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Deutsche Kurzfassung

Das Thema der vorliegenden Arbeit wird das Problem der elgchen Korrelationen
in nanoskopischen Systemen. Elektronische Korrelaticsned wichtig fur das Verstandnis
der Physik der Ubergangsmetalle und der Seltenen Erdedudid teilweise besetzte, starker
lokalisiertd- oder f-Orbitale charakterisiert sind. Elektronische Korraagn kbnnen auch in
niedrig-dimensionalen Systemen mit ausgedehnten Oghitgihe wichtige Rolle spielen.

Im Kapitel 1 fihren wir die experimentellen und theoretiscliegerprintsder elektronischen
Korrelationen in einigen relevanten nanoskopischen 8yesteein.

Obwohl der allgemeine Festkérper-Hamilton-Operator bekast, stellt die theoretische
Behandlung vorVielteilchen-Systemegine der groRen Herausforderungen fir die moderne
theoretische Festkorperphysik dar. Kapitel 2 fuhren wir diestate-of-the-artheoretische
Methode fiir die Modellierung korrelierter Elektronsystamein. Hinsichtlich dessen, stellte
die Dynamische Molekularfeldtheorie (DMFT) einen Duralnddr fir die numerische Losung
des Gitter-Modelle von korrelierte Fermionen z.B. des HardiModells dar. Aul3erdem erlaubt
die Kombination von DMFT mitb-initio Dichte Funktional Methoden theoretische Vorher-
sagen und quantitative Vergleiche mit Experimenten.

Niedrig-dimensionale nanoskopische Systemen erfordgigriand nicht-lokaler Korrelations-
Effekte andere Naherungen, d.h. Enweiterungen der DMFTdv@ddynamische Vertex Ap-
proximation (O"'A). Deshalb haben wir ein neuartiges Schema auf der Gruadlag DMFT
und DI'A eingeflihrt, um komplizierte, korrelierte Nanostruktuu behandeln.

In den anderen Kapiteln dieser Arbeit prasentieren wir dievé&ndung der nano-DMFT
und nano-I'A Methoden auf physikalisch interessante SystemeKdpitel 3 betrachten wir
zuerst Modelle flr quasi-1-dimensionale organische MdlkekHier konnen wir die Néherun-
gen mit der exakten numerischen Losung vergleichen. Wgezeidass sowohl lokale als auch
nicht-lokale elektronische Korrelationen die elektrahis Struktur und Transporteigenschaften
dieser Systeme stark beeinflussen, und stellen quast#titerien fur die Zuverlassigkeit der
nano-DMFT/O"A Methoden auf. Die Ergebnisse, die wir erhalten haben, ieygn weitere
Untersuchungen sowie die Entwicklung weiterer numeristiethoden.

Danach analysieren wir kompliziertere nanoskopischek8iran: inKapitel 4 simulieren
wir einen mechanisch kontrollierten Bruchkontakt und eeigdass durch die elektronischen
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Korrelationen ein lokaler Metall-Isolator-Ubergang aitft Das Phanomen kann in der elek-
trische Leitfahigkeit und moglicherweise auch in Expemite® beobachtet werden. Die Un-
tersuchung unter verschiedenen Bedingungen legt naheddsseine allgemeine Eigenschaft
von Nanokontakten sein koénnte.

Schlussendlich, betrachten wir Kapitel 5 die Effekte der Kornzerkleinerung im halb-
dotierten Manganat lgCa, sMnOs. Die Destabilisierung der Ladungs-Orbital Ordnung in
nanoskopische Manganaten ist experimentell etabliect) dee Interpretation der experimentel-
len Messdaten ist aufgrund von unreinen oder nicht stochinschen Proben umstritten.

Wir analysieren das Problem mittels der Kombination \aminitio und DMFT Methoden
(DFT+DMFT). Einerseits berlcksichtigt DFT die realishien Kristallstrukturen des Systems,
anderseits bindet DMFT starke elektronische KorrelatioindManganaten ein. Mit diese Vor-
gangsweise kdonnen somit sowohl “bulk” Manganate als anahoskopische Manganate auf
Basis ein und der selben Methode beschrieben werden. Asé diéeise zeigen wir, dass die
Anderungen der Kristallstruktur fir das Phanomen der hikitét des Landungs-Orbital Ord-
nung verantwortlich gemacht werden kann.



Introduction

The principles of physics do not speak against the podsibifiimaneuvering
things atom by atom.

Richard Feynmarilhere’s Plenty of Room at the Bottom (1959)

Those inspiring words were pronounced in a memorable ledtliy way before modern
physics and chemistry managed to explore and manipulataaltéer on a length scale compa-
rable with the one of its fundamental constituent, i.e.,ititvidual atoms.

Despite Feynman’s prophetic claim, the world had to waitadtmwenty years to attend the
birth of the expressionanotechnologydue to Norio Taniguchi (1974), or the spelling of the
letters “IBM” obtained by Eigler & Schweizer arranging dividual Xe atoms on a surface
with a scanning tunneling microscop&hile the latter deed had a significant mediatic impact,
worth even an article on the New York Times [2], for many year$ollow the prefixnano
became part the collective imagination mostlysagence fictionrather than being associated
to an emerging technology. In this respect, one may think efghenanoprobe®f the Borgs

in the Star Trek series, used to assimilate other livingdpginr of the hypotheticajray goo
end of the world scenario, suggested by Drexler in his d&ogines of Creation: The Coming
Era of NanotechnologB], involving self-replicating molecular nanotechnojogut of control
consuming all matter on earth in their reproduction process

While the world may not be aware of it, nanotechnology is adlgvay closer to reality
than to imagination, and many devices which exploit quantoechanical effects are already
massively present in everyday life. Since the 1970s#miconductor memofbecame compet-
itive in the computer market, replacing theagnetic-core memotywhich previously was the
predominant technology. The novel data storage deviceBrgolemented on semiconductor
(usually Si-based) integrated circuits, whose size régemopped to a few nanometers. The
possibility of engineering devices at lower length scategroves both their portability and ef-
ficiency. Contemporary forefront research aims to devedyplutionary methods to build, e.g.,
high-density Ni-nanowire arrays for magnetic data reguyddr high-energy density storage
devices for batteries and renewable energy sources teatiasl

1Curiosiously, the nomenclature of the bothersome systear eore dump so well known to programmers,
derive from those devices.
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The boost thanhano science experienced within the scientific | =5 coo papersiyear - F
community eventually lead to filling the gap with previous e
isting technologies. Those considerations are, e.g, stgghby
the data extracted from the ISI Web of Science and shown asid
referring to the number of papers published per year with th
correspondingpuzzwordin the title, normalized by the number; j

“Pica”
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of journal in print each year. While the plot reproduced heas

originally published in an ironic context [4], its intrirtscien-

tific validity is neverthelesaotunder discussion, and represents a proof that the curcenttdr

of research is evidently the nano scale. The research ismibedl to physics and chemistry,
but rapidly spread also to biology and medicine: within therent technology, flexible and to
some extent tunable nanoparticles with a size comparaldketire one of human cells can be
engineered. These seem to have the potential to become artamitool for emerging diagno-
sis and therapy techniques.

Despite the amazing skill developed in the manipulation atter, the theoretical under-
standing of the related phenomena is far from being sat@facWhile material properties may
often be experimentally controlled without having a deegotietical understanding of the under-
lying microscopic mechanism, only the latter may indicée path toward further progresses.
The field of strongly correlated electronic systems, dugst@omplexity, offers an interesting
combination: the lack of a complete understanding and aarapgly unlimited range of fasci-
nating physical phenomena with a prospective for techncédgpplications. In particular, the
presence of several competing energy scales and theirsitttunability, make nanoscopic sys-
tems particularly predisposed to both experimental andrétial investigation of electronic
correlations. In this respect, the absence of a crystatemwvient evidently represents a signifi-
cant simplifications with respect to solids, so that a gahenderstanding of correlation-driven
phenomena can be achieved already in the framework ofwelatsimple models. However,
as soon as the complexity of the systems under consideiattiozases, simple models are not
sufficient anymore to capture and explain the relevant jgsyand numerical simulations with
the available computational tools become unfeasible ifyngaygrees of freedom are involved.
The aim of this work is, hence, to fill this gap. To this end, @maploy advanced many-body
techniques, embedding them into a flexible scheme, exiglideveloped in order to deal with
complex nanostructures.

20 nm £
This thesis is organized as followshapter 1 provides for a general f ._mmﬁ;m |
introduction to the physics of nanoscopic systems, botimftbe exper- S
imental and the theoretical point of view. The aim of disaugsa few =S L EH
relevant experiments is two-fold: it allows us to define sigstems we are ,r"/-’Ou;ntumhddt g
interested in, but also allows to identify the fingerprifithoany-body ef- \
fect. The latter play a important role in determining elentc and transport properties, and may

dramatically enhance the tendency of the system to chaagédsgive rise to huge responses

WiWW . PHDCOMICS. COM
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which are possibly exploited for technological applicaspi.e., in the realization or the im-

provement of solid state devices.

In this respect, we discuss the interplay between the retesaergy scales, and we discuss
different parameter regimes within the theoretical framdwof impurity models: even these

simple models entail complex many-body effects which leathscinating physical phenom-

ena. The last part of this chapter is devoted to the discasgiQquantum transport in nanoscopic
systems. Transport spectroscopy probably representsfahe most valuable source of infor-

mation to probe the excitation spectra and electronic ptigseof confined systems, and often
represents the contact between theory and experiments.eYie dhe electrical conductance

both in the Landauer-Buttiker formalism, within scattgritneory, and in the Kubo linear re-

sponse theory, comparing the results and discussing thiirdf validity.

\
Essentially,chapter 2 consists of three parts, devoted to a review

many-body techniques for strongly correlated electropstesns. i

The first part introduces the dynamical mean-field thedET) and

its combination withab-initio density functional theory (DFT). While th A

latter contributed to the important steps toward the urtdedsng of elec- I

tronic correlations both in model systems and realisticemals, an important line of research
also concerns the improvement of the available methodology

In the second part we briefly review the main available esitemof DMFT, aiming at including
non-local spatial correlations beyond mean-field. Thesesapected to be relevant in systems
where electrons are confined in narrow or low-dimensioegions. In particular, we discuss in
details one diagrammatic extension of DMFT, the dynamiealex approximation (DA) and
introduce the relevant two-particle and parquet formalisnihe vertex functions.

The third part focuses on a recent extension of the latteryttbat we developed in order to deal
with nanoscopic systems, and includes a critical compangith alternative/complementary
schemes proposed in the literature.

~
As any other approximation in their early stage of developinthe

nanoscopic extension of DMFT and'® need to be tested on referenc -

systems: the aim afhapter 3is, hence, to explore both its potential a N

its limitations. Suitable candidates to this end, are n®odélquasi one-

dimensionalr-conjugated organic molecules, mainly for the followind J/

reasons: (iyr-conjugated systems, e.g., the benzene molecule, are ofeterinterest to re-
search, and a clear understanding of their electronic prahproperties is still lacking; (ii)
those systems can be described considering only a few releegrees of freedom, resulting
in a (numerically)exactlysolvable model, which provides an important benchmark.

In order to test the approximations employed, we aimed tp kdlgpossible sources of system-
atic errors under control, as much as possible. In this ideadlitions electronic and transport
properties can be analyzed and compared to the exact berichntiain both the DMFT and
DT'A approximation schemes. A preliminary analysis within ttao-DMFT approximation,
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which is numerically less demanding, allows us to test thal#ity of the method in a wide
range of parameters. With other sources of uncertainty vecha possible failure of the nano-
DMFT approximation would indicate a prominent role of naedl spatial correlations, to be
analyzed within the technically more involved nando/A

In order to explore the potentiality of the nanoscopic estem of
DMFT, in chapter 4we employ it to model quantum junctions. In expefi-
ments, chemically stable and atomically-sharp contactdeaealized by ;
means of the mechanically controlled break-junction temln Here, a o,
piezoelectric device allows a precise control over the gf2zbe tunneling
gap bridging the contacts. Exploiting the spatially-rgedlinformation obtained within nano-
DMFT, we are able to correlate the relaxation of the eledatrstructure of the system to its
(non-local) transport properties. Assuming the crystalcitire not to rearrange in the process,
we show that, as the contacts are pulled apart and the tagndirrier increases, electronic
correlations induce a local metal-to-insulator transit{or rather a crossover) involving the
atoms at the sharp edge of the junction. The fact that thegrhenon is present in different
realizations of the junction supports the hypothesis oéihh a generic feature. Its possible ob-
servation in the experiments is not yet clear, but could laanvenpact on transport spectroscopy
data analysis.

\C dopcla®p )

Finally, in chapter 5 we discuss the effect of size reduction on tife 35327
half-doped manganite LgCa, ;MnO;. Recent experiments reported t
destabilization, upon size reduction, of the complex cearbital (CO)
and antiferromagnetic ordering, which is realized in thékbibome ex-
periments suggested the structural changes of the latii@meters to be
responsible for the phenomenon, while previous analypisrted no crystal deformation of the
lattice parameters with respect to the bulk. However, thermetation of the experimental data
is controverse due to the difficulties connected to the erpental synthesis of the nanoscopic
clusters, e.g., impure phases, grain boundaries, andtoaii®metry.

We analyze the phenomenon theoretically, combining DFTsigéneralized gradient approxi-
mation (GGA) and DMFT: while DMFT provides for the strong@l®nic correlations responsi-
ble for the complex electronic structure, DFT(GGA) reasily takes into account the changes
of the lattice parameters (and the corresponding crystal)fin a defect-free and stoichiometric
cluster. This avoids the experimental issues regardingulaéity of the sample. Moreover, the
analysis of bulk and nanocluster manganites on equal fpatilows for a direct comparison
of the results: the emerging theoretical picture is remalgken qualitative agreement with the
experimental scenario, establishing the link between lia@ges of the lattice structure and the
electronic properties of the ground state.




Chapter 1

Down to the nanoscale: State-of-the-Art

In this chapter, we give a brief introduction to the Statefad-Art in nanoscopic physics,
without pretending to be exhaustive. Specifically, we megviewing selected experiments, in
order to show the fingerprints of many-body effects in etestally confined systems. As for
the theory, a qualitative understanding of the experimlesibgervation can be achieved in the
framework of standard impurity models, whose discussitmwal us to introduce the reader to
the complex interplay between quantum fluctuations anctreleic correlations. Eventually, at
the end of this chapter, we discuss challenges and openigagsthich, together with the lack
of a comprehensive, reliable theory to describe transpmmbiagh strongly correlated nanos-
tructures, have motivated the methodological developmesiented in the rest of this work.

At the nanoscale, the quantum mechanical nature of electvtenomes evident, and the
physics of matter is dominated by quantum effects. Moreowen electrons are spatially
confined into low-dimensional structures, electronicretations are naturally enhanced, deter-
mining the occurrence of a variety of unexpected physicahpmena.

While the 1970s witnessed the birth of novel ideas relatédgé@oncept of nanotechnology,
the effective rise of nanotechnology may be traced backdd #80s, due to the technological
and experimental advances that led eventually to the it the scanning tunneling mi-
croscope(STM) [5, 6, 7], which allowed in practice what scientistsrbabeen yearning for:
the possibility to manipulate matter at the atomic scale.wasshall see, nanotechnology es-
tablished itself as a promising and interdisciplinarydief science, ranging from (in)organic
chemistry to biology, and material science. The impresdaxelopment of experimental tech-
niques in controlling the composition of the matter raisegriest in functionalizing materials.
Material properties can be tuned by changing their chemsmalposition, and novel compounds
can be made, e.g., by heterostructuring, in order to eithiearce peculiar properties of the in-
dividual components, or even generating unexpected el@ctphases. This has obviously a
huge impact on technological applications, but also makedield very attractive from the
point of view of basic research. In nanoscopic devices atagein self-assembly molecular
structures, basic quantum phenomena can be investigatedidd from many of the compli-
cations arising in bulk materials. In particular, the maus is on understanding electronic
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transport mechanism, which, e.g., is fundamental in ordegxtract information by means
of transport spectroscopy, but also play a key role in bicllgand chemical processes, like
pain and brain signals transmission. Moreover, the pdigibo easily tune the properties of
nanoscopic systems also suggests to employ engineeredoaditles andquantum dotgor
medical applications, including cancer diagnostics [8, 9]

1.1 Experimental overview

The available literature concerning the experimentalstigation of nanoscopic systems is
certainly huge, but a comprehensive survey of the most itapbcontributions in this field is
certainly out of the scope of the present work. Hence, in tllewing we shall instead pro-
vide a brief introduction to the systems of interest and giad idea of their wide range of
applicability. Furthermore, the discussion of seleat@testoneexperiment allows to identify
the fingerprint of electronic correlations, and qualitaty understand the underlying physical
phenomena, but also raise the attention of the difficutibegchieve an unambiguous interpre-
tation of the experimental data, proided by complementhiques, without the support of a
comprehensive theory.

-

1.1.1 Confined systems: properties & applications 29 B

! |

Modern techniques of lithography made it possible to canéilectrons to a [l el L =0 I
length scale at which charge (and energy) quantizationkzservable. Perhaps|ig T
in this respect, the most widely known system is the so-dajleantum dot [EEEEE S Bl Sl
(QD). The name was coined by Reetrhl. [10] in order to describe a system, i '_,.' “Quantum dot N
which electrons are confined into a zero-dimensional stireca dot, realized &
at the interface of a GaAs/AGa,_,As semiconductor heterostructure.
A scanning electron micrograph of a graphene-based salgt#ron transistor is shown in the
figure aside, adapted after Ref. [16]. The spectrum of a Qfuemntized, resembling that of
an isolated atom (and it is hence often referred tariicial atom), but with a typical level
spacingAe betweerpeV and meV, depending on the size of the QD. Under this candithe
physics of the system is dominated by quantum effects. M@reat the typical system size
at which quantum confinement occurs (a region of diameéter100 nm) the mutual Coulomb
interaction between electrons is of the order of meV, anceffext of electronic correlations
can hence be experimentally observed.

Whereas natural atoms are usually studied with opticaltspgmpy, due to the typical
size of the level spacinge in QDs, an early experimental evidencegofantum confinement
was obtained by electronic transport measurements, whguasi-bound QD is contacted to
metallic electrodes, which play the role of charge resesdiO]. If the energy scale set by the
temperaturé T < Ae¢, with k£ being the Boltzmann constant, only a few levels close to the
Fermi energy contribute to transport. Under this condgjamnseries of plateau in the current
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characteristid (Vsp) is observed as a function of the voltale, applied between the source
and drain electrodes (also often referred to as bias vqltayk denoted},). The presence of
the plateaus, indicates charge and energy quantizatimieitie QD: the current raises, flowing
through the confined structure, when an energy level of tidalls in the bias energy window
eVsp= s —itp, Wherepug p is the chemical potential of the source and drain reservespec-
tively, wile -|e| denotes the bare electron charge.

Applications of optical & transport properties of confined systems. For instance, electron-
ically confined systems are characterized by interestjptical properties. It is well-known
that theoptical band gapi.e., the energy threshold to createextiton(bound electron-hole
pair) via the absorption of a photon, is controlled by the sizthe QD [11, 12]. The radiation-
induced excitation of electrons confined to the valencedbamd the radiative electron-hole
recombination process, due to relaxation of the electraurmang to the ground state, lead to
the emission of light. Theolor of the emitted light (i.e., the wavelength of the photon)este
determined by the size of the band gap. In CdSe nanocrystads been experimentally shown
that the color of the emission can be varied by changing tteefithe nanocrystal [13], allow-
ing a controlledelectrolumiescence This is exploited, e.g., in fluorescent dye applications.
The tunability of the QD optical band gap has also been adddeas an important character-
istic feature for the realization of next generation QDdubsolar cells with the possibility to
cover a large portion of the solar emission spectrum. Rgcimtas shown that it is possible to
modify the electronic and photophysical properties of QRddping optically active transition
metal ions, as, e.g., Mh, providing a strategy to achieve an efficiency boost (estad up to
5%) [14]. Those applications mentioned above are just fethefpossible, but already give
an idea of how the intrinsic tunability of nanoscopic sysseran be exploited in many field of
research and technology.

