

one can stress that the assumption of DΓA is the locality of the fully irreducible vertex, which leads
to

F kk
′q

DΓA,↑↓ = Λνν
′ω

loc,↑↓ + Φkk′q
pp,↑↓ + Φkk′q

ph,↑↓ + Φkk′q

ph,↑↓. (2.41)

Please note that it is absolutely necessary to keep the reducible vertices fully momentum- and fre-
quency dependent in those channels r where they are supposed to exhibit a second order phase
transition. The (local and non-local) fluctuations, which are generated by such a transition are cru-
cially connected to the transition itself and, hence, have to be incorporated properly in the theory.

If the dominant instability is known a priori, also the respective reducible vertex should be the
dominant one with respect to its momentum-dependence. Hence, one strategy to further simplify
Eq. (2.41) is to restrict all but the dominant reducible vertex to local approximations. As in most of
the systems analyzed in this thesis, the dominant fluctuation is a magnetic one, the short derivation
for the ladder-DΓA equations presented here will focus on this channel. Similar derivations can be
found in [20,56].

As the magnetic channel is singled out to be the dominant channel, in addition to the fully irre-
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ducible vertex, the pp-channel is approximated by its purely local counterpart:

F kk
′q

ladder-DΓA,↑↓ = Λνν
′ω

loc,↑↓ + Φνν′ω
loc,pp,↑↓ + Φkk′q

ph,↑↓ + Φkk′q

ph,↑↓. (2.42)

Please note that on the ladder-DΓA the corresponding Bethe-Salpeter equations are built up with
the local irreducible vertices Γloc,c/s, so that the full vertex just depends on the transferred momen-
tum ~q as well as on three frequencies:

F νν
′ω

r,~q = Γνν
′ω

loc,r +
1

β

∑
ν1,~k1

Γνν1ω
loc,r GDMFT(ν1,~k1)GDMFT(ν1 + ω,~k1 + ~q1)F ν1ν′ω

r,~q . (2.43)

For the actual implementation, the generalized susceptibilities rather than the full vertices are used.
They are equivalent up to contributions stemming from ~k-summed bare DMFT-bubbles

χνω0,~q = −
∑
~k

GDMFT(ν,~k)GDMFT(ν + ω,~k + ~q) (2.44)

leading to the relation
χνν

′ω
r,~q = −βδνν′χνω0,~q + χνω0,~qF

νν′ω
r,~q χν

′ω
0,~q . (2.45)

For reasons, which will become clear in the following, one rewrites this Bethe-Salpeter equation for
the generalized susceptibilities in term of physical susceptibilities

χωr,~q =
1

β2

∑
νν′

χνν
′ω

r,~q . (2.46)

In order to do so, following [20, 62, 63], one can separate the Bethe-Salpeter ladder in the ph-
channels r=c(harge)/s(pin) by the bare interaction Ur instead of the local irreducible vertex Γνν

′ω
loc,r

via an auxiliary susceptibility

χ∗,νν
′ω

r,~q =

[(
χνω0,~q

)−1
δνν′ +

1

β2

(
Γνν

′ω
loc,r − Ur

)]−1

(2.47)

where the inversion is done in (ν, ν ′) (ω is kept fixed) and Uνν
′

r =const., depending on the channel
(Uc = +U and Us = −U , where U is the bare Hubbard interaction). This separation leads to the
following Bethe-Salpeter equation:

χνν
′ω

r,~q = χ∗,νν
′ω

r,~q − 1

β

∑
ν1ν2

χ∗,νν1ω
r,~q Uν1ν2

r χν2ν′ω
r,~q (2.48)
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Iterating the last equation reveals

χνν
′ω

r,~q = χ∗,νν
′ω

r,~q − 1

β

∑
ν1ν2

[
χ∗,νν1ω

r,~q Urχ
∗,ν2ν′ω
r,~q − 1

β2

∑
ν3ν4

χ∗,νν1ω
r,~q Urχ

ν2ν3ω
r,~q Urχ

∗,ν4ν′ω
r,~q

]
=

= χ∗,νν
′ω

r,~q − Ur

β2

∑
ν1ν2

χ∗,νν1ω
r,~q χ∗,ν2ν′ω

r,~q +
U2

r
β2

∑
ν1ν4

χ∗,νν1ω
r,~q

(
1

β2

∑
ν2ν3

χν2ν3ω
r,~q

)
χ∗,ν4ν′ω

r,~q =

= χ∗,νν
′ω

r,~q − Ur(1− Urχ
∗,ω
r,~q )

1

β2

∑
ν1ν2

χ∗,νν1ω
r,~q χ∗,ν2ν′ω

r,~q (2.49)

which, in turn, with the definition of the triangular vertex

γνωr,~q =
(
χνω0,~q

)−1 1

β

∑
ν′

χ∗,νν
′ω

r,~q , (2.50)

yields
F νν

′ω
r,~q =

(
χνω0,~q

)−1
[
βδνν′ − χ∗,νν

′ω
r,~q

(
χνω0,~q

)−1
]

+ Ur(1− Urχ
ω
r,~q)γ

νω
r,~q γ

ν′ω
r,~q (2.51)

for the full (lattice) vertex. Inserting the full lattice vertex into the Dyson-Schwinger equation of
motion (2.27), eventually, reveals the self-energy of the ladder-DΓA:

Σladder
DΓA (ν,~k) =

Un

2
+

U

2β2

∑
ω,~q

[
γνωc,~q − 3γνωs,~q + Uγνωc,~qχ

ω
c,~q + 3Uγνωs,~qχ

ω
s,~q + 2+ (2.52)

−
∑
ν′,~k′

(
F νν

′ω
loc,c − F νν

′ω
loc,s

)
GDMFT(ν ′,~k′)GDMFT(ν ′ + ω,~k′ + ~q)

]
GDMFT(ν + ω,~k + ~q)

Please note the following:

• In this rewritten form, the physical susceptibilities enter the equation of motion for the self-
energy.

• The full lattice vertex F νν
′ω

r,~q differs from the lattice vertex obtained by the parquet equations
in view of the fact that (i) it is built up with ladders only in the particle-hole channels and (ii) it
is not determined self-consistently like in a parquet-approach.

• The full lattice vertex serves merely as an auxiliary quantity to calculate reducible vertices
via Bethe-Salpeter equations.

• Expressed in terms of full vertices, the full lattice vertex in ladder-DΓA reads as the one
obtained in [20,56]:

F νν
′ω

ladder,~k~k′~q,↑↓ =
1

2

(
F νν

′ω
c,~q − F νν′ωs,~q

)
− F ν(ν+ω)(ν′−ν)

s,~k−~k′ − 1

2

(
F νν

′ω
loc,c − F νν

′ω
loc,s

)
(2.53)
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Figure 2.13: Flow-chart ladder-DΓA.

yielding an alternative form of the ladder-DΓA self-energy:

Σladder
DΓA (ν,~k) =

Un

2
− U

2β2

∑
ν′ω

∑
~k′~q

(
F νν

′ω
c,~q − 3F νν

′ω
s,~q − F νν′ωloc,c + F νν

′ω
loc,s

)
×

GDMFT(ν ′,~k′)GDMFT(ν ′ + ω,~k′ + ~q)GDMFT(ν + ω,~k + ~q) (2.54)

Algorithmic flow of the ladder-DΓA

In order to perform an actual ladder-DΓA calculation, the following steps have to be processed
(see also Fig. 2.13):

1. As a first step, a full self-consistent DMFT-cycle has to be performed, out of which the lo-
cal Green function Gloc(ν) as well as the local generalized susceptibilities χνν

′ω
loc have to be

extracted.

2. For the target channel (usually the physically dominant one), the local irreducible vertices
Γνν

′ω
loc,r are calculated by means of the inverse Bethe-Salpeter equations (2.29).

3. The lattice Bethe-Salpeter ladders are built, using the local irreducible vertex Γνν
′ω

loc,r and the
Green function from DMFT, GDMFT(ν,~k) as building bricks. This yields the full vertex function
F νν

′ω
ladder,~k~k′~q

(or the corresponding generalized susceptibility) of Eq. 2.53.

4. The full lattice vertex F νν
′ω

r,~q (or, alternatively, the corresponding generalized susceptibility)
and the DMFT Green function are inserted into the Dyson-Schwinger-equation of motion in
order to obtain the ladder-DΓA self-energy Σladder

DΓA (ν,~k) of Eq. 2.54.

Please note the following points:
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• Quite different from DMFT as well as parquet-based DΓA, the ladder-DΓA is a one-shot
calculation, performed on top of a full DMFT self-consistency cycle.

• The previous point indicates, that the fixing of the average occupancy per lattice site can lead
to problems, keeping in mind that the chemical potential is fixed to the DMFT one.

• In turn, this means that the high-frequency asymptotics of the self-energy will probably not
exhibit the correct 1

iν -dependence (as, e.g. DMFT would yield), as will be shown in the next
subsection. The deeper reason lies in the construction of the ladder diagrams for χνν

′ω
r,~q , since

for this, a local irreducible vertex Γ is combined with a momentum-dependent Green function
G, which violates the Baym-Kadanoff relation (Ward identity) [64,65]:

Γ =
δΣ

δG
. (2.55)

This, in turn, means, that the self-consistency cannot be restored by a pure one-particle level
approach.

The above points are considered by the so-called Moriyaesque λ-correction, which will be dis-
cussed in detail in the subsequent subsection.

Moriyaesque λ-corrections

In the previous subsection that lack of both one- and two-particle self-consistency has been men-
tioned. Here, its consequences are discussed further and a possible solution to this problem (the
so-called Moriyaesque λ-correction) is introduced.

In a first step, an analysis of the asymptotic properties (iν → ∞) of the self-energy calculated
via the Dyson-Schwinger equation is called for. Recalling this equation in four-index notation

Σ(k) =
Un

2
− U

β2

∑
k′,q

F kk
′q

↑↓ G(k′)G(k′ + q)G(k + q) (2.56)

one may discriminate the separate contributions in powers of ν (see also [56]), yielding in first order

Σ(k) =
Un

2
+

1

iν

U2

β3

∑
k1,k′,q

χk1k′q
↑↑ +O

(
1

(iν)2

)
. (2.57)

For the exact χkk
′q

↑↑ and for the SU(2)-symmetric case, the sum in the equation above can be
calculated analytically:

1

β3

∑
k1,k′,q

χk1k′q
↑↑ =

〈
n↑n↓

〉
−
〈
n↑
〉〈
n↓
〉

=
n

2

(
1− n

2

)
(2.58)



34 CHAPTER 2. MANY-BODY THEORY: MODELS AND METHODS

For the self-energy one obtains (for the Hubbard and AIM respectively):

Σ(k) =
Un

2
+

1

iν
U2n

2

(
1− n

2

)
+O

(
1

(iν)2

)
(2.59)

Now one can immediately see, that the disagreement between the momentum-dependent DMFT
susceptibility and the susceptibility constructed by means of the ladder-approximation in DΓA im-
plies a difference in the asymptotics of the respective self-energies. Also, this observation shows a
direct route how to restore, on the one hand, the asymptotics of the self-energy and, on the other
hand, the self-consistency on the two-particle level: the susceptibility has to be corrected in a way
which has still to be determined. These effective corrections should, of course, push the system
into a “more physical” direction. Bearing in mind that DMFT neglects all spatial correlations, which
lead e.g. to a general overestimation of the transition temperatures for second-order phase tran-
sitions, one could think of adapting the physical susceptibility by introducing the effect of spatial
fluctuations. Essentially, this idea follows Moriya’s spin fluctuation theory in itinerant magnetic sys-
tems [66], hence the name Moriyaesque λ-corrections.

In the vicinity of a second-order phase transition, the physical susceptibility, which describes the
ordering phenomenon (i.e. for frequency ω = 0 and characteristic ordering vector/momentum ~Q),
can be expanded, leading essentially to an Ornstein-Zernicke form of the correlation function [67],
which reads

χω=0
r,~q =

A(
~q − ~Q

)2
+ ξ−2

(2.60)

A denotes a proportionality constant and ξ the correlation length in channel r. The effect of spatial
correlations is, like in the case of purely local temperature fluctuations, to destroy the order, which
in turn means, that the transition temperature has to be lowered with respect to an approximation,
which neglects these fluctuations. Straightforwardly, the effect of these fluctuations can be encap-
sulated as an effective descrease in the correlation length quantified by a (positive and real)
constant λ. This λ-corrected physical susceptibility reads:

χλ,ωr,~q =
[(
χωr,~q
)−1

+ λr

]−1 ω=0
=

A(
~q − ~Q

)2
+ ξ−2 + λr

(2.61)
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The physical susceptibilities in Eq. (2.52) can now be substituted by the λ-corrected ones in order
to obtain the ladder-DΓA self-energy. It then reads

Σladder
DΓA (ν,~k) =

Un

2
+

U

2β2

∑
ω,~q

[
γνωc,~q − 3γνωs,~q + Uγνωc,~qχ

λc,ω
c,~q + 3Uγνωs,~qχ

λs,ω
s,~q + 2 +

−
∑
ν′,~k′

(
F νν

′ω
loc,c − F νν

′ω
loc,s

)
GDMFT(ν ′,~k′)GDMFT(ν ′ + ω,~k′ + ~q)

]
GDMFT(ν + ω,~k + ~q).

(2.62)

Algorithmically, assuming that the dominant channel is the spin channel, the value of λ can be
determined in several ways:

1. Optical inspection
The first implementation of the λ-correction utilized the fact discussed above, that the correct
adaptation of the susceptibility implies the correct high-frequency asymptotics of the ladder-
DΓA self-energy. Practically, the (imaginary part of the) ladder-DΓA self-energy (multiplied
by the Matsubara frequency leading to constant asymptotics of the plot), was plotted as a
function of the Matsubara frequency on top of the DMFT one (which exhibits the correct 1

iν

asymptotics). Then, the λ-parameter was updated in such a way that the lines were expected
to lie close on/to each other. Of course, this approach bears serious drawbacks in terms of
accuracy as well as practical applicability and automation.

2. Exploiting sum rules
A much more convenient approach is to exploit the relation (2.58). Rewriting this equation
and performing partial summations yields

1

β3

∑
νν′ω

∑
~k~k′~q

χνν
′ω

~k~k′~q,↑↑ =
1

β

∑
ω~q

χω~q,↑↑ =
1

2β

∑
ω~q

(
χωc,~q + χωs,~q

)
=
n

2

(
1− n

2

)
(2.63)

Since the DMFT self-energy exhibits the correct high-frequency asymptotics for its self-
energy, its local generalized susceptibility obeys this sum-rule:

1

β3

∑
νν′ω

χνν
′ω

↑↑ =
n

2

(
1− n

2

)
(2.64)

This relation provides a condition for the λ-corrections:∑
~q,ω

χλ,ω↑↑,~q
!

=
∑
ω

χωloc,↑↑ (2.65)

However, for the susceptibility χω↑↑,~q, unlike for the charge and spin susceptibilities, no obvious,
physically motivated form near a phase transition exists. Therefore, it has to be composed
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by the physical charge and spin susceptibilities, and the λ-corrections are assumed to be
carried over to either one (the dominant, e.g. spin) channel

∑
~q,ω

χλ,ω↑↑,~q =
1

2

∑
~q,ω

(
χωc,~q + χλs,ω

s,~q

)
!

=
1

2

∑
ω

(
χωloc,c + χωloc,s

)
(2.66)

or to both channels in an equal manner

∑
~q,ω

χλ,ω↑↑,~q =
1

2

∑
~q,ω

(
χλc,ω

c,~q + χλs,ω
s,~q

)
!

=
1

2

∑
ω

(
χωloc,c + χωloc,s

)
(2.67)

that is usually split into two separate equations∑
~q,ω

χλc,ω
c,~q

!
=

∑
ω

χωloc,c (2.68)

∑
~q,ω

χλs,ω
s,~q

!
=

∑
ω

χωloc,s. (2.69)

In most of the following calculations, the latter implementation of the λ-correction has been
used. Otherwise, it will be explicitly stated. A further, empirically found, remark can be made
with respect to a possible frequency-dependent λ-correction: although in principle possible,
a λ-correction constant in frequency-space turns out to be sufficient for the assurance of the
correct asymptotics of the ladder-DΓA self-energy. For a recent discussion of methods for
λ-corrections see [68].

For a detailed introduction to the current implementation of the ladder-DΓA including technical
details, see Sec. 2.4. Please also note that, at least for some set of parameters, the application of
the λ-correction can lead to unphysical results far away from the Fermi surface (see Sec. 4.3.4 for
the case of nanoscopic structures).

2.4 Current implementation of the ladder-DΓA algorithm

After the synopsis of the necessary theory in Sec. 2.3.2.2, in this final part of the chapter, the cur-
rent implementation of the ladder-DΓA is discussed. This discussion should serve as a reference
to the actual user of the program and, therefore, will explain the necessary set-up, its structure and
the typical parameters for which the program can/may be used reliably. Common checks for the
application of the program and the obtained results can be found in Appendix B.

The aim of the program is to calculate the non-local DΓA self-energy in ladder-approximation (the



2.4. CURRENT IMPLEMENTATION OF THE LADDER-DΓA 37
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Figure 2.14: Flow-chart algorithm ladder-DΓA. The necessary steps 1. - 7. are describe in detail
in the main text of this section. The modules which are utilized to achieve the separate tasks
are written in typewriter font.

magnetic channel is singled out as the dominant one in this implementation) for the two- or three-
dimensional Hubbard model on a square or cubic lattice2 and, either as byproducts or quantities of
main interest, the λ-corrected susceptibilities. The program is written in the FORTRAN90 standard
and is subdivided into several modules of which Selfk LU parallel.f90 is the main module. As

2There exist versions for every dimensionality (one-, two- and three-dimensional Hubbard model). The latest version
which is described here, however, is written for two and three dimensions.
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its name indicates, the program is MPI-parallelized in the bosonic Matsubara frequencies using
one core per frequency (e.g., in the Dyson-Schwinger equation of motion). Fig. 2.14 summarizes
the algorithmic flow of the program, indicating the necessary inputs and modules for every step,
which are now discussed in detail:

Setting up the program
Before one can start an actual ladder-DΓA-calculation, a full DMFT calculation has to be
performed, where the (local) DMFT self-energy ΣDMFT(ν), the local generalized susceptibil-
ities χνν

′ω
loc,r and the local irreducible vertices Γνν

′ω
loc,r in channel r=c(harge)/s(pin) have to be

extracted. The self-energy is actually provided by two files: the local DMFT self-energy in
gm wim and the (inverse) Weiss field of the self-consistently determined AIM in g0mand. The
vertices have to be given in subdirectories (chi dir and gamma dir, respectively), split into
files with constant bosonic Matsubara frequencies, the total number of which is denoted by
2Nω − 1 (so that, e.g., the file chiXXX in chi dir contains the data for the zeroth bosonic
Matsubara frequency for XXX= Nω − 1).

The following directories serve as output directories and have to be explicitly created: klist,
chisp omega and chich omega.

In dispersion.f90, the dispersion relation of the lattice has to be given. For reasons, which
will become clear in the following steps, the form the dispersion relation has to be written in
terms of sin(ki)- and cos(ki)-terms for the reciprocal spatial directions i of the Brillouin zone.

For building the program, the included make-file can be used. The command for linking the
production version of the program is make run.

1. Reading parameters and data
When the program is started, as a first step, parameters and input data are read. The main in-
put file for parameters is ladderDGA.in, which, therefore, are described in Tab. 2.1. After ini-
tializing the program with the values from ladderDGA.in, ΣDMFT(ν) (= G−1

0 (ν)−G−1
loc,DMFT(ν),

including the Hartree term), χνν
′ω

loc,r and Γνν
′ω

loc,r are read.

2. Perform local Dyson-Schwinger equation of motion
Mainly as a test for the correct definition of the input parameters, the local Dyson-Schwinger
equation of motion is used to check, how well it reproduces the original DMFT self-energy.
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parameter(s) description

U, mu, beta, nden Hubbard parameters of the (self-consistently determined) AIM:
U , µ, β = 1/T , n

Iwbox number of positive fermionic/bosonic Matsubara frequencies Nω

shift manual shift of bosonic frequencies (usually 0)
LQ number of momentum points for the transferred momentum Nq

nint number of momentum points for internal momentum Nk

k number number of ~k-points for which Σ(ν,~k) shall be calculated
and that are specified in klist.dat

sigma only .TRUE.: λr have to be given, χλr=0,νν′ω
r,~q are read,

only Σ(ν,~k) is calculated
chi only .TRUE.: only χλr,νν′ω

r,~q and λr are calculated,
the calculation of Σ(ν,~k) is omitted

Table 2.1: Description of the input parameters in ladderDGA.in.

The local version of the Dyson-Schwinger equation of motion is given by

Σladder
loc (ν) =

Un

2
+

U

2β2

∑
ω

[
γνωc − 3γνωs + Uγνωc χωloc,c + 3Uγνωs χωloc,s + 2

−
∑
ν′

F νν
′ω

loc,↑↓GDMFT(ν ′)GDMFT(ν ′ + ω)
]
GDMFT(ν + ω).

(2.70)

The outcome of this calculation is written to klist/SELF LOC parallel, where the format of
the file is

ν ReΣDMFT(ν) ImΣDMFT(ν) ReΣladder
loc (ν) ImΣladder

loc (ν).

Please note that the agreement between the self-energies crucially depends on Nω, i.e.
the number of Matsubara frequencies used, and, that usually the asymptotics of the DMFT
self-energy is not well reproduced.

3. Determine ~Qmax for the DMFT susceptibility
As the vector, where the (momentum-dependent DMFT) susceptibility χλr=0,ω=0

r,~q exhibits its
maximum, is of particular interest, it turns out to be convenient, to substitute one data point
of the (otherwise uniform) ~q-momentum-grid by this vector ~Qmax. As it turned out in the spe-
cial case of the (magnetic) quantum critical point of the three dimensional doped Hubbard
model on a cubic lattice, there, the maxima are given by ~Qmax = (π, π, qmax). This means, for
this determination it is sufficient to consider one-dimensional momentum slices of the DMFT
bubble, whereas the fully momentum-dependent DMFT-bubble (see next step) is calculated
with the updated ~q-grid including ~Qmax. The actual determination of qmax is achieved by a
simple bracketing algorithm with a termination precision given by qmaxprec.
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In this step, also the ~k-points for which the ladder-DΓA self-energy shall be calculated,
are read from klist.dat, which has to contain exactly k number lines. Furthermore, the
momentum-array for the internal (~k’) and external (~q) momentum-grids are initialized and
their sin- and cos-values are calculated and stored in arrays in order to save time for their
evaluation during the bubble-calculation.

Please note that this step depends on Nk, i.e. the number of internal ~k′-points used.

4. Calculate momentum-dependent DMFT susceptibility
In this step, the (~k,~k′) integrated DMFT susceptibility (λr = 0) is calculated using the relation

χλr=0,νν′ω
r,~q =

[
Γνν

′ω
loc,r − χνω0,~qδνν′

]−1
, (2.71)

where
χνω0,~q = −

∑
~k,~k′

GDMFT(ν,~k)GDMFT(ν + ω,~k + ~q)δ~k~k′

is Eq. (2.44) for the momentum-dependent DMFT-bubble and the inversion is carried out in
(ν, ν ′)-space. The following technical aspects are noteworthy:

• In principle, the integration over (~k,~k′) is carried out using a Gauss-Legendre inte-
gration with an order specified by ng in dispersion.f90 and a number of integration
points of nint (see Tab. 2.1). If one sets ng= 1 and adapts tsteps=(/1.0/) and
weights=(/2.0/), a rectangular integration is recovered.

• The integration is carried out for external ~q-points of the fully irreducible Brillouin
zone. For other dispersion relations than the simple cubic one, this may have to be
adapted.

• This steps is implemented in exactly the same way as for the determination of ~Qmax in
the previous one (step 3.).

Please note that this step crucially depends on Nω and Nk, i.e. the number of Mat-
subara frequencies and internal ~k-points, and that the step is only carried out, if the flag
sigma only=.FALSE.. This, in turn, means, that the λ-correction parameters already have
been calculated and have to be given in ladderDGA.in (see Tab. 2.1).

5. Calculate λ-corrections
In this algorithmic step, the Moriyaesque λ-corrections for the physical susceptibilities are
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determined. The condition introduced in Sec. 2.3.2.2,

1

2

∑
~q,ω

(
χλc,ω

c,~q + χλs,ω
s,~q

)
!

=
1

2

∑
ω

(
χωloc,c + χωloc,s

)
. (2.72)

is implemented for charge- and spin-channel separately, i.e.∑
~q,ω

χλc,ω
c,~q

!
=

∑
ω

χωloc,c (2.73)

∑
~q,ω

χλs,ω
s,~q

!
=

∑
ω

χωloc,s. (2.74)

These conditions can be reformulated in terms of the root-finding of the following functional
expression:

f(λ) =
∑
~q,ω

[
χ(ω, ~q)−1 + λ

]−1
−
∑
ω

χloc(ω),

which can be done (due to this analytic expression) by applying Newton’s root finding algo-
rithm. The function f(λ) has several roots, however, in order to avoid the divergence of the
physical susceptibility (and, therefore, render the susceptibility for ω = 0 purely positive), one
usually wants to track the root with the largest λ = λ∗. Analyzing the function f(λ) (see also
Fig. 2.15) gives several hints and restrictions for how to find the correct root (if possible):

• f(λ) posses poles at −χ−1(ω = 0, ~q), which means, in turn, that the largest λ-value at
pole is given by

λmax-pole = max~q
[
−χ−1(ω = 0, ~q)

]
= min~q

[
χ−1(ω = 0, ~q)

]
.

• f(λ) is strictly monotonically decreasing (excepting the divergence points), as one can
easily see by calculating the first derivative f ′(λ), which is also needed as input for
Newton’s algorithm:

f ′(λ) = −
∑
~q,ω

[
χ−1(ω, ~q) + λ

]−2
< 0.

• f(λ) is a convex function for λ > λmax-pole:

f ′′(λ) = 2
∑
~q,ω

[
χ−1(ω, ~q) + λ

]−3
> 0, ∀λ > λmax-pole.

• For λ > λmax-pole, f(λ) only has one root, i.e. λ∗.
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Figure 2.15: Determining the Moriyaesque λ-corrections with Newton’s algorithm.

For a Newton-algorithm with starting value

λ0 = λmax-pole + δ, δ > 0

and iteration condition
λn+1 = λn −

f(λn)

f ′(λn)

these considerations lead to three different scenarios:

(a) λ0 ∈
[
λmax-pole]

λ will remain in
[
λmax-pole] and quadratically converges against λ∗.

(b) λ0 > λ∗ ∧ λ1 = λ0 − f(λ0)
f ′(λ0) < λmax-pole

The algorithm has to start over with a smaller δ (bisection).

(c) λ0 > λ∗ ∧ λ1 = λ0 − f(λ0)
f ′(λ0) > λmax-pole

After the next iteration, one will end up in
[
λmax-pole, λ∗

]
due to the convexity of f(λ) and

can continue with (a).

The ~q-integrals are carried out over the fully irreducible Brillouin-zone as the analogue
sums for the self-energy (see the detailed discussion there in step 7.). The separate iteration
steps are logged in lambda correction ch.dat and lambda correction sp.dat, respec-
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tively, which are formatted in the following way:

step λ
∑
~q,ω

χλ,ω~q

∑
ω

χωloc

∑
~q,ω

χ
′λ,ω
~q

∑
~q,ω

χ
′′λ,ω
~q

Here, the following points are noteworthy:

• The sums in the format above are complex sums, i.e. two floats per sum will be written.

• The sums for the AIM (local susceptibilities) are restricted to the positive summands via
the (automatically set) variable sum ind (correct behavior of χAIM(τ), which can be spoilt
in numerical calculations).

Please note further that this step depends on Nq, i.e. the number of external momentum
points, and is only carried out, if the flag sigma only=.FALSE..

6. Calculate λ-corrected susceptibilities
In this step, relying on the input of the full momentum-dependent DMFT susceptibilities, the
λ-corrected susceptibilities are obtained by

χλr,ω
r,~q =

[
χλr=0,ω

r,~q + λr

]−1
. (2.75)

Depending on the channel they are written in files chiXXX with constant bosonic Matsubara
frequency into the subdirectories chisp omega and chich omega respectively. The format of
these output files in two dimensions is (analogously in three dimensions):

qx qy Reχλr,ω
r,~q Imχλr,ω

r,~q Reχλr=0,ω
r,~q Imχλr=0,ω

r,~q

with qx ≥ qy. The ~q-grid is represented by an equal-spaced grid3, whose number (linear
dimension) of intervals is given by LQ.

Please note that this step is only carried out, if the flag sigma only=.FALSE..

7. Calculate ladder-DΓA self-energies
In this very last step of the algorithm, the ladder-DΓA self-energy is calculated via the (non-

3except for the substituted ~Qmax, see step 3.
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local) Dyson-Schwinger equation of motion, Eq. (2.62), which is recalled here:

Σladder
DΓA (ν,~k) =

U

2β2

∑
ω,~q

[
γνωc,~q − 3γνωs,~q + Uγνωc,~qχ

λc,ω
c,~q + 3Uγνωs,~qχ

λs,ω
s,~q + 2 +

−
∑
ν′,~k′

(
F νν

′ω
loc,c − F νν

′ω
loc,s

)
GDMFT(ν ′,~k′)GDMFT(ν ′ + ω,~k′ + ~q)

]
GDMFT(ν + ω,~k + ~q).

(2.76)

Please note that the constant Hartree part of the self-energy is not included here. In the
program, the three-leg vertices for charge- and spin-channel, respectively, are denoted vrgch

and vrgsp. It is noteworthy that the λ-corrected physical susceptibilities enter in the formula
and that in the current implementation both ph-channels are treated on equal footing (see
step 5.). The ~q-integration is carried out over the fully irreducible Brillouin-zone, which means
that, e.g. for two dimensions, qx ≥ qy and a factor has to be introduced in order to account
for the ~q-point multiplicity. This factor consists of two parts: one takes into account the points
at the borders of the Brillouin-zone, the other one the multiplicity of the point itself. The first
condition is rather straightforwardly implemented by a factor of 1

2 whenever, e.g., qx = π.
The latter is implemented as an integer division of the momentum-indices of the ~q-points.
For two dimensions this integer-division reads (ix is the index for qx, iy for qy and iz for qz,
respectively):

2/((1 + iy)/(1 + ix) + 1)

and, analogously, for three dimensions:

6/((1 + iy)/(1 + ix) + (1 + iz)/(1 + iy) + 3((1 + iz)/(1 + ix)) + 1)).

Particularly, special attention has to be paid for the calculation of the dispersion relations
(eklist) used in the (non-local) DMFT Green function, which depends on symmetries of the
lattice (mirror-/inversion-symmetries), and one would need to be adapt in case that these
symmetries are broken in the specific problem considered. The calculated self-energies are
written to the subdirectory klist, named SELF Q XXX where XXX indicates the corresponding
line in klist.dat specifying the ~k-point for which the self-energy has been calculated. The
output format of the files is

ν ReΣladder
DΓA (ν,~k) ImΣladder

DΓA (ν,~k).