Indeed, while a confined structure bridging source anchdeservoirs (being them physical
electrodes or the layers of an semiconductor heterosteiseparated by a confided electron
gas) constitutes what is generally referred to ag@terminaldevice, interesting physical phe-
nomena are observed if the confined structure is also dipelgicoupled to a gate electrode,
giving room to several other applications. In fact, the gatkkageV; can be used to (rigidly)
shift the position of the energy levels of the QD with respecthe Fermi energy of the elec-
trodes. In such a setup, the system was shown to behavergl@electron transistor(SET):
see, e.g., Refs. [15, 16] for interesting studies of grapHesed SETs, or Ref. [17] for a
review. Unlike conventional transistors, where the chadggnges continuously with;, in a
SET the (low-bias) differential conductan€e= dI/dVsp as a function of; displays a peri-
odic structure of peaks, due to charge quantization, @risath time another level of the QD
is drawn by the gate voltage below the Fermi level (or witlia bias window, at finité/sp).
The possibility of controlling electronic transport thgiuthe confined structure represents an
important achievement in the context of solid-state de/(&SDs) in which a SET can act as
a switcherbetween to configuration$) or 1, corresponding to the cases of zero and finite cur-
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rent flowing through the device, respectively. In contitasthe theoretical picture, however,
Si-based SETs still suffer from problems that arise fromenat deficiency, leading e.g., to
leakage current that may disrupt the device [18], and thetioed implementation of such SSD
is far from being trivial.

Experimental evidence for strong electronic correlations The fascinating periodic struc-
ture in the gate voltage dependence of the differential gotahce is theoretically understood
to be a direct (i.e., experimentally observable) consecgi@f strong electronic correlations:
In the range ofl; between two consecutive conductance peaks, the systend itodae in a
Coulomb blockadeegime, and the conductance is zero due to the sizable Coulepulsion
experienced by the confined electrons, which preventggehffmctuations within the QD. The
conductance peaks, hence, corresponds to configurati@niain charge fluctuation requires no
energy cost and the current can flow within the confinedctine.

Interestingly, one realizes that sweeping the gate volédgavs to observe electronic correla-
tion effects far beyond the Coulomb blockade. At low-enotgghperature (i.e, below an energy
scale set by the details of the system, e.qg., typically ofxaKelvin in semiconductor QDs) the
conductance may be sensibly enhanced in regions wherelitngpeocess are prohibited at

spectrally reconstructed image

v - - . .-.-— IQD‘J e~
~ QD3
A o

A ) SR
mlun Py oate Larrigr gate 2

Figure 1.1: Applications of QDs. Upper panel: schematic spectral retrantion of a tissue speci-
men RGB image via disentanglement of emission spectrafatelift wavelengths exploiting the QD
electroluminescence. Lower panels: spin-dependentgoanis Si-based SET (left); schematic repre-
sentation of electron transfer from Mn-doped CdS/CdSeaamductor into TiQ nanopatrticles, and
electron-hole recombination in a QD synthesized solar(dglt). Adapted after Refs. [9, 14, 19].
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higher temperature due to the Coulomb blockade. This isngtaied to be a manifestation of
theKondo effect[20, 21]. Originally, this phenomenon was associated tttasgag properties
of magnetic impurities in metal hosts, leading to logarittimcrease of the resistivity at low-
temperatures, unlike non-magnetic impurities, resultirgfinite and temperature independent
contribution. The nature of the resistivity behavior (re¢el to aghe Kondo problemis deter-
mined by an effective exchange coupling between the impaordgnetic moment and the spin
degrees of freedom of the conduction electrons of the netatist. Interestingly, due to the
different condition in which transport takes place in QD#wespect to metals, the same phys-
ical processes lead in electronically confined systemsiterdtnancement of the conductivity.
In the following we consider the latter issue from an experal point of view, while a more
detailed discussion of its theoretical interpretationastponed to the following section.

v_[mv]
-450 -425 -400 -375 -430 -420 -410 -400

2.0

Y 4 \\

L

B=04T [ B=047/

G [e%h]

Figure 1.2: Coulomb blokade and Kondo effect in a semiconductor QD. Uppaels: conductanagé
as a function ol/; (denoted a¥/; in the experiment). Left panel shows the temperature degrered
between betweel’ = 15 mK and7 =900 mK in the presence of a magnetic fieltl=0.4 T. When
the number of electrons in the dot is even(G decreased witll’ due to the Coulomb blockade
(Kondo valley), while for odd occupation one observes thed@ effect withGG approaching the
unitary limit G = 2¢2/h (e.g., the evolution lowering™ in highlighted by the gray arrow). Right
panel: the comparison of two selected traces taken with atitbmt magnetic field show that the
latter allows the Kondo effect to fully develop. Lower paneblor plot of G as a function o3 and
Ve atT = 15 mK. Red and blue correspond to high and low conductanceecésply. At zero-
field, due valence fluctuations the QD has no well definedynetic moment, and a peak structure
typical of the Coulomb blockade regime is observed. Adapfest Ref. [26].
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Semiconductor QDs were indeed theoretically predicted232and experimentally shown
[24, 25] to exhibit Kondo effect. Of particular relevancetise experiment performed by
van der Wielet al. [26] on a QD in the presence of a magnetic field, which allovirea fist
observation of the Kondo effect in thmitary limit, i.e., whenG reaches the conductance quan-
tum Gy =2¢?/h ~ 77.5 S (beingh the Planck’s constant). Some representative experimental
results are shown in Fig. 1.3 and briefly discussed in thiefiohg. In the Coulomb block-
ade regime, the low-conductance regions (also known as &walleys) are characterized by
a fixed occupation of the QD, and each conductance peakaeparalleys differing by a unit
of charge. As the temperature is lowered, the valleys agtatto an evn occupation in the dot
become deeper, and the conductance features sharpen,easeepOn the other hand, in the
valleys associated to an odd occupation, the conductaisesdue to the Kondo effect. While
in the ideal case the Kondo effect is expected already at0, in the experiment the conduc-
tance enhancement in the odd Kondo valleys was only of al@t [26], while atB ~0.1 T
an change of transport regime is observed, and the conawgctaaches eventually the unitary
limit G = Gy above at aB = 0.4 T field, as shown in the lower panel of Fig. 1.3 by a gate
voltage versus magnetic field map. Among the possible exgplans to the experimental data
are related to the presence iof a ground state more comgalitaén aS'=1/2 spin singlet, due
to, e.g., the presence of a spontaneous spin polarizatippyessed by the magnetic field. or
the accidental degeneracy of spin singlet and triplet state

1.1.2 Quantum junctions

Besides electronically confined systems, such as QDshanatast research field, con-
cerned withquantum junctions (QJs) developed between the 1980s and the 1990s, which
could be realized by means of STM and mechanically conttditeak junctions (MCBJ) tech-
niques. As the understanding of transport mechanisms getkystems is relevant in the context
of this work, let us briefly describe their experimentallizagtion, while quantum transport will
be discussed from a theoretical point of view in a followiegtson.

The development of thenechanically controlled break junction (MCBJ) technique al-
lowed the fabrication of extremely stable atomic-sizedtaots. Although more than one con-
tact variation exists, depending on the details of the &abion, the working principle is the
same in all cases. A MCBJ can be made, e.g., in the following veasuspended metallic
bridge (made of Au, but also Cu or other metals are suitabléixed on a flexible substrate
covered with a electrically isolating material (e.g., polide). The system can be bent with a
piezo-controlled mechanism, consisting of a pushing rattei counter-supports, causing the
elongation of the metallic electrodes until an adjustabieeling nano-gap ahd ~ 100 pm is
formed. Another possibility to open a nano-gap betweerntreldes is based on electromigra-
tion, where the displacement of metallic ions is due to adangmentum transfer by electrons
at large current densities. More details about the fabanaif MCBJ can be found, e.g., in Ref.
[44] and references therein.
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Figure 1.3: Left panel: a MCBJ made breaking an Au constriction in ordefarm atomic-sized
contacts. Right panel: a STM infers the real-space imagescdample. Adapted after Refs. [27, 28].

On the other hand, as already mentioned stt@nning tunneling microscopgSTM) is one
of the most versatile tools for the realization and manifioiteof atomic contacts (for a review
see, e.g., Ref. [229]). In the usual setup consists in aniatdimnsharp electrode held at a fixed
distance from aample the measurement of the tunneling current between theipmatiows
to infer the real-space image of the sample withetric precision, assuming an exponential
dependence of the tunneling current with the size of theuwan) tunneling gap. A variety
of samples can be investigated, ranging from metallic seddo more complex objects, like
a single-walled CNT [230]. Another possibility is to indehe STM tip in the surface and
carefully withdrawn so that atoms from the surface are dmsibon the tip until a stable atomic
contact is formed.

Those techniques could be used to obtain metallic nanoseopgs fiano-wire$ [29]: con-
trary to QDs, in (quasi) one-dimensional wires the levetapgAe is not the dominating energy
scale, so that the system is characterized by almost a conignspectrum and possesses many
correlated degrees of freedom. In this respect, theotgtiedictions suggest charge-spin sep-
aration andall the system’s excitations to be obllectivenature (plasmons) below a typical
energy scalég7] : those systems are usually addressed as Luttinger liquig$32], although
a clear fingerprint of LL physics was experimentally not eb®d yet [33].

In this situation, the conductance of nano-wires can hdrdlghanged by a gate voltage, and of-
ten a linearl (Vsp) characteristics is displayed, which makes nanostructasssfunctional for
electronic applications. However, besides being not palgrly “flexible” systems in many
respects, in the state-of-the-art of nanoscopic eleartyansport,quantum junctions (QJs)
play a fundamental role, as they result in atomically shamutacts with an adjustable tunnel-
ing gap. Indeed, strong evidences from conductance gaaiotizhave been reported, both at
low [30] and room temperature, [31] as a proof of the expenitalaealization of single atomic
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junctions. Moreover, molecules can be adsorbed into thefgaping stable tunneling contacts
of systems of the dimension of a few nanometers, which is btite@range of conventional
lithography. The possibility of obtaining molecular juitets immediately raised quite a lot of
interest for many reasons. Charge transport through a @mblecular system is certainly
a many-body effect, and correlation-driven phenomena aned to be expected. Moreover,
due to their complexity, molecules possess also intermgiiess of freedom which can be sus-
ceptible to mechanical stress, electric field, and locairenment (chemical reactions), thus
intrinsically providing a much higher degree of tunabiltjth respect to the nano-wires them-
selves. For instance, an interesting property has beenthgceported by Venkataramaet al.
[34], where it was shown that the conductance of a molectlainccan be changed by varying
the twisting angle between the chemical bonds within thenchthis supports the hypothesis
that the conformation of the molecule bridging the eleatis relevant and strongly influence
the transport properties of the junction, and at the samet@presents a way to tune the current,
provided the possibility to mechanically control the malkectwisting.

Puzzles in quantum molecular junctions. A pioneering experiment in the history of molec-
ular nanotechnology was performed by Reedl. [35] and represents the first attempt to fabri-
cate a single-molecule junction ever reported. In the erpartal setupbenzenet, 4-dithiol
(1,4-BDT) molecules self-assembled onto a gold MCBJ form a st@liction, in which the
molecule bridges the Au electrodes. For the sake of commste we remind that n-BDT
(chemical formula @H,(SH),) is an organic compound, which is obtained from benzepel{LC

by the chemical substitution of the H bound to C occupyindhimiing positionl andn, with

a S-based functional group: thiob 7). In the experiment, the current characteristi¢Bsp)
and the differential conductance= d//dVsp were measured at room temperature as a func-
tion of an external bias voltagésp. Reproducible evidence for a charge gap/as = 0 and
steps in the conductancéeas a function o¥/sp, reminiscent of Coulomb staircase in QDs, were
observed. Although the results suggested charge and eqeegyization to be responsible of
the observed behavior, at that time the question was ngtgolved due to the impossibility to
accurately probe the charge states by means of an additjateatlectrode, which only recently
have been successfully integrated into MCBJs via elecyoation [36] or electrostatic gating
[37] techniques.

Besides the importance of the findings reported, this erpant is regarded as a crucial
step in the field of molecular nanotechnology, as it triggkthe realization of many other sim-
ilar experiments [38, 39]. However, the results reportedifferent groups, obtained by the
analysis of conductance histograms, were puzzling, bedhesvalues of the measured conduc-
tance were scattered across several orders of magnitudesthe conductanag ~ 0.011 G|
in STM measurements [38] is much lower thar 10~* G, reported in a MCBJ settings [35].
This sheds shadows on the reproducibility of the resultsvi@usly, this is also related with
the impossibility of directly controlling the chemical messes behind the formation of a stable
junction, and also intrinsically dependent on the measargrechnique. In this respect, some
configuration-dependent signals can be eliminated byteéstal analysis of several repeated
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measurements, which are often summarizecbimductance histogranid0, 41], and some fea-
tures are clearly reproducible, like, e.g., the last plataau (configuration: [Xe}l f145d'%6s')

Al ([Ne] 3s23p') or Pb ([Xe]4f1*5d*°65%6p?) contacts,

connected with the material-dependent orbital structsre@l as with conductance quantiza-
tion [42, 43, 44]. However, quoting Ref. [44], it is clear thigtatistical methods are not the
panacea and the interpretation of the conductance histogres not always straightforward”
Indeed there are cases, including the above mentioned neeasuts inl, 4-DBT, in which the
origin of the discrepancies between the reported resudtisligot clear.

Recently, it has been reported by Kiguehal. [45] that a highly conducting molecular junction
can be achieved bgirect binding ar-conjugated molecule (benzene) on Pt electrodes, which
also pointed out that the conductance strongly dependseoprtperties of the chemical bond
between the molecule and the electrodes. Hence, the piegpefttheanchoring groupse.g.,
thiol in the case of BDT, eventually determine the condutstiand the stability of the junction.
While one may still have the freedom to choose between fefereit anchoring groups, the
conductance also strongly depends on the relgbggtionwithin the molecule of the anchoring
groups atoms, e.g., the valuewin 1,n-BDT, so that systems with different bonding config-
uration will also display completely different conductipgoperties. In this respect, see also,
e.g., Ref. [44] for a deeper reading.

The experiments mentioned above demonstrate the impaadbnof conjugation in or-
ganicr-electron systems: in particular , the presence of altergaingle and double C-bonds
results in the formation ofr orbitals delocalized within the whole molecule, hence mgki
those systems particularly suitable for charge transplodeed,7-conjugated molecules are
still considered the prototype systems for molecular jiomst, both from an experimental and
a theoretical point of view. These will hence have a pivoté ralso in the rest of this work.
Definitively, molecular nanotechnology ha the potentyalo become an alternative (or at least
complementary) to traditional Si-based SSDs, employingemdes or nano-clusters of atoms
as its fundamental blocks for (bio)technological applmas: if Si represents the history, and in
many cases still also the present, of nanotechnologicateevcan then C represent the future
instead?
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1.2 Understanding the role of electronic correlations

As mentioned in the previous section, the investigationafascopic systems is strongly
related to charge (or spin) transport. Electronic transgiothe nanoscale is a many-body phe-
nomenon, and while a deeper understanding of the transpmtiamisms iper seinteresting,
it also provide valuable information that can be extractedfgyming transport spectroscopy.
Measuring the differential conductance as a function obihe voltagé/sp between the source
and the drain electrodes, and of the gate voltégeallows to detect discrete charge states and
to identify complex excitations, e.g., involving spin obxational degrees of freedom. In order
to understand how tunneling spectroscopy works, it is ugefbrriefly discuss the transport
mechanisms in nanoscopic devices.

1.2.1 Interplay between competing energy scales

Finite-size systems share many similarities with eledtalty confined systems, and in
many cases are believed to behave essentially as QDs. InCaatomb blockade, Kondo
physics and even more exotic phases have been observed ymawaoscopic systems, includ-
ing molecular junctions [46, 47, 48, 49, 50, 51], individ{&2, 53, 54] or cluster [55, 56] of
adatomson surfaces, and carbon nanotubes (CNTSs) [57], just to wmemtifew. This allows
theoretical investigation of complex nano-systems to béopmed in the framework of well-
established models.

Nevertheless, for molecular scale quantum dots, the exuitapectra may be quite complex
due to the presence of several competing energy scalesuwekspacing of the discrete spec-
trum Ae or the hopping amplitude in spatially extended systemscliaeging energy/ due to
the Coulomb interaction between electrons, the resedatihybridization”, and the tempera-
tureT. Without interactions, quantum fluctuations are well uistieod. However, correlation
effects and their interplay with the othieareenergy scales cause the emergenasookl effec-
tiveenergy scales, and lead to a variety of transport regimemgresting physical phenomena.
This is indeed the case of the Kondo effect, associated t&dimelo scalekg 7k, and of its in-
trinsic non-perturbative nature, originating from therspnd charge fluctuations involving the
confined and delocalized degrees of freedom, mixing dukdadservoir-dot coupling.

At cryogenic temperatures, i.épT < A¢, U, the discrete spectrum of the system can be
resolved, and depending on the valuelofvith respect to these parameters, one can define
different transport regimes. In this respect, see also Higd Ref. [58] for a deeper reading.
In this situation, a theoretical understanding of the eixpental observation discussed in the
previous section, can be achieved considering the conistinaction model [59]. Here, the
QD is described as a set of single-particle levglby the following Hamiltonian

U
Hop = ;(e,\ +eVg)ny, + En(n - 1), (1.1)
wheren,, is the occupancy of the spin state of the level labeled by the (set of) quantum
number(s)\, and—|eln = —|e| Y, n., denotes the total charge in the QD, controlled by the
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gate voltage/;. The charging energy of the QD is defined in terms of the céguaceC' of
the whole system (i.e., including the source, drain, and ghtctrodes) a& =¢? /C, while the
potential energy depends on the number of electron pairslaeshot affect the energy levels
of the single-particle spectrum. The QD is connected viaikdytation processes, associated to
a tunneling barrief’ to a source and a drain reservoiraith chemical potentialg.s and:p,
respectively, so that the bias voltage is defined/by= s — 1p.

In the weak-hybridization regime (kg7 < I' < A¢, U) the Coulomb Blockade is lifted
by resonant tunneling processes, occurring whenever gegiagticle state lies within (a range
kgT of) the bias voltage window. This can be achieved both varyire bias voltage itself
or the gate voltag®,;. Spanning the gate voltage and measuring the (zero biaductance
results in a series of sharp peaks, occurring each time @mtessof the QD wittm andn + 1
electrons become degenerate, allowing charge fluctuatitnno energy cost and a current to
flow through the QD. This phenomenon is also knownCasilomb oscillations The peaks,
whose height represents a substantial fraction of the ynitanductance, = 2¢/h, follows
a periodic pattern: the current through the QD reise onlhaidegeneracy point, when charge
fluctuations are allowed, i.e., beirig(n) the energy as of the Hamiltoni&# for then electron
system, if any of the following condition is fulfilled

0l { E(n+1) — E(n) = €,41 + eV + Un, (1.2)

En)—En—1)=¢, +eVg+Un-1),

defining the values of the gate voltagg at which the peak is observed. Hence, the separation
between consecutive peaks

Ae
——
lel(Ve = Ve ) = €n1 — €a +U, (1.3)

is controlled byU. Therefore one can conclude that the Coulomb blockade iseatdnanifes-
tation of the Coulomb interaction between confined eleroConsidering, e.g., a harmonic
confining potential for the QD, one can theoretically ursd@nd the periodicity of the separa-
tion and experimentally show [11] that the states iderdifig tunneling spectroscopy follow
an atom-likeAufbauprinciple of sequential energy level occupation, definaqgeriodic table
for QDs [60].

The map of the differential conductance as a function of ihe Woltagel’sp and the gate volt-
ageV,; displays the typical diamond structure, which is often mefe to asstability diagram

A schematic representation of the stability diagram is shawFig. 1.4 and reads as follow-
ing. Within eachdiamond(dark regions) the occupation of the QD is fixed, and theneais
conductance. Thmmstability linesseparating the dark and light regions of the diagram corre-
spond to the particular values of the bias and gate voltagdieh resonant tunneling sets in.
The slope of the instability carries quantitative inforroatabout the capacitance of the source,

1Here, for the sake of simplicity, we assume that electrongwanel back and fourth between the QD and the
reservoirs, while a more detailed discussion of the tungatamiltonian, connecting the confined system and the
reservoirs, will be discussed in details in the followingtsans.
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Figure 1.4: Left panel: schematic representation of a QD three-terhjimection. Right panels:
electron transport through a weakly-hybridized junctidhe gate voltage probes three different
charge states in the Coulomb blockade (upper right panetsKando (lower right panels) regimes.
Schematic representation on the map of the differentiatieotancell /dVsp versus the bias voltage
Vsp and the gate voltag®; (stability diagram, see text for details) and conductandilp along
selected lines of the stability diagram. Adapted after [&S].

drain, and gate electrodes, while the width of the diamosidsitrolled by the addition energy,
which is defined in Eq. (1.3) ask,gq:= A€ + U, andj quantifying the maximum shift of a
QD level which can be induced by the gate [58]. As the hybationI" is enhanced, higher
order processes with respect to the resonant tunnelingreeaoportant. We can distinguish
between a strong- and intermediate-hybridization regiméhe strong-hybridization regime

(I' > A€, U, kgT) the charge distribution inside the dot becomes continuthiescharge quan-
tization is lost together with any sign of Coulomb blockaaled coherent tunneling dominates
transport.