Depending on the version of the program, there can be additional columns that contain par-
tial sums of only specific terms of the full sum in Eq. (2.62) (“parquet decomposition”).
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Please note that the external Matsubara sum over ω is implicitly carried out via the paral-
lelization and an MPI-summation command. Please note furthermore that this step depends
on Nω and Nq, i.e. the number of Matsubara frequencies and external ~q-points, and that the
step is only carried out, if the flag chi only=.FALSE..

Typical settings for the program’s parameters in two and three dimensions

In order to obtain reliable and convergent results from the ladder-DΓA program, as indicated in the
previous section, the three parameters Nω, Nk and Nq have to be adjusted correctly. Of course,
the values given in Tab. 2.2 can only be regarded as a rough guideline and calculations should
be checked individually for convergence (especially for working points in the vicinity of (quantum)
phase transitions). All the interaction and temperatures in this section are measured in units of 4t

(t is the hopping parameter of the Hubbard Hamiltonian in Eq. (2.6)).

• Number of (positive) fermionic and bosonic Matsubara frequencies Nω

In principle, like in every calculations involving Matsubara frequencies, Nω has to be adjusted
according to the temperature. Tab. 2.2 shows this number used for typical calculations, with
which one usually converges in the number of Matsubara frequencies. For temperatures
below these points, extrapolations have to be performed.

β-range Nω Nk (2D/3D) Nq (2D/3D)

[10, 20] 40 60/4 40/40
[30, 40] 60 60/4 60/40
[50, 60] 100 60/4 120/60
[70, 80] 120 60/6 160/80
[100, 120] 160 60/6 200/120

Table 2.2: Summary of typical values of Nω, Nk and Nq.

• Number of internal ~k′-summation points Nk

The actual number of the points in the Brillouin-zone depends on the integration algorithm
used. Tab. 2.2 assumes a fifth-order Gauss-Legendre method, which means the actual
number of ~k-points per dimension is 5Nk.

• Number of external ~q-summation points Nq

Here, it should be noted that in practice, although Nω my be influenced by the values of
λ and the corresponding χλ,ω~q , while the self-energy Σladder

DΓA (ν,~k) and the correlations length ξ
seem to be rather robust against the alteration of Nω.
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3
Precursors of phase transitions - from divergent vertices to

fluctuation diagnostics

“Similarly, another famous little quantum fluctuation that programs you is the exact
configuration of your DNA.”

- Seth Lloyd (American physicist, *1960)

The vicinity of phase transitions from unordered to ordered phases is characterized by a
huge variety of phenomena and physical processes. The extension and the nature of these
effects, however, change significantly if one considers those transitions occuring in strongly
correlated electron systems, such as the case of the Mott-Hubbard metal-insulator transi-
tion. In particular, in this Chapter it will be shown, how precursor effects of the Mott transition
can indeed occur even far from the transition itself, marking a breakdown of perturbation
theory. In fact, by gradually increasing the Coulomb interaction in the half-filled Hubbard
model (solved by means of DMFT), and approaching the corresponding Mott metal-insulator
transition, two-particle vertex functions exhibit low-frequency divergencies already well in-
side the metallic phase. These divergencies are, then, shown to be responsible also for
the breakdown of the unambiguous interpretations of the so-called parquet-decomposition
of the self-energy, that aims at identifying which physical scattering processes are respon-
sible for yielding a certain physical one-particle spectrum (e.g. pseudogap features). In the
last part of this Chapter, the difficulties stemming from this breakdown are circumvented by
introducing an analysis method for the electronic self-energy based on partial summations
of the Dyson-Schwinger equation of motion, coined “fluctuation diagonstics” approach.

47



48 CHAPTER 3. PRECURSORS OF PHASE TRANSITIONS

3.1 Vertex divergencies as precursors of the Mott-Hubbard transi-
tion

Parts of this section (marked by a vertical sidebar) have already been published in the

APS journal Phys. Rev. Lett. 110, 246405 (2013).

Among all fascinating phenomena characterizing the physics of correlated electronic systems, one
of the most important is undoubtedly the Mott-Hubbard metal-to-insulator transition (MIT) [69].
Here, the onset of an insulating state is a direct consequence of the strong Coulomb repulsion,
rather than of the underlying electronic band-structure. Mott MITs have been indeed identified
in several correlated materials [5], especially in the class of transition metal oxides and heavy
fermions. The interest in the Mott MIT is not limited however to the transition “per se”, but it is also
for the correlated (bad) metallic regime in its proximity. In fact, this region of the phase-diagram
often displays a rich variety of intriguing or exotic phases, that is often related to the physics of the
high-temperature superconducting cuprates.

An exact theoretical description of the Mott MIT represents a considerable challenge due to its
intrinsically non-perturbative nature in terms of the electronic interaction. However, a significant
progress was achieved with the invention of the dynamical mean field theory (DMFT) (see Sec.
2.2). By an accurate treatment of local quantum correlations, DMFT has allowed for the first non-
perturbative analysis of the Mott-Hubbard MIT in the Hubbard model [21], and, in combination with
ab-initio methods [18, 70], also for the interpretation and the prediction of experimental spectro-
scopic results for strongly correlated materials, such as, e.g., the paramagnetic phases of V2O3

(see also Fig. 3.1, [71] and Chapter 5). Theoretically, several “hallmarks” of the onset of the Mott
insulating phase can be unambiguously identified in DMFT: At the one-particle level, a divergence
of the local electronic self-energy in the zero-frequency limit is observed, reflecting the opening of
the Mott spectral gap, while, at the two-particle level, the local spin susceptibility χω=0

s diverges at
T =0, due to the onset of long-living local magnetic moments in the Mott phase.

While the characterization of the MIT itself is quite clear, at least on a DMFT level, the physics
of the correlated metal regime in the vicinity of the MIT is far from being trivial and presents several
anomalies. One can recall here: the occurrence of kinks of purely electronic origin [72] in the angu-
lar resolved one-particle spectral functions or in the electronic specific heat, the formation of large
instantaneous magnetic moments, screened by the metallic dynamics [73], the abrupt change of
the out-of-equilibrium behavior after a quench of the electronic interaction [74], and the changes
in the energy-balance between the paramagnetic and the low-temperature (antiferromagnetically)
ordered phase, which also affect the restricted optical sum-rules [75]. Also motivated by these
observations, many DMFT calculations aimed at a general characterization of this regime, e.g., by
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Figure 3.1: Phase diagram of V2O3, a prototypical material which exhibits a Mott metal-insulator
transition, upon the application of pressure or doping (taken from [71]).

studying the phase-diagram of the half-filled Hubbard model. However, no trace of other phase
transitions has been found beyond the MIT itself and the (essentially) mean-field antiferromagneti-
cally ordered phase, which is not of interest here. Hence, one of the main outcomes of the previous
DMFT analyses, mostly focusing on the evolution of one-particle spectral properties (and, to less
extent, on susceptibilities [77]), has been the definition of the “borders” of the so-called crossover
regions at higher T than those where the MIT can be observed. The shape of these crossover
regions has been analyzed in many different ways [15, 33, 76, 78, 79]. One should note here, that
the (different) criteria used for defining crossover regimes imply a certain degree of arbitrariness.
Furthermore, the crossover region is located at much higher Ts than those, where some of the
abovementioned anomalies are observed.

In this section, going beyond the standard, typically one-particle, DMFT analyses, a completely un-
ambiguous criterion to distinguish the “weakly” and the “strongly”-correlated regions in the phase-
diagram is presented. By studying the frequency structure of the two-particle local vertex functions
of DMFT, one can observe the divergence of the local Bethe-Salpeter equation in the charge
channel. This divergence defines a regime remarkably different, also in shape, from the crossover
region, where non-perturbative precursor effects of the MIT become active, even well inside the
low-temperature metallic phase. The precise definition of such a regime allows for a general inter-
pretation of the anomalous physics emerging as a precursor of the MIT. Furthermore, the analysis
presented here, showing the occurrence of peculiar divergent features in some of the two-particle
local vertex functions of DMFT is also expected to have a significant impact on future calculations
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for strongly correlated electron systems, because the two-particle local vertex functions represent
a crucial ingredient for both (i) the calculation of dynamical momentum-dependent susceptibilities
in DMFT [15,44,80], as well as (ii) the diagrammatic extensions [20,43,45,46] of the DMFT, aiming
at the inclusion of non-local spatial correlations.

3.1.1 DMFT results at the two particle-level

For this analysis, the Hubbard model on a square lattice in the paramagnetic phase at half-filling,
that is one of the most basic realizations of the MIT in DMFT, is considered (see Eq. (2.6)).
Hereafter, all energy scales will be given in units of D = 4t = 1, i.e., of the half of the standard
deviation of the non-interacting DOS1.
Differently from previous studies, the focus here is on the analysis of the two-particle local vertex
functions computed with DMFT. By using a HF-QMC impurity solver (see Sec. 2.2.2.3), whose ac-
curacy has been also tested in selected cases with exact-diagonalization DMFT calculations (see
Sec. 2.2.2.2), first the generalized local susceptibility χνν

′ω
c is computed and the corresponding

local irreducible vertex Γνν
′

c obtained via the inverse Bethe-Salpeter equations (2.29). The vertex
Γνν

′ω
c can be viewed as the two-particle counter-part of the electronic self-energy and, for a half-

filled system, it is a purely real function. The numerical results for Γνν
′,ω=0

c =: Γνν
′

c are reported in
Fig. 3.2 for four different values of the electronic interaction U at a fixed temperature of T = 0.1.

Starting to examine the first panel, corresponding to the smallest value of U = 1.2, one observes
two main diagonal structures in the Matsubara frequency space: These structures are easily in-
terpretable as originated by reducible ladder-processes in the (transverse) particle-hole (ν = ν ′)
and in the particle-particle (ν=−ν ′) channels respectively [51]. Following the behavior of the local
spin susceptibility in the Mott phase, the main diagonal structure will diverge exactly at the MIT
(UMIT ∼ 3) in the T = 0 limit [51, 82]. In contrast to these standard properties of Γνν

′
c , visible in

the first panel, the analysis of the other three panels of Fig. 3.2 shows the emergence of a low-
frequency singular behavior of the vertex functions for a value of U much smaller than that of
the MIT: Already at U = 1.27 (second panel), one observes a strong enhancement of the vertex
function at the lowest Matsubara frequencies (note the change in the intensity-scale). This is visi-
ble as an emergent “butterfly”-shaped structure, where the intense red-blue color coding indicates
alternating signs in the (ν,ν ′) space. Remarkably, such a low-energy structure becomes predomi-
nant over the other ones along the diagonals. That a true divergence takes place is suggested by
the third panel (U = 1.28), where the intensity of the“butterfly” structure is equally strong but the
signs are now inverted as indicated by the colors. This is also shown more quantitatively by the
values of Γνν

′
c along a selected path of Γνν

′
c in frequency space (lower panels in Fig. 3.2).

1As in DMFT the kinetic energy scale is controlled by D, DMFT results for different DOSes essentially coincides,
provided the value of D is the same.
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Figure 3.2: Upper row: Evolution of the frequency dependent two-particle vertex function, irre-
ducible in the charge channel, (Γνν

′
c ) for increasing U . The data have been obtained by DMFT

at zero external frequency (ω= 0) and fixed temperature (T = 0.1); lower row: linear snapshot
of the same Γc along the path marked by the dashed line in the first panel of the upper row, i.e.,
as a function of ν = π

β (2n+ 1) for n′ = 0 (ν ′ = π
β ), compared to perturbation theory (PT) results.

In the legends/insets the closest-to-zero eigenvalue (λ) of χνν
′

c /χνν
′

0 is reported for each U .

Note that the inversion of the signs cannot be captured by perturbation theory calculations
(green circles), marking the non-perturbative nature of the result. The rigorous proof of the diver-
gence is provided by the evolution of the matrix χνν

′
c , which is positive definite at weak-coupling,

while one of its eigenvalues (see legends and insets in the bottom row of Fig. 3.2) becomes neg-
ative crossing 0. Finally, by further increasing U , the low-energy structure weakens, indicating that
at fixed T = 0.1 this vertex divergence is taking place only for a specific value of the Hubbard
interaction, i.e., for Ũ ' 1.275.

This finding naturally leads to the crucial question of the temperature dependence of the results:
Does such a divergence occur for all temperatures, and if yes, is the temperature dependence of
Ũ significant? As one can immediately understand from Fig. 3.3, the answer to both questions is
positive2: By repeating the analysis of Fig. 3.2 for different temperatures, one can the loci (T̃ , Ũ ,
red dots in Fig. 3.3) in the phase-diagram, where the low-frequency divergence of Γνν

′
c occurs. This

2In the (unpublished) appendix of arXiv:1104.3854v1, a two-particle vertex divergence was also reported for one
temperature, whose position would have been controlled by U rather than by T . This expectation is, however, not
verified by the data of Fig. 3.3.
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Figure 3.3: Instability lines of the local irreducible vertices in the charge (Γc red circles) and in
the particle-particle channels (Γpp orange diamonds) reported in the DMFT phase diagram of
the half-filled Hubbard model (the data of the MIT, blue solid line, are taken from Ref. [33, 76]).
The red dashed line indicates the corresponding instability condition (T̃ =

√
3

2π Ũ ) estimated from
the atomic limit. Inset: zoom on the low-T region, where also different estimations (dashed blue
lines [33,76]) of the crossover region are indicated.

defines a curve T̃ (U) with a quite peculiar shape, where three regions can be distinguished:

(I) At very high T , the behavior is almost perfectly linear T̃ ∝ Ũ .

(II) In the low T limit the curve strongly bends, extrapolating for T → 0 at Ũ(0) ∼ 1.5� UMIT ∼ 3.

(III) At intermediate T the curve interpolates between these two regimes, with a “re-entrance”
clearly affected by the presence of the MIT at larger U (blue line in Fig. 3.3).

Please note that by increasing U much further than the T̃ (U) curve, one eventually observes a
divergence also of the local Bethe-Salpeter in the particle-particle channel (orange points in Fig.
3.3), while for all values of T,U considered, no similar divergence is found in the spin channel.

3.1.2 Interpretation of the results

In contrast to the case of the main diagonal structures of the vertex functions, the interpretation of
the low-frequency divergences of Γνν

′
c is not directly related to the MIT. However, even if at low T

the divergences take place in the metallic region of the phase-diagram, the re-entrance shape of
the T̃ (U) curve is indeed remarkably affected by the position of the MIT: The most natural interpre-
tation is, hence, that the shaded area in the phase diagram defines the region where the precursor
effects of the MIT physics preclude the perturbative description and become a crucial ingredient in
determining the properties of the system. This interpretation is evidently supported by the fact that
the signs of the two-particle vertex functions are correctly predicted in perturbation theory only up
to the left-hand side of the T̃ (U) curve.
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More generally, the T̃ (U) curve can be identified as the limit of the region of applicability of schemes
based on the Baym-Kadanoff [81] functional Φ[G], since δ2Φ

δG2 = Γc can no longer be defined on
that line. At the same time, the low-frequency singularities of the vertex may render problematic
the numerical evaluation of the Bethe-Salpeter equation to compute momentum-dependent DMFT
response functions in specific regions of the phase-diagrams, suggesting the use of alternative
procedures [83].

As the singularity of Γc (and later on of Γpp) is not associated to simultaneous divergences in
the other channels, the application of the local parquet equations [51, 64] allows to identify the
ultimate root of these divergences in the fully two-particle irreducible diagrams (see Sec. 3.2.1).
Hence, this is an “intrinsic” divergence, deeply rooted in the diagrammatics and not generated by
ladder scattering processes in any channel. From a more physical point of view, the fact that the
only irreducible vertex Γ not displaying no singularities at low-frequencies is the spin one might
also indicate the emergent role played by preformed local magnetic moments as MIT precursors,
even in regions where the metallic screening is rather effective.

Beyond these general considerations, however, one may analyze the three regimes of the T̃ (U)

curve in detail, also discussing the relation with the emergence of some of the anomalous prop-
erties of the physics in the vicinity of the MIT. The analysis of the high-T linear regime [(I) in Fig.
3.3] of T̃ (U) is probably the easiest: Here U, T � D, and hence a connection with the atomic
limit (D = 0) can be established: Using analytic expressions [51,84] for the reducible two-particle
vertex functions as an input for the local Bethe-Salpeter equations (2.29), one can find that the
low-frequency divergence of Γνν

′
c occurs at T̃ /Ũ =

√
3

2π and that the eigenvector associated to the
vanishing eigenvalue of χνν

′
c has the particularly simple form: 1√

2
(δν(πT ) − δν(−πT )) (see also Sec.

3.2.2). As it is clear from the comparison with the red dashed line in Fig. 3.3 this proportionality
exactly matches the high-T linear behavior of our T̃ (U) curve. Crossing this curve in its high-T
linear regime, which extends indeed over a large portion of the phase-diagram, corresponds to
entering a region where the thermal occupation of the high-energy doubly-occupied/empty states
becomes negligible, letting the physics be dominated by the local moments.

The connection with the local moment physics also holds for the low-T region (II), though via a
different mechanism: For T → 0, the relevant energy scales are the kinetic (∼ D) and the potential
(U ) energy, whose competition is regulated by quantum fluctuations. In this case, obviously, only
numerical results are available: We observe that the extrapolated value of Ũ(0) ∼ 1.5 falls in the
same region (gray arrow in inset of Fig. 3.3), where DMFT(NRG) [85] see a first clear separa-
tion of the Hubbard sub-bands from the central quasi-particle peak in the spectral function A(ω).
It should be recalled here that the formation of well-defined minima in A(ω) between the central
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quasi-particle peak and the Hubbard sub-bands, is directly connected with the anomalous phe-
nomenon of the appearance of kinks in the electronic self-energy and specific heat [72]. At the
same time, more recent DMFT(DMRG) [86] data rather indicate that for U ≥ Ũ(0) ∼ 1.5 two sharp
peak-features emerge at the inner edges of the Hubbard sub-bands, which, however, would be
already visible at U ≥ 1.

Looking for a more analytical description of this scenario, one may consider the DMFT solution
of the much simpler Falicov-Kimball (FK) model [87, 88]: Here one can exactly show that Γνν

′
c

indeed diverges before the MIT is reached (precisely at: ŨFK = 1√
2
UFK

MIT). However, for the FK re-
sults, a direct relation with the formation of the two minima in A(ω) cannot be completely identified,
as the renormalization of the central peak is not captured in this scheme3. Finally, an interesting
observation can be made about the most complicate intermediate T regime (III), where all energy
scales (D, U , T ) are competing: Recent out-of-equilibrium calculations for the Hubbard model
have shown [74], that after a quench of the interaction (i.e., from U = 0 to U > 0), the system’s
relaxation occurs in two different (non-thermal) ways. The changeover between these two regimes,
however, appears for a given set of parameters Ū ∼ 1.65 and Teff ∼ 0.4, in close proximity of the
vertex instability-line in the phase diagram.

3.2 The non-perturbative landscape surrounding the MIT

Parts of this section are available as a

preprint arXiv:1606.03393 (2016).

As already discussed in Sec. 3.1.1 for the Hubbard model, in certain regions of the (T,U)-plane,
the local irreducible vertex in the charge channel Γνν

′ω=0
c as well as the particle-particle up-down

channel Γνν
′ω=0

pp,↑↓ diverge and change sign at low fermionic frequencies. Starting at low tempera-
ture, the lines first start to bend away from the critical endpoint of the MIT like they tried to “avoid”
it. These divergence lines, for strong couplings, can be traced up to the atomic limit, where their
slopes follow the (semi-)analytic results obtained. Please note again that a divergent irreducible
vertex in a specific channel Γr is caused by an eigenvalue of the corresponding generalized sus-
ceptibility χr passing zero. Also, one should recall that these divergences are different from those
which occur at physical phase transitions, e.g. the Mott-Hubbard transition at T =0 where the diver-
gences (i) appear at the level of the full vertex F and (ii) take place at both low and high frequencies.

In Fig. 3.4 additional data of the positions of the divergences are reported, making richer the
DMFT “map” of the region surrounding the Mott-Hubbard MIT. Specifically, the blue line marks the

3Note that the DMFT solution of the FK model, which is of the coherent potential approximation (CPA) form, can only
capture the MIT via a rigid separation of the Hubbard band: Here the formation of a central minimum occurs already at
U = 1

2
UFKMIT .
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Figure 3.4: DMFT phase diagram showing the landscape surrounding the Mott-Hubbard MIT in
the half-filled unfrustrated Hubbard model. The blue line indicates the MIT [33]. The red lines
show the points where Γνν

′ω=0
c diverges at low frequencies, whereas an additional divergence

of Γνν
′ω=0

pp,↑↓ takes place simultaneously to the one of Γνν
′ω=0

c at the orange lines. The inset zooms
into the low-temperature regime. On the right-hand side, the (exact) values of the ratio T/U for
the atomic limit (t = 0) are listed.

MIT. The red lines indicate the points in the phase diagram where Γνν
′ω=0

c diverges, whereas at the
orange lines both Γνν

′ω=0
c and Γνν

′ω=0
pp,↑↓ diverge simultaneously.

Remarkably, this analysis extends the results of the previous section in a significant and non-trivial
way. In fact, the two lines already reported there are not the only ones where a vertex divergence
takes place: by approaching the MIT from the metallic phase, one observes several eigenvalues of
the generalized charge and particle-particle susceptibilities passing through zero at certain values
of (T̃ , Ũ), which determine the corresponding divergencies of the irreducible vertices to diverge at
those points as well as a sign change of their low-frequency structure on the two sides of the diver-
gence line. Even more astonishing, the lines seem to accumulate at the critical endpoint of the
MIT, where the maximum number of the eigenvalues of the charge susceptibility has passed zero.
In this respect it is also remarkable that the irreducible vertex in the spin channel Γνν

′ω
s does not ex-

hibit low-frequency divergences in the whole phase diagram considered. These findings evidently
provide a strong support to the heuristic interpretation proposed in the preceding section of the
low-frequency singularities as precursors of the Mott-Hubbard transition and their possible relation
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to the formation of local and instantaneous magnetic moments well inside the metallic regime.

3.2.1 Behavior of the full vertex F and divergence of the fully irreducible vertex Λ

In order to gain further insight into the nature of the divergences of the irreducible vertices, an
investigation of the properties of the full vertex F and the fully irreducible vertex Λ is called for at
the same points (T̃ , Ũ) where the divergences of Γνν

′ω=0
c(pp↑↓) take place. The upper panel of Fig. 3.5

shows a density plot of the full vertex F νν
′ω=0

c for the specific temperature T = 0.1 at varying values
of the interaction U . The first divergence of the irreducible vertex in the charge channel Γνν

′ω
c at

this temperature is located between U = 1.27 and U = 1.28. One can deduce from the density
plot and the frequency cut at ν ′ = π

β (lower panel of Fig. 3.5) that the full vertex F does not exhibit
any qualitative change crossing the first red line in the phase diagram in Fig. 3.4. Hence, we can
conclude that there is no phase transition associated with the divergence line of Fig. 3.4, because a
divergence of F is necessary for making the physical χ divergent (see Eq. (2.31)). Given this result
for the full vertex F and the divergence in the irreducible charge vertex Γc, the parquet Eq. (2.28)
dictates the behavior of the fully irreducible vertex Λνν

′ω=0
c : as F does not show any qualitative

change crossing the divergence line, Λ also has to diverge in order to equalize the divergence in
Γc to leave F qualitatively unchanged. Fig. 3.6 shows that this is indeed the case: One can see
that the low-frequency divergences of Γνν

′ω
c also persist at this most fundamental level of the 2P

diagrammatics, i.e., the fully irreducible vertex Λ. Increasing the coupling strength from U = 1.27
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Figure 3.5: Upper panel: density plot of the full vertex F νν
′ω=0

c − U in the vicinity of the first
divergence line (red line) of Fig. 3.4 at T = 0.1. Lower panel: frequency cut of the density plot
shown in the upper panel at frequency ν ′ = π

β . One cannot observe any qualitative change
crossing the line.
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Figure 3.6: Upper panel: density plot of the fully irreducible vertex Λνν
′ω=0

c −U in the vicinity of the
first divergence line (red line) of Fig. 3.4 and T = 0.1. Lower panel: frequency cut of the density
plot shown in the upper panel at frequency ν ′ = π

β . The low-frequency divergences of Γνν
′ω=0

c
persist at this level of the diagrammatics.

to U = 1.28 in this case results in a divergence and change of sign of the low-frequency structure
of the fully irreducible vertex in complete analogy to the ones obtained for the irreducible vertex.
Considering the fully irreducible vertex as the most fundamental vertex function, one could even
argue that these divergences have their origin in the divergence of Λνν

′ω
c . This relation will be

further analyzed in the case of the atomic limit in Sec. 3.2.2.2.

3.2.2 Divergences in the atomic limit of the Hubbard model

As one can see in the upper right part of the phase diagram in Fig. 3.4 the divergence lines of Γr can
be followed up to high values of (T̃ , Ũ), even to the limit of negligibly small bandwidth (D→0, atomic
limit), where the only remaining energy scale of the system can be expressed by the ratio U/T .
The atomic limit is extremely useful for gaining further insight into the structure of the divergences
presented in the previous section, because in this limit analytic formulas for the full vertex F are
known, so that all two-particle quantities can be calculated exactly [51, 56, 84, 89]. Exploiting the
analytic form of the full vertex Fc, in Se.c 3.2.2.1 the structure of the eigenvalues and eigenvectors
of the generalized susceptibilities χr is analyzed, obtaining a first classification of the different lines.
In Sec. 3.2.2.2 the fully irreducible vertex Λ is decomposed via the parquet equation (2.28) and
Bethe-Salpeter equations (2.29) (parquet decomposition) at the first and second divergence point
of Γc in the atomic limit in order to identify the specific contribution of its constituents.
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3.2.2.1 Structure of the eigenvectors of the generalized susceptibilities χr

In the limit D = 0 the (completely local) one and two-particle Green functions F and G can be
calculated analytically [51,56,84,89] and obviously coincide for the Hubbard and Anderson impurity
model. Therefore all the two-particle quantities introduced in Sec. 2.3.1 can be calculated exactly
in this limit. Starting the analysis of the generalized susceptibility in the charge channel χνν

′(ω=0)
c in

the atomic limit [56], one can notice that most of the terms depend on ν2 and ν ′2 rather than on ν
and ν ′, leading to the symmetry transformation ν → −ν and ν ′ → −ν ′. This suggests the possible
ansatz for the eigenvector connected with vanishing eigenvalues λc,ν̄ = 0 of χνν

′(ω=0)
c [56]:

ec,ν̄ =
1√
2

[
δνν̄ − δν(−ν̄)

]
, (3.1)

where ν̄ is an arbitrary fixed fermionic Matsubara frequency. One should recall that a divergence of
the irreducible vertex Γr is caused by an eigenvalue of the corresponding generalized susceptibility
χr passing zero, because these two quantities are connected via a simple matrix inversion. By
inserting this ansatz (3.1) into the eigenvalue equation, one can see that all parts of χνν

′ω=0
c which

are invariant under ν → −ν and ν ′ → −ν ′ vanish when acting on the eigenvector, so that only
contributions proportional to δνν′ and δν(−ν′) survive. These give

∑
ν′

χνν
′ω=0

c ec,ν̄(ν ′) = β
ν̄2 − 3U2

4

(ν̄2 + U2

4 )2︸ ︷︷ ︸
λc,ν̄

ec,ν̄(ν), (3.2)

so that the condition for a vanishing eigenvalue λc,ν̄
!

= 0 can be expressed as

ν̄ =
π

β̃
(2n̄+ 1) =

√
3Ũ

2
⇔ T̃

Ũ
=

√
3

2π

1

2n̄+ 1
. (3.3)

The values of these ratios are listed in red on the right-hand side of Fig. 3.4, where one can also
see that the slope of the extrapolated first divergence line of Γνν

′ω=0
c of DMFT coincides with the

ratio Eq. (3.3) with n̄ = 0. One should note, however, that the ansatz of Eq. (3.1) is not the only
one causing λc,ν̄ to pass zero.

Performing a similar analysis for the particle-particle up-down channel one arrives at the follow-
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ing form of the eigenvector of χνν
′ω=0

pp,↑↓ in the atomic limit:

epp,↑↓(ν) = 2B cos

(
βB

2

)√
2B

β[βB − sin(βB)]

1

ν2 −B2
, (3.4)

with a real positive constant B, which leads to a vanishing eigenvalue λpp,↑↓ in this channel. Insert-
ing this ansatz into the eigenvalue equation of the generalized susceptibility in the particle-particle
up-down channel leads to an infinite set of transcendental equations (from which only two are inde-
pendent) for the two real positive variables Ũ/T̃ and B. After further simplification these equations
read

T̃

Ũ
= −tan(B/2)

2B
, B =

√
−1 + 3eU/2U

2
√

1 + eU/2
(3.5)

They can be solved numerically and give the orange ratio values on the right-hand side of Fig. 3.4
and confirming the high-temperature behavior of the orange lines therein, where both Γr and Γpp,↑↓
diverge.

To locate the region of the phase diagram where the divergences become essentially captured
by the atomic limit description one can calculate the DMFT-result of the eigenvector ec,ν̄ associ-
ated with the first zero eigenvalue at finite temperature. Specifically, Fig. 3.7 shows the evolution
of the corresponding eigenvector of4 χνν

′ω=0
c from the atomic limit to finite U and low tempera-

tures following the first divergence line of Γνν
′ω=0

c . One can notice that within the region where
the divergence curve in the phase diagram can be approximated well by a straight line and the
eigenvector of χνν

′ω=0
c can be quite well estimated by the ansatz in Eq. (3.1). On the other hand,

for lower temperatures and smaller interactions, its frequency structure deviates significantly from
the delta-peaked one of Eq. (3.1).

3.2.2.2 Parquet decomposition of the fully irreducible vertex Λc

As already mentioned in Sec. 3.2.1 the divergences of the irreducible vertices Γr root at a “deeper”
level of the diagrammatics, i.e. they are associated with the divergence of the fully irreducible
vertex Λ. In order to demonstrate this, one can start from the Bethe-Salpeter Eq. (2.29) and the
parquet Eq. (2.28). By combining them one arrives at the following explicit decomposition of the
fully irreducible vertex into different channels:

Λνν
′ω

c = Γνν
′ω

c + Φ
ν(ν+ω)(ν′−ν)
c +

3

2
Φ
ν(ν+ω)(ν′−ν)
s

−1

2
Φ
νν′(ν+ν′+ω)
singlet − 3

2
Φ
νν′(ν+ν′+ω)
triplet

(3.6)

4Actually, in order to increase the numerical stability of the calculations, the eigenvector of (χc/χ0)νν
′ω=0 is plotted,

which coincides with the one of χνν
′ω=0

c .
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where

Φνν′ω
singlet = Φνν′ω

pp,↑↓ + Φ
ν(ω−ν′)ω
pp,↑↓ (3.7)

Φνν′ω
triplet = Φνν′ω

pp,↑↓ − Φ
ν(ω−ν′)ω
pp,↑↓ (3.8)

are the reducible particle-particle vertices in singlet and triplet channel respectively [51]. For con-
venience one can introduce the following notation for the single terms in Eq. (3.6) when fixing the
bosonic and one fermionic frequency in order to obtain a frequency cut:

Λ
ν(ν′=π/β)(ω=0)
c =: Γνc + Φν

c +
3

2
Φν

s −
1

2
Φν

singlet −
3

2
Φν

triplet (3.9)

Based on the results of the previous sections one expects that crossing (i) the first divergence
line, the low frequency structure of Γc and Λc both change sign and crossing (ii) the second di-
vergence line, additionally (at least one of) the pp-channels should show a qualitative change. In
both cases the spin channels should at most display quantitative changes increasing the interac-
tion value.

In the atomic limit the frequency-cut of the decomposition of the fully irreducible vertex indeed dis-
plays this behavior as can be seen in Fig. 3.8 and 3.9 at an interaction value before and after the
first and second divergence line of the phase diagram respectively. Starting at an interaction value
of U/T = 3.62, by inspecting Fig. 3.8 (red lines and crosses), one observes that at low frequen-
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Figure 3.8: Parquet decomposition of the fully irreducible vertex Λc in the atomic limit before
(U/T = 3.62, red lines and crosses) and after (U/T = 3.63, blue lines and boxes) the point of
the first divergence of Γνν

′ω=0
c at Ũ/T̃ = 2π/

√
3 ≈ 3.628.

cies the irreducible charge vertex Γc is strongly enhanced and that this enhancement is positive
for negative Matsubara frequencies and vice versa. Crossing the divergence line to U/T = 3.63,
this low-frequency structure changes sign as discussed previously (blue lines and boxes). The
same behavior can be observed for the fully irreducible vertex Λc in this case. A similar enhanced
feature also appears in the reducible charge vertex Φc, whereas for the particle-particle as well as
the magnetic reducible vertices (not explicitly shown), instead, crossing the divergence line does
not have a qualitative impact.

Turning to the second divergence line shown in Fig. 3.9, not only the irreducible and reducible
charge vertices exhibit an enhancement and change of sign when increasing the interaction value
from U/T = 5.13 (red lines and crosses) to U/T = 5.14 (blue lines and boxes). Also, simulta-
neously, the ones in the particle-particle up-down channel (which is incorporated in the singlet
channel) show a strong enhancement and change of sign in the low-frequency structure. On the
other hand both spin and triplet channel do not show any qualitative change passing the second
divergence line.

In the following section, the influence of these vertex divergencies on a method, which (in a quite
straightforward) manner, aims at the unambiguous identification of scattering processes affect-
ing physical one-particle spectra, the so-called parquet decomposition of the self-energy, will be
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Figure 3.9: Parquet decomposition of the fully irreducible vertex Λc in the atomic limit before
(U/T = 5.13, red lines and crosses) and after (U/T = 5.14, blue lines and boxes) the point of
the second divergence of Γνν

′ω=0
c and the first divergence of Γνν

′ω=0
pp↑↓ at Ũ/T̃ ≈ 5.135.

shown.

3.3 Parquet decomposition of the electronic self-energy

Parts of this section (marked by a vertical sidebar) have already been published in the

APS journal Phys. Rev. B 93, 245102 (2016).

The purpose of this section is (i) to develop methods that improve the physical interpretation of the
self-energy results in strongly correlated systems, and (ii) to understand how the correlated physics
is actually captured by diagrammatic approaches beyond the perturbative regime. Here, this is
achieved by applying a parquet-based diagrammatic decomposition to the self-energy. Specifi-
cally, DMFT and DCA results are used for this parquet decomposition, thus avoiding any pertur-
bative approximation for the vertex. The method is applied to the Hubbard model on cubic (three
dimensional, 3d) and square (two-dimensional, 2d) lattices. In these cases, quite a bit is already
known about the physics, which, to some extent, allows for a check of the methodology.

It is recalled briefly here, that in the parquet schemes two-particle diagrams are classified ac-
cording to whether they are two-particle reducible (2PR) in a certain channel, i.e., whether a
diagram can be split in two parts by only cutting two Green’s functions, or are fully irreducible at
the two-particle level (2PI). Diagrams reducible in a particular channel can then be related to spe-
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cific physical processes. Specifically, one obtains three classes of reducible diagrams, longitudinal
(ph) and transverse (p̄h) particle-hole diagrams and particle-particle (pp) diagrams. Because of
the electronic spin, the particle-hole diagrams can be rearranged, more physically, in terms of spin
(magnetic) and charge (density) contributions, while for pp the ↑↓ term (essential for the singlet
pairing) will be explicitly kept.

In this section, the parquet equations, Bethe-Salpeter equations and the equation of motion (EOM)
which relate the vertices in the different channels to each other and to the self-energy are explicitly
calculated by using the 2PR and 2PI vertices of the DMFT and DCA calculations. Hence, apart
from statistical errors, an “exact” diagrammatic expansion of the self-energy of DMFT (Nc = 1) or
DCA (Nc > 1) clusters is obtained. Since, within the parquet formalism, the physical processes are
automatically associated to the different scattering channels, these calculations can be exploited
to extract an unbiased physical interpretation of DMFT and DCA self-energies and to investigate
the structure of the Feynman diagrammatics beyond the perturbative regime.

One should note here that, from the merely conceptual point of view, the parquet decomposi-
tion is the most “natural” route to disentangle the physical information encoded in self-energies
and correlated spectral functions. The parquet procedure can be compared, e.g., to the recently
introduced fluctuation diagnostics approach (see [90] and Sec. 3.4), which also aims at extract-
ing the underlying physics of a given self-energy: In the fluctuation diagnostics the quantitative
information about the role played by the different physical processes is extracted by studying the
different representations (e.g., charge, spin, or particle-particle), in which the EOM for the self-
energy, and specifically the full two-particle scattering amplitude, can be written. Hence, in this
respect, the parquet decomposition provides a more direct procedure, because it does not require
any further change of representation for the momentum, frequency, spin variables, and can be
readily analyzed at once, provided that the vertex functions have been calculated in an channel-
unbiased way. However, as will be discussed in this section, the parquet decomposition presents
also disadvantages with respect to the fluctuation diagnostics, because (i) it requires working with
2PI vertices, which makes the procedure somewhat harder from a numerical point of view, and (ii)
it faces intrinsic instabilities for increasing interaction values.

By applying this procedure to the 2d Hubbard model at intermediate values of U (of the order
of half the bandwidth), large contributions from spin-fluctuations are found. This is consistent with
a common belief that ~q = (π, π) spin fluctuations are very important for the physics, as well as with
the fluctuation diagnostics results [90]. For the 3d Hubbard model similar physics was first pro-
posed by Berk-Schrieffer [91]. Later spin fluctuations have been proposed to be important for the
2d Hubbard model and similar models by many groups [92–95]. It should be noted, however, that
the contributions of the other channels to the parquet decomposition are not small by themselves.
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Rather, the other (non-spin) channel contributions to Σ(~k, iν) appear to play the role of “screening”
the electronic scattering originated by the purely spin-processes. The latter would lead, other-
wise, to a significant overestimation of the electronic scattering rate. At larger values of U the
parquet decomposition starts displaying strong oscillation at low-frequencies in all its term, but the
spin contribution. Physically, this might be an indication that the spin fluctuations also predomi-
nate in the non-perturbative regime, where, however, the parquet distinction among the remaining
(secondary) channels loses its physical meaning. The reason for this can be traced back to the
occurrence of singularities in the generalized susceptibilities of these (secondary) channels.
Such singularities are reflected in the corresponding divergencies of the two-particle irreducible
vertex functions (see Sec. 3.1.1), in the DMFT solution of the Hubbard and Falicov-Kimball mod-
els [96–102]. Here the study of their origin is extended and the results of Sec. 3.1.1 are extended
to DCA.

The results of the following section are relevant also beyond the specific problem of the physical
interpretation of the self-energy. In fact, the parquet decomposition can be also used to develop
new quantum many-body schemes. Wherein some simple approximation might be introduced for
the irreducible diagrams that are considered to be particularly fundamental. The parquet equa-
tions are then used to calculate the reducible diagrams. In the results presented in this section,
however, for strongly correlated systems the contribution to the self-energy from the irreducible di-
agrams diverges for certain values of U both in DMFT and DCA. This makes the derivation of good
approximations for these diagrams for strongly correlated systems rather challenging. It remains,
however, an interesting question if the parquet decomposition can be modified in such a way that
these problems are avoided.

3.3.1 The parquet decomposition method

By using the Dyson-Schwinger equation of motion (2.27), the electronic self-energy Σ can be
expressed in terms of the two-particle vertex function. The equation of motion for Σ is a well-
known, general relation of many-body theory with a two-particle interaction. However, valuable
information may be obtained by inserting the parquet decomposition of Eq. (2.28) into the equation
of motion (2.27) and, in particular, its specific expression for F kk

′q
↑↓ :

F kk
′q

↑↓ =Λkk
′q

↑↓ +Φkk′,k+k′+q
pp,↑↓ +

1

2
Φkk′q

c − 1

2
Φkk′q

s − Φk,k+q,k′−k
s . (3.10)

This way, after all internal summations are performed, the expression for Σ is naturally split in four
terms:

Σ = Σ̃Λ + Σ̃pp + Σ̃c + Σ̃s (3.11)
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evidently matching the corresponding 2PI and 2PR terms of Eq. (3.10): This represents the par-
quet decomposition of the self-energy. In fact, the four terms in Eq. (3.11) describe the con-
tribution of the different channels (pp, charge, spin), as well as of the 2PI scattering processes,
to the self-energy. Since each scattering channel is associated with definite physical processes,
Eq. (3.11) can be exploited, in principle, for gaining a better understanding of the physics underly-
ing a given self-energy calculation.

In the following section, this idea will be applied to specific cases of interest. In particular, the
performance of a parquet decomposition of the self-energy is tested in the cases of the three and
two-dimensional Hubbard model on a simple cubic/square lattice (see Eq. (2.6)). For the sake of
definiteness, t = 0.25 eV for the 2d case, and t = 1

2
√

6
' 0.204 eV for the 3d case. This choice

ensures that the standard deviation (D) of the non-interacting DOS of the square and the cubic
lattices considered is exactly the same (D = 1eV), and thus allows for a direct comparison of the U
values used in the two cases, provided they are expressed in units of D. This Hamiltonian consti-
tutes an important testbed case for applying the idea of a parquet decomposition, since Eq. (2.6)
provides a quintessential representation of a strongly correlated system. Moreover, in the 2d case
Eq. (2.6) is frequently adopted, e.g., to study the still controversial physics of cuprate superconduc-
tors [103, 104]. In this framework, please note that typical values for U are about U = 8|t| = 2eV,
i.e., U is equal to the non-interacting bandwidth W = 8|t|. This choice corresponds to a rather
strong correlation regime, as it is clearly seen even in a purely DMFT context [105]. In this section,
however, also smaller values of U , of the order of half bandwidth, are considered, corresponding
to a regime of more moderate correlations.

3.3.2 Parquet decomposition calculations

In this section the parquet decomposition of an electron self-energy computed by DMFT and DCA
is studied (see Sec. 2.2 and 2.2.4.1). In these non-perturbative methods a cluster with Nc sites
is embedded in a self-consistent electronic bath. The calculation of a generalized susceptibility is
rather time-consuming when compared against computing only single-particle quantities. For this
reason the calculations are restricted to the tractable values of Nc = 1 (DMFT), 4 and 8 (DCA). The
results are therefore not fully converged with respect to Nc, but, nevertheless, will illustrate well
the specific points made in the following sections. The cluster problem has been solved using both
Hirsch-Fye and continuous time (CT) methods (see Sec. 2.2.2.3).

3.3.2.1 DMFT results

Consistent with the discussion of the previous section, the Dyson-Schwinger equation of motion
(2.27) will be used together with Eq. (3.11) to express the self-energy in terms of contributions from
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the different parquet channels. Starting to apply the parquet decomposition to the easier case of
the DMFT self-energy, in particular, the focus will be on one of the most studied cases in DMFT,
the half-filled Hubbard model in 3d, where DMFT describes a Mott-Hubbard metal-insulator transi-
tion at a finite U = UMIT. The specific parameters in Eq. (2.6) have been chosen in this case as
follows: n = 1 (half-filling) and β = 26 eV−1. The results of the parquet decomposition of the DMFT
self-energy are shown in Fig. 3.10 in the weak-to-intermediate coupling regime U � UMIT ∼ 3 eV.
The plots show the imaginary part of the DMFT self-energy (solid black line) as a function of the
Matsubara frequencies iν and for two different values of U (one should recall that Σ does not de-
pend on momentum in DMFT, and that in a particle-hole symmetric case, as the one we consider
here, it does not have any real part beyond the constant Hartree term).

By computing the DMFT generalized local (Nc = 1) susceptibility of the associated impurity prob-
lem, and proceeding as described in the previous section, Im Σ(iν) is actually decomposed into the
four contributions from terms in Eq. (3.11), depicted by different colors/symbols in the plots. Before
analyzing their specific behaviors, please note that their sum (gray dashed line) does reproduce
precisely the value of Im Σ directly computed in the DMFT algorithm. Since all the four terms of
Eq. 3.11 are calculated independently from the parquet-decomposed equation of motion, this result
represents indeed a stringent test of the numerical stability and the algorithmic correctness of our
parquet decomposition procedure. Given the number of steps involved in the algorithm, illustrated
in the previous section, the fulfillment of such a self-consistency test is particularly significant, and,
indeed, it has been verified for all the parquet decomposition calculations presented in this section.

By considering the most weak-coupling data first (U = 0.5eV, left panel of Fig. 3.10), one can
notice that the 2PI contribution (ΣΛ in Eq. (3.11), plum-colored open squares in the Figure) lies
almost on top of the “exact” DMFT self-energy. At weak-coupling this is not particularly surprising,
because Λ↑↓ ' U + O(U4), while all the 2PR contributions are at least O(U2). Hence, when the
2PI vertex is inserted into the equation of motion, Σ̃Λ simply reduces to the usual second-order
perturbative diagram. In this situation (i.e., Im Σ(iν) ' Σ̃Λ), it is interesting to observe that the
other sub-leading contributions (spin, particle-particle scattering and charge channel) are not
fully negligible. Rather, they almost exactly compensate each other: the extra increase of the
scattering rate [i.e.: -Im Σ(iν → 0)] due to the spin-channel is compensated (or “screened”) almost
perfectly by the charge- and the particle-particle channel.

Not surprisingly, the validity of this cancellation is gradually lost by increasing U . At U = 1.0

(right panel of Fig. 3.10), which is still much lower than UMIT, one observes that the 2PI contribution
no longer provides so accurate values for Im Σ(ν). At the same time, the contributions of all scat-
tering channels increase: the low-frequency behavior of the spin channel now would provide -taken
on its own- a scattering rate even larger than the true one of DMFT. Consistently, a correspondingly
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Figure 3.10: Parquet decomposition of the DMFT self-energy Σ(ν) of the 3d Hubbard model at
half-filling (n = 1). The full (black, ”exact”) and dashed (gray, ”sum”) lines show Σ as computed
in DMFT, and as the sum of the parquet contributions, respectively. The colored symbols display
the different contributions to Σ(ν) according to Eq. (3.11). The parameters of the calculation
are: Nc = 1 (DMFT), t = 1

2
√

6
' 0.204 eV, β = 26 eV−1 with two different values of the Hubbard

interaction: U = 0.5 eV (left panel), U = 1 eV (right panel).
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Figure 3.11: left panel: Parquet decomposition of the DMFT self-energy Σ(ν) as in Fig. 3.10, but
with U = 2 eV. Right panel: Bethe-Salpeter decomposition in the spin channel of the same
DMFT self-energy.

larger compensation of the charge and the particle-scattering channels contribution is observed.
At higher frequency, these changes with respect to the previous case are mitigated, matching the
intrinsic perturbative nature of the high-frequency/high-T expansions [56,80,106].

The situation described above, which suggests an important role of spin fluctuations, partially
screened by charge and particle-particle scattering processes, displays important changes at
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intermediate-to-strong coupling U . This is well exemplified by the data reported in Fig. 3.11 (left
panel). Despite the DMFT self-energy still displays a low-frequency metallic bending (U = 2.0 is on
the metallic side of the DMFT MIT), in the low-frequency region one observes the appearance of a
huge oscillatory behavior in the parquet decomposition of Σ: All contributions to Im Σ, but the spin
term, are way larger than the self-energy itself and fluctuate so strongly in frequency, that several
changes of sign are observed. This makes it obviously very hard to define any kind of hierarchy for
the impact of the corresponding scattering channels on the final self-energy result.

Hence, at these intermediate-to-strong values of U the parquet decomposition procedure appears
to be no longer able to fully disentangle the physics underlying a given (here: DMFT) self-energy.
At the same time, one should stress that the strong oscillations visible in the parquet decompo-
sition of Fig. 3.11 can not be ascribed to numerical accuracy issues. In fact, one observes, that,
also in this problematic case, the self-consistency test works as well as for the other data sets: the
total sum of such oscillating contributions, still reproduces the Im Σ(ν) from DMFT in the whole
frequency range considered. The reason of such a behavior has to be traced back, instead, to the
divergencies of the 2PI vertices reported in DMFT in Sec. 3.1.1. It is worth stressing here, that
there is only one contribution to Σ(ν), which never displays wild oscillation, even for intermediate-
to-strong U : the spin channel. This means that even when the parquet decomposition displays a
strong oscillatory behavior, a Bethe-Salpeter decomposition in this specific (spin) channel will al-
ways remain well-behaved and meaningful. This is explicitly shown in Fig. 3.11 (right panel), where
all the contributions to Σ(ν), but Σ̃s, (i.e., formally: all the contributions 2PI in the spin channel) are
summed together: Here no oscillation is visible. The results of such Bethe-Salpeter decomposition
of Σ(ν) in the spin channel suggests then again an interpretation of a physics dominated by this
scattering channel, though -this time- in the non-perturbative regime: Strong (local) spin fluctua-
tions, originated by the progressive formation of localized magnetic moments, are responsible for
the major part of the electronic self-energy and scattering rate. Their effect is, as before, partly
reduced, or screened, by the scattering processes in the other channels (opposite sign contribu-
tion to Im Σ). Differently as before, however, the specific role of the “secondary” channels can no
longer be disentangled via the parquet decomposition.

3.3.2.2 DCA results

In this subsection, the numerical results for the parquet decomposition of self-energy data com-
puted in DCA are discussed. Different from DMFT, the DCA self-energy provides a more accurate
description of finite dimensional systems, as it is also explicitly dependent on the momenta of the
discretized Brillouin zone (i.e., a cluster of Nc patches in momentum space) of the DCA (see Sec.
2.2.4.1). Parquet decomposition results for the self-energy of the two-dimensional Hubbard model
with hopping parameter t = −0.25 for different values of the density n and of the interaction U
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Figure 3.12: Parquet decomposition of the DCA self-energy Σ[~k = (π, 0), ν]. The same convention
of Fig. 3.10 is adopted. The parameters of the calculations are Nc = 8, t = 0.25 eV, β = 12
eV−1 and the filling is n = 0.85 with two different values of the Hubbard interaction: U = 1.0 eV
(left panel), U = 2.0 eV (right panel)

are presented here. In particular, the focus is on the self-energy at the so called anti-nodal point,
~k = (π, 0), because it usually displays the strongest correlation effects for this model and also
because the vector ~k = (π, 0) is always present in both clusters we used (Nc = 4, 8) in our DCA
calculation. Please note, however, that the results of the parquet decomposition for the other rele-
vant momenta of this system, i.e. the nodal one ~k = (π/2, π/2), (for Nc = 8 where it is available),
are qualitatively similar.

As for the DMFT case, starting by considering a couple of significant cases at fixed density (here
n = 0.85, corresponding to the typical 15% of hole doping of the optimally doped high-Tc cuprates),
and performing the parquet decomposition for different U , the left panel of Fig. 3.12 shows the
calculations performed at a moderate U = 4|t| = 1eV (interaction equal to the semibandwidth).
As one can see the results are qualitatively similar to the DMFT ones at intermediate coupling
(right panel of Fig. 3.10), which one could indeed interpret in terms of predominant spin-scattering
processes, partially screened by the other channels. However, also in DCA, extracting such in-
formation from the parquet decomposition becomes rather problematic for larger values of U . At
U = 8|t| = 2 eV (interaction equal to the bandwidth: Fig. 3.12 right panel), the parquet decom-
position appears dominated by contributions from the 2PI and the pp channel: These become an
order of magnitude larger than the spin-channel contribution and of the total DCA self-energy. This
finding, in turn, indicates the occurrence of large cancellation effects in the parquet-decomposed
basis, making quite hard any further physical interpretation.

It is also instructive to look at the effect of a change in the level of hole-doping on the parquet
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Figure 3.13: Parquet decomposition of the DCA self-energy Σ[~k = (π, 0), iν] (Nc = 8) at different
dopings. Left panel: high hole doped case (n = 0.75) for the same interaction/temperature
values as in right panel of Fig. 3.12 (U = 2 eV and β = 12 eV−1). Right panel: undoped case
(n = 1), at intermediate-to-strong coupling (U = 1.4 eV and β = 10 eV−1, calculated for a
Nc = 4 DCA cluster.

decomposition calculations. This is done in Fig. 3.13: In the left panel of the figure results for
the highly doped case n = 0.75 (25% hole doping) are shown. Despite the large value of the in-
teraction U = 2 eV, this parquet decomposition looks qualitatively similar to the one at moderate
coupling of the less doped case Fig. 3.12 (left panel). Conversely, at half-filling (n = 1, right panel
of Fig. 3.13), although choosing a lower value of U = 1.4 eV, the parquet decomposition displays
the very same large oscillations among different channel contributions observed in the DMFT data
(Fig. 3.11, left panel). Hence, the parquet decomposition procedure applied to the DCA results
allows for extending the considerations drawn from the DMFT analysis of the previous section:
For a large enough value of U and moderate or no doping, the parquet decomposition of the self-
energy becomes rather problematic, as some channel contributions (supposed to be secondary)
become abruptly quite large, or even strongly oscillating, with large cancellation between differ-
ent terms. The inclusion of non-local correlations within the DCA allows for the demonstration of
that this is not a special aspect of the peculiar, purely local, DMFT physics, but it survives also
in presence of non-local correlations. In this perspective it is interesting to investigate, whether
the singularities in the parquet decomposition, with their intrinsically non-perturbative nature,
already occur in a parameter region where the DCA self-energy displays a strong momentum dif-
ferentiation, with pseudogap features. As discussed in Sec. 3.4, such a case is achieved in a
Nc = 8 DCA calculation for e.g. n = 0.94 (6% hole doping), U = 1.75 eV, β = 60 eV−1 (with the
additional inclusion of a realistic next-to-nearest hopping term t′ = 0.0375 eV). In the left panels of
the Fig. 3.14 the DCA self-energy for the anti-nodal and the nodal momentum is shown, together
with its corresponding parquet decomposition. Please note, as it was also stated in Ref. [90], that
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Figure 3.14: Parquet decomposition of the DCA self-energy Σ[~k, iν] with Nc = 8 for the low-
T , underdoped case n = 0.94 with U = 1.75 eV and β = 60 eV−1 (see text). Left upper
panel: parquet decomposition for the antinodal DCA self-energy [~k = (π, 0)]; right upper panel:
Bethe-Salpeter decomposition of the antinodal DCA self-energy. Left lower panel: parquet
decomposition of the nodal[~k = (π2 ,

π
2 )] DCA self-energy. Right lower panel: Bethe-Salpeter

decomposition of the nodal DCA self-energy.

the positive (i.e., non Fermi-liquid) slope of Im Σ(~k, iν) in the lowest frequency region for ~k = (π, 0)

indicates a pseudogap spectral weight suppression at the antinode. The parquet decomposition
of the two self-energies is, however, very similar: The strong oscillations of the various channels
clearly demonstrate that in the parameter region where a pseudogap behavior is found in DCA,
the parquet decomposition displays already strong oscillations. It is also interesting to notice that,
similarly as is was discussed in the previous section, also in this case, the spin channel contribution
of the parquet decomposition is the only one displaying a well-behaved shape, with values of the
order of the self-energy and no frequency oscillations. Consequently, also for the DCA self-energy
in the pseudogap regime, a Bethe-Salpeter decomposition in the spin-channel of the self-energy
remains valid (see right panel of Fig. 3.14). As discussed in the previous section, this might be inter-
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preted as an hallmark of the predominance of the spin-scattering processes in a non-perturbative
regime, where a well-behaved parquet decomposition is no longer possible. In this perspective,
the physical interpretation would match very well the conclusions derived about the origin for the
pseudogap self-energy of DCA by means of the recently introduced fluctuation diagnostics method
(see Sec. 3.4). At present, hence, the post processing of a given numerical self-energy provided
by the fluctuation diagnostics procedure appear the most performant, because -differently from the
parquet decomposition- it remains applicable, without any change, also to non-perturbative cases
(see following Sec. 3.4).

3.4 Fluctuation diagnostics

Parts of this section (marked by a vertical sidebar) have already been published in the

APS journal Phys. Rev. Lett. 114, 236402 (2016).

Correlated electron systems display some of the most fascinating phenomena in condensed matter
physics, but their understanding still represents a formidable challenge for theory and experiments.
For photo-emission [107] or STM [108,109] spectra, which measure single-particle quantities, infor-
mation about correlation is encoded in the electronic self-energy Σ. However, due to the intrinsically
many-body nature of the problems, even an exact knowledge of Σ is not sufficient for an unambigu-
ous identification of the underlying physics. A perfect example of this is the pseudogap observed
in the single-particle spectral functions of underdoped cuprates [110], and, more recently, of their
nickelate analogues [111]. Although relying on different assumptions, many theoretical approaches
provide self-energy results compatible with the experimental spectra. This explains the lack of a
consensus about the physical origin of the pseudogap: In the case of cuprates, the pseudogap has
been attributed to spin-fluctuations [93,112–115], preformed pairs [116–120], Mottness [121,122],
and, recently, to the interplay with charge fluctuations [123–126] or to Fermi-liquid scenarios [127].
The existence and the role of (d−wave) superconducting fluctuations [116–120] in the pseudogap
regime are still openly debated for the basic model of correlated electrons, the Hubbard model.

Experimentally, the clarification of many-body physics is augmented by a simultaneous inves-
tigation at the two-particle level, i.e., via neutron scattering [128], infrared/optical [129] and
pump-probe spectroscopy [130], muon-spin relaxation [131], and coincidence two-particle spec-
troscopies [132–134]. Analogously, theoretical studies of Σ can also be supplemented by a corre-
sponding analysis at the two-particle level. In this section, the influence of the two-particle fluctua-
tions on Σ is (again as in Sec. 3.3) studied via its equation of motion. However, this time, in order to
overcome the limitations of the parquet decomposition, the method of “fluctuation diagnostics”
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is used to identify the role played by different collective modes in the pseudogap physics.

3.4.1 The fluctuation diagnostics method

Emphasis should be put on the fact that all concepts and equations below are applicable within
any theoretical approach in which the self-energy and the two-particle scattering amplitude are
calculated without a priori assumptions of a predominant type of fluctuations. This includes quan-
tum Monte-Carlo (QMC) methods (e.g., lattice QMC [136]), functional renormalization group [135],
parquet approximation [61, 137, 138], and cluster extensions of the dynamical mean field theory
(DMFT) (see Sec. 2.2.4.1) such as the cellular-DMFT or the dynamical cluster approximation
(DCA). Within diagrammatic extensions [20, 43, 45, 46] of DMFT, the fluctuation diagnostics is ap-
plicable if parquet-like diagrams are included [46,60,139]. The outputs of these techniques can be
then post-processed by means of the fluctuation diagnostics with a comparably lower numerical
effort.

The self-energy describes all scattering effects of one added/removed electron, when propagat-
ing through the lattice. In correlated electronic systems, these scattering events originate from the
Coulomb interaction among the electrons themselves, rather than from the presence of an external
potential. Therefore, Σ is entirely determined by the full two-particle scattering amplitude (vertex)
F (see Sec. 2.3.1). The formal relation between F and Σ is the Dyson-Schwinger equation of
motion (EOM) (Eq. (2.27)), which is recalled here:

Σ(k) =
Un

2
− U

β2

∑
k′q

F kk
′q

↑↓ G(k′)G(k′ + q)G(k + q)

Therein, F↑↓ is the full scattering amplitude (vertex) between electrons with opposite spins: It
consists of repeated two-particle scattering events in all possible configurations compatible with
energy/momentum/spin conservation. Therefore it contains the complete information of the two-
particle correlations of the system. Yet, much of the information encoded in F↑↓ about the spe-
cific physical processes determining Σ is washed out by averaging over all two-particle scattering
events, i.e., by the summations on the r.h.s. of Eq. (2.27). Hence, an unambiguous identification
of the physical role played by the underlying scattering/fluctuation processes requires a “disen-
tanglement” of the EOM. The most obvious approach would be a direct decomposition of the full
scattering amplitude F↑↓ of the EOM in all possible fluctuation channels, the parquet decomposi-
tion introduced in Sec. 3.3. As analyzed there, this approach works well in the weakly correlated
regime (small U , large doping, high T ), whereas for stronger correlations it suffers from intrinsic
divergences.

In this section an alternative route that can be followed to circumvent this problem is presented.
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The idea exploits the freedom of employing formally equivalent analytical representations
of the EOM. For instance, by means of SU(2) symmetry and “crossing relations” (see, e.g.,
[51, 56, 140]), F↑↓ in the EOM can be expressed in terms of the corresponding vertex functions of
the spin/magnetic Fs = F↑↑−F↑↓ and charge/density Fc = F↑↑+F↑↓ sectors. Analogously, a rewrit-
ing in terms of the particle-particle sector notation is done via Fpp(k, k′, q) = F↑↓(k, k′, q − k − k′).
Inserting these results in the EOM and performing variable transformations, one recovers the EOM,
with F↑↓ replaced by Fs, Fc or Fpp. These three expressions,

Σ(k)− ΣH =
U

β2

∑
k′,q

F kk
′q

s G(k′)G(k′ + q)G(k + q)

= − U
β2

∑
k′,q

F kk
′q

c G(k′)G(k′ + q)G(k + q)

= − U
β2

∑
k′,q

F kk
′q

pp G(k′)G(q − k′)G(q − k)

(3.12)

yield the same result for Σ after all internal summations are performed (ΣH denotes the constant
Hartree term Un

2 ). Crucial physical insight can be gained at this stage, by performing partial sum-
mations. One can, e.g., perform all summations, except for the one over the transfer momentum
~q. This gives Σ̃~q(k), i.e. the contribution to Σ for fixed ~q, so that Σ(k) =

∑
~q Σ̃~q(k). The vector

~q corresponds to a specific spatial pattern given by the Fourier factor ei~q ~Ri . For a given repre-
sentation such a spatial structure is associated to a specific collective mode, e.g., ~q = (π, π) for
antiferromagnetic or charge-density-wave (CDW) and ~q = (0, 0) for superconducting or ferromag-
netic fluctuations. Hence, if one of these contributions dominates, Σ̃~q(k) is strongly peaked at
the ~q-vector of that collective mode, provided that the corresponding representation of the EOM
is used. On the other hand, in a different representation, not appropriate for the dominant mode
Σ̃~q(k) will display a weak ~q dependence. These heuristic considerations can be formalized by
expressing F through its main momentum and frequency structures (see Sec. 3.4.5). Hence, in
cases where the impact of the different fluctuation channels on Σ is not known a priori, the analysis
of the ~q-dependence of Σ̃~q(k) in the alternative representations of the EOM will provide the desired
diagnostics.