Theintermediate-hybridization regime is way more interesting, as the interplay between
the interaction and the hybridization is non-perturbathhile, to some extent, it is still possi-
ble to observeCoulomb diamondshigh-order processes yields a finite current also in mnegjio
where resonant tunneling is prohibited by the Coulomb ddek Among those are included
elastic and inelasticotunneling as well as spin-flip processes.

In theelastic cotunnelingprocesses, the occupation of the dot is raised (or lowerngd)unity
involving the temporary occupation of a forbidden virtutdte without violating the energy
conservation thanks to the Heisenberg’s uncertainty gi@cOn the contraryinelastic cotun-
nelingprocesses leave the QD in an excited state with en&rgy/with respect to the one of the
initial state, and occur atl’'sp= A E*, according to the energy conservation law. In the stability
diagram, those processes correspond to (white) lines mgrnparallel to the diamond shaped
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regions. Moreover, whenever the QD occupation is odd thesyss in a magnetic state (e.g.,
S =1/2), and while charge fluctuations are blocked, the QD stiig®s a spin degree of free-
dom. Hencespin-flip processes entail an antiferromagnetic superexchangeéette spin of
the QD and the reservoirs spin degrees of freedom. At low giméemperature, this gives rise
to a (Kondo) resonance at the Fermi energy in the densityatés{DOS) of the QD [25, 26].
The Kondo resonance is associated with the quenching obtdat inoment, and connects two
consecutive degeneracy points through the odd occupatiars while it does not occur if the
QD is initially in a non-magnetic state.

The Kondo physics as well as other many-body effect drivestlbgng electronic correla-
tions are, obviously, not an exclusive of nanoscopic systeRowever, the enhancement of
the Coulomb interaction due to the quantum confinement,taedunability of manufactured
nanoscale devices, set up the ideal conditions for bothi¢tieal and experimental investigation
of the interplay of the Coulomb interaction with the hybzaliion between localized electrons
and delocalized degrees of freedom. Hence, in the nexioseate introduce a model which
is important in a two-fold prospective: on one hand, it aboww study the interplay between
the relevant energy scale: the temperature, the (localjo@duinteraction, and the hybridiza-
tion with the reservoirs, while on the other it represenésttiol to take into account electronic
correlations also in lattice systems within the dynamicaehmfield theory (and its extensions).

1.2.2 The Anderson impurity model

Already since the 1940s, Mott and Peierls advanced the hgpat that the electron local-

ization tendency due to a strong enough Coulomb repulsioldadrive a metal-to-insulator
transition (MIT) [61, 62]. Some years later, Friedel progeshat tunneling of electrons be-
tween the localized levels of a magnetic atoms and a Fernc@dd give rise to a resonance
in the electronic spectrum [63]. Both effects, which arehat basis of the Kondo effect, are
taken into account in the Anderson impurity model (AIM),ginially introduced by Anderson
in 1963 in order to theoretically explain the mechanism ihetieing the formation of local mo-
ments in system of diluted magnetic impurities in a metdibbst [64]. The motivation for it
was an unpredictable behavior of, e.g., the dilution of Fpunties dissolved in Nh .-Mo,,
alloy giving rise (above a threshold concentration) to adfoCurie-Weiss dependence of the
magnetic susceptibility,,, ~ 1/7', which is the hallmark for the existence of a magnetic state.
On the other hand, the Fe impurities resulted in a Paulj {eenperature independent) suscepti-
bility in Ti, V or Nb hosts [65].
Beside providing a solution of the puzzle it was originatiyroduced for, the Anderson model,
together with the renormalization theory, gave an impdrtantribution to the understanding of
the nature of the Kondo physics as a consequence of quantaytbaaly effects. Furthermore,
the AIM plays a crucial role in the analysis of electronicredations in strongly correlated sys-
tems, especially in the context of one of the most successdy-body methods available so
far: the dynamical mean-field theory (to be discussed iaitiein Sec. 2.1).



14 Down to the nanoscale: State-of-the-Art

The Hamiltonian of the AIM reads

thb
H.AIM = Z €roNio + Z Vk(czgdo + hC) +€eqng + Undfndi, (14)
ko ko N

Hatomic

whered! (d,) creates (annihilates) an impurity electron with enetgywhile the Coulomb
interaction on the narrow impurity state is taken into actday an on-site repulsiofi. Those
contributions constitute the atomic (i.e., local) part loé impurity model Hamiltonian. The
operatorcLU (c,,) instead, creates (annihilates) a conduction electroh sptno, momentum
k, and energy,, = Ei, — i, Setting the zero of energy at the chemical potentialWhen
immersed in a metallic host, the impurity electrons can &limmto the conduction band and
vice versa. Those tunneling processes are described bytmglization terms, which mixes
the localized impurity statél) and the delocalized states of the conduction bgnd The
guantum mechanical amplitude of those processes is gieea {irst approximation) by the
matrix elements of the ionic potential

V (k) = (k|Vion|d). (1.5)

In order to understand the interplay between the local acteyn on the impurity and the hy-
bridization with the conduction band of the host, followiRgf. [66], we analyze the AIM: in
the atomic limit, describing the formation of a well-defthenagnetic moment in an isolated im-
purity due to the local interaction, and in the non-interagtimits, in which a non-interacting
DOS develops a resonance due to the hybridization with dizechimpurity.

The atomic limit. As anticipated, the Kondo resonance is generated from thadigation
of a localized spin degree of freedom with the conductiorcted®s. Hence, the necessary
condition for the Kondo effect to take place is the existenic®@ magnetic state in the impurity.
The formation of a magnetic moment can be easily understonsidering theatomic limit of
the AIM, described by

Hatomic = €ana + Ungrngy, (1.6)

While one may note similarities with Hamiltonian (1.1) imtluced for the description of the
QD, in contrast, Hamiltonian 1.6 describes a single imgueavel |d) with energye,, with an
on-site Coulomb repulsioti depending on the filling ofd). Hence, in the atomic limit there
are onlyfour quantum states available, namely thempty stated’) and thedoubly occupied
state|d?), with energyE(d®) = 0 and E(d?) = 2¢4 + U respectively, which are non-magnetic,
and theKramer’s magnetic doublétl' o), for a single occupation with spin=f, | and energy
E(d') = ¢4, as summarized below:

empty state: |d) E(d®) =0

doubly occupied state:  |d?) E(d?) =2¢,+ U } non magnetic

Kramer’s doublet: |d' 1),

d ) E(d") = ¢ magnetic
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In order to derive the condition under which a magnetic mareewell defined, one considers
the cost of charge fluctuations corresponding to the amlditir the removal of an electron
from the magnetic (ground) stafié'c), and impose it to be positive. Considering teenoval
process yields

|d") — |d°) © AE = E(d°) — E(d") = —€4 > 0, (1.7)

while theaddition one yields instead
|d"y — |d?) © AE = E(d*) — BE(d") = ¢;+ U > 0. (1.8)

Neglecting thermal fluctuations, i.€g7T < |e4|, U, the combination of the previous relations
(1.7) and (1.8) leads to the condition

lea + U/2| < U/2, (1.9)

under which a magnetic moment is well defined. If conditidr®] is fulfilled, the ground state
of the system has only one electron sitting on the impurityeowvise, depending on the relative
value ofe, andU, the system is in a non-magnetic state with either none oetactrons sitting
on the impurity. The previous consideration can be sumredria the phase diagram of the
atomic limit of the AIM shown in the left panel of Fig. 1.5 (wmteewe restricted ourselves to
the case of repulsive interactién> 0).

The non-interacting limit: virtual bound-states. It is also interesting to understand the in-
terplay between a non-interacting localized state withrgghe; and a Fermi sea of delocalized
electrons, which is described by the following Hamiltonian

Hresonance = Z €koNko + Z Vk<cJ]£;Udg + hC) + €qNg. (110)
ko ko

Here, the effect of the hybridization processes is to brodlde localized impurity statiel), and
to give rise to a resonance (owvatual bound-statgof width A, given by the Fermi’'s golden
rule

A =7 |V(E)*6(er — €a), (1.11)
k

which corresponds to an average of the conduction band p@S= >, (e, — €) at energy
€4, weighted with the (modulus square of the) hybridizatiorphimde.

The previous expression can be derived considering theesicat process of the (non-interacting)
localized level by the conduction electrons. In terms ofriregin diagrams, the bare propagators
for the impurity and the conduction electrons can be repitesie(in Fourier space) as follows

. o) = 1
v V—€q
) (1.12)
e G0<k,l/):
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In this formalism, the hybridization process can be represkas an off-diagonal scattering
that allows impurity and conduction electron to transforme anto each other

> @& - ——>—e— . (1.13)
The process of an electron to hop from the impurity statetimtoconduction band and back to

the impurity can be associated to an effective scatteritgntial for the localized electrons

V v 2
, o> — VEI (1.14)
v k,v v vV — €

where the frequency dependence implies the scatteringnipaltéo be retarded in time. This
reflects the fact that impurity electrons are allowed tonspa lapse of time in the conduction
band before tunneling back to the impurity. Multiple scaittg processes off this potential
result logically in adressedoropagator of the impurity electrons

1% 1% 1% %

> >—+—>—0 ->»-o—>—+... (1.15)
v k,v v v K v v

.
1%

and the exact resummation of the infinite series of scatgatiagrams yields the Dyson equation

for the impurity propagator
1

v—eq—2(v)’
where thepurely localself-energy is given by the summation over the independememta of
the intermediate (virtual) states

Ga(v) = (1.16)

IV (k)|
Y(v) = - 1.17
(v) ; p— (1.17)
For the sake of simplicity, in the following we shall ignorayamomentum dependence of
the hybridization amplitude, i.el/ (k) = V*(k) =V, so that an analytical expression for the
self-energy can be derived. Substituting the discrete suan the momentum with an energy
integral over the conduction band DOS yields

mmzfﬁmavzz/ﬁlA@ (1.18)

V—€ 7'('1/—67

where we have defined thg/bridization functiomA(e) = mp(e)V2. In the complex frequency
plane, the self-energ¥(») has a branch cut along the real axis, with a discontinuitytsn i

imaginary part
Furd(v—e)
——Y

1 1

where thet signs correspond, to the usual definition of the advancedetarded self-energy,
respectively [67] . If we consider the case of a featurelesglaction band, characterized by

= FA®W), (1.19)
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flat DOS symmetric with respect to the Fermi eneegy i.e., p(e) = 1/2D, whereD is the
half-bandwidth, then

A/D 1 A v+ D
——In‘
T

S(y) == S
(v) ™ J_p 6Vj:ZOJF—.s v—D

’ +1A0(D — o)), (1.20)

where©(-) is the Heaviside step function. The imaginary part of thé-eeérgy determines

the branch cut, which can be non-zero only in an region of tmapiex plane where also the
hybridization function is non-zero, while the real partcomes negligible in the broad band
limit, i.e., Re&X(rv) = O(v/D). Considering the constant contribution of the real parthef t

self-energy as a chemical potential shift, and absorbimgtlie definition of the energy of the

impurity level:e; — ¢4 — i, the impurity propagator can be written as

1

Galv) = ————+ — (1.21)
yielding the spectral function
1. 1 A
Ad(V) == —;lmGd<V) == % (]/ — Ed)Q i AZ. (122)

The latter corresponds to a virtual bound-state with a Liazran profile around, and charac-
terized by a finite lifetime given by,,s = /A, wheref is the reduced Plank’s constant. The
latter result can be extended to any hybridization func¢tmmovided it is slowly varying over
the width of the resonance.

Mean-field solution. So far we have understood the role of the Coulomb interaetr@hof
the hybridization when considered separately, analyzimlimiting cases of the AIM. How-
ever, to understand their interplay is way more challengiAgcording to Landau’s Fermi
Liquid (FL) theory, the excitation spectrum of a metal candoéabatically connected to the
one of a non-interacting Fermi gas. This leads to an appameatsistency: from the adia-
batic point of view, the ground state of the AIM has a FL natuvhile, in the atomic limit,
where the interactio® much larger than the hybridization, one would expect then&iron
of a magnetic moment. Therefore there must be a crossovier, segparating the FL and the
local moment phases. In this respect, it was shown by Andemsithin the framework of a
Hartree mean-field approach [64], that the system will tigve local magnetic moment pro-
vided the Coulomb interaction is larger than a critical ealu> U. = 7A. Though being an
over-simplified description of the magnetic moment, theaméeld solution provides a quali-
tative understanding of the phenomenon, that can be bis&#yched in the following. In the
Hartree mean-field approximation, one can decompose theaction term as

U(narnay) — Ungr)ng, + Ungyr(nag) + 0(5n§), (1.23)

which physically corresponds to neglect spatial fluctuagi Under this condition, the interac-
tion only produces a spin-dependent shift of the impuritele

€do = €4+ U(Ng—o). (1.24)
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According to the Friedel’'s sum rule [63], the number of lamadl electrons trapped inside the
resonance, digT < A, is connected to thecattering phase shift,, by the relation

0 1 1 [ €+ U(nd_0>
(nas) = /_Oo depis(€) = — 1o = —COL <T) (1.25)

yielding a relation that couples the average occupatiomppbsite spin polarization. In order
to proceed, it is convenient to rewrite it in terms of the quaionn, = ) _(n4,) and the
magnetizationn, = (nq;) — (nq4) yielding the mean-field equations

1 1 (2¢q+U(ng—om
na = — > cot 1( d <2Ad d>), (1.26a)
o==+1
1 [ 2¢q+U(ng —om
md:;ZUCOt1< d ;Ad d)). (1.26b)
o==1

Hence, the critical value of the interactiéh is obtained performing the limit,; — 0% in Eq.
(1.26a), resulting in the self-consistent condition

TNy €q + U.ny
— =cot[| ———— |. 1.27
5 co ( A ) ( )

Linearizing Eq. (1.26b) with respect tn, yields

U. . TNy
1= 7TAsm? (T)’ (1.28)
so that at half-filling ., =1), it simplifies to
Ue
1= _l (1.29)

Below the critical value of the Coulomb interacti@n the mean-field equations (1.26) are
consistent only fokng) = (n4 ), and the system is a FL with a Lorentzian DOS, described by
Eq. (1.22). Abovd/. the equations admit two more solutions, corresponding itaite fvalue of

the magnetizatiom,. For the latter solutions, the DOS shows two Lorentzian pesdéparated

by a magnetization gaf,, = 2Umy

1 A
Aglv) = —— 1.30
) Z (1/—ed—aUmd)2+A27 ( )

leading to the mean-field phase diagram of the AIM, showheértght panel of Fig. 1.5. While
in the atomic limit a local magnetic moment develops at anitdivalue of the interactiofy,
provided the condition (1.9) is fulfilled, in the mean-fiesolution it happens only above a
critical value of the interaction, determined by the micasic details of the hybridization
between the impurity and the host conduction electrons.
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Ed+U/2 €d+U/2

Ly — |d")

1

local moments

non-magnetic
states
local moments

atomic limit mean-field

Figure 1.5: Phase diagram of the AIM in the atomic limit (left panel) anithim the mean-field approx-
imation (right). In the atomic limit the single particle tta are well defined, and a local magnetic
moment is formed provided the condition (1.9) is fulfille@n the other hand, the interplay between
the interaction and the hybridization séfs= 7 A as a threshold for the formation of the local mo-
ment, associated to a finite magnetization gap. Adapted Bef. [66].

Relation with the Kondo model. The mean-field solution of the AIM provides a qualitative
understanding of the behavior of magnetic impurities withimetallic alloy. It provides a clear
example for the generation of a new effective energy scale fine bare ones. In fact, the
condition for the formation of a local magnetic moment aragies from the interplay between
the local Coulomb interaction and the impurity-host hyla@ion. As both the ionic potential,
determining the hybridization amplitudé, as defined by relation (1.5), and the strength of the
Coulomb repulsion can vary substantially within differat@mic species, the critical condition
for the formation of a magnetic moment is not always fultillédowever, within the mean-field
description, the formation of the magnetic moment is asdgedito a spontaneous symmetry
breaking, and to a finite magnetization. While this may bee@sonable description for an
ensemble of magnetic atoms, which develop effective longederromagnetic correlations, if
magnetic impurities are diluted in a metallic host, magnetirrelations between the impurities
are expected to be negligible (if this condition is not mtriori, the single impurity Anderson
model cannot provide a reasonable description of the systeenalso Sec. 1.2.3).

The scattering of the conduction electrons off a single retignmpurity leads to a com-
pletely different physics: the Kondo effect, which is a nmerturbative, many-body effect as-
sociated to a characteristic energy sdaléx. As already mentioned, the earliest experimental
observation that motivated research interest in this toecand eventualy the discovery of
the Kondo effect, was related to amomalous resistivity, increasing logarithmically at low
temperature, in the presence of magnetic impurities ditugemetallic host.
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In the temperature dependence of the resistivity in a metal can identify several contribution
with different origins, leading to the following behavior

pgvzmh+am4%§4a”}+¢ﬂ+xﬂ. (1.31)

The constant contributiop, is the one due to electron scattering off (non-magneticgacisf
vacancies, or impurities, which prevents the resistivatyanish even in théd =0 limit. The
temperature dependent contributions, on the other haeddetermined by electron-electron
(i.e., like in the Fermi liquid theoryc 7%), or by electron-phonon7°) scattering processes.
The anomalous contribution, which can be shown to depend aniaersal function o'/ 7k, is
instead given by scattering processes due to magnetic itigsyas discussed in the following.
The relative magnitude of the prefactors is, obviously,anat dependent.

In the AIM (1.4) one can identify a low-energy subspaeand a high-energy subspace,
containing valence fluctuation involving th# and d? states. The hybridization term is an
off-diagonal term that mixes the subspaces, allowing ahdiigctuations. As was shown by
Schrieffer and Wolf [68], the Anderson Hamiltonian can beéueed to a block diagonal form
through a canonical transformation, requiring all firstl@r terms inl” to be vanishing. This
is equivalent to a renormalization approach, where the-biggrgy degrees of freedom, corre-
sponding to the valence fluctuations, are traced out of ileeH space, leading to the formation
of a new effective energy scale, which is a function of thee@oulomb interaction and the
hybridization.

While a detailed derivation is beyond the scope of this wibiik,interesting to discuss the phys-
ical implications of the Schrieffer-Wolf transformatiaesulting in a low-energy Hamiltonidn
which reads

Hiondo= D _ €kChoCha + > Tkt ChoToo Chrr * S (1.32)

ko kok'oa’

wherer = (7., 7, 7,) are the Pauli matrices. The model associated to Hamilto{lis&2) is
commonly referred to as the Kondo model, and describes thardics of the local magnetic
momentS,, provided by the unpaired spin of the impurity (as its ocaeugyan the low-energy
model is constrained to be; = 1) coupled to the spin density of the conduction electrons via
anexchange interaction

11
@W:%mﬂ%+U—a} (1.33)

Note that the interaction parameter is quadratic in theidyation and involves the excitation
energies, ande; + U of the|d®) and|d?) valence states of the AIM in the atomic limit.