3.4.2 Results for the attractive Hubbard model

To demonstrate the applicability of the fluctuation diagnostics, one may start from a case where
the underlying, dominant physics is well understood, e.g. the attractive Hubbard model, U < 0.
This model captures the basic mechanisms of the BCS/Bose-Einstein crossover [141–145] and
has been intensively studied both analytically and numerically, e.g., with QMC [146–148] and
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Figure 3.15: Fluctuation diagnostics of Im Σ(~k, ν) (first row) for the attractive Hubbard model.
The histogram shows the contributions of Im Σ̃~q(~k, π/β) from different values of ~q in the spin,
charge and particle-particle representations for the attractive 2D Hubbard model (see text).
The pie charts display the relative magnitudes of |ImΣ̃ω(~k, π/β)| for the first eight Matsubara
frequencies |ω| in the charge and particle-particle picture, respectively.

DMFT [149–152]. Because of the local attractive interaction, the dominant collective modes are
necessarily s−wave pairing fluctuations [~q = (0, 0)] in the particle channel, and, for filling n ∼ 1,
CDW fluctuations [~q = (π, π)] in the charge channel.

Presented here are DCA results computed on a cluster with Nc = 8 sites for a 2D Hubbard model
with the following parameter set: t = 0.25 eV (t′ = 0), U = −1 eV, µ = −0.53 eV and β = 40 eV−1.
This leads to the occupancy n = 0.87, for which, at this T , no superconducting long-range order
is observed in DCA, and to the self-energy shown in Fig. 3.15 (upper left panel) which exhibits a
metallic behavior with weak ~k-dependence. The lower left and upper right panels of Fig. 3.15 show
the fluctuation diagnostics for Σ. The histogram depicts the different contributions to Im Σ[~k, ν] for
~k = (0, π) and (π/2, π/2) (lower left panel of Fig. 3.15) at the lowest Matsubara frequency (ν = π/β)
as a function of the momentum transfer ~q within the three representations (spin, charge and parti-
cle). Large contributions for ~q = (π, π) in the charge representation (blue bars) and for ~q = (0, 0)

in the particle-particle one (green bars) can be observed. At the same time, no ~q dominates in
the spin picture. Hence, the fluctuation diagnostics correctly identifies the key role of CDW and
s−wave pairing fluctuations in this system. This outcome is supported by a complementary analy-
sis in frequency space (pie-chart in Fig. 3.15): Defining Σ̃ω(~k, ν) as contribution to the self-energy
where the EOM all summations except the one over the transfer frequency ω are performed, one
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observes a largely dominant contribution at ω = 0 (∼ 70%) both in the charge and particle-particle
pictures. This proves that the corresponding fluctuations are well-defined and long-lived.

3.4.3 Results for the repulsive Hubbard model

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

-I
m

 Σ~
Q

[k
]

(π
,π

)
(0

,π
)

(π
,0

)
(π

/2
,π

/2
)

(π
/2

,-π
/2

)
(-π

/2
,-π

/2
)

(0
,0

)

(π
,π

)
(0

,π
)

(π
,0

)
(π

/2
,π

/2
)

(π
/2

,-π
/2

)
(-π

/2
,-π

/2
)

(0
,0

)
K=(0,π) K=(π/2,π/2)

spin    
charge 
particle

-.8

-.6

-.4

-.2

.0

0 2 4

Im
 Σ

[k
]

ν [eV]

K=(0,π)

0 2 4

ν [eV]

K=(π/2,π/2)

spin picture

ω = 0

ω 6= 0

particle picture

ω = 0

ω 6= 0
K = (0, π)

Figure 3.16: As for Fig. 3.15: Fluctuation diagnostics of the electronic self-energy, for the case of
the repulsive Hubbard model.

The fluctuation diagnostics is now applied to the much more debated physics of the repulsive
Hubbard model in 2D, focusing on the analysis of the pseudogap regime. As before, DCA cal-
culations with a cluster of Nc = 8 sites are analyzed. Σ and F have been calculated using the
Hirsch-Fye and Continuous Time QMC methods (see Sec. 2.2.2.3), accurately cross-checking the
results. In the view of a crude modellization of the cuprate pseudogap regime, the parameter set
t = 0.25 eV, t′ = 0.0375 (next nearest neighbor hopping), U = 1.75 eV, µ = 0.6 eV (corresponding to
n = 0.94) and β = 60 eV−1 is utilized. For these parameters, the self-energy (see upper left panel
of Fig. 3.16) displays strong momentum differentiation between the “antinodal” [~k = (0, π)] and the
“nodal” [~k = (π/2, π/2)] momentum, with a pseudogap-like behavior at the antinode [153,154].

The fluctuation diagnostics is performed in Fig. 3.16, where the contributions to Im Σ[~k, π/β] for
~k = (0, π) and (π/2, π/2) (upper panels) as a function of the transfer momentum ~q in the three rep-
resentations are shown. This illustrates clearly the underlying physics of the pseudogap. In the spin
representation (red bars in the histogram), the ~q = (π, π) contribution dominates, and contributes
more than 85% and 80% of the result for ~k = (0, π) and ~k = (π/2, π/2), respectively. Conversely,



3.4. FLUCTUATION DIAGNOSTICS 77

all the contributions at other transfer momenta ~q 6= (π, π) are about an order of magnitude smaller.
The dominant ~q = (π, π)-contribution is also responsible for the momentum differentiation, being al-
most twice as large for the antinodal self-energy. Performing the same analysis in the charge (blue
bars) or particle-particle (green bars) representation, one obtains a completely different shape of
the histogram. In both cases, the contributions to Σ are almost uniformly distributed among all
transfer momenta ~q.

Hence, no important contributions to Σ are found from charge or pairing modes, while the his-
togram in the spin-representation marks the strong impact of antiferromagnetic fluctuations
[93, 112–115, 155–157]. This picture is further supported by the complementary frequency analy-
sis. The pie chart in Fig. 3.16 is dominated by the ω = 0 contribution in the spin picture, reflecting
the long-lived nature of well-defined spin-fluctuations. At the same time, in the particle (and charge,
not shown) representation, the contributions are more uniformly distributed among all ω’s, which
corresponds to short-lived pairing (charge) fluctuations.

3.4.4 Physical interpretation of the pseudogap

From the results of the preceding section, some general conclusions on the physics underlying a
pseudogap can be drawn. These considerations are relevant for the underdoped cuprates, up to
the extent their low-energy physics is captured by the 8-site DCA for the repulsive 2D Hubbard
model. By means of fluctuations diagnostics, in Fig 3.16, a well-defined [~q=(π, π)] collective spin-
mode is identified to be responsible (on the 80% level) both for the momentum differentiation of
Σ and for its pseudogap behavior at the antinode: The large values of Σ̃~q at ~q= (π, π) and Σ̃ω at
ω = 0 are the distinctive hallmarks of long-lived and extended (antiferromagnetic) spin-fluctuations.
At the same time, the rather uniform ~q- and ω-distribution of Σ̃~q and Σ̃ω in the charge/particle pic-
tures shows that the well-defined spin mode can be also viewed as short-lived and short-range
charge/pair fluctuations. The latter cannot be interpreted, hence, in terms of preformed pairs. This
scenario matches very well the different estimates of fluctuation strengths in previous DCA stud-
ies [154, 157, 158]. The general applicability of the results has to be emphasized: A well defined
mode in one channel appears as short-lived fluctuations in other channels. This dichotomy is not
visible in Σ, which makes the fluctuations diagnostics a powerful tool for identifying the most con-
venient viewpoint to understand the physics responsible of the observed spectral properties.

Attention should be paid to the still open question about the impact of superconducting d-wave fluc-
tuations on the normal-state spectra in the pseudogap regime of the Hubbard model. The instan-
taneous fluctuations are defined as 〈∆†d∆d〉, with ∆†d =

∑
~k
f(~k)c†~k↑c

†
−~k↓ and f(~k) = coskx − cosky.

These ~q = 0 fluctuations are certainly strong in proximity of the superconducting phase, but they
were also found [154] to be significant over short distances in the pseudogap regime. Their in-
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tensity gets stronger as U is increased, beyond the values where superconductivity exists. The
expression for Σ̃~q=(0,0) in the particle picture is closely related to 〈∆†d∆d〉, except that the fac-
tor f(~k) is missing in Σ̃~q. One might therefore have expected that large ~q = 0 pair fluctuations,
irrespectively of their lifetime, would have contributed strongly to Σ. For unconventional supercon-
ductivity, e.g., d−wave, this does not happen. The reason is the angular variation of f(~k). For
strong pair fluctuations, the variations of f(~k) make the contributions to the fluctuations add up,
while the contributions to Σ then tend to cancel. This explains why suppressing superconductivity
fluctuations [20,43,154,158–161] does not affect the description of the pseudogap of the Hubbard
model. In the case of a purely local interaction such as in the EOM, enhanced 〈∆†d∆d〉 fluctuations
are mostly averaged out by the momentum summation.

The diagnosis of dominant spin-fluctuations in the DCA self-energy in the underdoped 2D-Hubbard
model does not represent per se the conclusive scenario for the cuprate pseudogap. However, im-
portant information about the realistic modeling of cuprates can be already extracted: If definitive
experimental evidence for an impact of supposedly “secondary” (e.g., charge) fluctuations on the
pseudogap is found, extensions of the modellization will be unavoidable for a correct pseudogap
theory: Non-local interactions (e.g., extended Hubbard model) or explicit inclusion of the oxygen
orbitals (e.g., Emery model) might be required. In fact, such extensions represent in itself an
intriguing playground for future fluctuation diagnostics applications.

3.4.5 Fluctuation decomposition of the vertex

The physical interpretation of the numerical results presented in the previous section, is supported
by a precise analytical derivation valid for the weak-coupling regime. Specifically one may con-
sider in the following an approximation for the vertex function Fr, r = c,s,pp, entering in the EOM.
In this approximation, one retains all principal frequency and momentum structures of the vertex
functions, i.e. (beyond the bare interaction U ) the main and secondary diagonal and the con-
stant background (see [51, 162]). Physically, these main features of F correspond to the different
susceptibilities (response-functions) χr(~q, ω), r = c,s,pp. In the weak-coupling approximation the
vertex F will be now expressed as [51]

F kk
′q

c ≈ U + U2

[
−χc(q) +

3

2
χs(k′ − k) +

1

2
χc(k′ − k)− χpp(k + k′ + q)

]
(3.13a)

F kk
′q

s ≈ −U − U2

[
χs(q) +

1

2
χs(k′ − k)− 1

2
χc(k′ − k) + χpp(k + k′ + q)

]
(3.13b)

F kk
′q

pp ≈ U + U2

[
−1

2
χc(q − k − k′) +

1

2
χs(q − k − k′) + χs(k′ − k)− χpp(q)

]
. (3.13c)
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As mentioned above, such an approximation can be rigorously justified only in the weak-coupling
regime, i.e., for small interaction values U (U � t). At stronger interactions additional structures
appear in the vertex functions such as a “cross” discussed in Ref. [51]. The latter emerges from
third-order diagrams (“eye”-diagrams) which eventually become relevant at stronger coupling. In
the weak-coupling limit, however, Eqs. (3.13) allow for an immediate understanding of how different
fluctuations contribute to the self-energy. In this respect, one should recall that each susceptibility
χr(~q, ω) has a clear physical meaning: They describe the (linear) response of the system with re-
spect to an external forcing field, which is associated to the specific channel r (r= ch→ chemical
potential, r = sp → (staggered) magnetic field, r = pp → pairing field). They become obviously
very large in the vicinity of a corresponding second order phase transition. More specifically, the
static susceptibility χr(~q, ω = 0) gets strongly enhanced at a specific momentum, ~q0, if the system
exhibits large fluctuations in the channel r, which are associated with the spatial pattern defined by
ei ~q0·Ri (see discussion in the main text). Hence, one can generally expect that the susceptibilities
χr(q) (at ω = 0 and ~q = ~q0) yield the most relevant contributions to the self-energy, if the system
exhibits large fluctuations in the corresponding channel(s) r [see Eqs. (3.13) and the EOM]. In the
following, these considerations are applied to the cases of the repulsive (U > 0) and the attractive
(U <0) Hubbard model discussed in the previous section.

Assuming that in the repulsive Hubbard model antiferromagnetic [~q=Π,Π=(π, π)] spin-fluctuations
dominate (this is most likely the case at half-filling), one can analyze how, in this situation, the
different frequency (Σ̃ω) and momentum (Σ̃~q) contributions to the self-energy, as depicted in the
histograms/pie charts for the self-energy decomposition in Fig. 3.16, are interpreted in terms of the
approximate form for the vertex Fr in Eqs. (3.13). In a spin dominated situation, the most relevant
contributions to Fr will originate from χs(~q = Π, ω = 0). Following the above considerations and
replacing the exact vertex functions Fr by their approximate forms (3.13) in the calculation of Σ̃~q

and Σ̃ω one, hence, arrives at the following conclusions:

• In the spin-picture, χs appears as a function of ~q and ω in Fsp [see Eqs. (3.13b)], independent
of k′. In this situation each term in the k′-sum in the EOM includes the large contribution
χs(~q= Π, ω= 0) to Σ̃~q and Σ̃ω. On the other hand, for ~q 6= Π or ω 6= 0 the largest contribution
to the k′ summation stems from the single term proportional to χs(k′ − k) in Eq. (3.13b),
evaluated for (~k′−~k)=Π and ν ′−ν=0. This explains the rather small values of Σ̃~q and Σ̃ω for
~q 6= Π or ω 6= 0, respectively, in the spin picture. Please note that this situation corresponds
to histograms and pie charts, very similar to those observed for the DCA calculation of Fig.
3.15.

• At the same time, in the charge and particle-particle representations, χs appears only as
a function of k′−k (or q−k−k′), see Eqs. (3.13a) and (3.13c). Therefore, when performing
the partial summations over k′ in the EOM, only the single contribution for ~k′−~k = Π and
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ν ′−ν = 0 (~q−~k−~k′ = Π and ν−ν ′−ω = 0) is large in this sum. On the other hand, such a
contribution appears for each value of ~q and ω. This explains well the fact that in the charge
and the particle-particle pictures the contributions Σ̃~q and Σ̃ω, respectively, to the self-energy
are uniformly distributed among all values of ~q and ω as it is observed in the histograms and
pie chart (only particle-particle) in Fig. 2. It should be stressed, that χs does contribute to
Fr in the charge and particle-particle picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-particle representation spin fluctuations
are seen from a not “convenient” perspective. From this specific point of view, a well-defined
collective spin-mode will appear as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the democratic distribution of Σ̃~q and Σ̃ω among
all values of ~q and ω.

Obviously the above analysis is applicable also to the attractive Hubbard model (U < 0): In this
situation charge and particle-particle fluctuations are expected to dominate while spin fluctuations
are strongly suppressed. Hence, χc(~q=Π, ω=0) and χpp(~q=0, ω = 0), 0=(0, 0), are enhanced:

• In the spin picture these arguments for χc and χpp appear for only one value of k′ when
performing the k′ summation.

• On the contrary, in the particle-particle picture, χc (or χpp) is a function of ~q and ω and
the above mentioned large contribution to Σ̃~q and Σ̃ω appears for each value of k′. Hence,
Σ̃~q and Σ̃ω get strongly peaked at ~q = Π and ω = 0, respectively, in the charge description
and ~q= 0 and ω= 0 in the particle-particle description, while in the spin picture Σ̃~q is almost
independent of ~q.

The above discussion based on the vertex decomposition in Eqs. (3.13) is rigorously justified only
for small values of U where corrections beyond Eqs. (3.13) are negligible. This highlights the im-
portance of the fluctuation diagnostics approach which is applicable for all values of the interaction.
In fact, the fluctuation diagnostics for the DCA self-energy in the pseudogap regime of the repul-
sive two-dimensional Hubbard model gives gives histograms/pie charts for Σ̃~q and Σ̃ω dominated
by ~q=Π and ω=0 in the spin representation, indicating the dominant role played by a well defined
and long-lived (~q= Π, ω= 0) spin collective mode. This hold even in a regime, where Eqs. (3.13)
break down. Specifically, while the main bosonic structures of F described in Eqs. (3.13) give
a significant contribution to the self-energy even in the non-perturbative regime, the momentum
differentiation observed in the histograms originates from contributions beyond Eqs. (3.13).



4
Spectral analysis at the one-particle level: from 3D to 1D

“It is as though a star throws the whole secret history of its being into its spectrum,
and we have only to learn how to read it aright in order to solve the most abstruse
problems of the physical Universe.”

- Herbert Dingle (English astronomer and philosopher, *1890 - †1978)

The dynamical mean field theory (DMFT) accounts for temporal fluctuations of a strongly cor-
related system, neglecting its spatial correlations beyond mean-field. DMFT is an exact the-
ory in the limit of infinite dimensionality, however, it can be used as a powerful approximation
for finite dimensional systems. For three-dimensional bulk systems DMFT calculations are
usually accurate, although quantitative corrections have to be taken into account, especially
in the vicinity of second order phase transitions, where non-local correlations become more
dominant. The situation dramatically changes in two-dimensional systems, where non-local
correlations ought to be included in order to obtain a qualitative correct physical description.
Of course, if the dimensionality is reduced to the even more extreme case of one dimen-
sion, the physics of DMFT can be completely overturned. In this Chapter, a diagrammatic
extension of DMFT, the dynamical vertex approximation (DΓA) is exploited to analyze the
spectral properties of Hubbard systems when the dimensionality is progressively reduced.
This will allow to identify, in general, how spatial and temporal correlations appear in the
electronic self-energy for different dimensions, suggesting future algorithmic improvements.
Starting at three dimensions, the impact of second-order phase transitions on Fermi-liquid
properties is studied and the space-time separability of the self-energy is discussed. In two
dimensions, an alternative parametrization of the (spatial part of the) self-energy is applied,
that leads to a remarkable collapse of this quantity onto a single curve. Eventually, in the
most challenging case of one dimension, the DΓA and DMFT are benchmarked against the
exact solutions available for finite Hubbard nano-rings.

81
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4.1 Separability of local and non-local correlations in three dimen-
sions

Parts of this section (marked by a vertical sidebar) have already been published in the

APS journal Phys. Rev. B 12, 121107(R) (2015).

Several iconic phenomena of the many-body problem, such as the Kondo effect or the Mott metal-
insulator transition, can be described by local correlation effects. This explains the great success
of DMFT for our understanding of numerous correlated materials (see Sec. 2.2). However, DMFT
ad hoc assumes the electron self-energy to be independent of momentum. This is known to fail
in low dimensions, e.g. for the Luttinger liquid in 1D, or the strong momentum space differentiation
in (quasi) 2D systems. However, even in three dimensions, the major realm of practical DMFT
applications, signatures of local spatial correlations are apparent, e.g., in the presence of second
order phase transitions: In the 3D Hubbard model, nearest-neighbor spin-spin-correlation functions
[163, 191], non-mean-field critical exponents [171], and deviations from a non-local correlations’
picture of the entropy [163,191] indicate a paramount effect of local antiferromagnetic fluctuations
in a large region of the phase-diagram.
Complementary to these manifestations of self-energy effects that are local in space, one might
also investigate their structure in the time domain. While exchange contributions to the elec-
tron self-energy are static by construction, correlation effects are a priori both momentum- and
energy-dependent. Recently it has been proposed that the quasi-particle weight Z~k = (1 −
∂ωReΣ(~k, ω))−1

ω=0, accounting for the low-energy dynamics in the (retarded) self-energy Σ of met-
als, is essentially momentum-independent in the iron pnictides [164], as well as metallic transition
metal oxides [165]. Yet, the basis for the mentioned empirical finding of the non-locality of Z~k was
the weak-coupling GW approach [166–168], where spin fluctuations are completely neglected.
However, large dynamical spin fluctuations have been found in the iron pnictides both theoreti-
cally [73,169] and experimentally [169]. Moreover, these fluctuations were shown to constitute the
leading contribution to local self-energies in the (extended) Hubbard model [170–172].

In this section, the analysis of local and non-local correlations in spectral properties of metals
is put on solid grounds (see also the recent analysis presented in [68]). To this aim the dynamical
vertex approximation (see Sec. 2.3) is applied to the 3D Hubbard model (Eq. (2.6)) on a cubic
lattice away from half-filling. This allows for a precise study of the electron self-energy beyond the
weak-coupling regime. Energies in this section will be measured in units of the half-bandwidth
W/2 = 6t ≡ 1. An interaction value of U = 1.6 is chosen, which, at half filling, n = 1, yields a
Mott insulator with maximal Néel temperature [171]. Thus, the crossover regime between weak-
coupling (where the perturbative GW approximation is most justified and magnetism controlled
by Fermi surface instabilities) and the Mott-Heisenberg physics at large interaction strengths, is



4.1. SEPARABILITY OF CORRELATIONS IN 3D 83

T
N

é
e
l

n

DMFT

DΓA

0.00

0.02

0.04

0.06

0.08

0.10

 0.9 0.95 1

Figure 4.1: Phase diagram of the 3D Hubbard model within DMFT and DΓA for U=1.6. The solid
(dashed) line indicates the DΓA (DMFT) Néel temperature, determined from the divergence of
the spin susceptibility. The vertical bars at fixed filling n indicate the temperature paths followed
in Fig. 4.2. The system is Mott-insulating at half-filling (n = 1). All energies here are measured
in units of the half-bandwidth.

considered. It was shown (for half-filling) that the effect of local fluctuations is strongest in this
intermediate regime [20,171].

4.1.1 Results

Fig. 4.1 shows the phase diagram of the 3D Hubbard model as a function of filling n and tem-
perature T (see Sec. 6.3 for higher dopings). As a clear signature of local fluctuations, the Néel
temperature is reduced by at least 30% in DΓA with respect to the DMFT result. To elucidate the
influence of these manifestly non-local effects in the two-particle AF susceptibility onto the one-
particle electronic structure, the DΓA self-energy is analyzed when approaching the spin density
wave (SDW) instability at constant filling.

In a first step, effects near the Fermi level are investigated and a low-energy expansion of the
self-energy on the real frequency axis ω is performed (“Landau Fermi-liquid expansion”):

Σ(~k, ω) = ReΣ(~k, ω = 0) + (1− 1/Z(~k))ω + ıΓ(~k)(ω2 + π2T 2) + · · · , (4.1)

where

γ(~k) = −ImΣ(~k, ω = 0) = Γ(~k)π2T 2 +O(T 4)

is the scattering rate, and Z(~k) can be identified as the quasi-particle weight in the Fermi
liquid regime. In the limit of infinite dimensions, non-local self-energy diagrams vanish, and Z

and γ are momentum independent [16]. The DMFT self-consistency condition then yields, via
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Figure 4.2: Low-energy expansion of the DΓA self-energy and momentum dependence of the
expansion coefficients. The shaded areas (light gray, gray, black) indicate the standard deviation
of the expansion coefficients in the Brillouin zone with respect to their local values aloc, as a
function of temperature for different fillings (n = 0.9, n = 0.95, n = 0.975).

the Dyson equation (2.12), the exact non-interacting propagator of an effective Anderson impurity
problem [15]. In finite dimensions this is no longer true. Therefore, besides the approximation of
assuming the self-energy to be purely local, this local self-energy does not need to coincide with
the local projection of the exact (non-local) lattice self-energy. In fact, the momentum average

aloc =
1

N~k

∑
~k

a(~k)

(with N~k the number of ~k-points) of the DΓA quasi-particle weight and scattering rate, Zloc and γloc,
deviate notably from the DMFT prediction (Fig. 4.2, middle and right panel). As expected [20], the
inclusion of antiferromagnetic fluctuations reduces the quasi-particle weight Z. Please note that
the temperature evolution of Zloc, and its change in hierarchy (Z smallest at low doping, 1− n, for
small T ; while for high T , Z is largest for small doping) follows the same trends as the inverse of
the effective mass of the 3D electron gas [173].

For the chosen parameter set, the scattering rate γ in DMFT is large enough to induce a large
violation of the pinning condition ImGloc(ω = 0) = ImGU=0

loc (ω = 0), valid for local self-energies with
vanishing imaginary part at the Fermi level [174]. Moreover, the temperature dependence of γ evi-
dently involves corrections [175] to the low-energy Fermi liquid behavior, as neither DMFT nor DΓA
yield a T 2 behavior. Therewith the interpretation of the expansion coefficient Z as quasi-particle
weight breaks down. Nevertheless, in the following the solutions ~kF of the quasi-particle equation,
det(µ − ε~k − ReΣ(~k, 0)) = 0 are conventionally indicated as “Fermi surface”, with the chemical
potential µ and the one-particle dispersion ε~k. This can be motivated by the (co)existence of quasi-
particle-like excitations even above the Fermi liquid coherence scale [175]. In DΓA, spectral weight
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at the Fermi level is further depleted compared to DMFT [20,171] and effective masses are reduced
(see below). Hence, the local electron-electron scattering contributions to quasi-particle lifetimes
decrease, explaining why γDMFT > γDΓA

loc . When approaching the SDW state, however, non-local
spin fluctuations provide an additional scattering mechanism: While γ → 0 for T → 0 in DMFT, the
inverse life-time in DΓA levels off. Concomitantly, and analogous to the incoherence crossover at
high-T via local electron-electron scattering, the emerging low-T scattering in DΓA, causes ZDΓA

to saturate towards the SDW state.

In the following, the momentum dependence of the self-energy is analyzed by calculating the stan-
dard deviation of the expansion coefficients a(~k) = ReΣ(~k, ω=0), Z(~k), γ(~k) with respect to
their local values:

∆~k
a(~k) =

√√√√1/N~k

∑
~k

∣∣∣a(~k)− aloc

∣∣∣2.
One can see that non-local fluctuations manifest themselves very differently in the individual coef-
ficients (from left to right in Fig. 4.2):

(i) The momentum dependence of the static part of the self-energy ReΣ(~k, ω=0), as measured
by the above standard deviation, increases substantially towards the spin ordered phase, and
grows sharply when approaching the Mott insulator at half-filling; ∆~k

ReΣ(~k, ω = 0) reaches
values as large as 20-40% of the half-bandwidth W/2 –a large effect that is fully neglected in
DMFT.

(ii) The standard deviation in momentum space of the quasi-particle weight, ∆~k
Z(~k) (depicted

as shaded areas around the local values in Fig. 4.2(b)), is small in all considered cases.
Indeed the largest absolute deviation amounts to only 0.07. In particular, ∆~k

Z(~k) does not
dramatically increase upon approaching the Néel temperature, in stark contrast to the dis-
cussed static part of the self-energy.

(iii) The momentum dependence of the scattering rate γ, Fig. 4.2(c), remains always moderate.
Specifically, the momentum variation increases on absolute values when approaching the
Mott insulator at half-filling, although the relative importance ∆~k

γ(~k)/γ actually decreases.

Summarizing, one finds that while spin and charge fluctuations, that develop upon approaching the
spin-ordered or Mott-insulating state, can renormalize significantly the value of the quasi-particle
weight Z, they do not introduce any sizable momentum differentiation in it. This is in strong op-
position to the pronounced non-local effects in the static part of the self-energy. The latter will,
however, strongly modify the mass m∗ of the quasi-particles, as e.g. extracted from Shubnikov-de
Haas or photo-emission experiments. Indeed the effective mass enhancement m∗/m is defined by
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~k = ~kF k0 ∇kε~k ∇kReΣ(~k, 0) Z 1/Z m∗/m
~k1=(k0, k0, 0) 2.16 0.55 0.30 0.45 2.20 1.42
~k2=(k0, 0, π) π/2 0.67 0.20 0.45 2.23 1.72
~k3=(k0, k0, k0) π/2 0.99 0.35 0.41 2.44 1.81

Table 4.1: Effective masses on the Fermi surface. Contributions to m∗/m from dynamical (Z) and
static (∇kReΣ(~k, 0)) renormalizations for three ~kF , see also Fig. 4.3. In DMFT: m∗/m = 1/Z =
1/0.44 = 2.26. U=1.6, T=0.043.

the ratio of group velocities of the non-interacting and interacting system, respectively:

(
m∗

m

)−1
∣∣∣∣∣
~kF

= Z(~kF )

[
1 +

ê~kF · ∇kReΣ(~k, ω = 0)

ê~kF · ∇kε~k

]
~k=~kF

(4.2)

where ε~k is the non-interacting dispersion and ê~kF is the unit-vector perpendicular to the Fermi
surface for a given ~kF . Thus, besides the enhancement of m∗ via Z (which are shown to be quasi
local, see also Tab. 4.1), there is a contribution to m∗ from the momentum dependence of the static
self-energy. The sign of the derivative ∇kReΣ is always positive, thus the effect of non-local cor-
relations is to reduce the effective mass. In Tab. 4.1 the individual components to m∗/m for three
Fermi vectors ~kF (on the Fermi surface, Z and γ are maximal (minimal) for ~k2 (~k3)) are given. One
finds m∗/m to be notably momentum-dependent: m∗/m = 1.4 for ~k1, while for ~k3 m

∗/m = 1.8 –a
value larger by 30%. However, it is dominantly the spatial variation of the self-energy (∇kReΣ),
not a non-local dependence in its dynamics (Z), that causes this momentum differentiation. De-
pending on ~kF , local correlation effects reduce the effective mass down to 55-75% of its dynamical
contribution, 1/Z. In realistic GW calculations even larger reductions were found for iron pnic-
tides [164]. Besides the change in the (local) quasi-particle weight, this is a second, significant
effect not accounted for in non-local approaches, such as DMFT.

Having so far concentrated on effects at the Fermi level, a natural question is: Up to which en-
ergy scale do dynamical correlations remain essentially local? Fig. 4.3 shows the Fermi surface
within DΓA for n = 0.9 and the real parts of the self-energies along a path in the Brillouin zone.
Congruent with the quasi-particle weight being quasi local, the slopes of the self-energies at the
Fermi level are the same for all momenta and the curves differ by a static shift only. To quantify
this observation, Fig. 3 (right) shows the standard deviation ∆~k

Z(~k, ω), where the Z-factor is for-
mally extended to finite frequencies: Z(~k, ω) = 1/(1− ∂ωReΣ(~k, ω)). ∆~k

Z(~k, ω), a measure for the
momentum dependence of dynamical correlations, is negligible in the energy window [−0.25 : 0.6].
Given the bandwidth renormalization W →Wm/m∗, with the above effective mass ratio, non-local
correlations are effectively static over most of the interacting quasi-particle dispersion.
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Fig. 4.3 also shows GW results: While the slope of the self-energy is constant throughout the Bril-
louin zone within the linear Fermi liquid regime (the extension of which GW overestimates), also
the static part shows only a weak momentum-dependence. The comparatively large variations of
ReΣ(~k, ω=0) in DΓA therefore emphasize the pivotal influence of spin fluctuations (neglected by
GW) onto (static) non-local correlations.

4.1.2 Implication on many-body schemes

The central findings of the above analysis for correlated metals in 3D are:

1. Within most of the quasi-particle bandwidth non-local correlations are static. Conversely
dynamical correlations are local. Hence, the self-energy of 3D systems is separable into
local and dynamical contributions

Σ(~k, ω) = Σnon-loc(~k) + Σloc(ω) (4.3)

providing an a posteriori justification for the application of a DMFT-like method to describe
Σloc(ω) in 3D. It should be stresses, however, that since e.g. ZDMFT 6= ZDΓA

loc , ways to improve
the DMFT impurity propagator (e.g. by incorporating Σnon-loc(~k) in the DMFT self-consistency)
need to be pursued.

2. Static correlations have a large momentum-dependence, calling for a description of Σnon-loc

beyond, say, DFT. This can e.g. be achieved with the GW+DMFT approach [165,176], or the
recently proposed QSGW+DMFT [164]. Exploiting Eq. (4.3), these can be simplified, as is
the strategy in DMFT@(local GW). Yet, already the GW can profit: Here, one can propose to
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Figure 4.3: DΓA Fermi surface and momentum dependence of the self-energy. Shown is the
Fermi surface computed in DΓA for n = 0.9, U = 1.6, T = 0.043 (left). There, the green squares
indicates the cut of the Brillouin zone that contains the path (k, k, 0) for which the real parts of
the DΓA self-energies (middle panel) are shown. Indicated are also the ~k-points of Tab. 4.1.
The maximal (minimal) Z and γ on the Fermi surface occur at ~k2 (~k3).
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replace Hedin’s
ΣGW (~k, ω) = 1/N~q

∑
~q,ν

G(~k + ~q, ω + ν)W (~q, ν)

with
Σ̃GW (~k, ω) = Σloc

GW (ω) + Σnon-loc
GW (~k),

where
Σloc
GW (ω) =

∑
ν

Gloc(ω + ν)W loc(ν),

Σnon-loc
GW (~k) =

1

N~q

∑
~q,ν

G(~k + ~q, ν)W (~q, ν)− Σloc
GW (ω = 0)

for GW calculations of metals. This physically motivated scheme is referred to as “space-
time-separated GW”. Avoiding the ~q- and ω-convolution, respectively, reduces the numer-
ical expenditure, typically gaining more than an order of magnitude. If the dominant non-
local self-energy derives from exchange effects, Eq. (4.3) holds and SEX+DMFT [177] can
be employed. In the (one-band) Hubbard model, however, non-local self-energies are not
exchange-driven. Still, Σnon-loc is significant, and in particular beyond a perturbative de-
scription like GW. Consequently, at least in the vicinity of second order phase transitions, a
methodology beyond (QS)GW+DMFT is required. Ab initio-DΓA [178] or realistic applications
of other diagrammatic extensions [43,45,46,203] of DMFT might provide a framework for this.
That Eq. (4.3) holds beyond weak coupling, however, nourishes the hope that a much less
sophisticated electronic structure methodology can be devised in 3D.

However, also in 3D, momentum-dependent quasi-particle weights can be generated. In fact, this
is the typical situation in heavy fermion systems below their (lattice) Kondo temperature. There, the
hybridization amplitude for spin singlets between atomic-like f -states and conduction electrons is
modulated on the Fermi surface, as it can be rationalized with mean-field techniques [179]. Thus,
even a local quasi-particle weight of the f -states yields a momentum-space anisotropy of Z via the
change in orbital character. This effect has also been held responsible for anisotropies in some
Kondo insulators [181]. Beyond this scenario, however, strong inter-site fluctuations in the periodic
Anderson model (see Eq. (2.8) and [180]) suggest actual non-local correlation effects to be of
crucial relevance to heavy fermion quantum criticality [182, 183]. A further source of non-trivial
non-local correlation effects in 3D are multi-polar Kondo liquids [179, 184, 185]. To elucidate the
latter two phenomena, an application of DΓA to e.g. the periodic Anderson model is called for.

Non-local renormalizations that are dynamical also occur in lower dimensions, as e.g. shown
theoretically for 2D [39, 43, 46, 186, 187]. In the next section, therefore, the structure of the self-
energy for the Hubbard model in two dimensions is analyzed in detail.
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4.2 Self-energies and their parametrization in two dimensions

Most of the figures in this section have already been published in the

APS journal Phys. Rev. B 93, 195134 (2016).

The results of the previous section showed that, for certain energy windows, the self-energy Σ(ν,~k)

for the Hubbard model in three dimensions can be separated in a local (but frequency-dependent)
and a non-local (but frequency-independent) part,

Σ(~k, ω) = Σloc(~k) + Σnon-loc(ω). (4.4)

In two dimensions, however, local and non-local fluctuations are believed to be fundamentally
interwoven, so that such a decomposition usually cannot be achieved. However, as will be shown
in this section, the self-energy of the Hubbard model in two dimensions exhibits a surprising, quite
different property: away from the Fermi surface, the self-energy Σ(ν,~k), parameterized by the
frequency ν and momentum vector ~k, collapses onto a different parametrization of frequency
ν and (non-interacting) electron dispersion ε~k, i.e.

Σ = Σ(ν,~k)→ Σ(ν, ε~k). (4.5)

This is a quite remarkable feature, since, in two spatial dimensions, this self-energy parametriza-
tion only requires two parameters instead of three. Of course, this energy-parametrization is not
exact: notable deviations from the (“exact”) momentum-parametrization occur in the (per definition,
~k-selective) pseudogap phase and strongly asymmetric lattices, where the x/y-symmetry is bro-
ken. However, for a wide range of parameters, the energy-parametrization works remarkably well.

In the following, first, the behavior of self-energies in the half-filled Hubbard model on a simple
square lattice (Eq. (2.6)) in momentum- and energy-parametrization is studied by means of two
complementary cutting-edge many-body methods: of the dynamical vertex approximation (see
Sec. 2.3) and (finite-size) Blankenbecler-Sugar-Scalapino quantum Monte-Carlo (BSS-QMC) sim-
ulations. BSS-QMC shares some similarities with Hirsch-Fye QMC (see Sec. 2.2.2.3) on a finite
lattice [136]. Later, the proposal of the energy-parametrization is attempted to be transferred to
anisotropic and doped systems.

4.2.1 Collapse of ~k-dependence on a ε~k-dependence

In a first step it is illustrative, to investigate the self-energy in the (original) momentum-parametri-
zation Σ(ν,~k) for a representative set of parameters in BSS-QMC. Fig. 4.4 shows the (imaginary
part) of the 2D self-energy for U = 4t, βt = 5.6, on a simple square (isotropic, nearest-neighbor
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Figure 4.4: (taken from [188]) Imaginary part of the self-energy Σ(ν,~k) from BSS-QMC for U = 4t,
and βt = 5.6 at (a) the first three Matsubara frequencies and kx = 0; (b) at the first Matsubara
frequency along the (brightness-coded) five momentum paths shown in the inset. The red points
in (b) correspond to the nodal and antinodal point, which are emphasized alike in the inset by
the red diagonal arrow.

hopping only) lattice and half-filled system (anisotropic and doped cases can be found in the follow-
ing subsections). The upper panel (a) depicts its momentum-dependence for the fixed momentum
slice ~k= (kx = 0, ky) and the first three Matsubara frequencies (iν0, iν1 and iν2). For this param-
eter set (half-filling, intermediate coupling and temperature) the self-energy exhibits a pseudogap,
which can be anticipated from the high degree of momentum-differentiation of the self-energy’s
imaginary part, looking at the first Matsubara frequency iν0: its value varies by a factor of 10 along
this highly symmetric cut over the Brillouin zone, making DMFT obviously not applicable for a cor-
rect description of the self-energy here. This big variation can be seen also for other paths along
the Brillouin zone (which are shown color coded in the center of Fig. 4.4) in the lower panel of Fig.
4.4 for the first Matsubara frequency.

In a next step, the self-energy data are plotted as a function of the non-interacting dispersion
relation, which, in the case of the simple square lattice, reads

ε~k = −2t (cos(kx) + cos(ky)) .

Fig. 4.5 shows the imaginary (a) and real (b) part of the self-energy for the same parameter set as
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Figure 4.5: (taken from [188]) Imaginary (a) and real (b) part of the self-energy Σ(ν,~k) vs. the
non-interacting dispersion ε~k from BSS-QMC at U = 4t and βt = 5.6. Different (kx, ky) points
with the same ε~k collapse onto a single curve.

above, however, this time, as a function of ε~k. In particular, the frequencies are indicated by open
circles (iν0), triangles (iν1) and diamonds (iν2), respectively. Close inspection of the plots yields
their following features:

• The pseudogap feature, i.e. the quite big momentum variation (especially pronounced com-
paring the nodal (~k = (π/2, π/2)) and antinodal points (~k = (π, 0))) at the Fermi level ε~k = 0,
remains. This is a physical result, also confirmed by recent BSS-QMC [189] and DΓA stud-
ies [187,190].

• However, going slightly away from the Fermi-surface, quite accurately, the data sets for both
imaginary and real part collapse onto a single line. This collapse is quite independent of the
cluster size and geometry [188], although the collapse is better for larger systems and the
convergence is quite fast with system size. This finding suggest the collapse to survive in the
thermodynamic limit (see Sec. 4.2.2).

• Most importantly from the applicational point of view, the collapse survives, irrespectively of
the interaction strength as can be deduced from Fig. 4.6, where the same analysis as before
has been conducted for different values of the Coulomb interaction. Please note, that the
large-U -regime shows a stronger dependence on the non-interacting dispersion, however,
the collapse onto a single curve is untouched.



92 CHAPTER 4. SPECTRAL ANALYSIS AT THE ONE-PARTICLE LEVEL: FROM 3D TO 1D

-15

-10

-5

 0

Im
 Σ

 [
 k

,i
ω

0
 ]

U = 2t

U = 4t

U = 8t

(a)

-10

-5

0

5

10

-4 -3 -2 -1 0 1 2 3 4

R
e

 Σ
 [

 k
,i

ω
0
 ]

εk

(b)

Figure 4.6: (taken from [188]) Imaginary (a) and real (b) part of the self-energy Σ(iν0,~k) for differ-
ent U -values and βt=5.6.

4.2.2 Comparison to DΓA

In the previous Sec. 4.2.1 it has been shown that the self-energy Σ(ν,~k) obtained by means of
BSS-QMC collapses onto Σ(ν, ε~k) when leaving the vicinity of the Fermi edge. However, only
spatial fluctuations with extensions up to the size of the cluster used are incorporated in the BSS-
QMC self-energy. In order to test whether the universal parametrization of the self-energy via the
non-interacting dispersion ε~k also holds in the thermodynamic limit (including spatial correlations
on every length scale), self-energy calculations by means of the ladder-DΓA (introduced in Sec.
2.3.2) were performed.

Fig. 4.7 shows density plots of the value of the imaginary part (in units of 4t) of the DΓA self-
energy for βt = 5 and U = 2t for the first (left panel) and fourth (right panel) Matsubara frequency
in the (irreducible) Brillouin zone. As one can see, for frequencies close to the frequency Fermi
edge (iν0), this value strongly varies across the Brillouin zone, reflecting again the pseudogapped
behavior in this parameter regime. Leaving the frequency Fermi edge and going to iν3, however,
the distribution becomes much more homogeneous, which is a first indication, that the collapse of
the self-energy could still survive in the thermodynamic limit. That this is indeed the case, can be
deduced by inspecting Fig. 4.8(a), which presents the imaginary part of Σ(iν0, ε~k) (now again in
units of t) for U = 2t and βt = 5. The dotted circles recall the BSS-QMC data for certain points
~k of the Brillouin zone, whereas the dark-blue triangles mark the values for the DΓA self-energy at
identical of similar ~k-points. The light-blue data points in the background reveal data for all available
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Figure 4.7: Value of the imaginary part (in units of 4t) of the DΓA self-energy for βt = 5 and U = 2t
for the first (left panel) and fourth (right panel) Matsubara frequency in the (irreducible) Brillouin
zone.

~k-points of the DΓA calculation. Whereas one can observe a quantitative difference between the
two self-energy curves of DΓA and BSS-QMC, the remarkable qualitative feature of the collapse
of Σ(iν0, ε~k) survives in the thermodynamic limit. In particular, the behavior of Σ(iν0, ε~k) in DΓA
resembles the one in BSS-QMC in view of the fact that leaving the Fermi edge ε~k = 0, the spread
of the data points gets drastically diminished. Again, the relatively big spread at the Fermi edge of
the DΓA self-energy can be explained physically by the onset of the opening of a pseudogap in this
region of the (DΓA) phase diagram [20,187,190]. Lowering the temperature to βt = 10 the spread
at the Fermi level increases, however, the collapse away from the Fermi edge persists [Fig. 4.8(b)].

Leaving the vicinity of the Fermi edge by choosing a higher Matsubara frequency, the collapse
becomes even more drastic as can be seen in the first row of Fig. 4.9, where the imaginary part of
Σ(iνn, ε~k) is plotted for U = 4t and βt = 2 for the first [Fig. 4.9(a)] and second [Fig. 4.9(b)] Matsub-
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Figure 4.8: (taken from [188]) Imaginary part of the self-energy Σ(~k, iω0) for U = 2t and two
different temperatures: (a) βt = 5 and (b) βt = 10. The (light blue) continuum of data points
represent all different DΓA momenta for a given εk. For a better comparison of DΓA with BSS-
QMC, we highlighted data points in the DΓA calculation (dark-blue triangles) that correspond to
the BSS-QMC data (red circles) with similar ~k-points.
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blue triangles for similar momenta as the red circles).

ara frequency respectively. One can observe that especially for ε~k → 0 the spread of Im Σ(iν1, ε~k)

is much smaller than the one of Im Σ(iν0, ε~k), again a feature of the onset of the pseudogap phase.
Additionally, the collapse of the real part of the self-energy [lower row of Fig. 4.9(b)] supports the
significance of the energy-parametrization of the self-energy.

Eventually, from the above data and discussion, one can conclude, that the switch from the finite-
size cluster in BSS-QMC to the thermodynamic limit in DΓA does not impact the qualitative phe-
nomenon of the collapse of the self-energy Σ(ν, ε~k) in energy-parametrization.

Of course, a valid criterion for the practical applicability of exploiting the self-energy collapse is
its transferability to other lattice geometries than the simple square lattice one, as is discussed in
the next subsection.

4.2.3 Anisotropic Case

One may leave the highly symmetric geometry of the simple square lattice by introducing an
anisotropic hopping ratio 0 ≤ α ≤ 1 with α = tx

ty
. The kinetic energy scale shall be fixed, so

ty =
√

2t2/(α2 + 1). The main panels of Fig. 4.10 show BSS-QMC results for α= 1, α= 0.8 and
α=0.6 (U = 4t and βt = 5.6). Please note the following points:

• Increasing the anisotropy α of the lattice results in an increase of the spread of the curves,
i.e. the collapse gets continuously lifted, both in the imaginary and real parts of the self-
energy. However, in the limit of purely one-dimensional hopping (inset, α = 0), the collapse
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Figure 4.10: (taken from [188]) Imaginary (a) and real (b) part of the self-energy Σ(iν0,~k) from
BSS-QMC at U = 4t and βt = 5.6 but for various degrees of anisotropies α.

naturally revives, because, also in momentum-parametrization, the spatial parameter space
is only one-dimensional.

• Due to the absence of the high symmetry of the simple square geometry, the Fermi surface
is modified stronger. This modification is strongly momentum-dependent. This dependency
is, in turn, transferred to the real part of the self-energy, and is much more pronounced than
the one of the imaginary part (where the self-energy collapse still works reasonably well for
α = 0.8).

Concluding, the collapse for the self-energy in energy-parametrization as shown in Sec. 4.2.1
strictly only applies for the case of very weak or very strong anisotropies. However, one can try to
deform the Fermi surface also by introducing more/less charge carriers into the system as is done
in the next section.

4.2.4 Doping

For practical applications of many-body techniques, doped systems are of high interest (e.g. for the
description of high-temperature superconductors), but challenging, especially for BSS-QMC simu-
lations as they suffer from the notorious sign-problem, due to the broken particle-hole symmetry.
This results in a high numerical effort, and consequently, the lattice sizes have to be reduced (in
this case to L = 8 × 8). Fig. 4.11 shows self-energy data for the isotropic case for several doping
levels (n= t represents half-filling here). One can observe the following points:
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Figure 4.11: (taken from [188]) Imaginary (a) and real (b) part of the self-energy Σ(iν0,~k) from
BSS-QMC at U = 4t, βt = 3.6 and L = 8× 8 for doped systems.

• The spread in the imaginary part of the self-energy, although becoming asymmetric with
respect to εk=0, quickly disappears with doping, so that a parametrization as in the half-filled
case remains possible.

• As in the case of anisotropy, the deviation from a smooth energy-parametrization of the self-
energy results from Fermi-surface deformations.

Concluding this section about self-energies in two dimensions, one can summarize that a collapse
of the self-energies Σ = Σ(ν,~k) → Σ(ν, ε~k) can be observed for the isotropic square lattice in
and out of half-filling. This collapse, however, is limited in the cases of pseudogaps and strongly
anisotropic lattices. Reducing the dimensionality of the system further and switching to one dimen-
sion, the (one-dimensional) energy-parametrization introduced above becomes of course exact
due to the one-dimension momentum parameter-space. However, as non-local fluctuations are
becoming even more dominant in one dimension and exact solutions exist here to compare with,
the case of one spatial dimension provides an ideal benchmark for quantum many body theories
aiming at the inclusion of non-local correlations and identifying the impact of non-local correlations
on spectral functions. Therefore, in the next section, the DΓA is applied to the simplest non-trivial
one-dimensional correlated structures, i.e. finite-size Hubbard nanorings and its results are com-
pared to the ones of other many-body techniques as well as to the ones of the exact solution.
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4.3 Application of the DΓA to Hubbard nano-rings in one dimension

Parts of this section (marked by a vertical sidebar) have already been published in the
APS journal Phys. Rev. B 91, 115115 (2015).

As this work was done in a collaboration, parts of it appeared also in
A. Valli, PhD thesis, TU Wien (2013).

Please note that, due to the one-dimensional problems discussed in this section, here, the index k is a

plain momentum-index instead of a general four-index.

Models and materials with reduced dimensionality typically show enhanced correlation effects be-
yond the limit of standard density-functional or perturbation theory-based schemes, calling for
corresponding developments of theoretical tools. From a general point of view, the challenge for a
theoretical description is much bigger than in bulk systems: In three dimensions (3D), even in the
presence of strong electronic correlations, very accurate material calculations can be performed by
means of the dynamical mean-field theory (DMFT), [15] combined with ab-initio methods. [18, 70]
This is possible, because DMFT captures, non-perturbatively, the purely local part of electronic cor-
relations, which drives most important phenomena of correlated electrons in the bulk, such as, e.g.,
the Mott-Hubbard metal-insulator transition (MIT). Formally, DMFT becomes exact in the limit of in-
finite dimensions [16] where all non-local correlations in space are averaged out. Corrections to
DMFT in finite-dimensional systems originate from non-local correlations. While in 3D deviations
from the DMFT description become predominant only in specific parameter regimes, [171, 191]
e.g., in the proximity of a second order phase transition, [171] the situation is completely different
in case of lower dimensions. In fact, reducing the dimensionality magnifies effects of non-local
correlations, undermining the main assumption of DMFT.

As for the theoretical description of electronic correlations at the nanoscale, several algorithmic
implementations based on DMFT have recently been implemented under the name of nano or
real-space DMFT [192–196]. Despite some technical differences, all these algorithms essen-
tially extend the DMFT scheme to finite-size and possibly non-translational invariant systems. The
common idea consists in solving simultaneously several single impurity problems for calculating,
separately, the local self-energies of the different sites composing the system of interest, while
the DMFT self-consistency is then enforced at the level of the whole nanostructure. This way,
a number of interesting results have been obtained both for model [193, 197, 198] and realis-
tic studies [199–202]. However, the applicability of these DMFT-based methods is restricted to
the weakly correlated and/or the high-temperature regime, where the effects of non-local correla-
tions are weaker [20, 171, 191] and can be, to a certain extent, neglected. Such limitations were
also openly discussed in the previous literature, [195,197] where numerical comparisons between
DMFT-based calculations and exact solutions (where available) have shown large deviations al-
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ready in the intermediate coupling regime.

A promising theoretical answer to this challenging situation has already been proposed, but not
implemented, in Ref. [195]: The application of diagrammatic extensions [43, 45, 46, 203] of DMFT
such as the dynamical vertex approximation (DΓA) [20] for nanoscopic systems (nano-DΓA). The
basic idea of DΓA is the following: Instead of assuming the locality of the one-particle self-
energy [Σ(ν,~k) = Σ(ν)], as in DMFT, one raises the assumption of the locality to a higher level
of the diagrammatics, i.e., from the one- to the two-particle irreducible vertex (Λ) (see Sec. 2.3
and [171, 204]). Once local vertex functions are computed, e.g., with the same impurity solvers
used for the standard DMFT [20, 51, 80, 84, 204, 205], non-local correlation effects can be directly
included through diagrammatic relations, e.g., in the most general case, through the parquet equa-
tions (2.28).

In the specific case of the DΓA implementation for nanoscopic systems [195], the nano-DΓA algo-
rithm requires a separate calculation of the local irreducible vertex function for each inequivalent
site of the nanostructure. The inclusion of the non-local effects should be performed at the level of
the whole nanostructure via a self-consistent solution of the parquet equations. This procedure is
less demanding than the exact treatment of the corresponding quantum Hamiltonian: the exponen-
tial scaling with the number of sites required for a diagonalization of the Hamiltonian, is replaced
by a polynomial effort to solve the parquet equations. Moreover, the necessity of calculating the
vertex functions only locally, mitigates secondary (but important) numerical problems such as the
sign-problem in quantum Monte Carlo (QMC) solvers.

The importance of the results presented in the following is twofold, and goes beyond the demon-
stration of a full applicability of the algorithm proposed in Ref. [195]: Physically, the calculations
allow to understand the interplay of local and non-local correlations in spectral and transport prop-
erties of finite systems of different sizes; from a methodological perspective, the application of a
full (parquet-based) DΓA scheme to these nanoscopic systems represent one of the most severe
benchmarks conceivable for this theoretical approach. In fact, the accuracy of a DΓA calcula-
tion depends on the correctness of the locality assumption for the two-particle irreducible vertex
functions. Heuristically, this assumption looks plausible for 3D and 2D systems with local interac-
tions, where strong spin, charge, and pair fluctuations are already generated by the corresponding
collective modes built on local irreducible vertices. Numerically, a direct verification of the DΓA
assumption is difficult in 2D or 3D: While the irreducible vertex surely displays a strong frequency
dependence (see [51, 204] and Sec. 3.1.1), taken into account by the DΓA, its independence on
momentum has been shown explicitly only in few calculations [22, 206] beyond DMFT, where the
momentum-dependence was found to be weak. In this section, the focus is, instead, on systems
where an exact numerical solution is available, so that both, the DΓA performances and assump-
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Figure 4.12: Energy-momentum dispersion relation ε(k) with respect to the Fermi level µ (dashed
line) for nano-rings with N = 4, 6, 8 sites. The symbols denote the discrete eigenstates corre-
sponding to the allowed values of the momentum: k=2πn/N , with n∈N.

tions, can be tested. The low connectivity and the peculiarity of 1D physics represent the most
challenging situation for DΓA. In this perspective, this numerical analysis will also allow to draw
conclusions, on a more quantitative ground, on the physical content of parquet-based approxima-
tions.

4.3.1 Modelling the nano-rings

The correlated nanoscopic rings considered in the following consist of N isolated correlated atoms,
arranged in a chain with periodic boundary conditions, and described by the Hubbard Hamilto-
nian

H = −t
∑
σ

N∑
i=1

(
c†iσci+1σ + c†i+1σciσ

)
+ U

N∑
i=1

ni↑ni↓ (4.6)

where c†iσ (ciσ) denote the creation (annihilation) operators of an electron on site i with spin σ,
fulfilling the periodic boundary conditions c(i+N)σ = ciσ. Due to the translational invariance of
the system, granted by the periodic boundary conditions of the ring, it is convenient to formulate
the hopping term in the reciprocal space, yielding a tight-binding dispersion ε(k)=−2t cos(ka)−µ,
where µ is the chemical potential. In the following, the lattice spacing a=1 and rings with N=4, 6, 8

sites are considered in the half-filled case, i.e., µ= U/2, where electronic correlations stemming
from the local Hubbard interaction are expected to be most effective. Under these conditions, all
rings display a particle-hole symmetric density of states, and in particular, in the non-interacting
case (U = 0) the systems display either a ”band” gap (as in the case of the N = 6 sites ring) or
a 2-fold degenerate state at the Fermi level (as in the case of N = 4, 8 sites rings). The rings
considered and the corresponding dispersions ε(k) are shown in the upper and lower panel of Fig.
4.12, respectively.
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Figure 4.13: Flowchart of the parquet implementation of the nano-DΓA. See text for a related
discussion.

4.3.2 Parquet-based implementation of the nano-DΓA

It should be recalled from Sec. 2.3 that the idea of DΓA is to apply the locality assumption of
DMFT at an higher level of the diagrammatics: While in DMFT all one-particle irreducible (1PI)
one-particle diagrams (i.e., the self-energy Σ) are assumed to be purely local, DΓA confines the
locality to the two-particle irreducible (2PI) two-particle diagrams, i.e., the fully irreducible vertex Λ

is approximated by all local Feynman diagrams. Hence, in the DΓA framework, the purely local,
but frequency-dependent 2PI vertex Λνν

′ω
iiii is calculated for a site i and then used as the input for

the parquet equations. In practice, this vertex is obtained by solving the Anderson impurity model
(AIM) numerically. Hence, non-local correlations on top of the DMFT solution are generated in all
scattering channels by the (numerical) solution of the parquet equations (2.28) without any restric-
tion to specific (ladder) subsets of diagrams (see Sec. 2.3.2.1). For the sake of clarity, it should
be emphasized that this is different from the so-called parquet approximation (PA, see also Sec.
2.3.1). In fact, the PA corresponds to approximating the 2PI vertex with the bare interaction of the
theory (e.g., Λ =U ) in a merely perturbative fashion. On the contrary, in DΓA all non-perturbative
DMFT correlations, which control, e.g., the physics of the Mott-Hubbard transition, are actually
included through the frequency dependent Λνν

′ω, and non-local correlations beyond DMFT are
generated via the solution of the parquet equations.

The specific implementation of the parquet-based DΓA scheme for the case of nanoscopic sys-
tems, such as the Hubbard nano-rings, is briefly sketched in the flowchart of Fig. 4.13, and incor-
porates all main aspects of the original proposal of Ref. [195]. The DMFT scheme for a nanoscopic
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system with N constituents (e.g., atoms), which is self-consistent at the one-particle level only. Its
first step consists in mapping the full problem onto a set of auxiliary AIMs, one for each of the N
sites of the nanostructure. Each auxiliary problem is characterized by a dynamical Weiss field (i.e.,
the non-interacting Green function of the AIM) G0i(ν). The numerical solution of the AIM yields the
local Green function Gii(ν) and the local DMFT self-energy Σii(ν) = G−1

0,ii(ν)−G−1
ii (ν). Through the

Dyson equation the local (yet site-dependent) DMFT self-energies determine the new non-local
Green function Gij , and the self-consistency is realized at the level of the whole nanostructure.

In the case of the DΓA this procedure is raised to the two-particle level. For each inequivalent
AIM, the local 2PI vertex function has to be computed. Once all inequivalent local 2PI vertices Λiiii

are obtained for each site i, they are used as an input for the solution of the parquet equations for
the whole nanoscopic system. This yields the non-local full two-particle vertex function Fijkl and,
through the Dyson-Schwinger equation, the non-local self-energy in real space:

Σij =
Un

2
δij −

U

β2

∫ ∑
klm

GikGilGimF
↑↓
klmj , (4.7)

where the integral symbol, as above, denotes a summation over all the internal degrees of free-
dom, while the sum over the spatial indices of the nanoscopic system is explicit. Please note
that the local Hartree shift of the self-energy ΣH = Un/2 is already included in the definition of
the chemical potential. The set of equations (Parquet (2.28), Bethe-Salpeter (2.29) and Dyson-
Schwinger equations (4.7)) can be solved self-consistently until the non-local self-energy (4.7) is
converged [61,140]. The flowchart of the parquet DΓA is shown schematically in Fig. 4.13. Finally,
after having determined Σij one can either skip the outermost loop, i.e., updating the AIM and
simply start from Gii of DMFT, as is done for the results of the current section, or one can perform
fully self-consistent calculations; In the latter case the Gii of the corresponding inequivalent AIMs
has to be adjusted to yield the given DΓA Gii from the previous iteration before recalculating the
2PI vertex (which is defined diagrammatically in terms of U and Gii). One then needs to iterate
this scheme until convergence.

4.3.3 Results

In the following numerical results for all Hubbard nano-rings discussed in Sec. 4.3.1 are presented,
characterized by the dispersions ε(k) shown in Fig. 4.12 (lower panels). For each system differ-
ent approximations, i.e., DMFT, PA, and parquet DΓA, are compared to the exact QMC solution.
Each method employed is associated to a specific diagrammatic content, as discussed in Sec.
4.3.2 and 2.3.1, which allow for an understanding of the relevance of specific subsets of Feynman
diagrams for the description of the systems considered. Later, in Sec. 4.3.4, another comparison
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of the self-energies will be employed with the ones obtained within the ladder approximation of
the DΓA scheme introduced in Sec. 4.3.4.

Results are discussed for the electronic self-energy Σ(ν, k), the local Green function in imaginary
time Gii(τ), and the two-particle irreducible local (i.e., DMFT) vertex function Λνν

′ω
iiii . The analysis

of the self-energy allows to resolve a k-selective behavior in the (discrete) reciprocal space. In par-
ticular, low-energy parameters are analyzed (for three dimensions, see Sec. 4.1.1 and Eq. (4.1)),
i.e., the scattering rate γ(k)≡−2ImΣ(ν, k→ 0), which corresponds to a damping or to the inverse
lifetime of quasi-particle excitations in the Fermi liquid regime, and the (static) renormalization of
the bare dispersion ∆(k)≡ReΣ(ν→0, k). The effect of the local and non-local self-energy on the
low-energy spectral properties of the system are discussed, which can be deduced by the local
Green function, and is related to the k-resolved spectral function A(ν, k) by

Gii(τ)=
∑
k

∫ ∞
−∞

dν
e−τν

1 + eβν
A(ν, k). (4.8)

The value of the Green function at τ=β/2 represents an estimate of the value of the local spectral
function at the Fermi level (averaged over an energy window proportional to the temperature T ),
i.e.,

− βGii(β/2) ≈ π
∑
k

A(0, k). (4.9)

In order to understand the non-local self-energy corrections beyond mean-field, the results will be
related to the frequency structure of the local 2PI vertex (Λiiii), which is the input for the parquet
equations of the DΓA. To this end, the generalized susceptibility of the AIM is computed and the
2PI vertex is obtained following the steps discussed in Sec. 4.3.2.