Within this model one can compute the resistivity due toteciaig processes involving the im-
purity and the conduction electrons within perturbatioedty, that we briefly discuss below.
We restrict ourselves, for the sake of simplicity, to theec8s= 1/2 (i.e., two-fold degener-
acy) and assumingd to be a constant. The lowest order involves processes inhwhig., a

2apart from a residual one-particle scattering potentia tias not been explicitly considered here.
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Figure 1.6: Representative Feynman diagrdth corresponding to lowest ordéi = 1, 2) and higher
order ( = 3,4) scattering processes between the impurity and the canduglectron in the Kondo
model. The scattering amplitude8®) (1.34) and.J (1.35) considered in the text correspond to
the above diagrams labeléd and K2, respectively. The blue (red) fermionic line describes the
propagation of the virtual conduction electron (hole) iweal in the spin-flip process. Finally, each
interaction vertex in the above processes can be elegaxpilessed in terms of the corresponding
z-component.§.), rising (S ) andlowering (S_) operators of the impurity spin.

conduction electron in the initial stafe |) scattering off an impurity witht; =1 to the final
state|k’ |), whose diagrammatic representation is shown in Fig. 1&g@m/iC")). Under the
above assumptions, the scattering amplitude for such &gsaeads

JO = Jk A=K 1,1 =J (1.34)

The evaluation of all the topologically distinct lowest erdliagrams, taking the trace over the
conduction electron spin as well as on the impurity statejdehowever, to a temperatunele-
pendentontribution to the resistivity. Hence, Kondo [20] consiela higher order correction,
including processes involvingspin-flip of the impurity in a virtual state, whose diagrammatic
representation is shown in Fig. 1.6 (diagr&it?)), associated to the scattering amplitude

1 flaw)

UV — €

T = 5" Ik Lt KD IR 1,4 K L)

kll

(1.35)

In expression (1.35), the factdr— f(¢,) takes into account the probability of the virtual state
involved in the spin-flip process to be unoccupied. Belowslvew that it leads to a temperature-
dependent scattering rate and eventually to the anomaésistivity. However, a rigorous
derivation, would require the evaluation of all topolodfigaistinct diagrams associated to the
process, involving the Matsubara sum of the Green’s funatibthe virtual state=(v, ;).
Replacing the sum over the virtual momentéfhin the scattering amplitude (1.35) with an
energy integral using the DO%e¢} ) we obtain, at low temperatures

1— flepn b 1
J(z) — Jz/‘dEk//Mp(Ek”) ~ sz/ dEk// , (136)

UV — €k” UV — €k”

where we assumed ¢}) to be a constant, symmetric, and characterized by a hativiath D.
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Evaluating the integral eventually yields

J? = 52, Iog‘ . (1.37)
v—D
The scattering rate, is proportional to the square of thed smattering amplitude
1 —
L s g 2 e, Iog)y _GF‘ +0O(JY). (1.38)

D

Timp v

As only the electrons within a windowg 7" around the Fermi surface will contribute to the
resistivity, we haver — ex|~ kg7, eventually yielding

kgT
D —e¢

Pimp = 0 [1 20 Iog‘ - } , (1.39)

where the prefactar, oc J2. The sign of the exchange interaction determines the lompégature

behavior of the resistivity: if/ > 0 the interaction favor the parallel alignment of the localgna

netic moment to the spin density of the conduction elect(t@rsomagnetic exchange), while if

J <0 if favors an antiparallel alignment (antiferromagneticleange). Only in the latter case,

the scattering processes involvingin-flip determine the anomalous contribution to the resis-

tivity, providing an explanation for the resistance minimuSimilar corrections also arise in

other experimentally accessible quantities, aslagnetic susceptibilitgnd thespecific heat
However, the effective temperature-dependent exchanggiog Je¢(7") diverges ag” —

0, and the limit of validity of the above results, as expectetthiw a perturbative approach, is

set by the condition
T

kg
D — (&2l
implying higher order diagrams to become non-negligilhel @orresponding to an energy scale
given by

2.Jp Iog’ ’ ~1, (1.40)

keTk ~ (D — ep) e /2P, (1.41)

which defines th&Kondo temperature. Extending Kondo’s calculations to obtain a satisfac-
tory solution below7y, became known as th€ondo problem Among the most important
contributions in this direction we recall the works of Alsgov & Suhl [69, 70], and Noziéres
[71]. Further understanding of the Kondo problem was predidy Anderson’oor man’s
scaling[72], which allowed to show that the local moment of the inmfyis screenedy the
conduction electrons, as their spin degrees of freedommbe@ntangled. The resulting state is
non-magnetic and fof — 0 the system displays a Pauli temperature independent gistkgp
Eventually, the non-perturbativenormalization group approach proposed by Wilson [108]
to confirmed this picture. Within the Kondo model, the entethcontribution to the resistiv-
ity, magnetic susceptibility an the specific heat, stenmfi@ narrow quasi-particle peak which
develops belowlk: the resonance is known as tAdrikosov-Suhl resonance but is often
referred to as th&ondo resonance

Interestingly, this lead to a completely different physic€Ds, where electrons can only
tunnel through a narrow region due to the confining poténtigere, instead of increasing the
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resistivity, the presence of a Kondo resonance determimesl@ancementf the conductance,
allowing electrons to overcome the Coulomb blockade.

1.2.3 Beyond impurity models: challengeg: open questions

As we have seen so far, the interplay between strong elaectrtorrelations and hybridiza-
tion in the AIM is qualitatively well-understood, and a (narital) solution of the AIM is
reliably accessible (in this respect see also Sec. 2.1)céjavhen the system is expected to be-
have as QD, i.e., is dominated by charge and energy quaatizftects and only few-orbitals
contribute to determine the low-energy physics, a reliéié®retical description and a satisfy-
ing agreement with experiments is possible. Whether thislition is fulfilled or not strongly
depends on the relevant energy scales in the system undsstigation. However, it seems
to be the case in several cases of interest, e.g., as shoWwa redent results reported in Refs.
[74, 75, 76, 57], just to mention a few.

We have also seen that, beside semiconductor (mostly 8db&SDs, modern technolo-
gies also allow to grow, synthesize, and manipulate highlftyunanoscopic systems, ranging
from nano particles to nano-wires and cluster, but alsodp few or individual molecules
within quantum junctions. As the complexity of experimeiytavailable systems increases, so
does also their potential. In particular, the complex ipli@y between electronic correlations
and internal degrees of freedom of the nanostructure ioressiple for a variety of physical
phenomena, which are interesting from the basic researctt pbview, and appealing for
technological applications. Among those, are non-linearent-voltage characteristics, and
electronic transitions to be triggered by means of weakreatgerturbation, e.g., mechanical
stress, and electric or magnetic field.

The knowledge of the microscopic mechanism underlyingetation-driven phenomena
may allow to improve the efficiency of existing devices, gabsibly the discovery of novel
physics. However, the present theoretical understandiagond the framework of the few
relatively well-known models, of those properties is faynfr being satisfactory, and a com-
prehensive, and unified theory of strongly correlated sanpic structure is still lacking. In
this respect, the challenges are mainly due to the manyatsbitvolved and with long-range
fluctuations (of importance in critical phenomena). Arergsting example in this context is
represented by the Ruderman-Kittel-Kasuya-Yosida (RKkNgraction [77, 78, 79], which
is a non-localindirect magnetic echange correlating localized impurities. Astfa Kondo
temperaturd, the typical scale associated to the RKKY exchaiigey, is generated by the
interplay between the bare local Coulomb interaction inrtagrow impurity orbital, and the
non-local hybridization processes between the impuriggtebns and the delocalized conduc-
tion electrons. In the limit of low impurity concentratiom the metallic host (dilute impurities)
the impurity-impurity correlation is weak; otherwise th&IRY and the Kondo physics would
compete in the intermediate-coupling regime, making trezdetion of the system incredibly
complex, but also incredibly fascinating.
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1.3 Quantum transport

As we have seen, transport spectroscopy is a valuable expatal tool to investigate elec-
tronic structures, and excitation spectra of nanoscostesys. Hence, one of the most impor-
tant (and challenging) issues is the theoretical undedsigrof electronic transport through a
nanoscopic conductor (be it a QD, a molecule or a clusteoohg} bridging metallic electrodes.
In this regime the typical Fermi wavelength is comparable to the size of the nanoscopic con-
ductor £, both being much smaller than the electronic coherencehdpgso that electronic
transport is completely dominated by quantum effects. Meee, both the atomic and the elec-
tronic structure of the conductor strongly influences thasport properties, which, on the other
hand, also means that valuable information about the systanbe inferred from electronic
transport measurements. Early studies of quantum transpdrandauer [80] and later on by
Buttiker [81] proposed a novel view of electronic conducethrough a nanoscopic structure
in terms of transmission. In former times in fact, the eleaelrconduction was treated within
a semi-classical picture, electrons accelerated acaptdithe Bloch’s theorem by an external
applied electric field, and equilibrium was restored dustimentum relaxation induced by (in-
coherent) scattering processes off impurities or lattlvenons. A purely quantum mechanical
description of conductivity was proposed by Kubo, yet epengd particle conservation did not
allow for dissipation effects beyond polarizability (lereresponse).

In the following the Landauer-Buttiker single-particlepapach to conductance [80, 81]
will be discussed within scattering theory. In the limit afinitesimal bias voltage applied to
the system, Landauer-Blttiker formula can also be derivighininear response theory in a
Green’s function formalism. Generalizations to intemagtsystems will also be discussed in
this framework.

1.3.1 Landauer-Biuttiker formalism

In the Landauer-Buttiker formalism, the nanoscopic comaluis regarded as a quantum
mechanical scatterer of the electrons incoming from theéd@ad transport results from a diffu-
sion process of charge carries due to a chemical potentidltfeerefore carrier concentration)
gradient. Electrons are assumed to scatter only elasticalide the nanostructure, discarding
inelastic processes due to, e.g. electron-phonon or eteelectron interactions. The above
relations between the important length scales can be suedas follows

ay K )\F S lo <L < l¢ S lina (142)

whereaqy is the Bohr radiusly is the elastic mean-free path akgis the length scale related to
the typical inelastic relaxation processes. Thus eleatrvansport, within Landauer-Buttiker
formalism, emerge as a quantum mechanically coherent gsao®d can be described in terms
of non-interacting quasi-particles elastically scatidrg the nanostructure.

The above condition defines the so-callsllistic transport regime. For the sake of com-
pleteness, we briefly discuss the other possible trangpgiimes, depending on the mutual
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relations of the characteristic lengths. In presence ofipialscattering events, i.&, < L, the
transport idiffusive, and it is characterized by a reduced conductance with cespéne elas-

tic one. Moreover in presence of multipteherentscattering events inside the nanostructere,
which means thak, < [, < £ one can have electroniocalization due to quantum interfer-
ence at low temperatures which determines an increasedivégi The classicalncoherent
regime and the standard relation for an ohmic resistor &lfimecovered wheif > [, l,.

Following Ref. [82], we consider a nanoscopic system digjder convenience, into three
regions: a central nanoscopic scattering region (S) cdadeda metallic leads to two reser-
voirs, to the left (L) and to the right (R), as schematicafipresented in Fig. 1.7.

In the ballistic regime £ < l,, li,) the electron propagation within the sample is quantum
mechanically coherent, i.e. electrons can be describedvimva packet with a definite phase.
On the other hand, when transmitted to the reservoirs, oneately assume the electrons to
be thermalized at the temperatdreand the chemical potential g of the leads, and therefore
described by the corresponding Fermi-Dirac distributionction. We will consider the elec-
trons in the leads to propagate freely along ttdérection, and to be confined in the transverse
plane with respect to the propagation direction, giving ts a quantized spectrum, whose en-
ergy eigenstates are labeled by the (set of) quantum nus)beiflence, the wavefunction of an
electron propagating through the nanostructure can btewits a plane wave in thedirection
ek»* modulated by a transverse wave-functibpz, y), as

77Dn;kn (ZE’, Y, Z) - (I)n(xa y)ezk:nz’ (143)

wheren labels an eigenmode of the L or R lead, so thatlenotes the wavevector associated
to then-th eigenmode at a given energy(see also Fig. 1.7). In the case of a real material,
the wave function is modulated by the underlying latticeeptial, according to the Bloch’s
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Figure 1.7: Schematic representation of electronic transport thr@uganoscopic device: macroscopic
charge reservoir are bridged by metallic leadisahd R) contacted to a scattering regiof)( The
electrons in the leads are thermalized at chemical potemtiand .z, respectively. The wavefunc-
tion zp';”k" incoming fromL and characterized by wavevectoof eigenmode, at energyF(k), is
partially reflected to a generic eigenmodelofwith probabilityrfm,(E)) and partially transmitted to
a generic eigenmode @t (with probabilitytin,,(E)) through the scattering regidh
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theorem, and the transverse eigenmodes correspond todlgydrands of the leads.
ThelLandauer-Bluttiker formula expresses the conductance as the sum of the transmission
probabilitiesT,, in all possible transmissiochannels

= 2— Z (1.44)

This suggests aonductance quantizationwith a conductance quantu6, = 2¢%/h, where
the channels are identified with the quantized eigenmotigsedeads. In this respect, it can be
shown, e.g., as in Ref. [83], that to each transverse mode than associated potential barrier
in the propagation direction due to the kinetic energy baartde transverse motion. Therefore
only a finite number of modes with a barrier less than the Femargy - will contribute to the
conductance. Since in general the transmission probabdit assume any value betweesnd
1, conductance quantization will be observed only in palicgeometries where the reflection
is negligible, e.g., in the case of a quantum point conta®G¥ Conductance quantization
has been experimentally reported [30, 84], and triggeredr#tical speculation [85], providing
strong evidences in support of the Landauer-Buttiker tesul
In order to derive the Landauer-Buttiker formula (1.44),dedine the current density asso-

ciated with the propagating modeas

. 1 ok,

In(k) = evn(k) = ex—
where the group velocity, (k) of moden, is given, within the Peierls approximation [86],
by the derivative of the dispersion relatid), (k) of the electron in the lead. According to
the previous assumptions, the incoming wave can only béesedt via elastic processes, into
states with thsameenergyE. Thus a wave with energlf incoming from the lead L will give
rise to a coherent superposition of the form

Ut + > T (B + Y o (B) sy (1.46)

n’elL n’€R

" (k), (1.45)

wherer,, . (F) is the probability amplitude for an electron on modeand energyF to be
reflected into mode:’ in the lead L, whilet,,,,»(E) is the probability amplitude for the same
mode to be transmitted into modé in the lead R. The probability of an electron in madef
the lead L, to be transmitted emymode of the lead R through the scattering regsas, hence,
given by , |t (E)|*, giving rise to a total current density

=t (B (ki) (1.47)
n'’€R

assuming the currents to be independent. The current fgpfrim the lead L to R is eventually
obtained summing the current densjfy(k) over all possible modes of the left lead, up to the
chemical potentigl, , as

Z/ d js (k ZZ/dmwwmnmum (1.48)

néeL neL n””eR
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in which the integral over the wavevectbris converted into an integral over the energy by
means of the DOBY, (E) projected onto the generic modéof the lead R. As we are assuming
a one-dimensional transport, the DOS of the leads is given By = ;- (dk/dE) and cancels
exactly with the group velocity in the definition of the cent density, so that

I* = %Z 3 /; dE |ton (B)[* = %Z/; dE T, (E), (1.49)

nel n"eR" ~ neL ¥
where
Tr(B) = [taw(B)[* (1.50)
n'’eR
is thetransmission coefficient per conduction channel In a completely analogous way the
electrons in the modes of the lead R up to the correspondi@qidal potential.; give rise to
a current flowing to the lead L

rR_ € HR R
®= > /_OO dE TR(E). (1.51)
nlleR
Here the transmission coefficient
TH(E) = [twn(E)[? (1.52)
nel

is analogously defined in terms of the probability ampléddr an electron with energy to be
transmitted from mode” in the lead R to mode in the lead L. Due to time-reversal symmetry,
ton (E) andt,.,(E) can differ only by a phase factor, so that tin@nsmission probability

T (E) is the same for the current generated from electrons irgente the L or R lead

T(E):=Y THE) =) > law(BE)N =YD ltwn(E)* = TH(E). (1.53)

nel nel n”eR n'’eR neL n'’eR

Moreover, denoting withV, is the number of channels in the lead L, due to the conservafio
the probability current theeflection probability for the electrons injected from the L reservoirs
at some energy’ is given by

R(E)=NL =) THE)=N - TXE), (1.54)
neL neL

where the last equality follows from Eq. (1.53). Therefdre tontribution to the current of the
electrons incoming from the L reservoir cancels out withdhe of thebackscattereelectrons
and the transmitted electrons incoming from the right nesier The same happens in the lead
R as well. This means that the net current at some engrfigwing through the device is zero
when electrons are injected from both reservoirs at thaiggne

Hence, in order to have current flowing through the nancsting, one has to apply a bias
voltage is, so that, e.g: = ur+e€eV < ugr, and only electrons with energy larger thag will
effectively contribute to transport, yielding a net cutren

=13/

nel Y H

AL
dE T, (E), (1.55)
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and the corresponding conductance, calculated takingaheadive of the current with respect
of the bias voltage
G(V) = o _ < > TaleV). (1.56)
ov.  h —
At low bias |eVsp| = | — pr| < i, With 1 being the equilibrium chemical potential, and at
low temperatures one can assuifeo be energy independent, so that one can expand around
E =y, yielding
2

1) =SV T 2 o) =S T, 157

neL nel

In this notation the spin degree of freedom is contained enrttode index:, but for spin-
degenerate systems the transmission probability is the $antboth spin channels yielding an
additional factor2, yielding the Landauer-Buttiker formula (1.44) with thendoictance quan-
tum G, =2¢/h as a prefactor. As the transmission coefficient is an hé&minatrix, the sum
over all possible channels is often expressed in terms @ica tr

ST =30 (X bt ) = D (0D, (1.58)

n n n

so that the expression for the conductance reduces to
e’ -
G = 2ﬁtr(tft), (1.59)

The knowledge of the transmission coefficient (or equintlfe of the transmission matrix) is
therefore of fundamental importance as it allows to computeslectrical conductance and the
(1/V') characteristics of a nanoscopic conductor.

Where does the resistance come from?If the inelastic relaxation length,, is much larger
than the sizeC of the scattering region, there is no mechanism for energgiition, and one
would expect the conductance to be infinite. Instead, teegarce of boundaries determines the
existence of eigenmodes. The number of eigenmodes thaecactivated at energy is given

by M(E)=)" O©(F — E,), and each of them is occupied according to the Fermi digtdbu
function f(e,). The resistance cn be separated into two parts as

., h h h 1-T

- - 1.60
2e2MT 262M+262M T 7 ( )

where in the last equality the former is thentact resistancegenerated by the transitions to
the leads, and the latter represents the resiskatterer resistancegenerated by scattering pro-
cesses within the region. It follows that aquantum resistanc&, := h/e? is associated to
each mode, setting an upper bound to the conductance, jpondisg to the case of negligible
backscattering, i.el,—T'=0.
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Interestingly, the resistance can be obtained also dyréctin the Heisenberg uncertainly prin-
ciple: AEAt = (¢?/C)RC > h, where AE induced by charge fluctuations is given by the
charging energy?/C and At is given by the RC-time (i.e., the time required to chargeist d
charge a capacitar' through a resistor). It follows thatR > Ry, i.e., the resistance must be
larger than the quantum resistance in order to reduce thertanaty on energy (well defined
charge state in the system).

1.3.2 Extended interacting systems: Linear Response condiance

The merit of Landauer was to introduce a completely new pafintew, describing charge
transport in terms of transmission. However, as alreadytioeed, in thenonideal case the
Landauer-Buttiker assumption, that the transmissiondsced only due telasticbackscatter-
ing from the barrier, breaks down for an interacting systéfide temperature.

Extension to the case of an interacting region has beeredaotit by Meir& Wingreen [87]
within the Keldysh formalism [88]. The Meir-Wingreen fortaudoes not imply any approxi-
mation, provided the knowledge of tegactGreen’s function of the interacting region. While
this i not a trivial requirement in the general case of anrmdée interacting region, in some spe-
cial cases, e.g., for the AIM, the Green'’s function can baioletd, and due to vanishing vertex
corrections, the conductance can be expressed in terme oh#tparticle spectral function of
the interacting region [87], as also discussion at the endisiection.

Following Oguri [89], we derive within the Kubo formalismelexpression of the equilibrium
(finite temperature) linear conductance for an extendésracting system, as well as the cor-
responding vertex corrections. In this respect, we corerglyi divide the system into three
regions: a scattering region (S) bridging a left (L) and ati¢R) non-interacting leads, as
shown in Fig. 1.8. The scattering region consistd/adites coupled via an interactiéf, ;,. ;.. ,

R

JL JR

Figure 1.8: Schematic representation of electronic transport thr@ughoscopic device: an interacting
scattering regiony) bridging non-interacting leadd.(and R). The sites belonging to the scattering
region are labeled = 1....V, and are connected by hopping channgls Sites1 and NV are also
connected via hybridization channéisg to the interface siteéandr, belonging to the L and R lead,
respectively. The arrow above the currdpk indicates the direction of a positive current.
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while the leads are assumed to be infinitely extended andcactaized by a continuum spec-
trum. The Hamiltonian of the system reads

H=Hs+ HL+Hr+ thb; (1.61)

where the scattering region is described within a tightdlrig lattice in the presence of an
electron-electron interaction

Hs = Z Ztlﬂ CioCjo uZan +5 Z ZUJUQ 7354 ]40 ]50'/0]20'/0]107 (1.62)

1,jES © €S o {]}GS oo’

and it is connected to the tight-binding representatiomeflt and R non-interacting leads

=2 D telnie =) Y o

i,jeL o €L o

(1.63)
He= 30 ey, — e Y
,jJER o i€ER o
via the following hybridization term
thb = - Z VL (CJ{UC&T + cZocla) - Z VR(CI’UCNCT + c;r\/ocra>' (164)
Herec! (c,,) creates (annihilates) an electron on sigd spino, andn,, = /¢, . The sites

within each region are connected via hopping chanfgetsr tiLj’R corresponding to the parame-
ters of the tight-binding representation of the S, L, anddraies; however, in order to obtain the
results presented below, no assumption is needed on thal &ight-binding parameters. The
mixing between those regions is provided by the hybridaraimplituded/ g connecting the
interface sites of the L and R leads (labeleghdr, respectively) with the interface sites in the
scattering region (labeled=1, N); the remaining sites of the scattering regien2,..., N —1

do not hybridize. We denote withy, , 1.z andy the chemical potential of the L and R leads, and
of the scattering region, respectively. The interactigp,.;,;, could in principle be a general
interaction fulfilling time reversal symmetry [89], and jprarticular the derivation holds in the
case of the local Hubbard interaction.