4.3.3.1 N=6: ”insulating” ring

In Fig. 4.14the local DMFT self-energy are compared with the k-resolved self-energy for represen-
tative k points1 in the discrete Brillouin zone (DBZ), namely k=0 and k=π/3, obtained by means
of PA, DΓA and exact QMC solution. Concerning the imaginary part of the self-energy Im Σ(ν, k),
one can note that all the approximations employed provide a qualitative and quantitative agreement
with the exact solution. The system displays a low scattering rate γk, which is consistent with the
picture of an insulating ground state reminiscent of the band gap of the non-interacting spectral
function (renormalized by electronic correlations), rather than driven by a Mott MIT. More specif-
ically, the exact QMC self-energy displays a weak k-dependence at low frequencies, resulting in
a slightly different scattering rate γk for different k points in the DBZ. While this feature cannot

1Due to the particle-hole symmetry and to the degeneracy of the non-interacting eigenstates, the other components
of the k-resolved self-energy can display, at most, a sign change with respect to the ones shown here.
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Figure 4.14: Comparison between the local DMFT self-energy in Matsubara representation and
the k-resolved PA, DΓA, and the exact self-energy, for representative k-points in the DBZ. In this
case, including the full frequency dependence of Λ results in negligible corrections to the static
PA. Parameters: N=6, U=2t and T =0.1t.

be reproduced within DMFT by definition, it is well captured including non-local correlations be-
yond mean-field. Concerning the real part of the self-energy, one can observe that within DMFT
Re Σ(ν) = 0, i.e., all contributions averaging out in the local picture, except for the Hartree term,
which is included in the redefinition of the chemical potential, i.e., µ→ µ−U/2 at half-filling. On
the contrary, including non-local correlations beyond mean-field a sizable k-dependent self-energy
Re Σ(ν, k) is found. In all cases the exact self-energy is quantitatively well reproduced.

Fig. 4.15 shows the effect of non-local correlations on the local Green function Gii(τ). In the
case of the N =6 sites ring, the interpretation of the results is straightforward. In fact, all methods
predict an insulating solution, and this is reflected by Gii(β/2)≈ 0. However, at a closer look one
can notice that the DMFT predicts more spectral weight A(0), or equivalently a smaller value of the
spectral gap, than the other methods. It is interesting to notice that, considering specifically A(0),
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the DMFT is worse than the non-interacting case, while obviously DMFT is superior in several other
respects, e.g., lifetime of one-particle excitation. This is clearly shown in the inset of Fig. 4.15,
where plot the difference ∆Gii(τ) of the local Green function for the different approximations with
respect to the one of the exact solution is plotted. Hence, one can “disentangle” the roles played
by local and non-local correlations on an insulator considering that, in an insulator

i) taking into account only local correlations within DMFT reduces the non-interacting spectral

Figure 4.16: Local two-particle fully irreducible vertex calculated in DMFT in the (particle-hole)
density and magnetic channels with respect to the static asymptotics, i.e.: Λd−U (upper row)
and Λm+U (lower row), as a function of the two fermionic frequencies νn and νn′ , for bosonic
frequency ω = 0. The isoline plot (left panels) highlights the frequency and sign structure
of the vertex, while the gray-scale density plot (right panels) shows its logarithmic intensity.
Parameters: N=6, U=2t, and T =0.1t.
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gap, [207] and

ii) the non-local correlations in the exact solution display the opposite trend, as correctly de-
scribed by the DΓA.

Indeed, the analytic continuation of the Green function by means of the maximum entropy method
(not shown) confirms the expectations, yielding a spectral gap ∆ ≈ 1.9t within DMFT and ∆ ≈ 2.2t

within DΓA and the exact solution, to be compared to the non-interacting value ∆0 =2t.

One can understand the results obtained for both the self-energy and the local Green function
within the different approximations, by taking a closer look at the local fully irreducible vertex calcu-
lated from the DMFT Green function. The isolines and the density plot in the left and right panels
of Fig. 4.16, respectively, highlight the sign and the logarithmic intensity of the frequency struc-
ture of Λd,m. The fully irreducible vertex displays the typical butterfly structure see [51] or Sec.
3.2.1) with positive and negative lobes decaying to the bare interaction value at high frequency
(beyond the frequency range shown here). The frequency structure of the 2PI vertex beyond the
static asymptotics is negligible with respect to the bare interaction U = 2t. This is a consequence
of the spectral gap, resulting in insulating Green functions already within DMFT. The inversion of
sign at low frequencies in the first and third quarter of the (ν, ν ′) plane originates, instead, from the
precursor lines of the Mott transition discussed in Sec. 3.1.1. The negligible frequency structure of
the local 2PI vertex explains why the DΓA self-energy does not deviate from the plain PA result in
this case. On the other hand, the quantitative agreement with the exact QMC solution, suggests
that the local DΓA assumption of the 2PI is justified in this system. The direct numerical analysis
of the exact 2PI vertex confirms that, besides a structure in momentum space, its overall values
yield moderate corrections to the bare interaction U=2t (not shown).

4.3.3.2 N=4 and N=8: ”correlated metallic” rings

In contrast to the previous system, both the N = 4 and N = 8 sites rings are characterized by
the presence of a (doubly degenerate) eigenstate at the Fermi level of the non-interacting density
of states. For this reason one could expect them to display a similar behavior, and a different
low-energy physics with respect to the N=6 sites ring. As will be shown, this is only partially true.
First, the k-resolved self-energy of the N = 4 ring, shown in Fig. 4.17 for representative k points
in the DBZ, namely k = 0 and k = π/2 (the latter at the Fermi surface), will be discussed. In this
case the DMFT self-energy displays a non-Fermi liquid behavior, characterized by a large yet finite
scattering rate γ (obviously independent on k). As one can see below, the system is not gapped in
DMFT. The DMFT picture, however, is substantially changed by non-local correlations, as reflected
in a strong k-dependent behavior of the self-energy, found within all approximations considered. In
particular, away from the Fermi surface (e.g., at k=0) all approximations yield a low scattering rate
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Figure 4.17: As in Fig. 4.14 but for the N = 4 ring. In contrast to the previous case, including the
full frequency dependence of Λ leads to a substantial improvement of the DΓA over the static
PA. The inset shows the low-energy tendency toward a divergence of the exact self-energy for
k=π/2.

γk=0 due to the bending towards zero of ImΣ(ν, k). The situation is drastically different at the Fermi
surface (e.g., at k = π/2), where in the exact solution, the divergent tendency of the self-energy
marks the opening of a gap in the spectral function. Taking into account all scatting channels within
the parquet DΓA formalism leads to an improvement with respect to the DMFT results. While the
PA yields a sizable scattering rate γk=π/2 ≈ 0.4, including the frequency dependence of the fully
irreducible vertex within DΓA further enhances γk=π/2 and reproduce correctly the qualitative trend
of the exact self-energy, as well as an overall better description of the Re Σ(k, ν) with respect to
PA and DMFT. The quantitative difference between the parquet DΓA and the exact solution may
originate either from the momentum dependence of the 2PI vertex, neglected in DΓA, or by the
lack of self-consistency.

Further insights can be obtained by considering the spin propagator χωs (q), in particular at ω= 0.
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Figure 4.18: As in Fig. 4.15 but for the N=4 ring.

Within DMFT, we find that χs(q = π)< 0. The unphysical value of the susceptibility indicates that
the system is below the Néel temperature of DMFT (see also Sec. 6.3), i.e., T <TDMFT

N , while
no ordering is expected at finite temperature. Including non-local spatial correlations within the
parquet DΓA scheme reduces TN [159]. However, it is plausible that the local physics described
by DMFT, and hence the information encoded into the 2PI vertex of DMFT, can be very different
from the local physics of the exact solution.

What are the effects of local and non-local correlations on the Green function? Both in DMFT
and DΓA, a sizable value of Gii(β/2) indicates a metallic spectral function, while in the exact solu-
tion this quantity is strongly suppressed, revealing an insulating nature. In this respect, one should
note that, even in the insulating state, a value of Gii(β/2) = 0 can only be achieved at T = 0, while
here one observes a finite value due to the average over an energy window due to the broaden-
ing of the Fermi distribution at finite temperature. The combined information of a sizable value of
Gii(β/2) and the large scattering rate γk at the Fermi surface (i.e., k= π/2) in the corresponding
self-energy in Fig. 4.17 suggest the presence of a local minimum in the spectral function at the
Fermi level (pseudogap). Hence, one can conclude that the DΓA, in its full parquet-based imple-
mentation, yields a quantitative improvement over the DMFT description, however, the non-local
correlations stemming from the 2PI local vertex of DMFT are not yet strong enough to completely
open a well-defined gap in the spectral function, which is instead present in the exact solution.

A deeper understanding of the above results can be obtained by the analysis of the frequency
and momentum structure of the 2PI vertex. The local 2PI vertex is shown in Fig. 4.19. The most
striking feature of the vertex of theN=4 sites ring is the strongly enhanced low-frequency structure
which now exhibits strong deviations from the bare interaction U=2t. In fact, the vertex corrections
are orders of magnitude larger than for the N=6 insulating ring, and the low-frequency structure is
also more complex. In particular, one can observe additional negative ”spots” (of highest intensity)
which are generated by the change of sign of several eigenvalues of the generalized local suscep-
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Figure 4.19: As in Fig. 4.16 but for the N=4 ring.

tibility (see Sec. 3.1.1). This low-frequency structure of the local 2PI vertex is responsible for a
k-selective enhancement of the DΓA self-energy over the one obtained within the PA.

The direct numerical evaluation of the exact 2PI vertex, shown in Fig. 4.20, allows to understand the
role of its momentum structure. The q-resolved exact fully irreducible vertex Λ(q) = 1

N2
k

∑
kk′ Λkk′q

shows that Λ(q) displays a change in both sign and magnitude for different values of q (the ver-
tex is identical at q = ±π/2 due to symmetry reasons). Such a large frequency and momentum
dependence of the exact 2PI vertex can be possibly interpreted in terms of a proximity to a non-
perturbative instability of the Bethe-Salpeter equations (see Sec. 3.1.1). The strong momentum
dependence of the fully irreducible vertex is certainly one of the reasons of the failure of the present
DΓA calculation to open a spectral gap at the Fermi level of the N = 4 sites ring. However, an im-
portant piece of information is also enclosed in the exact local vertex Λ= 1

Nq

∑
q Λ(q). As shown in

Fig. 4.20, the exact local Λ displays a complex frequency structure, which is not fully captured by
the local Λ of DMFT (cf. with Fig. 4.19). This suggests that, in this case, DMFT does not provide a
good description of the two-particle local physics of the system. For this reason, performing a full
self-consistency at the two-particle level, i.e., updating the local Λ including the effect of non-local
correlations, is expected to lead to improvements over the present DΓA results. This idea is also
supported by the calculations performed within the ladder approximation of the DΓA, discussed in
Sec. 4.3.4 in comparison with the parquet DΓA.

Finally, the results for the N = 8 sites ring are discussed, where the presence of additional struc-
tures in the non-interacting density of states, besides the (doubly degenerate) eigenstate at the
Fermi level and the one at the band edge lead to a somewhat different physical situation. The
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Figure 4.20: Exact fully irreducible vertex in the (particle-hole) density and magnetic channels with
respect to the static asymptotics, i.e.: Λd−U (upper row) and Λm+U (lower row), as a function
of the two fermionic frequencies νn and νn′ , for bosonic frequency ω = 0. The q-resolved vertex
Λ(q) (panel a, b, c, e, f, and g) corresponds to the fully irreducible vertex averaged over k
and k′, while the local Λ (panel d and h) is averaged over q as well. In addition to the non-
trivial momentum structure of Λ(q), neglected within the parquet DΓA, it is worth noting that
the complex frequency structure of the local Λ is not captured from the DMFT vertex (cf. Fig.
4.19). This suggests that a full self-consistency at the two-particle level, via a corresponding
redefinition of the AIM, might improve the present DΓA results. Parameters: N =4, U =2t, and
T =0.1t.

k-resolved self-energy is shown in Fig. 4.21. As N increases, the number of inequivalent k points
in the DBZ increases with respect to the previous cases. By symmetry it is sufficient to consider
k= 0, k= π/4, and k= π/2 (the latter at the Fermi surface). In this case, in contrast to the N = 4

sites ring, the DMFT self-energy shows a metallic bending, with a (k-independent) scattering rate
γ≈ 0.1. The comparison with the exact solution shows that the largest corrections with respect to
DMFT are the enhanced scattering rate at the Fermi surface, γk=π/2, and the renormalization of the
dispersion ∆k=0,π/4 = Re Σ(ν → 0, k). The PA and the DΓA give rise to similar non-local correla-
tions, displaying a strong k-dependent scattering rate at the Fermi surface γk=π/2 ≈ 0.3. The large
scattering rate reflects physically in the Green function through a suppression of Gii(β/2), and
hence of the low-energy spectral weight, with respect to DMFT, as shown in Fig. 4.22. Although
DΓA provides an overall better description of the low-energy physics of the system with respect to
DMFT, also in this case the parquet-based approximations fail to reproduce the divergent be-
havior of Im Σ(ν, k=π/2).

As for the interpretation of the results, from the similarity of the PA and DΓA results for the N = 8
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Figure 4.21: As in Fig. 4.14 but for the N = 8 ring. In this case, including the full frequency
dependence of Λ results in negligible corrections to the self-energy, and the DΓA results does
not deviate appreciably from the one obtained within the static PA.

sites ring one would not expect a strong frequency dependence of the local 2PI vertex, as con-
firmed from the numerical data shown in Fig. 4.23. The 2PI vertex qualitatively resembles the
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Figure 4.22: As in Fig. 4.15 but the N=8 ring.
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Figure 4.23: As in Fig. 4.16 but for the N=8 ring.

one of the N = 6 sites ring, with the difference that there is no suppression of the low-frequency
structure. On the other hand, the difference between DΓA and the exact solution might suggest
an important momentum structure of the 2PI vertex. Unfortunately in this case a direct analy-
sis is not feasible, due to the extremely high computational effort required to calculate the exact
momentum-dependent two-particle vertex functions for the N = 8 site ring. While a strong mo-
mentum dependence of the exact 2PI vertex is possible, also in this case the deviation observed
between the parquet DΓA and the exact solution might be induced by the poor approximation of
the local physics of the system provided by the 2PI vertex of DMFT. This scenario, supported by
the qualitatively correct behavior found within the Moriya corrected ladder approximation in the
next section, suggests that the parquet DΓA results might be further improved performing a fully
self-consistent calculation.

4.3.4 Relation to the ladder approximation

The ladder approximation is obtained by replacing the solution of the parquet equations in the
flowchart of Fig. 4.13 with a simpler calculation at the level of Bethe-Salpeter equations (see Sec.
2.3.2.2). Hence, in ladder-DΓA the non-local corrections to the local physics will be generated
only in (a) selected channel(s). In practice, this corresponds to an essential simplification of the
algorithm, because in ladder DΓA only the corresponding irreducible vertex in the selected channel
(e.g., spin) needs to be extracted from the AIM, and used to calculate the DΓA self-energy via the
Bethe-Salpeter equation.

The application of the ladder approximation is well justified in case the system displays predomi-
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Figure 4.24: k-resolved ladder DΓA self-energy in Matsubara representation, for representative
k-points in the DBZ. The ladder resummation was supplied with the Moriyaesque correction to
the spin propagator. Parameters: N=6, U=2t and T =0.1t.

nating fluctuations in a given scattering channel, which is known a priori, e.g., in the case of the
antiferromagnetic instability in the 3D Hubbard model at half-filling [171]. However, the significant
numerical simplification of avoiding the solution of the direct and inverse parquet equations comes
at the price of a more approximative approach, which is mitigated by performing the so-called
Moriya-correction (see Sec. 2.3.2.2). In the case of the N = 6 sites ring, the ladder DΓA self-
energy, shown in Fig. 4.24, is in good agreement with both the parquet DΓA and the exact results
(cf. also Fig. 4.14 for a direct comparison). Slight deviations suggest that, although at half-filling
the physics is expected to be dominated by spin fluctuations, in low-dimensions considering all the
scattering channels (and their interplay) on the same footing, via the solution of the parquet equa-
tions, leads to quantitative corrections in this parameter regime. The situation is different in the
cases of the N=4, 8 sites rings. In particular, the ladder DΓA self-energy, shown in Figs. 4.25 and
4.26, is able to capture the large scattering rate at the Fermi surface γk=π/2 of the exact solution,
improving over the parquet-DΓA results. This unexpected result is likely to be attributed to the
ability of the Moriyaesque corrections to mimic the self-consistency of the local (irreducible)
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Figure 4.25: As in Fig. 4.24 but for the N = 4 ring The non-causal self-energy for k = 0 (gray
dashed line) observed in this case is an extreme consequence of the breakdown of the ladder
approximation far from the Fermi surface, as discussed in the text. The inset shows the low-
energy tendency toward a divergence of the ladder DΓA self-energy for k=π/2.
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Figure 4.26: As in Fig. 4.24 but for the N=8 ring.

vertex. This suggests that also the full parquet DΓA might be able to reproduce the divergent
trend of the self-energy at the Fermi surface with a better starting point for the local fully irreducible
vertex than the one provided by DMFT. This would definitely be achieved by performing fully self-
consistent DΓA calculations.

The ladder DΓA calculations performed here also pointed out an important issue, i.e., the fail-
ure of the ladder approximation far away from the Fermi surface. This is indicated for the
N = 4 sites ring by the non-causal self-energy obtained at the lowest Matsubara frequency for
k= 0. Several tests in this case ruled out the possibility that the non-analyticity of the self-energy
is a physical artifact due to numerics (e.g., due to the finite frequency mesh).

By exploiting the (hitherto) unique possibility of having at disposal both ladder- and parquet DΓA
self-energy and vertex results, a decomposition of the DΓA self-energy, by separating the con-
tributions coming from the different channels, following a similar “philosophy” as in the parquet-
decomposition of the electronic self-energy introduced in Sec. 3.3. The assumption, under which a
simplification of the parquet DΓA algorithm to the ladder DΓA is possible, is that the (k-dependent)
non-local corrections to the DMFT self-energy are dominated by the contribution of a specific chan-
nel (e.g., at half-filling, the spin channel). The parquet decomposition of the ladder DΓA self-energy,
shown in the left and middle panels of Fig. 4.27, demonstrate that this is indeed the case for the
calculations of the self-energy at the Fermi level (k= π/2). On the other hand, one can also see
that, in the case of the N = 4 sites ring, the ladder assumption does not apply any longer far
from the Fermi surface. In fact, as shown in Fig. 4.27, at k=0 the contribution of the spin-channel
to the DΓA self-energy is strongly reduced with respect to the k=π/2, becoming comparable with
the contributions of the other channels. This means that the error introduced by ladder assump-
tions might become even larger than the value of Im Σ(k) itself, which is often strongly reduced by
non-local correlation far from the Fermi surface. It is important to emphasize that the overall trend
of a strong reduction of Im Σ(k= 0) due to non-local correlation, which is also visible in the exact
results, is correctly captured even by the ladder DΓA calculations. However, quantitatively, the
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Figure 4.27: [Left and middle panels] Parquet decomposition of the ladder-DΓA self-energy, where
Im Σ(ν, k) has been resolved in its contributions from the spin channel, the charge channel, and
all the rest. Within the ladder approximation, at k = π/2 the contribution of the spin channel
is dominant, while at k = 0 all contributions are similar in magnitude. The inset shows the
low-energy behavior of the different self-energy contributions at k= 0. [Right panel] Non-local
parquet DΓA correction to the DMFT self-energy computed in the particle-particle scattering
channel ∆Σpp. Its strong k-dependence, neglected within the ladder approximation is at the
origin of the causality violation of the ladder-DΓA self-energy at k=0 (cf. Fig. 4.25). Parameters:
N=4, U=2t and T =0.1t.

breakdown of the ladder assumption for this k-point leads to a large relative error on Im Σ(k= 0),
and eventually to an analyticity violation, preventing the applicability of the ladder-DΓA for this
k-point. This explanation is numerically supported by the comparison with the corresponding de-
composition of the full parquet DΓA self-energy. Specifically, in the right panel of Fig. 4.27 the
momentum dependence of the “secondary” (particle-particle) channel contribution to Im Σ(ν, k) is
shown. At k= 0, the correction with respect to DMFT (neglected in ladder DΓA) is actually of the
same order, if not larger, than the contribution of the “dominant” channel and/or of the overall value
of Im Σ(k= 0), shown in the left panel of Fig. 4.27. Although the deterioration of accuracy of the
ladder approximation far from the Fermi surface may be expected as a general trend, the error
introduced is often not significant. For instance, in the parameter regime considered for the N = 8

sites ring, causality is preserved. As the particle-hole channel is dominant in the vicinity of the
Fermi level, neglecting the particle-particle channel is justified for this (most relevant) part of the
DBZ, and the ladder approximation can still be employed.
Recently, an alternative route for performing λ-corrections was proposed which potentially could
overcome the non-analyticity of the ladder-DΓA far away from the Fermi surface (for details see
[68]).



5
The Mott-Hubbard transition and its fate in 2D

“Non temer; ché ’l nostro passo ”Do not be afraid; our fate
non ci può tòrre alcun: da tal n’è dato.“ Cannot be taken from us; it is a gift.”

- Dante Alighieri (Italian writer and philosopher, *1265 - †1321),
Inferno, Canto VIII, 104-105 (1313).

One of the most intriguing and prototypical phenomena in strongly correlated many-body
systems is, without a doubt, the Mott-Hubbard metal-insulator transition (MIT). The first co-
herent theoretical description of this MIT has represented one of the biggest successes of
the dynamical mean field theory (DMFT). Formally, DMFT becomes exact only in the limit of
lattices with infinite coordination numbers (or dimensions), but it still provides an accurate de-
scription of the Mott-Hubbard MIT in the case of three-dimensional bulk materials. However,
if considering systems with lower dimensionality (such as layered or two-dimensional com-
pounds), spatial fluctuations must be included, which are neglected by DMFT. In this Chap-
ter, the theoretical description of the Mott-Hubbard MIT is revisited for the two-dimensional
half-filled Hubbard model on a square lattice. First, the basic mechanism of the MIT is
explained and the differences to a common band insulator are clarified. Then, the DMFT re-
sults for the MIT, where only local correlations are included, are discussed, . Afterwards the
physics of two dimensions is studied by successively including spatial correlations on longer
and longer length scales by means of cluster extensions of DMFT. Eventually, the actual
thermodynamic MIT is shown to vanish in favor of a metal-insulator crossover once spatial
correlations on all length scales are included by means of the dynamical vertex approxima-
tion. Spin-fluctuations in the paramagnetic phase (Slater-paramagnons) are identified as the
microscopic mechanism for opening up a spectral gap at every (finite) value of the Hubbard
repulsion at low enough temperature.
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Figure 5.1: Phase diagram of V2O3, a prototypical material which exhibits a Mott metal-insulator
transition, upon the application of pressure or doping (taken from [71]).

5.1 The Mott metal-insulator transition

An exemplary textbook phenomenon in strongly correlated electron systems is the Mott-Hubbard
metal-insulator transition (MIT) [69]. Opposing a band insulator, whose origin of insulating behav-
ior is the lack of free charge carriers, i.e., ultimately, the Pauli principle, the insulating state of the
Mott phase is entirely triggered by the Coulomb repulsion between the electrons: In general,
this transition can be regarded as the result of a competition of kinetic and potential energies in the
electronic system.

Fig. 5.1 shows the phase diagram of V2O3, a textbook material exhibiting a Mott-Hubbard MIT.
At high temperatures (200-400 Kelvin), a transition between a paramagnetic metal and a param-
agnetic insulator is triggered by applying either chromium doping or pressure to the system. Not
surprisingly, due to the many-body nature of the transition, single-particle approaches (such as
density functional theory, see, e.g., [208]) fail to predict the existence of such a transition. This
breakdown of the single-particle picture can be easily understood by taking a look at the single-
particle density of states (DOS, here loosly regarded as equivalent to the spectral function). A
typical DOS of a band insulator is depicted in the left panel of Fig. 5.2. VB and CB denote va-
lence and conduction band, respectively. The spectral weight of the conduction band is fixed to
two states per site. Upon doping, states are just shifted with respect to the chemical potential µ,
so that the integral up to the chemical potential yields the filling n.

The behavior upon doping is dramatically different for the Mott insulator (right panel of Fig. 5.2).
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Figure 5.2: Typical single-particle spectral functions of a rigid band insulator (left panel) and Mott
insulator (right panel), respectively, upon doping (taken from [209]).

In the half-filled case (and for large coupling strengths U ), one can identify an upper and a lower
so-called Hubbard band, separated by an energy scale of order U . Here, doping the system re-
sults in rearranging of the electronic states: The spectral weight of the lower Hubbard band, in
contrast to a rigid shift in the band picture, depends on the filling. It thus becomes immediately
clear that a single-particle picture is totally inadequate to describe the Mott insulating state. This
is why many-body techniques (such as the DMFT) must be exploited in order to correctly capture
the physical mechanisms of the Mott-Hubbard MIT.

5.2 The description of the MIT by means of the DMFT

As stated in the previous section, the essence of the MIT lies in its competition of kinetic and
potential energies of electrons on a lattice. One of the simplest modellizations of this physical
situation is encoded in the (single-band, half-filled) Hubbard model, introduced in Sec. 2.1, which
has been intensively studied aiming at a basic description of a Mott-Hubbard MIT. Early approaches
consisted in

• Green function decoupling techniques (“Hubbard picture”, [210]), which could describe the
continuous splitting of the (Hubbard) bands triggered by the purely local Coulomb interaction.

• Gutzwiller variational wave functions (“Brinkman-Rice picture”, [211]), that cover the van-
ishing quasiparticle peak in the single-particle spectrum approaching the MIT.

Both approaches can thus be regarded as complementary to each other. However, the first theory,
which could consistently describe both features of the MIT (i.e. the separation of the Hubbard band
and the vanishing of the quasiparticle peak) was the dynamical mean field theory (DMFT) (see
Sec. 2.2). The main panel of Fig. 5.3 shows DMFT results for the half-filled Hubbard model (Eq.
(2.6)) on the Bethe lattice1 [33]. The phase diagram is given as a function of the temperature T

1In DMFT, due to its mean-field nature, the lattice type only enters via the non-interacting density of states. When
rescaling all energies by the second moment of the respective energy dispersion, physical quantities become easily
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Figure 5.3: Main panel: DMFT phase diagram of the half-filled single-band Hubbard model on
a Bethe lattice (semi-elliptic density of states, data taken from [33]). Right panel: Spectral
functions at T = 0 for several interaction values, calculated by NRG for the Bethe lattice (from
[85]). All energies are measured in units of 4t ≡ 1, i.e. the bandwidth to the two-dimensional
square lattice.

and U , i.e. the value of the Hubbard interaction2. The dashed grey line indicates the transition
from the paramagnetic to an antiferromagnetic ordered state, however, the DMFT was performed
by enforcing SU(2) symmetry of the paramagnetic phase, so that this transition does not affect the
DMFT spectral properties. Having excluded the magnetic order, the phase diagram reveals a first
order metal-insulator transition exhibiting a coexisting region (blue shaded area) terminating
at a critical point of second order. The bold blue line is indicating the minimum of the free energy.
For temperatures above the one of the critical endpoint crossover regions exist (not shown, see
e.g. [33,212,213]).

The evolution from the non-interacting limit to a Mott insulator can be illustrated best by taking a
look at the single-particle spectral function. The right panel of Fig. 5.3 shows the numerical results
obtained at T = 0 in DMFT, using numerical renormalization group (NRG) as impurity solver [85].
Starting at the non-interacting limit (U = 0.0) the system is clearly metallic with a quasiparticle
peak at the Fermi level ω = 0. However, when increasing the interaction, first shoulder formation
sets in (U = 1.4), whose intensity grows at higher interaction values, e.g. U = 2.9. Also, at this high
interaction strength, the separation of the Hubbard bands as well as the vanishing of the quasipar-
ticle peak can be observed (three peak structure). Eventually, by increasing the interaction value
further, the quasiparticle peak vanishes and the lower and upper Hubbard bands are separated by
an energy scale of U = 3.0.

comparable, despite low-temperature features induced by the specific form of the density of states (e.g. van-Hove
singularities). Specifically for the Mott-Hubbard MIT, after rescaling, the transition curves for Bethe and square lattice lie
on top for all practical purposes, cf. [33,214].

2All energies in this section are measured in units of 4t.
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It is worth noting, that beyond this “standard” description of the DMFT MIT in terms of one-particle
quantities, the non-perturbative nature of the MIT is reflected also in higher particle correlation
functions. For instance, at T = 0, also the local spin-spin susceptibility χloc(ω = 0) diverges,
signalling the formation of local magnetic moments. Even more surprisingly, however, one does
not even have to abandon the (correlated) metallic phase to detect the influence of the MIT: As
discussed in Sec. 3.1, well inside the metallic phase, the charge-irreducible vertex Γνν

′ω
c displays

singularities in its low-frequency structure, which can be regarded as precursors of the MIT.

DMFT has been extremely successful in the description of the MIT in infinite dimensions which
also provides a good approximation for three-dimensional bulk systems. However, as can be de-
duced from Chapter 4, when reducing the dimensionality of the system to, e.g., two dimensions,
spatial correlations cannot be neglected. Therefore, in the following section, the physics of the
MIT is revisited in the case of two dimensions by analyzing the progressive inclusion of spatial cor-
relations. First, the influence of short-ranged spatial correlations is analyzed by means of a cluster
extension of DMFT. Afterwards, spatial correlations on every length scale are accounted for by the
dynamical vertex approximation, unravelling the (somewhat sad) fate of the Mott-Hubbard MIT in
two dimensions.

5.3 Inclusion of non-local correlations in 2D

Parts of this section (marked by a vertical sidebar) and the data shown have already been published
in the APS journal Phys. Rev. B 91, 125109 (2015) and the

Journal of Magnetism and Magnetic Materials 400, 107-111 (2015).

As already stated in the previous chapter, in two dimensions the dynamical mean field approxi-
mation of neglecting spatial correlations breaks down completely due to the significant violation
of the central limit theorem hypothesis in systems with reduced dimensionality. At the same time,
two-dimensional systems are of huge research interest, because they exhibit fascinating examples
of condensed matter phenomena, the most prominent of which, arguably, are high-temperature su-
perconductors. For the specific material class of copper-oxide compounds, the so-called cuprates,
the two-dimensional Hubbard model (see Eq. (2.6)) is believed to represent the minimal model for
being able to capture their physics (at least on a qualitative level). Therefore, a clear-cut investiga-
tion of the model’s properties starting from the fundamental case of the (completely unfrustrated)
two-dimensional, half-filled Hubbard model on a simple square lattice, is called for.

In a first step, short-ranged spatial correlations can be included by means of a cluster extension
of DMFT, the cellular DMFT (see Sec. 2.2.4.1 and [214]). Fig. 5.4 shows results of a CDMFT
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Figure 5.4: Comparison of MIT data from DMFT [33] and CDMFT [214] (for a two-dimensional
plaquette cluster of size Nc = 4). The CDMFT introduces short-ranged spatial correlations up
to the cluster size on top of the local correlations, which are treated exactly in DMFT.

calculation for a plaquette cluster (i.e. Nc = 4 cluster sites). Comparing to DMFT, the introduction
of short-ranged spatial correlations leads to:

• A reduction of the critical value of U . For DMFT, the critical value UDMFT
c2 ≈ 3.0 for the

second line confining the coexistence region at T = 0 gets significantly reduced in CDMFT,
UCDMFT
c2 ≈ 1.45. This reflects the fact that short-ranged spatial correlations are able to de-

stroy the metallic phase at intermediate couplings and low temperatures, allowing for more
scattering possibilities for the electronic quasiparticles.