The conductanceis defined within linear response theory by means of the Kobmula [90]
an obtained from the linear contribution of the imaginaryt jgd the current-current retarded
correlation function as

K, (Q)—K' (0
G:62hm aa() 0401()7
Q-0 12
which can be calculated performing taealytic continuatiorof the finite temperature current-

current correlation function

(1.65)

Kga/(Q) = Kaa/(lQl) . (166)

10— Q+20T



1.3 Quantum transport 31

Thecurrent-current correlation function is defined as

Ko (1) = / " <TTJQ(T)JQ,(0)>eZQT, (1.67)
0

whereT’. denotes the ordered product in the imaginary time repraent:t =7 € [0, ), with
71 = kT being the inverse temperature, add= (2()x/3, | € Z the (bosonic) Matsubara
frequency. The current density operathyr, with o =L,R, of the current flowing in and out of
the scattering region reads

Jp =1 Vilcl,e,, — cher,), (1.68a)

Jp =1 Z VR(CloCnp = ChoCro): (1.68b)

and the density in the scattering regies= Z Z c;,Cjo Satisfies the continuity equation
{j}es o

s g =0, (1.69)

implying that the current (and therefore the conductanoelsaot depend on the position, i.e.,
it does not depend om anda’. The correlation function can be conventionally separattu
two terms, represented diagrammatically in Fig 1.9, as

Koo (18%) = K22 (80) + KYi(sy), (1.70)

aa’ ao!

where thebubble contribution KP¥P€;();) and thevertex correctionsi¥e®X(x();), take into
account the independent propagation of a particle-hole aad multiple scattering events be-
tween the propagating particles, respectively. The lafterenclosed in the two-particle vertex

Wy + 1Y, 0
wy + 18,0 w! + 1,00 wy, + 18,0
< > AL X m YV AR ‘é ’
/
Wp, O i ZI/n,O' Wp, 0
ZV’I?

Figure 1.9: Feynmann diagrams for the electical conductance. Leftippagticle-hole bubblgyRiPb'e
describing the independent propagation of a particle-pale the bubble contribution of the current-
current correlation function is associated to the bareenirvertex\ r. Middle panel: scattering
process (wiggled line) contributing to the vertex corraesi K %" the complete resummation of all
possible scattering events, denoted by the dashed Ilmkeﬂnnto account by the full two-particle
vertex F. Right panel: vertex corrections " expressed in terms of the renormalized three-point
current vertexA g.
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Fio.34 (1w, 1,482 ), which depends on the bosonic Matsubara frequébcys well as on two
fermionic Matsubara frequencie$’ = (2n() + 1)x/8, n) € Z. In the caser=R anda’ =L,
the two contributions of the correlation function read

K,glﬂbble(lgl) ZVR ZVL Z Z (1.71a)

X [Gnio(wwy + ZQ[)GMU(ZVH) — G (1 4+ 180) Grrp (1)
- Grla(“/n + ZQI)GZNJ('“/n) + Gréa(“/n + ZQI)GlNO'(ZVn)]

KRe(0) = — (V) (1) 62 ZZ > (1.71b)

nn’ oo’ {j}€S
X [Ghla(wn + 180 Gojuo () — Giyio (1, + ZQl)Gle(wnﬂ
X o7 (wn, w1)

J1J2:73J4

X [GNJé o’ (ZV;L + ZQl)stTO’ (ZV1{L> - GTJSU’ (ZV;L + ZQl)GhNU’ (ZV;L>:|7

which can be obtained from the correlation function (1.6YJ af the current density operator
(1.68) introducing the proper definition of the (non-lgcgeneralized susceptibility; for the
sake of completeness, a detailed derivation of the abouwession is provided in Appendix A.

The following relation are fulfilled by the one-particle €ém’s function (for each spin polariza-

tion) involving the interface sites of the leads and any gitidhe scattering region,c S:
Guizo) (n) = —gu(wn) VL Grj(wy), (1.72)
G jpryr(wn) = =GN (1) Vr gr(1n),

whereg_ (gr) is the local Green’s function of the non-interacting isethleads L (R) at the
interface site¢/ (r). Using the latter, the correlation function can be striaiwvardly rewritten
in terms of the bare and renormalized vertex as

Kr(28)) = 522 Z AL (Wi, Wi +180) Grjyo (1) Are gy (W, Wy +180) G160 (1 +18Y),

o n  j1,j4€S

1.7
where the bare vertex, associated to the L or R lead, is dkéine e
AL (W, +18Y) = =1V [ (w, +18%) — gL (w,)], (1.74a)
AR(Wny 1wy +180) = IVR[gr(wn + 1%) — gr(1w)], (1.74b)
and the renormalized (three-point) vertex is defined as
AR (2w, 1wy, +182) = AR(Wh, 1wy + 180) 05, NONjy + Projujs (W 1, + 28Y;), (1.75)

where the vertex corrections are enclosed in the auxiliagntty

Projyiy (w0, +108Y) = ﬁ Z Z Z (1.76)

n’ o' j2,j3€S

Fﬁ;’z s (W, W), 180) Gignor (1)) AR (Wi, 1), 4 180) G jpor (11, + 28Y).
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The conductance can be obtained by performingatiedytic continuation v, — ¢ + 0", and
180 — Q 410" of the correlation function (1.73), and the limit (1.65) for— 0, as anticipated
previously in this section (Appendix A provides for detailsthe derivation). If we restrict, for
the sake of simplicity, to the paramagnetic case, the lineaductance eventually reads

G= 26—; /: de (- 82(:))7(6), (1.77)

where the (spin-independent) transmission coeffiéientloses the information about the de-
tails of the system. Neglecting vertex corrections, thaedmaission coefficient can be recast
as

T(€) = TL(e)Gin ()T r(€) Gy (€), (1.78)

where G*"(¢) are the advanced and retarded one-particle Green’s funofithe scattering
region, respectively, and thecattering amplitude, which is obtained from the bare current
vertex, depends on the leads through the hybridizationitundeland the local DOS as

Lo (€) = 27V2po(€). (1.79)

In order to take the vertex corrections into account, one neeonsider the analytic properties
of the full vertex [89, 91]. The corresponding analytic aooation (Appendix A provides for
details on the derivation) yields the transmission cogedfit

T()= Y Tu(OG, (R (e )Gy (e), (1.80)

J1,J4€S

where the renormalized scattering amplitude reads

FR;j4j1(€) = 27T10R(6)VR25J'1N6NJ'4 + PR;j4j1 (Ev 6)7 (1-81)
andPF[{?l.4jl(e, ¢) has a complicated expression in terms/4E, €, 0). Note that neglecting ver-
tex corrections would correspond to set (arbitrarily) tt@em to zero, so that the sum over
the indexes of the scattering regi@jmes in Eg. (1.80) is saturated by the corresponding
Kronecker symbob;, iy ;,, yielding the result (1.78) of the bubble transmission ioient.

Finally, we note that the transmission coefficient (inchgdvertex corrections) can be ele-
gantly recast in terms of a trace

T(e) =tr[lL(e)G*(e)r(€)G" ()], (1.82)

where both the scattering amplitudes and the Green’s fumetire matrices in the Hilbert space
of the scattering region.

3The formula for the conductance is easily generalized tesfiie-polarized case restoring the sum over the
spin polarizations and considering a spin-dependentritesson coefficient.
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Concluding this section, some questions naturally arisl@ted to the applicability of the dis-
cussed formalisms, i.e., Landauer-Buttiker and linegvaase theory, as well as to the relation
between the corresponding conductance. In order to esttathié consistency of both methods,
it is interesting to compare the transmission coefficidn82) obtained within linear response
to the one derived within scattering theory, as well as teothsults in the literature.
Noteworthy, with the following definition

t(e) = I (e)GT (e)TH?, (1.83)

and considering that, in the limit — 0, the derivative of the Fermi function is pinned at the
Fermi energy, the result (1.77) of the Kubo formula reduocas¢ low-bias Landauer-Buttiker
formula (1.59) for the conductance.

Due to the nature of the Kubo formalism, the above conduet@expected to provide reliable
results only if the system displays a lineBisp) characteristics. The latter requirement is
generally fulfilled only in the low-bias regime, and evidlgnrepresents a limitation to the
applicability of the method in many interesting cases, atnelogical applications usually
rely on (or benefit from) the presence of non-linear chanmastics and unexpected physical
phenomena. On the other hand, while the Landauer-Buttikendla is not limited to that
regime, it is not of help in the practical evaluation of thensmission coefficient, and does not
hold in the presence of inelastic scattering.

We note that, the transmission coefficient (1.82) is fotynabuivalent to the results ob-
tained (out-of-equilibrium) by Caroli et al. [92] as well Bg Meir & Wingreen [87], when
considering their low-bias limit. However, while in the foer case, the transmission function
was obtained under the assumption that the system is neraating, in the latter, as well as
within the present formalism, the transmission coeffitisrdefined in terms of the full inter-
acting Green'’s function of the scattering region, and thedootance also takes into account
inelastic processes due to, e.g., electron-electronactien and scattering off impurities or
phonons.

In particular, in the case in which the interacting regiotiaggses onto an AIM, and under the
condition for the scattering amplitudg (e) = AI'r(¢) (A being a scalar factor), the transmission
coefficient can be recast in terms of the spectral functich® AIM as

_ I'iTg
T +Tk (
and the vertex corrections vanish [87].

On the other hand, vertex corrections are in general exgectbe relevant for a quantita-
tive description transport properties of low-dimensiosydtems: e.g., for an Hubbard chain,
already within perturbation theory, it has been shown thdhé high-temperature regime ver-
tex correction are important and result in quantitative rcation to transport properties of
the system [89]. However, the knowledge of the two-partidgex beyond perturbation the-
ory [158] isnot a trivial requirement, as will be discussed in detail in tbBofwing chapter,
and represents a huge challenge for contemporary thesiretindensed matter physics. As a
conseqguence, the effect of vertex corrections is poorlgstigated in the literature.

T(e) - l|mG’°(e)), (1.84)

™



Chapter 2

Dynamical mean field theory and beyond

In this chapter we will provide a self-contained overviewsofme methods used to take
many-body effects into account. Dynamical mean-field th@OMFT) established itself as
the standard tool for dealing with strongly correlated gyat, mostly because of its predictive
power when employed in combination with first principlectadtions for real materials. How-
ever, the purely local picture of DMFT is not sufficient tdiably describe the properties of
correlated systems when non-local spatial fluctuationdnees relevant, as in the case of, but
not limited to, low-dimensional or electronically conftheystems. In this prospective, we also
briefly review the main extensions of DMFT, which aim at uidlthg also spatial electronic
correlations beyond mean-field. We focus in particularlo® dynamical vertex approximation
(DI'A), and on the related recently introduced nanoscopic werghano-0°A), which repre-
sents the main topic of this work and was developed in ordestudy local and non-local
correlation effects at the nanoscale.

In the previous chapter we learned that correlation effeatslead to unexpected and spec-
tacular physical phenomena and phases in many-electreensys However, since the very
beginning, back to the 1960s, the theoretical investigaticstrongly correlated material had to
face difficulties arising from the intrinsic non-pertuth@ nature of problems, where compet-
ing energy scales are comparable to each other. In a lattiieenain competing energy scales
are the kinetic energy that tends to delocalize electrotesBioch’s waves, and the electrons
mutual Coulomb repulsion, with the opposite tendency taliae the charges. The essence of
this problem is usually addressed theoretically in the &awrk of the Hubbard model [95],
which is described by the following Hamiltonian

H=—t Z Z czacja +U Z CZTTCZ-TCLCW (2.1)
@) o i

where ¢! (c;,) are the creation (annihilation) operators of an electrosita : with spin o,
associated to the maximally localized Wannier functiogpjdally used to describe narrow
(typically d or f) orbitals. The electrons can move through the lattice vigpitay processes
between nearest neighbor (NN) siteg), described by the hopping amplitutieThe Coulomb
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repulsion, on the other hand, is approximated by its majotrdaution, i.e., a purely local
repulsion termlJ. This is often considered a reasonable approximation foalivedd or f
orbital, as the non-local matrix elements of the Coulomleptal decay rapidly with distance.
Despite its apparent simplicity, this Hamiltonian repréasea real challenge, and no analytic
solution of the Hubbard model in two or three dimensions ievkm. In fact, the interplay
between kinetic energy and Hubbard repulsion is crucialeteiining the properties of the
ground state, giving rise to a complex and rich phase diagram

2.1 Dynamical mean-field theory

A huge development in the understanding of strongly caiedl@hysics described by the
Hubbard model was triggered by the work of Metzner and Votlhfp6], showing that a proper
scaling of the hopping term in the limit of infinite dimene®d = oo (or equivalently infinite
coordination numbef) leads to non-trivial (local) correlations among electoRrom the point
of view of practical implementations, the breakthrough wasvever, the works of Georges
and Kaotliar [97, 98], and Miller Hartmanr?], who developed a novel quantum-like mean-
field approach for the Hubbard model that becomes exaé¢tio limit previously analyzed
by Metzner and Vollhardt. The idea to map the lattice probieni — oo onto an Anderson
Impurity Model (AIM, see Sec. 1.2.2) where an impurity siteembedded into an effective
bath determined by a self-consistent condition. The impumodel is still a quantum many-
body problem, but it is characterized, evidently, by a puletal dynamics. As a consequence,
all spatial fluctuations beyond MF are neglected, whilealaguantum fluctuations are fully
taken into account, as it is reflected by the name of the nigtkriown as dynamical mean-field
theory (DMFT).

In the following we discuss the generic aspects of the theotypducing the limit of infinite
dimension, and provide a schematic derivation of the DMRTagigns.

Proper scaling in the limit of d = co. The main issue here is to understand how the two
terms of Hamiltonian (2.1) scale with(or z). The local interactiot/ is related to the potential
energy per site, therefore

> Ui<c%cncj¢ci ¢> ¥ constant (2.2)

i.e., the thermal expectation value of the potential enestgys finite in the limit of infinite
dimensions, neither vanishing nor diverging. If only NNoti®pic) hopping processes are
taken into account, the kinetic energy per site consisitead, ofz equivalent terms, and it
would diverge in the limit: — oo unless it is properly rescaled. The following consideratio
is of help in understanding how to define proper scalihgepresents a quantum mechanical
amplitude for electrons to move between NN sites, and hgifdeas the meaning of a hopping
probability. In order to be physically consistent, the @bitity of hopping to any of the:
equivalent neighbors of sitehas to be of)(1), implying that the probability of hopping into a



2.1 Dynamical mean-field theory 37

Figure 2.1: A second-order irreducible diagram for the self-energyhef Hubbard model (denoting
with a dot “e” the local interaction). Due to the scaling of the bare feanic propagator (single line),
the non-local contribution (i.ei # j) of this diagram vanishes in the limit— oo, and only local
contributions withi = j survive. The non-skeleton diagram on the left-hand sideigained in the
fully local diagram on the right-hand side obtained using dnessed fermionic propagator (double
line).

given neighbor scales like/z, hencet ~ 1/,/z. As a consequence of this, the bare propagator,

or Green’s function [90], between NN siteandj, GY;(7) = —(T.c; (r)c}(0)> scales also as
1/4/=. This way the kinetic term per site will stay finite, i.e,
= <cj.ocj0> 2% constant (2.3)
(i) @

since thez factor stemming for the equivalent contribution for each N canceled by the
1/+/= scaling factors of;; = ¢ and <c;-rgcj0>. The latter is directly connected to the Green’s
function G?j by means of the fermionic algebra. This is the only non-atigicaling in infinite
dimension, which preserves the competition between kirestergy and Coulomb interaction
also ind — oo: in fact, this is the only scaling which yields a finite (narteracting) DOS for
the lattice. These scaling prescriptions are directheréd in the corresponding self-enelgy
This can be shown most comfortably in terms of Feynman diagrd_et us consider, e.g., the
(one-patrticle irreducible) Feynman diagram of Fig. 2.1evehsites and; are connected by
three independent Green’s functions. The contributiohi®diagram scales ds/2)* if i # j,
hence it becomes irrelevant in the limit— co. If the self-energy is expressed in terms of the
dressed propagatdi;;, in order to avoid double counting of diagrams one has toidensnly
skeletordiagrams. These do not contain any part connected to thefrdst diagram by less
than three Green'’s functions. As a consequence of the ge¢@ltan be shown that all skeleton
diagrams become local ih= o, yielding, therefore, a purely local self-energy

Note that this represents a huge simplification for the dpson of correlation effects in the
lattice model, and the main achievement by Metzner and Hodit{96].

Mapping onto the AIM. As already mentioned, the results achieved by Metzner anld Vo
hardt with the scaling in infinite dimension, opened the i@ythe development of the novel
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theoretical method of DMFT. The idea of Georges and KotBar, P8] was that the lattice prob-
lem in infinite dimension can be mapped exactly onto an AlMmed to a self-consistent bath
of conduction electrons, described by the Hamiltonian

Hazm = Z EkOGLUCLkU + Z Vk(azacc, + h.c.) + Unyny, (2.5)
ko ko

wherec! (c,) are the creation (annihilation) operator of an impuritgatton, andh, = clc,
is the corresponding electronic density at the impuritg.siHerea  (a,,) are the creation
(annihilation) operators of a conduction electron witisgimomentunk, and energyy., and
V. describes the hybridization between the impurity and threlootion band.

The condition that makes the mapping possible is that alldbal skeleton diagrams of the
AIM have the same topology of the ones of the Hubbard modetfinite dimension. This
means that the AIM would yield the same self-energy of thigckatodel ind = oo, provided
that the dressed propagators appearing in the diagrammegiansion of the self-energy are
also the same.

In this framework, it is convenient to reformulate the peahl(2.5) in an imaginary-time
integral representation in terms of Grassmann variable8][lvhere all fermionic degrees of
freedom are traced out, except for the local ones, i.e.etlvdbshe impurity site, yielding the
effective action

B B B
eff — T i (NG T — e (7 T n(T)n (7). .
S—/Od/od%jo()go( >a<>+U/0d (D). (2.6)

As already discussed, the AIM describes the local dynamfi@nadnteracting impurity in a
non-interacting background. The bare propagator of the AJyt (7 — '), plays the same
role of the Weiss field in the classical mean-field theotyisian effective field coupled to the
impurity, containing all non-local information of the urrtleng lattice, described as a reservoir
of non-interacting electrons. The main difference withdlassical Weiss field relies in its time
dependence, which accounts for the local dynamics of thesysFrom the physical point of
view, this means taking into account logantum fluctuationsi.e., the transitions between
different configurations of the impurity siteof, | 1), | ), or | 1})), via hopping processes
from/to the bath in which electrons leave the impurity anchedack on a time scate~ 1 /w.
From the practical point of view, instead, the main advaataighe mapping is that several
well established methods to solve the AIM are known, and fiassible to exploit them to
compute local quantities from the effective action (2.6rsas the impurity Green'’s function

1 i
Galr = 1) = =5 [T [ Dy Dl (e, () e51e'55™), @D

where the partition function is defined as

z=1] / De, Del, (5o, (2.8)
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mapping onto A7 M

Go(v)

lattice DMFT impurity
Z p
\_/impurity solver:
QMC, ED, NRG, ...
Hilbert Transform Z (]/ )

(lattice non-interacting DOS)

Figure 2.2: Flowchart of DMFT. The lattice problem (I.h.s. of the flovast) is mapped onto an auxil-
iary Anderson model, consisting in an impurity embeddedspl&consistent bath (r.h.s.), defining a
dynamical Weiss fieldjy (). The impurity model is solved numerically, yielding a losalf-energy
Y (v). The local quantities on the impurity are related to the afdke lattice (defined by the corre-
sponding DOS) via a self-consistent condition. The DMFTeseh further iterates the lattice and the
impurity models until convergence is reached.

and the functional integral is performed over the Grassmaniable associated to the fermionic
creation and annihilation operators. However, the satutbEqg. (2.7) and (2.8) does not
provide complete information, since the specific choicéhef AIM which yields the same self-
energy of the lattice problem is a priori not known. Therefamne needs to establish a relation
connecting the interacting Green’s function generatethftbe effective action of the AIM
with the local one of the lattice model. Specifically, alktimformation about the lattice will be
encoded in the corresponding DOS

D(e) = 25(5 —€r), €= Ztijelk(Ri_Rj)- (2.9)
k ij

The explicit relation is provided by the self-consistenopdition
Go'(v) =v+up+Gw) ' +R[G(v)], (2.10)

whereG(v) is the Fourier transform (FT) of the impurity interactinge@n’s function (2.7) in
frequency spacéandR[G(u)} denotes the reciprocal function of the Hilbert transfornthef
lattice DOS

D) = /_OO g 2 (2.11)

00 C_E’

1The imaginary time is related to the Matsubara frequancyhaa&=T+ — 2, while the physical quantities on
the real axis are obtained performing the analytical camatiion. — v +:0" (see, e.g., Ref. [90]). While here
we keep a generic notation, one has to be aware that, if thenGréunction is known only numerically on the
imaginary time/frequency axis, its analytic continuatisnot trivial [101].
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which corresponds, in fact, to the local Green’s functiorir#f lattice if( = v + p — X(v),
see below. Condition (2.10) establishes the relation rebemlebtain a closed set of equations,
which can be solved self-consistently (see also Fig. 2.@)raing to the following scheme:

the local Green’s function of the lattice problem is complutga the Hilbert
transform with an initial guess for the self-enefgy) (e.g.X(v)=0)

_[" Dle) .
Golv) = /_m T (2.12)

the auxiliary impurity problem is defined g, ' (v) = G}, (v) + X (v);

the corresponding impurity Green'’s function is calculaetving the AIM

Ginp(T — 7') = _% / De Def (c (r)el (') e—S{c,cwal}); (2.13)

the Dyson equation yields a new self-enekgy) = G, ' (v) — G} (v);

imp

Y (v) enters Eqg. (2.12) again and defines a new local Green’siumetc. till
convergence.

The usual guess sets the self-energy to zero, which comdspo identify the Weiss field with
the local bare Green'’s function of the lattice problem, bepehding on the physical system
and on the set of parameter considered, different guess mayobe appropriate and shorten
the self-consistency cycle. For the sake of simplicity,\eband in the following we restrict
ourselves to the paramagnetic case, where the Green’'sdanstspin-degenerate. However,
the DMFT self-consistency can be generalized to deal widsph with broken symmetry, e.g.,
in presence of long range (anti)ferromagnetic orderingupesconductivity, as discussed in the
review of Ref. [98].

Impurity solvers: evaluate the local one-particle irredudble self-energy. It is important
to recall that, contrary to the static mean-field theory &i# is still a quantum many-body
problem. Its (numerical) solution, though being much senphan the one of the full lattice
problem, is nevertheless challenging, and still represtre computational bottleneck of the
DMFT scheme. However, several well established solversaaadable for the solution of
the impurity model, including: iterated perturbation thef102], numerically exact Quantum
Monte Carlo (QMC) [103, 104, 105, 93], exact diagonalizat{&D) [106, 107]), numerical
renormalization group (NRG) [108], and diargrammatic resation like the non-crossing ap-
proximation and its extensions [109, 110, 111].

In the following we focus on the evaluation of the irredueilself-energy in the impurity
solvers used for the calculations presented in this work.
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e Exact Diagonalization: the AIM is solved performing a direct diagonalization of thamil-
tonian (2.5), where the (continous) bath is parametrizedrbgffective discrete bath consisting
of few orbitalsn,, described by a set of Anderson parametg@ndV,, k=1, ..., n,. The pro-
cedure suffers from severe limitation due an exponent@lgrg Hilbert space. Nevertheless,
ED can provide accurate results for the single band casecisly for integrated quantities).
The Green’s function of the discretized AIM is evaluatednirthe corresponding Lehmann
representation [67]

Z [nlelm ( g fer 4 o) (2.14)

V€, — €n

where the sum extends over all exact many-body eigenstatewith eigenenergies,. The
knowledge of the impurity Green'’s function allows one toesxthe irreducible self-energy by
means of the Dyson equation

Y(v) = Qo_l(u) — G_l(l/), (2.15)

as well as other physical quantities of the impurity modeg lie.g., the impurity spectral func-
tion A(v) = —1G(v), or the double occupatiofil) = (nyn,) = (8U)' >, E(v)G(v). The
data obtained by means of ED are obviously not affected hysstal noise: this results in

a proper high-energy asymptotic behavior of the physicaingties. On the other hand, the
corresponding spectral functions display a typical pedkycture, as a consequence of the dis-
cretization of the bath.

e Quantum Monte Carlo: available on the “market” are several algorithm in thigexgory,
sharing some features, but also characterized by impatifietences. For the QMC algorithm
there is no need for a discretization of the effective baghthe solver deals with the effective
action functional integral representation in imaginanyej built by the Anderson Hamiltonian.
Moreover, due to its potential to treat multi-orbital Harailians, it is more suitable than ED,
e.g., for realistic calculations. Below we briefly discube main features of the Hirsch-Fye
Quantum Monte Carlo (HF-QMC) [103], which we have employethie context of this work.

In the HF implementation, the time domdin /3) is discretized intd. equally spacetime-
slicesAr = /L (Trotter decomposition). One therefore performs, for eticte-slicei, a
discrete Hubbard-Stratonovich transformation on therawgon term, which is decoupled in-
troducing a set of auxiliary (classical) fields, i.e. Isifiglds. For a fixed configuration of
the auxiliary fields{s;}, the problem is reduced to non-interacting fermion moded ime-
dependent magnetic field ;) = s;, which can be solved exactly by a Gaussian integral. The
configuration are updated by Markov processes consistirspio flips, and the sum over all
configurations is evaluated with Monte Carlo. The quantuatihanical problem is therefore
reduced to a matrix problem, i.e., the Green’s function -al & other physical quantities- can
be evaluated from the determinant of‘adimensional matrix in the auxiliary fields’ space. It
is therefore clear, that the computational effort growsssanitially with L, i.e., the number of
time slices used in the discretization process.
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Again, the knowledge of the Green’s function allows one tmpate the irreducible self-energy
by means of the Dyson equation, which isyira complicated convolution integral

B B
G(1) = Go(1) + /0 dT’/O dm" G(7S(r" = 7G(r — 1"). (2.16)

Therefore, it is preferable to perform a FT to the frequerngce already at this level, where
the equation assumes the simple form (2.15). The instabpitiblems associated with the FT
(from 7 to 2v) in the HF are well known, and originate from the limited nuanbf time slices
available in the calculations. Some techniques, invohhigh-frequency expansions of the
Green’s function and semi-analytic FT, have been develap@dder to decrease systematic
errors (see, e.g., Ref. [112] as well as Appendix B and rate® therein).

The limitation of the HF-QMC are related to the discretiaatof the time domain, which in-
troduces a Trotter error of ordefr)?, and that the computational effort scalegas, with the
additional issues that at strong coupling and low tempegatihe numerical results may become
unstable, the complexity even increases in the presenced mvolved interactions, e.g., in
multi-orbital models. Those limitations motivated the dimpment of modern continuous-time
Quantum Monte Carlo (CT-QMC) methods, which are free of th&tt€r decomposition error.
Among the several approaches reported in the literaturanemion the weak coupling [104]
and the (strong-coupling) hybridization expansion [10&fsions. However, it was recently
shown that a state-of-the-art implementation of HF-QMQtjveixtrapolation of discretization
AT — 0 is competitive with CT-QMC [113], A detailed description ©T-QMC methods, and
its comparison with HF-QMC is, however, beyond the scopaisfsection and remand to- Ref.
[93] for a review.

Success and limitations of DMFT. One of the main achievement of DMFT was the non-
parturbative description of the physics behind the coti@iadriven Mott-Hubbard metal-to-
insulator transition (MIT) in infinite dimension [114, 98]The MIT is characterized by the
transfer of spectral weight from a coherent quasi-parii@e) peak to the incoherent lower
(LHB) and upper (UHB) Hubbard bands. Within DMFT it was shothat in the intermediate
coupling regime the system retaibsth QP feature and Hubbard bands, with the formation
of a typical three-peak structure. The QP peak shrinks arsdstippressed as the interaction
is increased and eventually disappears at a critical valué. oThe success of DMFT in de-
scribing the MIT lies certainly in its intrinsic non-perhative nature, which represents a huge
advance over previously available techniques, and allowexplore the whole range of cou-
pling strenght. No doubt that the venue of DMFT marked indeedeginning of a new era for
the theoretical investigation of strongly correlated glauic systems.

The wide range of applicability of DMFT may be surprisingnsaering that in the real
world one deals with finite (e.gd,= 3 or d =2) dimensional systems. However, the coordination
numberz is already quite large for several three-dimensionaldesiz = 6 for a cubic lattice,

z = 8 for a body-centered cubic lattice, or ever= 12 for a face-centered cubic lattice. The
controlled limit of DMFT, which becomes exact as+ oo, ensures the internal consistency of
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the method and establidhz as a control parameter. Therefore DMFT can be considered not
only as a purely mathematical construction for describireférmionologyin d = oo, but also
as a useful approximation to many realistic finite-dimensi systems.

At the same time, despite of providing a good qualitativecdpion of the Mott MIT in
three-dimensional systems, DMFT still remains a mear-fgproximation in space, as it com-
pletely neglects spatial fluctuations. Thereforidure of the purely local picture of DMFT
is to be expected, as soon as non-local spatial correlatimosg the electronic degrees of free-
dom become predominant. In order to understand the liroitatof DMFT, and the way how
to improve the description of strongly correlated systemgind mean-field, it is interesting to
analyze the physical situations which favor the presensggoificant non-local correlations.

In low dimensional e.g.,d =1, d = 2, or layeredd = 3 systems, the lattice coordination
number becomes low: e.g:,= 4 for a square or Kagomé [94] lattice,= 3 for a triangular
lattice, or even: = 2 for a unidimensional chain. In this case the dynamics oftedes is
obviously strongly influenced by the actual configuratairthe neighboring sites, rather than
from the average on the whole lattice. Therefore, in thigagibn a mean-field description is
generally a poor approximation.

Also confinement effectsare closely related to the dimensionality of the systemsalAs
ready discussed in Sec. 1.1), at the nanoscale electrobecamfined, e.g., in low-dimensional
interfaces of semiconductors (quantum dots) or propagébeniarrow structures whose size is
comparable with the electrons’ Fermi wavelength As a consequence local as well as non-
local correlation effects may arise even in materials wigicmot exhibit evidences for strong
correlations in the bulk.

Finally, it is well known, from the theory ofritical phenomena [115], that close to a
second-order phase transition (e.g., from the paramagtwethe ferromagnetic phase in spin
systems) specific collective (critical fluctuations) dioate the low-energy physics of the sys-
tem and that their spatial coherence extends on a length&aadually known under the name
of correlation length. As it is immediately visible from tigstein-Zernike [116] formula for
the propagator of the critical fluctuations

1

o=t (2.17)

x(q)

the correlation lengtli—2 plays the role of an effective mass, providing an infrarét) @utoff
to the correlation functiory(q) and exponentially dumping the fluctuation on a sc@leAt
the critical temperaturd,, the correlation lengtly diverges, resulting in a thermodynamic
instability and leading to critical phenomena, which carbedescribed (at least for dimensions
d < 4) within a mean-field theory in space.

In this sense, alssmhomogeneity or disorder effects as e.g., those responsible for the
Anderson localization [117], are washed away from the ayiatpof the spatial fluctuation in
mean-field.
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2.2 Merging many-body with ab-initio methods

So far we have discussed how to take into account electranmrelations in the context
of model Hamiltonians, as in the case of the Hubbard modelwéver, the original intent
of the Hubbard Hamiltonian is the description of the reldévatmysics of the solid state, i.e.,
a system of mutually interacting (valence) electrons in ékgeound potential generated by a
periodic lattice of ions. In the Born-Oppenheimer appraadion [118], where the electronic
and the lattice degrees of freedom have been decoupled egfecting relativistic correction
the solid state Hamiltonian reads

H2A 2z
H:;/d?’rW(r,a)[—%—Zigom b (r,0)

%
2

+%Z/d37“/d3r’ Di(r, o)l (r, o) ¢ L v (v’ o )(r, o), (2.18)

dmeg |r — 1’|

where ¢ (r,0) (3 (r,o)) are the creation (annihilation) field operators of an etattwith
charge—e, spinco, and massn at the positionr, while A = §%0°r is the Laplace operator.
The coordinateR,; denotes the position of an ianwith chargeZ;e. Finally, h ande, are the
reduced Plank constant and the vacuum dielectric perityttiv

The presence of the Coulomb electron-electron interactorelates the propagation of the
electrons (see Fig. 2.3) and makes of the lattice Hamilto(#al8) a full guantum many-body
problem, impossible to be solved exactly for a realistickllge number of electrons. One has,
therefore, to develop approximations. One possibilitpisdnsider many-body model Hamilto-
nians, as already discussed, which provided useful insigtdrd the qualitative understanding

2e.g., the spin-orbit coupling, which would be importanifielectron systems.

many-body

Figure 2.3: Two possible ways of approaching the solid state Hamiltoi§Zal18). Within DFT, one
considers the effective problem of an electron propagating underlying time-averaged potential
obtained as a functional of the electron density: this adlawe to deal with a realistic bandstructure
and compute electronic properties of materials, but néglsitong electronic correlations. Within
many-body approaches, including DMFT, one relies on annéiséenodel Hamiltonian (e.g., as
in the Hubbard model) which, although being a drastic apgprakon of the original Hamiltonian, is
believed to take into account the relevant physics for aigige understanding of strongly correlated
electronic systems. Adapted after Ref. [119].



2.2 Merging many-body with ab-initio methods 45

of the role of electronic correlations. The results of theseulations, however, do not provide
a quantitative description of realistic compounds and ased on parameters that have to be,
e.g., extracted from a fit of experimental data. The othesmlity is to employdrastic approx-
imationsto Hamiltonian (2.18) in order to deal with it directly. Inisiframework developed the
Density Functional Theory (DFT) [120] which, combined with theocal Density approxi-
mation (LDA) or other DFT approximations, revealed itself to be xpectedly successful to
compute the bandstructure and electronic properties ofymaaterials. In the following we
briefly review the basic concept of the DFT(LDA). In partiay we discuss the reasons why
it fails to describe strongly correlated materials, and Nustrate how it can be combined with
many-body approaches in order to overcome this limitation.

2.2.1 Density Functional Theory

The DFT is based on the Hohenberg-Kohn theorem [120]. Therlstates that the ground
state energy is a functional of the electron denéify(r)] which is minimized by the ground
state density(r) = po(r). This functional can be constructed [122] as

N
Elp) = min|(6[M16)[ (6] > 3 = x)l6) = p(r)|. (2.19)
i=1
where¢p = ¢(ry1,01,...,rN,0x) is the full many-body wave function for a fixed number of

electronsV; and its minimization yields the ground state enefgy=min, E[p|.
As far as only ground state properties are concerned, thukasthe existence of an effective po-
tential V*[p(r)] that includes all many-body effects into a (solvable) oagiple Schrodinger
equation. However, being such a potential unknown, in gamere would still need to compute
the expectation value of the Hamiltonian on a complicatédsmany-body wave functions.

A possible way out solution is to separate the energy funatias

E[p] - Ekin.[p] + Eion [P] + Ehartree{ﬂ] + Exc[ﬂ], (2.20)

where Eign[p] = [ d®r Vien(r)p(r) is the energy of the electrons in the external potential gen-
erated by the ionic lattice, anBlatwedp] = 5 [ d*r [ d* p(r)Ved(r —1')p(r’) is the Hartree
(mean-field) contribution of the Coulomb interaction. $hvay, all the complexity due to
many-body effects is hidden into the exchange correlagom £ [p|, which remains the only
unknown term of the energy functiodalnd needs to be approximated.

In order to avoid the practical difficulty of expressing tkiaetic energyEiin [p] through
p(r), due to the presence of the Laplace operator, Kohn and Sh2#j ifitroduced a set of
single particle auxiliary wave functions;, yielding the same density of the system under con-
sideration

plr) = > leir) " (2.21)

3Remarkably, one can show [123] that the functioB#h] — FEion[p] is material independent. Hence, if one
would know the exact DFT functional for a given material, aoaild calculate all materials by simply adding
Eionlp].
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Hence, one can perform the minimization of the energy fometi in terms of these auxiliary
wave functions as

5{E[P] - i [Ez‘/dsr [i(r)[* — 1] }/5% =0, (2.22)

where the Lagrange multipliees guarantee the normalization of the auxiliary wave fundion
The above variational scheme yields the well-known KohafBiliKS) equations

hZ

2me

0 Exc[p]
dp(r)

which reduce the original interacting problem to a set ofr8dimger equations in a time-
averaged potential generated by all other electrons (sedlklstration in Fig. 2.3)

A+ Vion(r) + /d37’/ Vee(r — I'/)p(r/) + ]QOZ'(I') = eiapi(r), (2.23)

0 Exclp]
dp(r)
Note that the auxiliary wave function, solution of the KS atjons, are introduced for the only

purpose of minimizing the density energy functional, andehdence, no physical meaning.
Moreover, the kinetic energy term in (2.23), i.e.:

Ver(r) = Vion(r) + / Br' Vi(r — 1')p(r') + (2.24)

N ﬁQ
Exingg = — Y _{wils—Alps), (2.25)

2m,
i=1 €

corresponds to the kinetic energyintlependenparticles, while the one of the correlated sys-
tem also includes many-body effects (e.g., in the form of aswanormalization). The latter
can be, nevertheless, absorbed iAlg[p], so that the many-body complexity is formally in-
cluded in the exchange energy functional.

The KS equations (2.23) can be solved self-consistentlgrdatg to the following scheme:

an initial guess for the electron density is made;

the effective density functional effective potential isetenined by

0 Exc[p]
ap(r) -

V() = Vion(r) + / &1 Veelr — ¥')p(x') + (2.24)

the KS equations (2.23) are solved, yielding the auxiliaay&functionsy; and
the Lagrange multipliers;

the density is updated, by means of equation (2.21);

the whole process is iterated till convergence;
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Obviously, in order to build the KS effective potential (2)2one has to make an approximation
for the unknown exchange energy functiofigd|p]. In this respect, several schemes have been
proposed, however, the choice of a given approximatingtfanal able to reproduce material-
specific properties is often still a matter of debate in tH€ll@ommunity. Among the possible
approximations, perhaps the most widely employed is LDAemlE,.|p| is replaced with a
functional of the local density only:

Exlpl ~ [ & &2 (o(r), (2.26)

In order to ease numerical calculations, the LDA exchangeetadion functionak:>* can be
a parametrized analytic function. It can be obtained by, éhg solution of the homogeneous
electron gas (HEG, or jellium) model, defined by a constateptial Vi,, = const., yielding
a constant electronic densityr) = po. Evidently, such an approximation is reasonable for
materials characterized by a slowly varying electron dgnsir equivalently, with small den-
sity gradients. Hence, it may be suitable for materials withor p-orbital valence electrons,
while it is no longer justified in strongly correlated trainen-metal and rare-earth compounds,
characterized by open shells of narrawand f-orbitals.

Adopting the LDA for the exchange energy functional is eqlewt to place thab-initio
Hamiltonian (2.18) with the following effective one-paitt (LDA) Hamiltonian

2me

Hioa =Y / &r (e, o) [ Ay VLDA(r)]¢(r,a). (2.27)

where the effective LDA potential is defined as
OE" (p(r))

Op(r)
One can, hence, solve the KS equation (2.23) with the LDA amgh correlation energy func-
tional (2.26), expanding the many-body wave functions initable basis. However, with the
idea of performing LDA+DMFT calculations (see below), oreeds also to define a set of
localized orbitals; possible choices are plane waves gt@geonto Wannier orbitals [126], or
Muffin Tin Orbitals (MTO), either in the linear (LMTO) [127r the Nth-order (NMTO) [128]
version.

As already mentioned, LDA has revealed indeed quite suftdemsd established itself as
themethod for the realistic material calculation. Howevefaits in describing the bandstruc-
ture of correlated materials, the major reason being theepiee of localized states, which
strongly modify the electronic density distribution witespect to the one of a weakly corre-
lated HEG. In other words, the LDA prescription (2.26) foe texchange energy functional
leads to an effective one-particle approach, where theteffeother electrons is treated within
a static (time-averaged) mean-field.