• The size of the coexistence region shrinks with respect to the one in DMFT and its shape
(including the line of minimal free energy) is qualitatively modified. Specifically, the slope of
the free energy line F = U −TS is reversed. The latter effect can be easily understood by by
taking a look at the Clausius-Clapeyron equation for the DMFT data [19]

dU

dT
=

∆S

∆D
,

where ∆S is the difference of entropies of metal and insulator and ∆D is the difference in
the number of doubly occupied sites of the two phases. For DMFT, a possible (non-local)
exchange coupling J ∝ − t2

U vanished due to the limit of infinite dimensions, so that the
entropy of the insulating state Sins = log(2) per electron even at low temperatures T → 0.
For the metal, Landau Fermi-liquid theory predicts Smet ∝ T , which means for T → 0 that
Smet < Sins ⇒ ∆S < 0 at low temperatures. Of course, the number of doubly occupied sites
in the insulating phase is smaller than in the metallic one, i.e. ∆D > 0, which implies an
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Figure 5.5: Phase diagram of the half-filled Hubbard model on a simple square lattice determined
by ladder-DΓA. The MIT vanishes as a transition in favor for a Mott-Hubbard crossover at small
interaction values. The antiferromagnetic ordering temperature is quenched to T 2D

N = 0, fulfilling
the Mermin-Wagner theorem. Shown is also the DΓA antiferromagnetic transition temperature
in 3D T 3D

N as well as the DMFT one TDMFT
N .

overall negative slope of the Clausius-Clapeyron equation in DMFT. On the other hand, a
finite-sized cluster leads to a finite exchange coupling3 J > 0, which gives an entropy of the
insulator: if it is vanishing faster than linearly for T → 0 [19], this implies that ∆S > 0 for low
temperatures, hence the positive slope in CDMFT.

The inclusion of short-ranged spatial correlations, hence, already leads to significant quantita-
tive corrections with respect to the DMFT description, which only takes temporal fluctuations into
account. However, this picture of the MIT in the two-dimensional unfrustrated case becomes com-
pletely overturned when considering also long-ranged spatial correlations by means of, e.g.,
the dynamical vertex approximation (DΓA) (see Sec. 2.3). Fig. 5.5 shows the phase diagram in
DΓA4. The red shaded area marks the region, where the Fermi-surface is gradually gapped out,
indicating the onset of a pseudogap phase or, equivalently, a mere crossover region instead of
a thermodynamic transition at small interactions. The results, thus, indicate that at low enough
temperatures, the system will always be displaying an insulating behavior, regardless of the
interaction strength U . For every (weak-coupling) U a gradual opening of the spectral gap can be
easily demonstrated by taking a look at the imaginary parts of the self-energies on the Matsubara
axis. In Fig. 5.6 these are shown for two temperature cuts (fixed interaction strengths) U = 0.5 (up-

3This is due to the possibility of (non-degenerate) short-ranged singlet formation within the cluster, which cannot
occur, evidently, in DMFT.

4Here, the ladder-DΓA in the spin-channel with λ-corrections applied only to the spin-channel has been used (see
Sec. 2.3.2.2).
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Figure 5.6: (taken from [190]) Imaginary parts of the DΓA self-energy Σ vs Matsubara frequency
νn for the half-filled Hubbard model at the antinodal (left) and nodal (right) point of the Fermi
surface at U = 0.5 (upper panels) and U = 1.0 (lower panels) and different temperatures. The
DMFT results at T = 0.01 are provided for comparison.

per panels) and U = 1.0 (lower panels) indicated by the vertical arrows in the phase diagram of Fig.
5.5) and two representative points on the Fermi surface [the antinodal point ~k = (π, 0) (left panels)
and the nodal point ~k = (π/2, π/2) (right panels)]. For U = 0.5 and high temperatures, T > 0.017,
the self-energy shows clearly a low-frequency metallic behavior at every point on the Fermi sur-
face from the nodal to the antinodal one. Upon cooling along the gray arrow in Fig. 5.5, first the
low-frequency self-energy shows a downturn for ν → 0 at the antinodal point of the Fermi surface
[k = (π, 0)], i.e., an non Fermi-liquid behavior below T = 0.017. For 0.017 > T ≥ 0.0125 however,
the nodal point of the Fermi surface [k = (π/2, π/2)] does not show this insulating-like behavior
yet. Only for T < 0.0125 the low-frequency self-energy acquires an insulating behavior even at the
nodal point, indicating a complete destruction of the Fermi-liquid excitations over the whole Fermi
surface: For T < 0.0125 one obtains an insulator with the whole Fermi surface gapped, whereas for
0.017 > T ≥ 0.0125 a pseudogap is opened with only parts of the Fermi surface gapped. Hence,
upon cooling along the grey arrow in the phase diagram Fig. 5.5, one first crosses the dashed red
line which marks the temperature where the first point of the Fermi surface [k = (π, 0)] shows a
non Fermi-liquid, insulating behavior. At lower temperatures, one crosses a second (solid-red) line
at which the whole Fermi surface gets gapped. The red-shaded region inbetween hence displays
a pseudogap behavior. The analogous analysis for U = 1.0 can be found in the lower panels of
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Figure 5.7: (taken from [187]) Real-space dependence of the DΓA spin correlation function
χs(~r)/χs(~0) for U = 0.5 and T = 0.025 (left panel) and T = 0.01 (right panel). Shown is
the cut r = (x, 0) where x is given in units of the lattice spacing a = 1. The solid line (grey, guide
to the eye) interpolates between the values at different lattice vectors (blue diamonds).

Fig. 5.6. It corresponds to the second gray arrow in Fig. 5.5. In this case, one can identify a larger
pseudogap region located at higher temperatures: For 0.05 > T > 0.025 the nodal self energy
is still metallic whereas the antinodal one is already insulating. As already explained in Sec. 3.3
in the context of the parquet decomposition of the self-energy, no conclusions about the physical
origin of a self-energy can be drawn from the shape of the self-energy alone - for that, a two-
particle correlation analysis is needed. In Fig. 5.7, the (normalized) static spin-spin correlations
function in real space χs(ω=0,~r) for a one-dimensional cut ~r = (x, 0) at fixed interaction U = 0.5 is
shown. Already for a temperature T = 0.025 (left panel) above the red shaded region in Fig. 5.5, its
oscillating, sign-changing behavior is a clear indication of antiferromagnetic spin-fluctuations.
Their corresponding correlation length can be extracted by fitting the numerical results with the
real-space form of an Ornstein-Zernicke correlation function (see also Sec. 2.3.2.2)

|χs(ω = 0, ~r = (x, 0))| ∼ e−x/ξ(r/ξ)−1/2. (5.1)

This yields ξ ≈ 4, i.e. correlations extended over about four lattice sites, for T = 0.025. The sit-
uation changes very dramatically, however, when lowering the temperature below the crossover
region in the phase diagram, as is done in the right panel of Fig. 5.7 for T = 0.01. The oscil-
lating nature of the (antiferromagnetic) spin-fluctuations persists, but their correlation length now
explodes to about ξ ≈ 1000 lattice sites. This means that, by lowering the temperature, spin fluctu-
ations get progressively more (actually exponentially) extended in space. Once this happens, the
electron moves in a quasi-ordered antiferromagnetic background and the corresponding scattering
becomes so strong that all points of the Fermi-surface gap out approaching the perfectly gapped
spectral function at the antiferromagnetically, long-ranged ordered ground-state. In other words,
long-ranged antiferromagnetic paramagnons open the spectral gap responsible for the insulat-
ing state at low temperatures.
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Figure 5.8: Extraction of the correlation length from a momentum-cut ~q = (π, qy) of the static
spin-spin susceptibility in momentum space χs(~q, ω = 0) for T = 0.025 (left panel) and T ≈
0.014 (right panel). The red points indicate the results from ladder-DΓA, the green lines the fits
according to Eq. (5.2).

Further insight can be gained by analyzing the spin susceptibility in momentum space via the
Ornstein-Zernicke relation

χs(ω = 0, ~q) ∼ 1

(~q − ~Q)2 + ξ−2
, (5.2)

where ~Q is the ordering vector of the underlying magnetic transition. In this case of the unfrustated,
half-filled Hubbard model on a square lattice, due to the perfect nesting of its Fermi surface with
the nesting vector Q̄ = (π, π), the antiferromagnetic ordering of the ground-state5 (T 2D

N = 0) is
perfectly checkerboard-like ~Q = (π, π).

In Fig. 5.8 the corresponding fits for U = 0.5 and two different temperature values (T = 0.025

in the left panel, T ≈ 0.014 in the right panel) and a momentum cut ~q = (π, qy) are shown. As is
immediately clear from Eq. (5.2) the width of the peak around ~Q = (π, π) is a direct measure of the
(inversely quadratic) correlation length ξ−2, which increases by lowering the temperature at fixed
interaction value. In order to improve the understanding of the temperature dependence of the
correlation length, in Fig. 5.9 the T -dependence of the inverse correlation length ξ−1(T ) is shown
for two interaction values U = 0.5/0.75. One can see that, starting at high temperatures the curves
follow a bosonic mean-field behavior (see Chapter 6) of ξ ∝ T−0.5, whereas at low temperatures,
the influence of the ordered phase (at T = 0) is altering this behavior qualitatively through the cor-
responding long-range spin fluctuations: The temperature-dependence of ξ is changed into an
exponential growth ξ ∝ ec/T , which is actually expected for a phase transition at zero temperature

5For this model, the Mermin-Wagner theorem, which is also respected by the (λ-corrected) ladder-DΓA (see [20]),
prohibits ordering at finite temperatures [215].
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Figure 5.9: (taken from [187]) T -dependence of ξ−1 for different interaction values. A crossover
to an exponential behavior is observed at T consistent with the onset of the insulating behavior
(pink/green colored areas for U=0.5/0.75).

in two dimensions (see also, e.g., [159]).

5.4 Slater vs. Heisenberg mechanism for magnetic fluctuations

The last question to address in this chapter about the MIT in two dimensions is the microscopic
mechanism through which the antiferromagnetic fluctuations responsible for the destruction of the
Fermi surface stem from, is stabilized (see also [216]).

Bearing in mind that the system’s Hamiltonian reads

H = −t
∑

(i,j),σ

c†i,σcj,σ + U
∑
i

ni↑ni↓ (5.3)

and its (non-interacting) Fermi surface is perfectly nested by Q̄ = (π, π), two scenarios are con-
ceivable:

1. In the weak-coupling regime (U much smaller than the bandwidth), the quasiparticles in the
paramagnetic high-temperature phase are far from being localized (itinerant quasiparticles).
When lowering the temperature, at the magnetic transition, the bound state and the phase-
coherence (i.e. coherent alignment of spins) set in simultaneously. Energetically, this results
in a simultaneous gain in potential energy (due to the onset of magnetism) and loss in
kinetic energy (due to the binding). The spatial pattern of the incipient order, due to the
weakness of the Coulomb interaction, is typically determined by the Fermi surface nesting
properties. This first scenario is named Slater mechanism and is clearly an analogon to the
Stoner-Wohlfahrt theory of (ferromagnetic) band magnetism [217].

2. In the strong coupling regime, at a certain temperature, there already exist preformed local
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Figure 5.10: (taken from [23]) The Heisenberg superexchange mechanism for antiferromagnetic
order. Due to the Pauli exclusion principle, virtual hopping procceses are only possible, if the
spins are aligned antiferromagnetically. The exchange coupling J ∼ t2/U .

magnetic moments, which, however, are still incoherently ordered, i.e. their spin orientations
are not related mutually. However, as they are already localized, their potential energy al-
ready reached saturation (few or no double occupancies). When lowering the temperature,
the system can still gain kinetic energy due to (virtual) Heisenberg superexchange pro-
cesses, i.e. by introducing “phase-coherence” as depicted in Fig. 5.10. This energy gain,
however, is only accessible for antiferromagnetically arranged spins due to the Pauli exclu-
sion principle. Hence, this kind of order is favored at low temperature and the corresponding
magnetism is stabilized by a gain in kinetic energy. This scenario is coined Heisenberg
mechanism, which is realized, e.g., in the half-filled Hubbard model in three (or higher) di-
mensions at strong coupling.

Turning again to the ladder-DΓA results in 2D, one can observe a slight reduction of the potential
energy U〈n↑n↓〉 of about 1% traversing the pseudogap region at U = 0.5 in Fig. 5.5. This gain in
potential energy occurs in the presence of very extended and strong spatial correlations as can be
deduced from Fig. 5.8, which implies that the physics should largely reflect the one of the ordered
phase [219]. Hence, the DΓA results lead to the conclusion, that the Slater mechanism is gen-
erating the strong fluctuations (Slater paramagnons) which are ultimately responsible for opening
the gap at weak coupling, opposing conclusions drawn in other work (see, e.g. [218]). In fact,
the intrinsic nature of the antiferromagnetic fluctuations appears to be driven by the nature of the
corresponding long-range ordered ground-state. As the antiferromagnetism of the latter gradually
evolves from Slater-like to Heisenberg-like with increasing interaction, it is evident to expect the
same to happen to the corresponding fluctuations at finite temperatures.

For a more extensive study of the impact of non-local correlations over different energy scales
on the energetics and spectral functions in the half-filled Hubbard model, the reader is referred to
the recent work by G. Rohringer and A. Toschi [68].



6
Magnetic phase diagram, quantum criticality and Kohn anomalies

in 3D

“I happen to have discovered a direct relation between magnetism and light, also
electricity and light, and the field it opens is so large and I think rich.”

- Michael Faraday (English physicist, *1791 - †1867)

The phase diagrams of correlated electron materials display a vast variety of different states
of matter. One of the most frequently appearing are magnetically ordered phases, which
often can only be understood by using a full quantum many-body description. The situation
can be made even more interesting by exploiting a non-thermal parameter to suppress the
finite-temperature transitions, leading to a quantum critical point at zero temperature. Al-
though this limit cannot be reached experimentally, the existence of a quantum critical point
can severely influence the system’s excitation spectrum at finite temperatures and is often
associated with exotic phenomena. In spite of its intrinsic interest, however, a consistent the-
ory has not been established yet. One of the reasons is the theoretically quite challenging
intermingling of temporal and spatial correlations, both of which must be taken into account
for the description of a quantum phase transition. In this Chapter quantum critical properties
of the fundamental model of electronic correlations, the Hubbard model in three dimensions,
are studied by means of the DΓA, which is particularly suitable for this purpose. First, the
magnetic phase diagram of the Hubbard model on a simple cubic lattice is computed at
and out of half-filling. Then its (classical and quantum) critical regions and exponents are
analyzed: Quite unexpectedly, the quantum critical properties are found to be driven by the
model’s Fermi surface properties (Kohn points), even in presence of strong correlations:
The temperature dependences of the magnetic susceptibility and of the correlation length
in the vicinity of the quantum critical point largely violate the prediction of the conventional
Hertz-Millis-Moriya theory of quantum criticality.
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Figure 6.1: (readapted from [9] and [220]) Generic phase diagram of a system exhibiting a fi-
nite temperature (classical) phase transition as a function of temperature T and a non-thermal
control parameter n (left panel). Classical critical exponents predicted by bosonic mean field
theories (like DMFT) and renormalization group calculations for the critical exponents of the
3D Heisenberg model, which constitutes the universality class for a finite temperature magnetic
phase transition of the 3D Hubbard model (right panel). The gray shaded region marks the
classically critical regime.

Parts of this chapter are available as a

preprint arXiv:1605.06355 (2016).

6.1 Classical and quantum criticality in three dimensions

In order to study the phenomenon of (classical and quantum) magnetic phase transitions in strongly
correlated electron systems, in this chapter, the focus is on the Hubbard model in three dimen-
sions on a simple cubic lattice [see Eq. (2.6), energies in this chapter are measured in units
of 2
√

6t, see footnote 1 in Chap. 5]. Contrary to the two-dimensional case (discussed in Chapter
5), in three dimensions magnetic ordering is not prohibited at finite temperatures by the Mermin-
Wagner theorem [215]. This makes the magnetic phase diagram even richer than the one in two
dimensions. Before analyzing the results of DMFT and DΓA for this model in the following sections,
a qualitative description of the expected critical behavior in this system is given at a general level.

6.1.1 Classical critical behavior in three dimensions

The left panel of Fig. 6.1 shows a generic phase diagram for a system exhibiting a second or-
der finite temperature classical phase transition [e.g. the transition from a paramagnetic (PM)
to an antiferromagnetically (AF) ordered phase1] as a function of temperature and a non-thermal
control parameter n (which hereafter will be the density varied by means of hole-doping). This
phase transition, due to its classical nature, is triggered by temperature, i.e. above the ordering

1Although the analysis presented in this section is quite general, the terminology used for phase transitions here is
suited to magnetic ones, respecting the focus of this chapter.
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temperature (Néel temperature TN for the AF) the order is destroyed by thermal fluctuations giving
rise to a thermally disordered phase. However, below TN , these thermal fluctuations are not suf-
ficient to completely suppress the ordering tendency of the system and an ordered phase emerges.

Due to the second order (continuous) nature of the phase transition, if one gradually reduces
the temperature, starting from the thermally disordered (high-temperature) regime one will cross
a classically critical regime, where the system exhibits universal behavior. Universality manifests
itself in the emergence of critical exponents (e.g. in the temperature dependence of relevant physi-
cal observables such as the magnetic susceptibility), that are identical for systems within the same
universality class, the latter being determined by the general symmetry properties and the di-
mensionality of the Hamiltonian and order parameter (see, e.g., [11]).

Commonly investigated critical exponents are the ones controlling the temperature dependence
of the physical (non-uniform static spin) susceptibility χs(ω = 0, ~q = ~Q) at the vector ~Q, where the
susceptibility reaches its maximum2

χs(ω = 0, ~q = ~Q)
∣∣
T→TN ∼

∣∣∣∣T − TNTN

∣∣∣∣−γ (6.1)

and the temperature dependence of the (spin) correlation length ξ

ξ
∣∣
T→TN ∼

∣∣∣∣T − TNTN

∣∣∣∣−ν . (6.2)

The correlation length can be extracted from the Ornstein-Zernicke form of the corresponding
correlation function close to a transition (see also Eq. (2.60))

χs(ω = 0, ~q) =
A∣∣∣~q − ~Q
∣∣∣2 + ξ−2

(6.3)

and can be, thus, associated with the inverse width of the peak around the maximum of the correla-
tion function χs(ω = 0, ~q) at ~q = ~Q. Please note that, as γ > 0, ν > 0, both observables in Eq. (6.1)
and (6.2) obviously diverge at the transition temperature T = TN . This divergence, in fact, marks
the occurrence of the phase transition and can be used to determine the transition temperature.
Furthermore please recall that not all physical observables (like, e.g., the transition temperature)

2This corresponds, thus, to the ordering vector at T = TN . For the moment, the temperature-dependence of ~Q is
neglected. See, however, the discussion at the end of this chapter.
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Figure 6.2: (readapted from [9] and [220]) Generic phase diagram of classical as well as quantum
phase transitions. At the quantum critical point (QCP) at (T = 0, n = nc), an abrupt change
of the ground state of the system takes place (left panel). The blue shaded region marks
the quantum critical regime, where the (quantum) critical exponents γ and ν show universal
behavior. The temperature dependences of magnetic susceptibility and correlation length in
this region, calculated from Hertz-Millis-Moriya theory (for d = 3, SDW ordering and z = 2) and
in presence of Kohn anomalies at the Fermi surface, are shown (right panel).

display universal behavior, even in the critical regime.

Depending on the types of fluctuations included in the theoretical description, different predic-
tions for the critical exponents of the universality class for classical magnetic phase transitions of
the selected model are conceivable. Specifically, in case of the three-dimensional Hubbard model
(which at least for n = 1 and U � t falls in the same universality class as the three-dimensional
Heisenberg model), one obtains (see right panels of Fig. 6.1):

• For a bosonic mean-field theory (like the DMFT), that neglects all spatial correlations (see
Sec. 2.2), the predicted critical exponents are γ = 1 and ν = 0.5 and, therefore, coincide
with the exponents yielded by a Ginzburg-Landau theory including Gaussian fluctuations
(see [23]).

• On the other hand, for a three-dimensional Heisenberg model, renormalization group cal-
culations [221] as well as quantum Monte Carlo studies [222], including spatial correlations
yield γ ≈ 1.4 and ν ≈ 0.7. These exponents should also hold (at least in the strong-coupling
limit) for classical magnetic phase transitions of the Hubbard model in three dimensions.

Quite generically, the transition temperature TN can be varied by tuning the non-thermal control
parameter n (see Fig. 6.1). Eventually, at large enough n, the finite-temperature ordering tendency
of the system is completely suppressed, leading to a quantum critical point.
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6.1.2 Quantum critical behavior in three dimensions

Opposing finite temperature phase transitions, which are triggered by temperature, quantum phase
transitions, i.e. changes in the ground state of a system at T = 0, can occur by tuning a (non-
thermal) control parameter n. Although in this chapter the focus is on purely magnetic phase
transitions and, specifically, n is representing the doping level of the system, this concept is quite
general3.

The left panel of Fig. 6.2 shows, how the generic phase diagram for classical phase transitions (Fig.
6.1) is amended by a quantum critical point (QCP). Starting from the classically ordered phase
at T = 0 and progressively increasing n, the ordered phase disappears in favor of a quantum dis-
ordered regime. In this regime, the order is destroyed by quantum fluctuations instead of thermal
fluctuations at finite temperatures. Between the ordered and quantum disordered regimes, exactly
at the QCP at the critical doping nc, an abrupt change in the ground state of the system takes place.

Despite the fact that the QCP is located at T = 0, its sheer existence has a strong influence
on the excitation spectrum of the system at finite temperatures, giving rise to the emergence of
a very important region in the (T, n) phase diagram, the quantum critical regime (funnel-shaped
region in Fig. 6.2). Analogously to the classically critical regime, in the quantum critical regime
the system can exhibit universal behavior, e.g. in terms of critical exponents: Because of the van-
ishing of the ordering temperature, in the quantum critical regime, the corresponding power laws
describing the temperature dependence of the observables of interest become [9]

χs(ω = 0, ~q = ~Q) ∼ T−γ (6.4)

for the spin susceptibility and

ξ ∼ T−ν (6.5)

for the magnetic correlation length. Please note, that despite the equivalence in the notation, the
critical exponents γ and ν for the quantum phase transition can be completely different from the
classical ones described in Sec. 6.1.1.

Furthermore, at T = 0 for instance the correlation length can also be expressed as a function
3For instance, in heavy-fermion compounds, n most commonly represents the ratio of the RKKY interaction strength

and the Kondo interaction (see, e.g. [223, 224]), which can be controlled by applying pressure, doping or a magnetic
field to the system. For a simple Ising spin chain, n could be the transverse external magnetic field (see [8]).
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Figure 6.3: (taken from [220]) Visualization of (one out of four pairs of) Kohn lines in the 3d Brillouin
zone of the simple cubic lattice with nearest-neighbor hopping and the connecting SDW vector
Q0. The left panel shows a 2d cut with the Kohn-line, the right one the corresponding (opposite)
Fermi-velocities.

of the deviation of the non-thermal control parameter n from its critical value nc [9]:

ξ ∼ |n− nc|−ν
∗
. (6.6)

Here, ν∗ denotes another (quantum-)critical exponent that can be different from ν in general. As at
T = 0 temporal fluctuations become non-negligible, also the (imaginary) correlation time diverges
at the quantum phase transition [9]:

ξτ ∼ |n− nc|−zν
∗
, (6.7)

defining z, the so-called dynamical critical exponent. Interestingly, according to the most known
theoretical descriptions [9], quantum-critical systems of spatial dimension d can behave like clas-
sical systems with enhanced effective dimensionality

deff = d+ z, (6.8)

which is determined by this dynamical critical exponent and may boost the system above its upper
critical dimension.

More specifically, the conventional theory for the description of quantum phase transitions in
fermionic systems is the Hertz-Millis-Moriya (HMM) theory [12–14,66,225]. It essentially amends
the (perturbative) Landau-Ginzburg-Wilson (LGW) theory [11] by plainly including temporal fluctu-
ations of the quantum regime. As already mentioned in Chap. 1, Hertz studied itinerant electron
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systems by applying a renormalization group (RG) treatment to model systems and concluded that
at zero temperature, static and dynamic properties are interwoven. Later, Millis analyzed how the
existence of a quantum phase transition affects properties of these systems at finite temperatures.
For a magnetic metallic system (spin-density wave (SDW)), the HMM theory predicts z = 3 for a
ferromagnetic and z = 2 for an antiferromagnetic type of ordering, respectively. In case of a three-
dimensional metallic spin-density wave (which will be considered in this chapter), deff = d+ z = 5,
and the HMM theory yields the critical exponents γ = 1.5 and ν = 0.75, see middle panel of Fig.
6.2 [9].

Despite many successes of the HMM theory, most quantum critical materials are strongly corre-
lated so that approaches based on perturbation theory or an RG extension thereof become at least
questionable, e.g. for QCPs in transition metals under pressure, such as Cr1−xVx [226–229] and
heavy fermion compounds under pressure or in a magnetic field, such as in CeCu6−xAux [230] and
YbRh2Si2 [231, 232]. Furthermore, it has been established that one effect of strong correlations,
namely the breakdown of the “large” Fermi-surface containing both conduction and f -electrons
and the associated local quantum criticality [233,234], may lead to different critical exponents.

Another, yet different kind of source for the break down of the HMM theory stems from Fermi
surface features: While it is known that in presence of an isotropic, perfectly nested Fermi sur-
face ( ~Q = 2kF) the HMM theory may no longer be applicable [9], little is known about how this
situation can be realized in a concrete case of interest. In fact, as it is demonstrated in Sec. 6.3
and Ref. [220] for the case of three dimensions, it may break down if the system’s Fermi sur-
face exhibits the peculiar features of Kohn points or lines. Kohn lines are defined as continuous
lines of (Kohn) points on the Fermi surface, connected by the SDW vector Q0 and having oppo-
site Fermi velocities. To illustrate the concept of Kohn lines, Fig. 6.3 shows a pair of them for the
(non-interacting) Fermi surface of the simple cubic unfrustrated lattice. The existence of such Kohn
lines affects the physical susceptibilities drastically, such that the critical exponents can be strongly
altered as well as their mutual relations can be strongly violated. For the case considered in this
Chapter (the unfrustrated Fermi surface in three dimensions), the values of the critical exponents
change into γ = 0.5 and ν = 1.0 (see right panel of Fig. 6.2). In fact, this can be foreseen from a
purely analytical random phase approximation (RPA) analysis of the quantum critical spin suscep-
tibility (see [235]): The expression for the temperature-dependent non-uniform bare susceptibility
in the presence of Kohn anomalies is given by

χ0
s(ω = 0, ~q + ~QT ) '

[
χ−1

0,s(ω = 0, ~Q0)T=0 +AT 1/2 +BT−3/2q2
z

]−1
. (6.9)

Here ~QT = ~Q0 + (0, 0, δQz), with δQz = −2CT describing a shift of the wave vector with the
temperature and A,B,C are positive factors, containing weak, ln ln(1/T ), corrections. Adopting
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the random phase approximation

χRPA
s (ω = 0, ~Q) =

1

χ0
s(ω = 0, ~Q)− U

, (6.10)

one arrives at the critical exponents given above. The same preliminary analysis also suggests that
in such cases a univocal definition of the dynamical exponent z might become problematic: The
frequency dependence of χRPA(ω, ~q) in the presence of Kohn anomalies will acquire a rather com-
plicated form ( [236,237], see [238] for the critical exponents in two dimensions), not characterized
by the single exponent z appearing in the expression of the HMM theory

χHMM
s (ω, ~q + ~Q) ∝ 1

~q2 + ξ−2 + iωn/|~q|z−2
. (6.11)

After this brief general introduction to classical and quantum phase transitions, in the following
sections, the corresponding magnetic phase diagrams of the Hubbard model on a simple cubic
lattice computed in the dynamical vertex approximation will be analyzed. As the DΓA approach in-
cludes spatial correlations on top of DMFT, which provides already a non-perturbative description
of all local quantum fluctuations, it is particularly suited to study both the classical and quantum
critical regions of strongly correlated models.

6.2 Classical criticality: the half-filled Hubbard model

Before discussing the (more general) case of the (hole-)doped Hubbard model on a three dimen-
sional (cubic) lattice in the following section, is it instructive to first consider the half-filled case,
where electronic correlations are expected to have the biggest impact on the Hubbard model
physics.

Fig. 6.4 exhibits this phase diagram as a function of temperature T and interaction strength U for
several many-body techniques [171]. Starting with the analysis of the DMFT data, the momentum-
dependent spin susceptibility χs(ω, ~q) is calculated via a Bethe-Salpeter equation [15]

χs(ω, ~q) =
1

β2

∑
νν′

[
χνν

′
0 (ω, ~q)− Γνν

′
s (ω)

]−1

νν′
(6.12)

using the irreducible vertex in the spin channel Γνν
′

s (ω) ≡ Γνν
′ω

s , which, in turn, is extracted
from a (self-consistently determined) AIM of the DMFT solution (see Sec. 2.2). χνν

′
0 (ω, ~q) is the



6.2. CLASSICAL CRITICALITY: THE HALF-FILLED HUBBARD MODEL 135

Figure 6.4: (taken from [68]) Phase diagram of Néel temperatures revealed by several many-body
techniques for the 3D Hubbard model at half filling (see corresponding Refs. in [68]). Also the
comparison to the transition temperature of the 3D Heisenberg model is shown (main panel).
The critical exponents have been extracted from the spin susceptibility (γ) and correlation length
(ν) at U = 2.0 and yield 3D Heisenberg critical exponents (right panel).

momentum-dependent DMFT particle-hole bubble

χν
′

0 (ω, ~q) = −β
∑
~k~k′

GDMFT(ν,~k)GDMFT(ν + ω,~k + ~q)δ~k~k′δνν′ . (6.13)

Please note that the inversion in Eq. (6.12) is done over the fermionic frequency pair (ν, ν ′).

The dashed blue line in Fig. 6.4 marks the points (TDMFT
N , U) where the static spin susceptibility

χs(ω = 0, ~q = ~Q) diverges at a certain ordering vector ~Q, when lowering the temperature starting
from the unordered paramagnetic phase. This indicates (see also the discussion in the previous
section), a second order phase transition in the spin channel. The ordering pattern is determined
by the momentum ~Q. For the half-filled system the vector is always ~Q = (π, π, π). In this respect, it
is noteworthy that:

1. The transition temperature in DMFT TDMFT
N increases with U in the weak-coupling regime

and displays a maximum at U ≈ 2.0.

2. In the strong-coupling regime, where a mapping of the three-dimensional Hubbard model
onto the Heisenberg model can be performed, the shape of the evolution of TN in the Hubbard
model should become similar to the one of an Heisenberg model with J = 4t2

U (orange dashed
line in Fig. 6.4). However, as DMFT is a mean-field theory in space, which neglects spatial
correlations, the transition temperature is significantly overestimated, approaching the one
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expected for the corresponding Ising model.

3. The dynamical exponents are γ = 1 for the spin susceptibility and ν = 0.5 for the spin
correlation length in DMFT (not shown), consistent with its nature of a bosonic mean-field
theory.

Comparing this result to a similar analysis in DΓA4 (red circles in Fig. 6.4), due to the inclu-
sion of spatial correlations, the transition temperature gets significantly reduced TDΓA

N < TDMFT
N .