VEOR) = Vi) + [ ' Vilr =)ol + (2.28)

“More sophisticated exchange energy functionals, beyoad_ibA one, can be obtained, e.g., within the
Generalized Gradient Approximation (GGA) (see, e.g., RE25] and references therein) or by means of hybrid
functionals.
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2.2.2 LDA+DMFT

Both theab-initio and the model Hamiltonian paths have been extensivelyvieitbby
modern solid-state theorists, and despite being veryréiftein spirit, those approaches result
nevertheless complementary. More recently, importanaades came along from the “mar-
riage” of the two schools, giving “birth” to a joint appch, where many-body techniques are
merged into first principles schemes, able to make quangt@redictions for strongly corre-
lated materials.

Obviously, the full LDA basis would be impossible to handle rtneans of an impurity
solver (see also Sec. 2.1), and its delocalized nature widlbo not appropriate to define an
Hubbard-like interaction as in Eqg. (2.1). Thus, in order éofprm LDA+DMFT calculations,
we need to trace out of the full LDA Hamiltonian the subspagbgh are irrelevant for the
description of the physical processes we are interestedore precisely, the effective low-
energy Hamiltonian is projected onto a basis of localizddtal, where we define the (local)
interaction Hamiltonian

Y, o) =Y @h(r)c,. (2.29)
il

wherec!,, denotes the creation operator of an electron onisited orbital/, associated to
the wave functionp},(r). Hence, the LDA Hamiltoniadownfolded/projected onto a suitable
local basis, takes the tight-binding form

LDA = Z Z Z tiﬂmc;’r&rcjmo? (2.30)
o i fIm
where the hopping matrix elements are defined through fleetefe LDA potential (2.28) as

2

tijfm = /dglr Spjéa(r)[

One has, however, to keep in mind that the identificationhef minimal basis set that takes
into account the relevant physics is a delicate issue aotgi material dependent. In the
most fortunate cases the correlated manifold is well sépaifaom the others, and the process
is relatively straightforward. On the other hand, there @ses in which the hybridization
between, e.g. thé bands of the transition metal and thebands of the surrounding ligands is
not negligible and the latter bands play an active role irpifnsical processes.

A generic form of the effective Hamiltonian for LDA+DMFT rdg, hence

H=Hon+Y. D> UtmtrmsClpClno ComorCigs— D D > Aenigy, (2.32)

i WW'mm'eLly oo’ i leLy o

A+ VA ()] e (1), (2.31)

B 2me

where the interaction is only taken onto account in the satsp;; of the correlated orbitals.
This means that/;,,,..,, are effective parameters describing the local interacgoreened by
the electrons residing in the orbitals projected out, tgjhyestimated with the constrained LDA
(cLDA) method. The task of determining the interaction paetersab-initio is a prominent is-
sue, and represents an active field of forefront researchweder, the actual derivation of the
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Figure 2.4: Flowchart for the LDA+DMFT scheme. The LDA approximation tbe exchange energy
functional allows the (numerical) self-consistent santof the KS equations, yielding the LDA one-
particle eigenstates of the while unit cell (in the box thegke case of La;Ca) sMnOj3 is shown).
A downfolding or a Wannier projection procedure providesitiput for the DMFT self-consistency.

interaction parameters is beyond the scope of this work,fand detailed discussion of the
problem we remand, e.g., to Ref. [121] and references therei

It is also important to consider that LDA already takes intoaunt rudimentarily part of the in-
teraction effects, such as the static Hartree contribudfdhe Coulomb interaction. This leads
to the additional well-knowrmouble countingoroblem when using an LDA input to perform
DMFT. In order to mitigate this problem, one needs to intrm&la correction\e to each of the
on-site energies of the orbitals in the correlated subspakimg into account the contributions
of the interaction already included in LDALPA — etPA 5, Ae, for £, m € Ly;. A physically

sensible and consistent way to do this is unknown, at leas$teriramework of LDA+DMFT,
yet for the most well-known prescription we refer, e.g., &fR [129, 130].

In practice an LDA+DMFT calculation is implemented as folk(see also Fig. 2.4). In the
case of solids, where the real-space translational symrisegiranted by the periodic structure
of the underlying ionic lattice, one can calculate the LDAdstructrure by means of a FT of
the hopping matrix on a coarse-grained Brillouin zone

Im

1 _K(R.,—R.
€sPA (k) = zZ{thwme k(Ri—Ry), (2.33)
where L. denotes the number of lattice positioRs of the atoms in the unit cell. The LDA
bandstructure;°” (k) represents thab-initio input of the LDA+DMFT calculations. The local
Green’s function of the corresponding lattice model is miedi as

1
GIOC(V) = Z L €|£77|731A (k) — 2(1/). (2.34)

k
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Hence, the corresponding auxiliary local impurity probetefined analogously to Eq. (2.13),
can be solved self-consistently within the DMFT scheme dlesd in the previous section. This
way, one is able to include local correlation effeatstopof LDA. Most of the calculations are

performed in this spirit, albeit depending on the changecoipation in the different orbitals,
a fully self-consistent LDA+DMFT calculation may also besded.

2.3 Including correlations beyond DMFT

The Hubbard interaction represents obviously a drasticoimation to the Coulomb repul-
sion: it retains only its local contribution under the asgtion that the strength of the (screened)
interaction falls with distance fast enough that non-langraction on the typical lattice dis-
tance are essentially negligible. However, even assurhisgissumption to be correct, leading
to an effective interaction purely local in space, non-legatial correlations may still arise.
Those spatial correlations, when non negligible, havequiodl consequences on the physics
and need to be taken into account, beyond the mean-fieldrpiof DMFT, in order to quanti-
tatively describe the properties of the system. An insiveotxample concerns the Néel tem-
peratureTy associated to the paramagnetic to antiferromagnetic (bsifsition in the lattice
model: for the Hubbard model ith=2, DMFT predicts a finitel}y while it should instead be
exactly zero, according to the theorem of Mermin & Wagnersirond order phase transitions
[131]. Such intrinsic limitations of DMFT motivated to inme non-local correlations beyond
mean-field into account. In fact, many possible extens@ih®MFT, which recover DMFT
in some well-defined limit, were proposed. In the followiweg briefly review the main ones,
in order to provide an overview on the theories of electragelations beyond (dynamical)
mean-field.

Chronologically, one of the first extensions to DMFT was thié expansion [132], which
was meant to be the natural analytic extension of DMFT. Itasdd on the idea of making
a resummation of all skeleton diagrams with inter-siteadise not greater tham for n =0
DMFT is recovered, while at higher inter-site distamcevould give the leading corrections to
DMFT to orderl/d". However, though formally elegant, the method revealezlfite be of
scarce practical use: in fact, when non-local correlatlmeome really relevant, retaining only
the leading terms in &/d expansion does not provide any longer a reasonable appeitrim
Moreover, in some parameter region, the method can develo@nalyticities originated from
the violation of the causality principle.

The forthcoming extensions to DMFT, whose application reenimore successful than the
1/d expansion, can mainly be grouped itaster [134] anddiagrammatic extensions
To the former branch belongs the cellular-DMFT [133] anddlgeamical cluster approxima-
tion (DCA) [135, 136]. The main idea of the cluster extensigto approximate the spatial
correlations of the infinite lattice with those of a finis&ze cluster. Therefore, both methods
map the original lattice problemot onto a single-site AIM, but onto a cluster of lattice sites
embedded into a self-consistent bath, with the main diffeeethat the cluster is built in real
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(cellular-DMFT) or in momentum space (DCA). In both caseBIHT is recovered in the limit
in which the cluster collapses to a site. Those theoriesvallane to naturally take into account
short-rangecorrelations within the cluster size exactly, while tragticorrelations at longer
length scales within mean-field. To include short range-lomal correlations is certainly im-
portant, as they, e.g., suppress the Neél temperdiuveth respect to the DMFT predictions,
and to restore the k-dependence of the self-energy alloesmdescribe phases characterized
by a non-local order parameter, such as spin density wau@®/|Sr d-wave superconduc-
tivity [137]. Cluster extensions were indeed quite sucitésnd are still probably the most
well established extension to DMFT. Among the most impdrémhievements we recall inves-
tigation of the phase diagram, and in particular the pseapqinase of the two-dimensional
Hubbard model [134, 138, 139], and of the interplay betwdeatenic correlation and struc-
tural (Peierls) distortions iVO, [140, 142, 141].

However, cluster theories are numerically much more deimgritian DMFT, as the size
of the Hilbert space of the effective impurity model, defiren a cluster of lattice sites, is much
larger compared to the one of the single impurity Andersodehadr his obviously impose lim-
itations to the maximal cluster size (especially in the ¢hdenensional case) and the intrinsic
finiteness of the cluster prevents one to treat long-rangelations, almost certainly of impor-
tance in critical regions. In order to access informatiortloethermodynamical system, one
usually needs to make extrapolations as a function of th&tedsize. However such a proce-
dure is delicate and its accuracy can depend both on thensystethe cluster geometry, and
on the physical quantity considered. At the same time, fondiaed cluter size (no matter how
large), cluster theories will always find a mean-field icat behavior (i.e., critical exponents)
close to the phase transition, and may still lead (as well lsi§&D does) to unphysical phase
transition prohibited by the theorem of Mermin & Wagner [L3Perhaps, in this context it
is worth to notice that though being both self-consisteidt @rderivable in the sense of Baym
and Kadanoff [143, 144], DMFT, as well as its cluster extensiare not conserving, as all of
them violate local momentum conservation, and are thezdilagly to violate some set of Ward
identities [134, 136].

Those drawbacks became the main motivation to devetopplementary extensiongo
DMFT, where the approximations are introduced at the diagratic level. The main approx-
imations in this spirit are the dynamical vertex approximaiDI'A) [145, 146, 147] and the
dual fermion (DF) [149] approach. The basic idea of thosehoug is very similar, as they aim
to introduce non-local correlations at all length scala$geming an approximation at the level
of two-particle quantities.

In the case of the DF approach, the approximation is done irahfdrmion space, defined
via an Hubbard-Stratonovich transformation performed lan liopping term of Hamiltonian
(2.1), or to be more precise, on the difference between thpihg term and the dynamic Weiss
field. The transformation yields an effective local prahléen the dual fermion space to be
perturbatively expanded around its non-interacting limibich corresponds, in the original
space, to DMFT. The theory is conserving in the sense of Baythkadanoff (though this
was proven only for the dual space [149, 150]), and the coeffts of the Taylor expansion
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are the duah-particle Green’s functions, e.g., for=2 the coefficient corresponds to the dual
two-particle reducible vertex functions F. This seriesl&émed to be rapidly converging, and
the method allows one to compute the susceptibilities inltbbbard model [151], although
this has been recently questioned in Ref. [152]. Retairieddwest order in the effective dual
interactionF' is not enough and, for example, in order to reproduce thedug@p formation
one needs to build a ladder solution of the Bethe-Salpeteatean [150]. Recently the DF
method has also been combined with DCA [153] in the frameveditke so-called multiscale
approach [154].

In the case of DA instead, the diagrammatic approximation is directly &apto the space
of the physical fermions. It consists in requiring the ldtyadf the two-particle fully irreducible
vertexA (often called alsd’,.., from which stems the name of the method), in order to include
non-local fluctuations in the one-particle irreducibléf-@mergy. Among the achievement of
DI'A in the context of bulk systems, we recall the study of thectjpé properties of the Hub-
bard model at half-filling both inl = 3 andd = 2 [145, 147]. Noteworthy, in the latter case, a
proper treating of non-local spatial correlations beyoreamfield are shown to restore a zero
Néel temperature, as well as to determine the formation skagogap state at intermedidte
providing significant qualitative and quantitative imgesment with respect of DMFT. More-
over, within DI'A it is also possible to address critical properties closa second order phase
transition, as it was done, e.g., for the critical exponeftsed =3 Hubbard model [168].

Since O'A represents the starting point, we have chosen for dealitigosrrelated nanos-
tructures, it is worth to discuss this approximation in moegails.

2.3.1 Dynamical Vertex Approximation

In order to understand the diagrammatics afA) it is useful to recall, and make a com-
parison with the diagrammatics of DMFT. From the diagramayadint of view, DMFT corre-
sponds to all the topologically distinct, purely local, gueticle irreducible skeleton diagrams
for the self-energy. The approximation is justified in higimasions by the scaling of the
Green’s function in the limitl — oo, in which all non-local contribution becomes irrelevant,
and DMFT is exact (see Sec. 2.1).

A systematical generalization of DMFT can indeed be obthiog requiring the locality
of the n-particle irreducible vertex, allowing, in turn, all irredible vertices of lower orders
n—1,n—2,...to be non-local [145, 147]. At=1 the one-particle irreducible vertex corresponds
to the self-energy, so that DMFT is recovered, while thetlimi~ oo corresponds to consider
all diagrams, and therefore to the exact solution of the Hutbbmodel, which is, however,
unknown. In this framework, the IDA corresponds to require the locality of the= 2-particle
fully irreducible vertex allowing the self-energy to be nlmcal (see Fig. 2.5). Indeed, once
the two-particle fully irreducible local vertex has beeneatmined, it allows one to compute
the two-particle full vertex functiorF“, , which enters the exact equation of motion (also



2.3 Including correlations beyond DMFT 53

DMET: locality of all 1-particle topologically distinct irreducible diagrams

1-particle diagrams become non-local ’.®,_
i j

Figure 2.5: DMFT and DI'A from the diagrammatic point of view. DMFT corresponds tidatal one-
particle irreducible diagrams for the self-energy, whilEAassumes the locality of the two-particle
fully irreducible vertex in order to include non-local cabution in the self-energy. Adapted after
Ref. [155].

known as Dyson-Schwinger equation) for the self-energy

Sr(v) = U— —UT*Y > iy Gy (V + w)Gu (V) Gy (v + w). (2.35)

v'w  kq

This way, the information of non-local spatial correlagdmeyond mean-field can be included
non-parturbatively in the self-energy, and into valualle-particle quantities, e.g., the suscep-
tibilities.

The justification of the approximation employed if'B is the following. The fully irre-
ducible diagrams are by definition the most compact onesthey cannot build any kind of
ladder (see Sec. 2.3.2 below): those diagrams are henclefiesione to the bare interaction in
the case of the Hubbard model, where the interadtias purely local in space. It is therefore
reasonable to expect only a weak momentum dependence afdheatrticle fully irreducible
vertex also in finite dimensions, making the assumptionirmeDI’A particularly plausible.
Indeed, numerical evidence supporting the reliability fog targument was recently reported
[156] within DCA in the two-dimensional Hubbard model at Aioteger density. While this
would not hold any longer in presencerafn-local interactionse.g., the full Coulomb potential
V(r) ~1/r, long-range interaction terms may still be taken into actaevithin the mean-field
approximation, or within further extensions of the diagnaatic methods, such as the recently
proposedb-initio DT'A [157] or Dual Boson [148] methods.

Slt was rather a sporadic investigation, concerning withstinecture of the pairing interaction in a case relevant
for the superconducting instability in the cuprates.
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The main task is, hence, to compute the two-particle fullgducible local vertexA non-
perturbatively at all orders. This is more conveniently eamthe level of the single-site AIM,
exploiting the self-consistency relation between the intpuGreen’s function and the local
Green’s function of the original lattice. In this respetig flowchart of O'A is conceptually
similar to the one of the DMFT, as in both methods the latti@dfem is mapped onto an AlM.
In DI'A however, one is required to fully compute local two-pdetiquantities out of the AlM,
thus enhancing the workload associated to the solutioneointipurity problem. Nevertheless,
this workload is still lower than the one required by, e.gGAfor large cluster sizes, which is
an essential property for the future development of the otefh57].

2.3.2 Diagrammatics& Parquet formalism

The main part of the following discussion and the derivatibtthe parquet formalism is pub-
lished in the APS Journal “Physical Review BPRB86, 125114 (2012) [158].

In order to understand the essence @Dwe need to define some fundamental quantities
and to get familiar with the diagrammatic formalism of th@tparticle vertex functions. This is
most conveniently done in the context of the AIM, which isdise evaluate two-particle local
vertex functions in DMFT and its extensions. However, a falremd extended derivation of the
diagrammatic relation presented below in beyond the scbg@sowork, and for this purpose
we refer instead to Ref. [158], where state-of-the-art efkhowledge about two-particle local
vertex functions has been revised and completed in a urfdieadalism.

General definitions. The starting point of the following analysis is the Hamilieom of the
AIM (2.5), which we recall here for the sake of clarity in a atidn consistent with the notation
adopted in Ref. [158]

Hazm = Z ekaazgaka + Z Vk(afwcc, + h.c.) + Unyny, (2.36)
ko ko

wherec! (c,) are the creation (annihilation) operator of an impuritgatton, andh, = clc,
is the corresponding electronic density at the impuritg.siHerea  (a,,) are the creation
(annihilation) operators of a conduction electron witisgimomentunk, and energyy.,, and
V. describes the hybridization between the impurity and threlootion band.

Besides the one-particle Green'’s function, at the twoigartevel one usually defines the

generalized susceptibility as a combination of one- and two-particle Green’s fungtion

Xo1090304 (Tlu T2, T3, T4) = G01020304 (7-17 T2, T3, T4) - GO’10’2 (T17 T2)G0304 (T37 T4)7 (237)

which represents the fundamental two-particle local gtianeeded to be computed on the
impurity level. The notation can be substantially simplifitaking into account the symmetries
of the system. Due to the time-translational invariance2d3§) and exploiting the properties
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of the Matsubara representation for the Green’s functions,can restrict the imaginary time
domain to[0, 5) and set, =0, yielding

XU10'20'30'4 (7—17 T2, T3, 0) - G0'10'20'304 (7-17 T2, T3, 0) - G0'102 (7-17 72)G0'304 (7-37 0) (238)

Moreover, in theSU (2) symmetric case considered here, due to the conservatiginpgsnong
the 2* = 16 combination ofr, . .. o4, only 3 x 2 are actually independent: ) = oy = 05 = 04,

ii) (01 =09)#(03=0y), and iii) (o1 =04) # (02 =03), with o1 =, | in each case. This suggests
the following definitions, which cover all the possible coimation mentioned above.

Xoo! (T17T27T3) = Xooo’cr’(7-177-277—3)7 (239a)

XW(T17T277-3) = X00’0’0(7-177-27T3)- (239b)

Furthermore one can show that the two previous definitidnth@ susceptibility are related
by the crossing symmetry [158, 159, 160] and that, in the iEowpace, e.g, the definition
(2.39a) can be obtained by the one of (2.39b) by means of a imegpeency shift (cf. also the
Appendixes of Ref. [158]). In light of the previous consialgons, for the rest of this work, we
will here restrict ourselves to the susceptibility (2.3Ra¢ping in mind that all relations derived
for this will apply, without any restriction, to (2.39b) a®ik

A clearer interpretation of the susceptibility in terms afyRman diagrams, is obtained
in Fourier frequency space, where the susceptibility cadldfaned equivalently in both the
particle-hole (ph) andparticle-particle (pp) notation, as

XZ,';:(“;U, = X(VO’, (v+w)o; Vo, (V + w)a) =

outgoing electrons  incoming electrons

8 (2.40a)
= / dTdTodT3 XUU/(Tl, To, Tg)e_“’"rl ei(l"f‘w)’@ e—i('/'-i-w)ra7
0
' / / ’
X;Z,g'}a’ = X(KO-7 (w - V)O'J;gw — UV )0'7 1% O’) =
outgoingjfelectrons incomingjrelectrons (2_40b)

B _ _ , _
= / dTldngTg Xoo! (7‘1, T2, Tg)e_wn e’(‘”_” )72 e_l(‘”_”)m,
0

where we adopt the notation=14 = (2n() + 1)x/8, n) € Z, andw =w, = (20)7/8, 1 € Z,
for the fermionic and bosonic Matsubara frequencies, &asdy.

The choice of the frequency convention for the susceptiisli(2.40a) and (2.40b) has a
clear physical motivation: they describe an electron-ljptechannel) and an electron-electron
(pp channel) scattering process of total enexgyespectively. It is worth to stress that thie
and pp notations defined above are introduced just for converenadhe definition of two-
particle quantities in thep channel, and that the corresponding susceptibilities @randepen-
dent, as can be obtained from each other by means of a fregséift, i.e., both scattering
processes are included in the definition (2.39a) of the padicle Green’s function. However,
the equivalence of the notation may also be exploited in timearical implementation of DA,
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lowering the workload associated to the evaluation of threegadized susceptibility. In this sec-
tion we can restrict ourselves to one of the two expressi@uyin(2.40), e.g., to theh channel,
keeping in mind that all relations derived fgy, will apply, without any restriction, tg,, in
thepp notation as well [158].