These values of the transition temperature agree well with accurate DCA [239], QMC [240] and
determinental diagrammatic Monte Carlo (DDMC) [191] data. With respect to the dual fermion
approach [241] and DCA [239], the DΓA yields slightly smaller Néel temperatures in the weak-
intermediate coupling regime. At the same time, the DΓA seems to approach the exact strong
coupling (Heisenberg) result more accurately than the other techniques.

Also, the critical exponents can be extracted in DΓA for the correlation length and susceptibil-
ity: ν ≈ 0.72 and γ ≈ 1.37, respectively [171]. This agrees well with the ones obtained by other
methods for the 3D Heisenberg universality class (see previous section) [171,241]. Specifically,
subsequent dual fermion analyses are fully consistent with this result [241].

The analysis at half-filling reveals a continuous classical finite-temperature antiferromagnetic phase
transitions with a transition temperature TN (U) > 0. However, as it is presented in the following
section, by doping the system the Néel temperature can be quenched down to TN → 0, triggering
the appearance of a quantum critical point.

6.3 From classical to quantum criticality: doping the Hubbard model

In the previous section, by means of the DMFT and DΓA, it was shown, that the three-dimensional
half-filled Hubbard model on a cubic lattice exhibits a second order magnetic phase transition from
a paramagnetic to an antiferromagnetically ordered phase. For this system, the Néel temperature
is maximal at U ≈ 2 and the critical exponents for spin susceptibility and correlation length agree
with the 3D Heisenberg ones. In this section, the restriction to the half-filled case n = 1 is lifted
and the system is doped with holes. The interaction is fixed to U = 2, i.e. to the value where the
highest Néel temperature is is found in the half-filled system.

The transition temperatures as a function of doping are shown in Fig. 6.2, with a dashed green line
4To obtain the results of this section for the magnetic phase diagram, the ladder-DΓA with λ-correction only in the

spin-channel (see Sec. 2.3.2.2) was used. The data shown for DΓA are always extracted from the λ-corrected DΓA
susceptibility (Eq. (2.61)).
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Figure 6.5: (taken from [220]) Phase diagram of the 3d Hubbard model at U = 2, showing the lead-
ing magnetic instability as a function of the density n in both DMFT and DΓA. Inset: Evolution
of the magnetic ordering vector along the magnetic instability line of DΓA, showing a transition
from an commensurate AF ordering with Qz = π (open triangles in the main panel) to incom-
mensurate SDW ordering with Qz < π ordering (full triangles in the main panel). The dashed
line of the main panel indicates the presumptive crossover between AF and SDW in the ordered
phase.

representing the DMFT calculation and a solid red one for the DΓA5. Similarly to the half-filled case,
the DΓA significantly reduces the ordering temperature. However, only for small doping n & 0.88

the emerging ordering remains commensurate with the lattice, specifically purely antiferromag-
netic [ ~Q = (π, π, π), open triangles]. At higher doping, the ordering vector of the phase transition
changes from the one of a commensurate antiferromagnetic order to the one of an incommensu-
rate spin-density wave (SDW) (filled triangles) as a function of doping, i.e. to ~Q = (π, π, π − δ)
where δ > 0 depends on the doping level. The grade of incommensurability can be expressed by
π −Qz, which is shown for the DΓA Néel temperatures in the inset of Fig. 6.2. Eventually, at high
enough doping n ≥ nc, the finite-temperature ordering is fully suppressed and a quantum critical
point (QCP) appears at (T = 0, n = nc).

In order to analyze the critical properties of the doped Hubbard model on a cubic lattice, Fig.
5Again, the ladder-DΓA in the spin channel was used for determining the transition line. However, in contrast to

the previous section, both particle-hole channels (i.e. charge as well as spin) have been used to determine the λ-
correction (see discussion of the λ-corrections in Sec. 2.3.2.2, Sec. 2.4 and Ref. [68]). This change is motivated by the
possibility that the suppression of charge fluctuations is expected to become less effective when doping the system out
of half-filling.



138 CHAPTER 6. QUANTUM MAGNETISM IN 3D

0.0

1.0

2.0

3.0

ξ
-1

n = 1.00

TN

 0.0

 1.0

 2.0

 3.0

n = 0.87

TN

 0.0

 0.5

 1.0

 1.5

 2.0

n = 0.805

 0.0

 0.5

 1.0

 1.5

 2.0

n = 0.79

0.0

0.1

0.2

0.3

 0  0.05  0.1  0.15

χ
-1

(ω
=

0
,q

=
Q

)

T

TN

0.00

0.04

0.08

0.12

 0  0.025  0.05  0.075

T

TN

0.00

0.04

0.08

0.12

 0  0.01  0.02  0.03  0.04

T

0.00

0.04

0.08

0.12

 0  0.01  0.02  0.03  0.04

T

Figure 6.6: (taken from [220]) DΓA results for the inverse correlation length (ξ−1, upper panels)
and maximal spin susceptibility (χ−1, lower panels) as a function of temperature for four differ-
ent densities. The fits of the corresponding critical behavior, from which ν and γ have been
extracted, are reported as dashed lines.

6.6 shows the obtained DΓA results of the temperature dependence of the (inverse) spin corre-
lation length ξ−1(T ) (upper panels) and spin susceptibility χ−1

s (ω = 0, ~q = ~Q) (lower panels) at
its maximum at wave vector ~Q, respectively. Four exemplary doping levels n = 1/0.87/0.805/0.79

have been selected. The leftmost column recapitulates the half-filled case of the previous section.
Here, the Néel temperature is TN (n = 1) ≈ 0.072 and the numerically extracted critical exponents
are ν ≈ 0.72 and γ ≈ 1.37, which, as expected, agree well with the ones of the 3D Heisenberg
model.

The situation remains qualitatively similar for small dopings: the transition temperature is reduced,
but the critical exponents persist (within the numerical uncertainties) to be the 3D Heisenberg ones,
with ν ≈ 0.72 and γ ≈ 1.36 (second column of Fig. 6.6). However, at a first glance, the temperature
dependence of the correlation length appears to be dramatically altered, because, starting from the
high temperature regime and cooling the system, after an initial increase of the correlation length
ξ(T ), it starts to decrease again, before, eventually, diverging at the phase transition temperature.
Yet, this fact just reflects the inapplicability of the standard definition of the correction length
as the (inverse) width of the peak around the maximum of the susceptibility (see Eq. (6.3)). In
fact, when reducing the temperature, additionally to the peak at ~q = (π, π, π) at high temperatures
(antiferromagnetic), a second (incommensurate) peak at ~q = (π, π, π − δ) appears and starts to
separate from the first one. Effectively, this causes the peak to broaden and, eventually, the cor-
relation length apparently to decrease. Fig. 6.7 illustrates this fact for a temperature cut at fixed
n = 0.87.

Approaching the critical doping nc ≈ 0.805, where TN (n → nc) → 0, and, hence entering the
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Figure 6.7: Momentum cut ~q = (π, π, qz) of the (real parts of the) spin susceptibilities χs(ω = 0, ~q)
for the doping level n = 0.87 and the temperatures (from top left) T = 0.05/0.033/0.025/0.02.

quantum critical regime illustrated in Fig. 6.2, the influence of the QCP becomes evident (see third
column in Fig. 6.6), i.e. the critical exponents are altered. However, due to the influence of the
Kohn lines of the Fermi surface, they are not equivalent to the ones of standard Hertz-Millis-
Moriya theory νHMM = 0.75 and γHMM = 1.5 (see Sec. 6.1): the numerical data extracted from
the DΓA-data (ν ≈ 0.98 and γ ≈ 0.86) provide clear evidence, that the quantum criticality in the 3D
Hubbard model is indeed controlled by the Kohn anomalies of the underlying Fermi surface.6 In
spite of the numerical uncertainty for the exact determination of γ, the DΓA data show (i) a large
value of ν close to the RPA prediction for the Kohn-anomaly controlled exponent and (ii) evidently
that the scaling relation γ = 2ν (which is satisfied in case of the standard HMM theory as well as
approximately for the 3D Heisenberg model) is strongly violated (actually, even reversed) in the
presence of Kohn anomalies.

Eventually, by further increasing the doping (fourth column in Fig. 6.6), one can observe a fi-
nite correlation length and susceptibility at low temperatures, which signals the abandoning of the
quantum critical region and, therefore, the inapplicability of the scaling relations Eqs. 6.5 and 6.4
at these temperatures.

6Please note that the determination of the critical exponents of the susceptibility γ is numerically challenging, while
the critical exponent of the correlation length seems to be more robust numerically (see also Sec. 2.4).
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At the end of this chapter about quantum critical magnetism in the three dimensional Hubbard
model on a simple cubic lattice, several conclusions can be drawn from the first application of DΓA
to this (largely unexplored) problem:

• The DΓA, due to the inclusion of spatial correlations, significantly reduces the ordering tem-
peratures with respect to DMFT.

• For the classical, finite-temperature magnetic phase transitions, one obtains 3D Heisenberg
critical exponents for the temperature dependences of spin susceptibility and correlation
length.

• The, at a first sight, peculiar temperature-dependence of the magnetic correlation length can
be ascribed to the competition between AF and (incommensurate) SDW fluctuations at finite
doping. The classical critical exponents, however, are still compatible with the 3D Heisenberg
universality class.

• The influence of the Fermi surface properties of the simple cubic lattice (Kohn anomalies)
becomes evident, when the ordering temperature is quenched to zero by a non-thermal con-
trol parameter, i.e. when entering the quantum critical funnel-shaped region around the QCP.
This results in non-standard Hertz-Millis-Moriya quantum critical exponents. Specifically,
(i) the scaling relation between the critical exponents of magnetic susceptibility and correla-
tion length is strongly violated, (ii) the values of critical exponents are strongly modified with
respect to the ones expected by HMM theory and (iii) a dynamical critical exponent z cannot
be identified unambiguously any longer.

As the above results of a predominant influence of the Kohn anomalies have been found for a
relatively large value of the electronic interaction, the conclusions drawn above could be extremely
relevant for identifying the origin of the often controversial interpretations of the quantum phase
transitions in correlated oxides and heavy fermions. Moreover, these studies pave the way for
future investigations of the interplay between Kohn anomalies and quantum critical fluctuations
below the upper critical dimension.



7
Conclusions and outlook

“Once we accept our limits, we go beyond them.”

- Albert Einstein (German theoretical physicist, *1879 - †1955)

The main goal of this thesis was to achieve a substantial progress in describing phase transitions
of strongly correlated model systems in their classical and quantum occurrences. The difficulties
of a complete theoretical treatment of this subject arise from two facts: (i) the large mutual interac-
tions of the particles in these systems, and (ii) that at the vicinity of second-order phase transitions,
long-range spatial fluctuations must be taken into account. The first argument implies that common
perturbation theory, mean-field theories and density functional theory are often not applicable in
these systems, so that non-perturbative many-body techniques such as - at least - the DMFT have
to be applied. From the second point one can expect, however, that even DMFT is not enough
in the proximity of second-order phase transitions in finite dimensions, because it neglects spatial
correlations. Hence, the focus of this thesis was a cutting-edge diagrammatic extension of DMFT,
the DΓA, and its application it to the most fundamental model for electronic correlations, the Hub-
bard model, in the vicinity of its phase transitions.

To set the stage, starting from an every-day example, Chapter 1 gave a short introduction to
phase transitions in general and the basic classification into classical (temperature-triggered) and
quantum phase transitions (occurring at zero temperature as a function of a non-thermal control
parameter). In order to illustrate this introduction, examples were given in terms of the famous and
rich phase diagrams of the high-temperature cuprates.

Chapter 2 introduced the concepts and methods used throughout the thesis. After stating the
full condensed matter many-body Hamiltonian, it was simplified to the most fundamental model of
electronic correlations, the Hubbard model. Also, the even more basic Anderson impurity model
was introduced. Afterwards, the DMFT was sketched, the self-consistency cycle described and its
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diagrammatic content specified in terms of a purely local self-energy, highlighting how purely local
correlations are taken into account in this theory. Next, several ways of extending the DMFT in or-
der to include non-local correlations were specified. After an introduction to the building blocks of all
cutting-edge diagrammatic extensions of DMFT (among which the DΓA was used throughout this
thesis), the two-particle (vertex) quantities and their calculation within the DMFT framework, two
variants of the DΓA, the parquet and the ladder formulation, were characterized. In the ladder case,
a method of mimicking the full self-consistency, the Moriyaesque λ-corrections was discussed in
detail. Eventually, at the end of Chapter 2, the state-of-the-art implementation of the ladder-DΓA
was summarized.

Starting with a two-particle level analysis of the DMFT-solution to the Hubbard model, non-perturba-
tive precursor features of phase transitions were characterized in Chapter 3. Specifically the diver-
gence of the two-particle vertex irreducible in the charge channel Γc was interpreted as a precursor
of the Mott-Hubbard transition in the DMFT phase diagram of the paramagnetic single-band Hub-
bard model at half-filling. At higher interactions, also the irreducible particle-particle up-down vertex
Γ↑↓pp diverges. Both divergences are located “before” the Mott-Hubbard transition, i.e. well in the
metallic region of the phase diagram. Approaching the Mott-Hubbard transition, infinitely many di-
vergence lines could be identified, which were described in the atomic limit by analytic calculations.
These divergences have direct implications on analytic diagrammatic techniques. For instance, the
physical interpretation of the self-energy through its parquet decomposition gets dramatically more
complicated after crossing the lines of the divergences. However, these divergence lines are not
connected to a thermodynamic phase transition, as the finiteness of the full vertex F shows. For
the parquet decomposition, such interpretational difficulties can be circumvented by the formulation
of the decomposition through the full vertex F in different representations and partial summations
of the Dyson-Schwinger equation of motion, a novel approach coined “fluctuation diagnostics”.

In Chapter 4 the influence of the dimensionality of systems on their one-particle spectra was
analyzed. As the role of spatial fluctuations gets more pronounced as the dimensionality of the
systems is decreased, in order to get accurate solutions in finite dimensions, one needed to go be-
yond DMFT, taking non-local fluctuations into account. In three dimensions, it could be shown that
local and non-local correlations are not substantially interwoven, in the sense that the self-energy
is separable (at least in an energy-window around the Fermi surface) into a local but frequency-
dependent and a static but momentum-dependent part. In two dimensions, a collapse of the
self-energy onto a single curve was observed when reparametrizing it via the non-interacting elec-
tron dispersion. This collapse could be observed to a very high degree for the half-filled, isotropic
system also in the vicinity of the Fermi surface, if no pseudogap was present. For the anisotropic
and/or doped cases, the imaginary part of the self-energy was reproduced quite accurately, how-
ever, the accuracy of the reparametrization of its real part strongly depended on the degree of
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anisotropy/doping. Reducing the dimensionality of the system, eventually, to one dimension and
to finite systems (Hubbard nano-rings), one arrived at an interesting (and quite stringent) test-bed
for benchmarking the DMFT and the variants of DΓA, since there (numerically) exact solutions
are possible. The Green functions, self-energies and vertices were analyzed and compared. In-
terestingly, the parquet-based (but not yet fully self-consistent) implementation of the DΓA gave
a quantitative improvement over the DMFT description. However, for systems that exhibit a gap
in the exact solution, non-local corrections stemming from the (local) fully irreducible vertex from
DMFT were not strong enough to open this gap in the approximation. The description was im-
proved by the ladder-version of the DΓA including λ-correction, which in some sense mimics the
self-consistency which is lacking in the (one-shot) parquet approach.

The central topic of Chapter 5 was the fate of the Mott-Hubbard metal-insulator transition in two
spatial dimensions. After a recapitulation of the phenomenon of the transition itself and the results
of DMFT for the half-filled, paramagnetic system, the influence of spatial correlations was ana-
lyzed by including progressively more extended spatial fluctuations. Short-ranged spatial correla-
tions reduced the size of the transition’s coexistence region and changed its slope. The inclusion
of spatial correlations on every length scale by DΓA, eventually revealed that the Mott-Hubbard
transition vanishes in favor of a crossover: At every finite interaction, for low enough temperature,
one always observes an insulating behavior. The reason for this striking result could be traced
to the spin-fluctuations in the paramagnetic phase, which are induced by the underlying antifer-
romagnetic transition at zero temperature, consistent with the Mermin-Wagner theorem. At weak
coupling this ordering is triggered by Fermi-surface properties, which is why the fluctuations have
been classified as Slater-paramagnons.

Finally, in Chapter 6, the magnetic phase diagram and the quantum critical point of the (hole-
doped) three-dimensional Hubbard model was analyzed. Upon doping, the ordering temperature
decreases and the magnetic phase transition changes from antiferromagnetic to incommensu-
rate at high doping. However, the critical exponents for magnetic susceptibility (γ) and correlation
length (ν) remained 3D Heisenberg ones until no classical, finite-temperature could be observed
anymore. There, in the quantum critical region, however, a significant violation of the predictions of
the standard theory for quantum critical phenomena, the Hertz-Millis-Moriya theory, was observed
for both critical exponents. This includes a violation of the scaling relations γ = 2ν and the lack of
a univocal definition of the dynamical exponent z. This anomalous behavior could be again traced
back to Fermi-surface properties, specifically lines connected by a wave-vector ~Q and exhibiting
opposite Fermi velocities (Kohn lines), whose effects are no longer hidden by thermal fluctuations
and become manifest at the QCP.

All the progress made by applying cutting-edge many-body methods to the Hubbard model in
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this thesis are inspiring several future investigations:

1. Further studies and interpretation of precursors of Mott transitions
The physical interpretation and understanding of the divergent irreducible vertex functions,
which are regarded as a precursor of the Mott-Hubbard transition, is far from being complete.
Recent progress was achieved by analyzing the (simpler) binary mixture and Falicov-Kimball
models in addition to DMFT calculations for the Hubbard model [242]. There it was found, that
a certain single energy scale can be defined, up to which the self-energy cannot be obtained
unambiguously by perturbative techniques. If and how such a scenario can be realized also
in the (more complicated) case of the Hubbard model and Anderson impurity model, is an
open subject of current investigation.

2. Quantum criticality for heavy fermion systems
To a certain degree, the three-dimensional Hubbard model was chosen for the first basic
description of strong coupling quantum criticality by the DΓA. Despite the importance of the
determination of the magnetic phase diagram of this model including quantum critical points,
even more interesting for the comparison to experiment would be the analysis of models for
heavy-fermion systems. One of the most prominent models in this respect is the periodic
Anderson model, as it represents the minimal model for the description of f-electron systems
and it is of great importance to also analyze this model in DΓA with respect to its quantum
criticality.

3. Magnetic and superconducting phase transitions in lower dimensions
As already discussed in the introduction, many interesting phenomena can occur in systems
of low spatial dimensionality. For instance, the famous high-temperature cuprates exhibit
a plethora of different kinds of phase transitions. In this context, the DΓA vertex could be
exploited as an input quantity for a Eliashberg type of approach to the determination of the
superconducting region in the phase diagram of the (doped and frustrated) two-dimensional
Hubbard model, similar to FLEX+DMFT [243]. Also, it was recently found in these systems,
that the electron’s scattering rate is proportional to T 2 not only in the metallic regime [244],
but also in the pseudogap region of the cuprates phase diagram. Whether this phenomenon
can be described by a theory based purely on spin-fluctuations like the ladder-version of the
DΓA, which does not couple spin-fluctuations into the particle-particle (Cooperon) channel,
future investigations have to clarify.

4. Separability of spatial and temporal correlations going towards two dimensions
The remarkable property, that the self-energy is separable in a purely frequency-dependent
and a purely momentum-independent part, has been shown only for systems in three di-
mensions. One could also think of a systematic analysis of the dimensional crossover by
progressively going towards even lower (two) dimensions by introducing a rescaled hopping
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amplitude into the non-interacting electron dispersion and reducing it to approach the case
of two dimensions. In fact, in two dimensions, spatial and temporal correlations should be
more interwoven and such a separation should (in general) not be possible anymore, which
raises the question of the location of its point of breakdown going progressively from bulk
(three dimensions) to layered systems (two dimensions).

5. Non-local interactions
In the models addressed in this thesis, the Coulomb interaction was acting only between elec-
trons on the same lattice site (purely local). However, the nature of the Coulomb interaction
is intrinsically long-ranged, as its potential is given by

V (~r) =
e2

|~r| .

Often, the “real” Coulomb interaction gets significantly screened, so that the purely local ap-
proximation is justified. However, in some cases, this can become a very bad approximation,
e.g. for describing charge-ordered phases or adatoms on semiconductor surfaces [245,246].
For the description of such phenomena, one has to consider (at least) the extended Hub-
bard model. At the level of DMFT one can do so by means of the so-called extended DMFT
(EDMFT) [247], which was very successful in the description of, e.g., satellite features of
plasmonic excitations [248]. In this context, also the fluctuation diagnostics method can shed
light on types of fluctuations are dominating in different regimes of these systems. However,
for a full inclusion of spatial correlations, DMFT/EDMFT are not applicable and more powerful
extensions are needed (e.g. dual boson [249] or the ab-initio DΓA [250], see below).

6. Ab-initio DΓA
A natural extension of DΓA, namely the application to realistic systems as an ab-initio tech-
nique, was already proposed [250]. The basic idea is, to replace the lowest order contribu-
tion to the fully irreducible vertex Λ (which is assumed to be purely local in DΓA, i.e. the
Hubbard-U ) by the full Coulomb interaction Vij . With this assumption for the input vertex,
the (ladder-)DΓA equations are solved. By this procedure, all DMFT as well as all GW dia-
grams are included and non-local correlations beyond these two approaches are taken into
account. The solution of the corresponding equations could provide one of the most com-
plete treatments with a quantum many-body theory, useful for the understanding of several,
still hot-debated topics in condensed matter physics.
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A
Common checks for ED-DMFT calculations

As already discussed in Sec. 2.2.2.2, for the solution of the Anderson impurity model (Eq. (2.7)),
specifically embedded in a DMFT self-consistency cycle, several algorithms can be applied. One of
them, the exact diagonalization (ED), consists in discretizing the bath of non-interacting electrons,
in which the single (interacting) impurity is incorporated. This has the advantage (with respect to
QMC-based techniques) that statistical errors are avoided, however, the discretization of the bath
can lead to systematic errors, especially in situations, where one is limited to a low number of bath
sites ns, e.g. when calculating two-particle functions (see Sec. 2.3.1). In this Appendix, some
checks are summarized, which can be utilized to judge, whether an ED calculation can be referred
to as “physically reliable” in the sense that the ED solution represents a possible solution to the
AIM. These checks are listed in the following in the order of ease of applicability.

1. Convergence parameter

The DMFT self-consistency depicted in Fig. 2.3 is reached, if a convergence parameter
falls below a certain threshold. The definition of this parameter can be based on several
quantities, e.g. the (integrated) values of self-energy or Green function or the difference of
the Anderson parameters of consecutive DMFT cycles themselves. An empirical value of
this convergence parameter, which has been used in all published calculations of this thesis,
for which a solution can be called “converged” is conv.param.< 10−13 (the differences of the
Anderson parameters has been used to quantify the threshold in these cases).

2. Anderson parameters

A glimpse on the Anderson parameters themselves is a further quick check. First, the cou-
plings of the baths should be (numerically) finite. Otherwise one effectively performs a cal-
culation with less bath sites than expected. Second, the bath energies should be mutually
different as well as fall in the order of magnitude of physical energy scales of the system. Fur-
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thermore, the hybridizations fulfill (at least approximately) the following sum rule (see [251]):

ns∑
l=2

V 2
l =

1

(2π)d

∫
ddkε~k =

∑
n

znt
2
n (A.1)

(l = 1 is the impurity site itself), with hoppings tn to the zn n-th nearest neighbors. For the
special case of the Bethe lattice, this sum-rule reads

ns∑
l=2

V 2
l = t2.

This sum-rule can also be used as an initialization starting point for the first DMFT cycle.

3. Self-consistency in Green function

If the convergence parameter is not directly related to the Green function (see check 1.),
one can test the self-consistency condition

G(ν) =

∫
ddk

1

iνn − ε~k + µ− ΣDMFT(ν)

itself, by inserting the DMFT self-energy into the equation above. Empirically, for the program
used in this thesis, this condition may be violated for the real part of the Green function in
cases of finite frustration of the lattice (i.e. t′, t′′, etc.). Usually, these deviations are small
with respect to the imaginary part of the Green function. This issue, however, is left to further
investigations.

4. Asymptotics of the self-energy

As already discussed in Sec. 2.3.2.2, the imaginary part of the physical self-energy on the
Matsubara axis exhibits the following asymptotic behavior

Im Σ(ν)
ν→∞→ −U2n

2

(
1− n

2

) 1

νn
(A.2)

while the real part

Re Σ(ν)
ν→∞→ Un

2
. (A.3)

Please note, that for the imaginary part, it is most convenient to actually plot Im Σ(ν)νn
ν→∞→

−U2 n
2

(
1− n

2

)
for performing this check.

5. Stability of the solution
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One may perform the DMFT self-consistency with a different initial set of Anderson param-
eters in order to check the stability of the solution. Please note, that small deviations from
the previous results can occur nevertheless, and that, in the vicinity of a first order phase
transition, also completely different (but physical) solutions, can be obtained due to the co-
existence region occurring there. However, starting from the non-interacting solution, in this
case, one should always end up on the metallic side of the solution.

6. Increasing the number of bath sites ns

A test for the influence of the bath-discretization is the increase of the number of bath site
ns as well as checking how much the solution changes with respect to the one with less
bath sites. The usual number of bath sites (including the impurity site) in the calculations
performed in this thesis was ns = 5 for two-particle quantities and ns = 6/7 for checking
one-particle quantities.

7. Comparison to other methods

Of course, the solution can be compared to the ones obtained by other impurity solvers,
preferably from those which do not suffer from a bath discretization error, e.g. CT-QMC (see
Sec. 2.2.2.3). In this thesis, for such checks, the w2dynamics code [252] was used.

ED checklist

Convergence parameter

Anderson parameters, sumrule

Self-consistency of Green function

Asymptotics of the self-energy 

on Matsubara axis

Stability of solution against 

altering Anderson parameters

Increasing number of bath sites ns

Comparison to other methods 

(e.g. CT-QMC (w2dynamics))
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B
Common checks for ladder-DΓA calculations

Similarly to the checks presented in the previous appendix for ED-DMFT calculations, here, checks
for the current implementation of the ladder-DΓA as outlined in Sec. 2.4 are enumerated. They
may be helpful to the potential user of this program to either detect mistakes in the usage or check
the convergence of the obtained results. Of course, as the DΓA procedure requires (converged
and valid) DMFT input data. If ED is used to this end, one should hence also test the degree of
fulfillment of the ED-checklist in the previous appendix.

1. Asymptotics of the local irreducible vertices

Before starting the actual DΓA calculation, a check of its input quantities is advised. The
ladder-DΓA with the spin-channel as dominant fluctuation channel requires the local irre-
ducible vertex in charge as well as spin channel Γνν

′ω
c/s , whose asymptotics for high Matsubara

frequency indices are well-known (see, e.g., [64]):

β2Γ
ν′=π/β,ω=0
c (ν)

ν→∞−−−→ +U (B.1)

β2Γ
ν′=π/β,ω=0
s (ν)

ν→∞−−−→ −U, (B.2)

where U is the local interaction of the corresponding (in DMFT self-consistently determined)
Anderson impurity model and β = 1/T is the inverse temperature. Please note that in the
notation of the codes used to produce the results of this work, one has to multiply the vertex
by additional factor of β2 in order to get the right asymptotics.

2. Local Dyson-Schwinger equation of motion vs. DMFT

As described in detail in Sec. 2.4, mainly as a check, in the first part of the program, the
DMFT self-energy is calculated in two ways: (i) via the Dyson-equation (2.12) from one-
particle quantities (interacting and non-interacting local Green functions) and (ii) via the (lo-
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cal) Dyson-Schwinger equation of motion (2.70) from two-particle vertex quantities and the
local Green function. Of course, if the vertex was known for all (infinite number of) Matsubara
frequencies, as the Dyson-Schwinger equation is an exact relation between the vertex and
the self-energy, both quantities would be exactly the same. However, if just a finite number
of Matsubara frequencies is known, still the low-frequency behavior of (i) should also be re-
produced by (ii) for both the imaginary and the real part the self-energy. The results of both
calculations are written to klist/SELF LOC parallel, where the format of the file is

ν ReΣDMFT(ν) ImΣDMFT(ν) ReΣladder
loc (ν) ImΣladder

loc (ν)

and can be easily compared by optical inspection.

3. Convergence in number of frequencies Nω

The results of the ladder-DΓA should be converged in the number of (bosonic and fermionic)
frequencies Nω of the local vertices used as input quantities. The influence of a change
in Nω can be checked in various quantities, e.g., (i) the self-energy calculated via the lo-
cal Dyson-Schwinger equation of motion (see previous point), (ii) the momentum-dependent
DMFT susceptibility χλr=0,νν′ω

r,~q given in the chisp omega and chich omega directories (see
Sec. 2.4), (iii) the values of the λ-corrections and (iv) the asymptotics of the DΓA self-energy
(see below). Please note that, due to computational limitations, in some cases a full conver-
gence in Nω cannot be reached and extrapolations Nω→∞ of the quantities of interest have
to be performed.

4. Convergence of the grid of internal momenta Nk

The calculation of the momentum-dependent DMFT susceptibility χλr=0,νν′ω
r,~q (and its derived

quantities) crucially depends on the number of internal momentum points used, i.e. Nk,
as well as on the integration method (see Sec. 2.4). One can check the convergence by
inspecting the change in χλr=0,νν′ω

r,~q with Nk.

5. Convergence of the grid of external momenta Nq

The influence of the number of external momentum points used, i.e. Nq, is crucial to (i) the
values of the λ-corrections and (ii) the DΓA self-energy and its convergence can be checked
in these quantities.

6. Asymptotics of DΓA vs. DMFT self-energies

As already explained in Sec. 2.3.2.2, the λ-corrections introduced there ensure the asymp-
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totics of the DΓA self-energy to be

Σ(k) =
Un

2
+

1

iν
U2n

2

(
1− n

2

)
+O

(
1

(iν)2

)
, (B.3)

which agrees with the DMFT result. Hence, the (imaginary part of the) ladder-DΓA self-
energy (multiplied by the Matsubara frequency leading to constant asymptotics), can be plot-
ted as a function of the Matsubara frequency on top of the DMFT one (which exhibits the
correct 1

iν asymptotics), in order to check the accuracy of the λ-corrections.

ladder-D A checklist

asymptotics of input irreducible vertices

Γc(ν,ν'=π/β,ω=0) -> U,Γm(ν,ν'=π/β,ω=0) -> -U 

local Dyson-Schwinger equation vs.

DMFT self-energy for small frequencies

convergence of λ and χλ with Nω

convergence of λ and χλ with Nk

convergence of λ and χλ with Nqconvergence of λ and χλ with Nq

Asymptotics of DΓA self-energy vs. DMFT
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and M. Jarrell, Phys. Rev. E 80, 046706 (2009).

[62] K. Held, A. Katanin, and A. Toschi, Progress of Theoretical Physics 176, 117 (2008).

[63] K. Held, C. Taranto, G. Rohringer, and A. Toschi, Hedin Equations, GW, GW+DMFT and
All That, lecture notes of the Autumn School 2011 Hands-on LDA+DMFT, Forschungszentrum
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