The scattering process defined above includes all possildeactions between the two
incoming particles, and can be separated into a term désgtitee independent propagation of
the two particles, and the vertex corrections (see Fig. 2.6)

X2E = =BGy (V)G (W + )0y 0ge — Gy (V)G (v + w)FPGo (V)G (V 4+ w).  (2.41)

Thefull vertex F' contains the information of all possible scattering evéetsveen two prop-
agating fermions, and can therefore be interpreted as thttesog amplitude between two
guasi-particles, at least in the Fermi liquid regime, whare-particle excitations are still well
defined. For convenience one also usually defines the letlikd term, as

Xg” Y= —BG,(V)Gy(w~+ 1)y 050, (2.42)

where the spin index in the I.h.s. has been dropped, as wetdstthe paramagnetic case, so
that Eqg. (2.41) can be rewritten in compact form as

X;z;w _ 1/1/ w(soo o 52 Z quleylugw vor'w (243)

viv2

The two-patrticle full vertext' represents the fully connected part of the generalizedeptisc
bility (2.41). Moreover, the set of those diagrams, can rthé&r classified according to their
reducibility property. Reducibility is an important concept in the dagmatics and, in gen-
eral for all diagrammatic techniques, it is of fundamentgbortance to make a clear distinction
betweerreducibleandirreduciblediagrams. According, e.g., to Ref. [90], a diagram is classi
fied as one-particle irreducible iftannotbe split into two parts by cutting a single internal line.

Go(v+w) Gy (V + w)
Gy(v+w)

/
O S

Figure 2.6: Diagrammatic representation of the generalized Iocalandmllty ng “ in theph notation,
as defined in Eqs (2.40a) and (2.41). In the interacting, ggs“ “ is naturally decomposed into a
bubble termyg v'w defined in Eq. (2.42), and the vertex corrections, exess terms ofFW @,
After Ref. [158].
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F = A + D, + D, + O

2 3 2 3 2 3

> 2 ' 3
all diagrams, e.g.: 4 \ ’ A ’ ><D< ’ - -

1 I 4

1 4 1 4 1 4

fully irreducible reducible reducible reducible

in pp channel 13-24 in ph channel 12-34 in ph channel 14-23

Figure 2.7: Parquet equation. Adapted after Ref. [158].

The self-energy corresponds per definition to the sum afrad-particle irreducible diagrams.
At the two-particle level, the concept of reducibility beses naturally more complex [158]
and gives rise to a richer classification for the Feynmagmims. We can indeed distinguish
between:

e Fully irreducible diagrams, i.e., diagrams which cannot be separated int@ams by
cuttingtwointernal lines, which represents the two-particle coypdgrof the self-energy
diagrams at the one-patrticle level.

e Reduciblediagrams. However, by cutting two lines, there is more tha@ possibility
to separate a diagram. Hence, the concept of reducibilgydnée referred to a specific
channel Each channel corresponds to a different way of separadimngys pairwise) the
four outer legs of a given diagram.

According to this classification, each diagram will be eitfully irreducible, i.e., irreducible in
all channels, or reducible in exactly one specific chanh®8]. As a consequence, the full ver-
tex can be expressed in terms of fully irreducible conting (A) and reducible contribution
in all the three channels (a particle-particle and two pkathole) as

F=A+®y+ by + 0y (2.44)

We omit, for the sake of simplicity, all spin and frequencgeres. Such a decomposition of
F is known agparquet equation [161] and it is schematically illustrated in Fig. 2.7 witheon
low-order diagram shown for each of the four contributioihgs important to state that, being
nothing more than a mere classification of diagrams, thguerequations daot imply any
kind of approximation.

In order to deal with the parquet equation, one can considethar significant subset of
diagramd’,, defined as

F=T,+®,. r=ph,ph,pp, (2.45)

corresponding to the diagraritseduciblein one specific channel=ph, ph, pp. This is easily
understood, considering that each diagram includeH is either reducible or irreducible in
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a given channel. The&, vertices can be directly computed fromby means of an integral
equation, known aBethe-Salpeter equationas

F=T,+ / I,GGF, (2.46)

where the integral symbol denotes the sum over all degrereedom (e.g., frequency, spin,
...). Infact, Eq. (2.46) does not add further information wigspect to the definition af,
(2.45): it follows immediately from that, considering ttiae set of the reducible diagran®s
can be obtained by connectiiig to the full vertex F via two Green'’s function lines. Such a<on
struction is, by definition, reducible in channel Moreover, this decomposition is, obviously,
not unique, as it can be performed independently for all nbkmn

It is important to notice the different channels (i;&h, ph, andpp) are not completely inde-
pendent, as they satisfy the so-called crossing symme®dj[ivhich is a direct consequence
of the Pauli exclusion principle for fermions. Moreover,tire case of &U(2) symmetric
Hamiltonan we consider here, as already discussed ab@re,dle only three independent spin
combinations, i.eft, 11, .. In this basis, two out of the three Bethe-Salpeter equifat6)
are coupled (within each channel), so that it convenientetwodple them (analytically) per-
forming aspin diagonalization, i.e., defining the (d)ensity, (m)agnetic, (s)inglet, gt)dplet
channels as

Fe = i & By, (2.472)
FLy = Fpis & e, (2.470)

where the subscrigip denotes that the relation in this form holds in fhe(frequency) nota-
tion. In an analogous way one defines also the (ir)reducibtéces®, (I',) as well as a fully
irreducible vertex\, and the decoupled Bethe-Salpeter equations read, hence,

! ! 1 /
Fyve =THe 4 5 D TG ()G + w) Fy, (2.483)
! ! 11 ! v(w—rv1)w
i =To = 55 2 T Gm)Glw - m)FE (2.48b)

where the factor two in thgp vertex functions arises due to the indistinguishabilitydaintical
particles [161]. An important remark: while. and®, are, by definition, channel-dependent,
this is not the case for the and A, and even if one can formally define channel-dependent
guantities, there is only two independent full vertex antyfureducible vertex functions exist.
More generally, all vertex functions in thg m, s, andt channels are not completely indepen-
dent, and several symmetry relations can be derived atvaldef diagrammatics. However, a
comprehensive discussion of those symmetry relationsefiswa thoughtful derivation of the
diagonalized Bethe-Salpeter equations above, is bey@nstthpe of this thesis, and we refer to
Refs. [158, 161] for a detailed reading.

As already mentioned, in DA the AIM is a mere tool which can be exploited in order to
calculate (numerically) the exact two-particle fully idecible local vertex\. The vertex func-
tion extracted from the AIM will approximate the local onetbe Hubbard model, assuming
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the equivalence between the impurity and the lattice locae@'s function. In the following we
show (i) how to combine the relation above in order to exttiaetfully irreducible local vertex
A from an AIM, and (ii) how to use it in order to compute a nondbself-energy solving the
parquet equations.

Including non-local spatial correlations within DI'A.  In the following we discuss the com-
plete flowchart of 'A. It consists of two main blocks: one relying on the defimitiand the
numerical solution of a proper AIM, in order to extract theotwarticle fully irreducible local
vertex, the other on the solution of the parquet equatiotisaneciprocal space of the original
lattice, in order to extract the non-local' B self-energy.

As for DMFT, also within O"A one needs an initial guess for the AIM (see also Sec. 2.1)
associated to the lattice problem at hand, which transiates guess for the self-energy enter-
ing the local Green'’s function (2.12). Howevenr, Brequires the knowledge of the generalized
(local) susceptibility (2.40) in Matsubara representatishose numerical evaluation is compu-
tationally heavier with respect to the evaluation of thedlp self-energy. It can reliably be
obtained, e.g., within ED by means of the Lehmann representéfor an explicit expression
see, e.g., Ref. [145]), though it is most likely limited t@tbne-band model, or within QMC,
measuring the-ordered product (2.38), provided the asymptotic behasitreated properly in
the FT process [112, 162, 163], as discussed also in App@&hdix

In order toextract the two-particle fully irreducible local vertex A, by “inverting” the
parquet equation (2.44), one needs to separate the fulxErinto its reducible ¢,) and irre-
ducible ;) contributions in each channels. The full vertex functiors trivially evaluated by
means of the definition (2.41), and an expressions for tieelurcible vertexX', can be derived,
e.g., substituting the Bethe-Salpeter equations (2.48&)2.48b) in each channel into 2.41),
yielding

Lo = B2 (X — X0 )™ (2.49a)

rg;’w = B?[4(Xs F Xopp) ' £ 2X(;;p} e (2.49b)

Once thatF’ and thel’,’s are known, theb,’s are accessible by means of Eq. (2.45). Hence, it
is a trivial algebraic task to invert the parquet equatiod42 in order to the fully irreducible
vertexA, which remains the only unknown. This procedure is illustan Fig. 2.8 in the upper
part of the O'A flowchart.

In order toevaluate the non-local self-energypf the original lattice, one can employ the
exact equation of motion

Si(v) = Ug —UT*Y S B GV + )G (V) Gt (v + w). (2.35)

v'w kq

WhereF,;’,g'qw is the non-localfull vertex function corresponding to the local fully irnecible
vertexA of the AIM. This means that one has to solve the parquet emuati acoarse-grained
Brillouin zone for the lattice, in order to generate a momamﬂependenF,g,g'qw. As the only
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mapping
] Gy () =Gl (v) + B(v)

1
Glon(!j)_zk:}/+N_€k_2k(y)J 1

local two-particle quantities

r x .
P meu”hJ = extract full vertex
impurity solver: IR FXD
QMC, ED ... » Bethe-Salpeter
I F:FT+/ T,GGF=T,+&,
1 :

1
| Eg(v) @
a— “inverse” parquet

converged a A Z (I)T
‘ sz’w I r

'
vl w vi'w I_(wurw

kk'gr *kkigr Tkk'g

I/I/lfw
e Fk’k’q

Dyson-Schwinger

parquet

(self-consistent)

+ guess:

Figure 2.8: Flowchart of I'A: the lattice problem is mapped onto an auxiliary AIM, useofutain
local two-particle vertex functions; the solution of thevgrse) parquet equation yields the two-
particle fully irreducible local vertex\. The self-consistent solution of the parquet equation en th
lattice, usingA as input, yields the momentum-dependent two-particlevieiiex, needed to compute
the non-local lattice self-energy oflA.

known quantity is the local fully irreducible vertex one has to start from an educated guess
for all momentum-dependent vertex functions, iIé,;;ﬁ;ﬂr, Z;ﬁ;r, andF,;’,g';jr itself (usually
they are set equal to the bare interaction The parquet equations are solved self-consistently:
the momentum dependent quantity will flow till some conwrgy criterion is met, while the
fully irreducible vertex willnot be updated in the procedure. While this may seem to be a
prohibitively expensive task (in particular if comparedthe solution of the inverse parquet
equation for the AIM) the solution of the parquet equatianmdeed doable, and a solver was
recently made available from the group of Jarrell [164, 18%]e procedure to obtain the non-
local self-energy is illustrated in Fig. 2.8 in the lower fpaifrthe DI'A flowchart.

In principle. also the whole DA cycle should be performed self-consistently. This is
obviously extremely expensive from the computational pofrview. Thus, the previous calcu-
lations were performed within a one-shot (laddef)approximation [145] on top of a DMFT
self-consistently converged loop. Obviously, this impémation is not independent on the ini-
tial conditions: e.g., it relies on the DMFT Neél temperatéiPF", which is intrinsically not
accurate due to its mean-field nature. In particular inthe case T 2MFT > 0 (violating the the-
orem of Mermin & Wagner) resulting in an overestimation ofignromagnetic fluctuation at
finite T. This problem has been overcome however, by intcotyia Moriyasque\-correction
to the susceptibility [147, 168].
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2.4 Extension to nanoscopic systems

So far we provided the general concepts of how many-bodytsfia lattice model Hamil-
tonians are taken into account within DMFT and its extensidie restricted to the case of the
Hubbard model, but DMFT has been also successfully appliether models, like the Falicov-
Kimbal [169] or the Kondo lattice [170] models. In the followg we discuss the applicability of
those techniques to correlated nanostructures. Afteedibtroduction to generic issues in this
context, we present the basic idea (Sec. 2.4.1) and thelilaw¢Sec. 2.4.2) of a novel method
we developed, which provides a flexible way to apply DMFT #@sdextensions to hanoscopic
systems. To conclude, we also discuss similarities anereifices with alternative methods
reported in the literature (Sec. 2.4.3).

Independently on the model one is considering, as soon aothplexity of the effective
low-energy model increases, performing many-body calimria becomes extremely challeng-
ing. The exponential growth of the Hilbert space of the aarylimpurity problem to be solved,
due to an increasing number of correlated bands in the nefdga-energy manyfold, or of
sites in a cluster, imposes a severe limitation on the systee) even for the most advanced
and efficient impurity-solver algorithms.

Hence, if one aims to address the problem of correlatiorcesffat nanoscopic scales, i.e., for
systems with a finite number of sites, it is clear that anycek@atment of the problem suffers
from analogous scalings with the size of the Hilbert spand,therefore does not allow to deal
with more than few coupled sites. The lack of a proper toolaf@heoretical investigation of
electronic correlations at the nanoscale motivated theldpment of a novel approximation
scheme, based on DMFT and its extensions, which may be Buttabreat complex networks
of correlated sites. However, the application of DMFT argdektensions at the nanoscale
is not straightforward. In the lattice, one can take advgetaf the translational invariance
granted by the underlying periodic structure, and of the\edence of lattice sites due to the
infinite extension of the system, in order to define a loogburity problem, which is eventually
allows one to perform the actual calculations. At the naalesdnstead, one has to consider
systems which are, due to their finite size, inhomogenedersoid of translational symmetry,
and also quite far from the thermodynamic limit, which resenets the usual DMFT framework.
Those considerations challenge reliability of DMFT anceit¢ensions for nanoscopic systems.
requiring it to be tested.

2.4.1 The idea behind

In order to describe the method in details, let us proceel thi¢ definition of the prob-
lem we aim to solve. We are interested in a hanoscopic systersisting of V sites (e.qg.,
atoms)i=1, ..., N whose position in space is fix2dnd where the electronic dynamics within
the nanostructure is described by an inter-site hoppingnd a local Coulomb repulsid,.

8i.e. no phononic, or molecular vibrational degrees of foradre taken into account at this stage
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Optionally, we consider the possibility of a hybridizatig}), between the nanostruture and
non-interacting environment=1, . .., M, describing, e.g., an adsorbent substrate or electrodes
contacted to the nanostructure, that in the following wéllib general referred to as “leads”.

The Hamiltonian of such a system reads, hence,

Z Z tzy i0Cjo — M Z Z CinCin T U Z CZTCZTCwa
T Z Z mkzcw 17/€0 nklnko io + Z Z Enkza nkg ﬁkU’ (250)

ink o

WherecT (¢i0) andln,m (I,1,) denote the creation (annihilation) operators for an eectith
spino on sites and in lead) statek with energye, ., respectively. In the most general case the
Hubbard interaction can be inhomogeneous (e.g., in narastes made of different atomic
species). For the sake of clarity, in Hamiltonian (2.50) wepcthe orbital indexes. However,
the generalization to multi-orbital problems is straiginfard and below we will briefly high-
light the corresponding modifications to the general sahem

As discussed in the introduction to this section, it is ctbat any exact treatment of Hamilto-
nian (2.50) becomes unfeasible as soon as the complexiteafanostructure increases, hence,
the basic idea behind the nand*B is to reduce the full problem into a set of auxiliary
single-site Anderson impurity models (AIM). These locabiplems are defined in such a way
that they result completely independent. Furthermore jmgassible, any existing symmetry of
the nanostructure can be exploited, reducing the numbamaliay AIMs to one for each of
the Ninoq < N inequivalentatoms in the nanostructure. Since the numerical solutiadhefm-
purity problem is usually the bottleneck of the algorithhrough this approximation the overall
computational effort is heavily reduced, because it depemdly linearly on/V,,, instead of
the usual exponential scaling with the size of the Hilbeecgy Moreover, in case of highly
symmetric structured/;,., may also be much lower thax. Note that this decomposition does
not improve the scaling with the number of orbitals per atamg the full multiplet structure
have still to be taken into account when appropriate.

If using the AIM only to compute a local self-energy, as in DMFuch decomposition
makes it effectively possible to deal with a huge number ofret in a reasonable calculation
time. This corresponds obviously to neglecting non-locatelations within the nanostructure.
However, those can indeed also be included -when neededdéyding the calculation of the
AIM at the two-patrticle level, in the spirit of DA. In fact, as already discussed in Sec. 2.3.1,
DI'A provides a systematic method to include non-local spatiaelations beyond DMFT by
extracting purely local two-particle quantities from arxgiary AIM. This means that, within
this scheme, one can treat correlated nanostructuresfatedit approximations level, i.e. in-
cluding only local correlationsn(= 1-particle, or nano-DMFT1) or correlations at all length
scales ¢ = 2-particle or nano-DA). Evidently, like its bulk counterpart, the nand-B ap-
proximation level is computationally more expensive thamnano-DMFT one. However, the
latter will will be shown to be quantitatively reliable in aasonably wide range of parameters.

"Being careful not to confuse it with the slightly differeqtgroach, reported in Ref. [171], see also Sec. 2.4.3.



2.4 Extension to nanoscopic systems 63

2.4.2 Flowchart of nano-O0O"A

The flowchart of nano-DA, shown in Fig. 2.9, consists of the following steps, ddsedli
below in more details: (i) setting up of the nanostructuig;definition of a suitable local
problem; (iii) solution of the impurity model, and self-castency loop.

Setting up the nanostructure. The system is completely identified by the Green’s function
of the whole nanostructure (including the leads), whichth@ non-interacting case, can be
analytically computed from Hamiltonian (2.50) without aagproximation, e.g., by means of
(a generalization to the multi-site case of) the standatt paegral procedures?]. For the
sake of completeness we briefly recall its main steps. IniHanan (2.50) both operators cor-
responding to the electrons on the impurity (correlateid@ssand in the metallic (uncorrelated)
leads appear, and they are connected through the hybrammtmv;nkcwl - ONE can decou-
ple the two electronic species performing a Gaussian iat@gthe corresponding Grassmann
variables of the non-interacting fermionic degrees ofdaes, yielding the effective action de-

pending only on the correlated fermionic degrees of freedom

geff — /05 dr [ZZ ; CIU(T){(% — )0 — tij}cjcr(T) + U;"if(ﬂnu(ﬂ

B B
+ / dr / dr' >N el (M)A (r = T)ejo (7)), (2.51)
0 0 -
where the FT in the (Matsubara) frequency space of the higlih functionA;;, (7 —7’) reads
V. V*
y — _ink " gk
Aijo (V) %; P (2.52)

The Green'’s function can be formally computed from the ¢ifecaction as
Gijo(T) = H H / Dcly Deys cly(T)e;,(0) €571, (2.53)
with the partition functionZ defined as
z=T1]1I1 / Dcl,, De,,, €571, (2.54)
Z‘/jl 0./

The Green’s function is, in general, a matrix in the site (podsibly orbital) indexes, one can
explicitly write the generic matrix element of its inversethe (Matsubara) frequency space, as

Vi Vi
(G}, () = (v + oy + 1 — Zy’fi;": 2 (v), (2.55)
n

nk

whereX(v) is the self-energy matrix describing the interactions leetwthe electrons on the
nanostructure, and needs to be computed numerically. Asnergl we will refer to the high-
temperature paramagnetic phase, and the Green’s funstaiiagonal in spin, we omitted the
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Figure 2.9: Flowchart of nano-DMFT (left panel) and nand?B (right panel) self-consistency
schemes. Given the (non-interacting) Green'’s functiorhefwhole nanostructure, one can define a
set of local (independent) auxiliary AIMs. In the case oftla@o-DMFT, each local probletryields
a local one-particle irreducible self-enerly; () (see Sec. 2.1). Collecting each site-dependent lo-
cal self-energy, a (block-diagonal) self-energy matrix tite whole nanostructure is built, and the
Green’s function is updated by means of the Dyson equatiarthd case of the nanol}, each
local problemi yields instead a two-particle generalized local suscéwiml’%il;;“, which is used to
extract the two-particle fully irreducible local vertek;;;vv/w. The latter represents the input for
the self-consistent solution of the parquet equations¢ivizields a non-local one-particle irreducible
self-energyy;;(v) (see Sec. 2.3.1 and 2.3.2). In the last step, a self-energyyxniar the whole
nanostructure is built, and the Green’s function is upddtgedneans of the Dyson equation. As a
reasonable initial guess for the nan@4®scheme, one may consider to use a converged nano-DMFT
calculation (denoted by the grey line closing the nano-DM#op in the right panel).

spin indexo, reabsorbing it into the matrix notation. It is importantdioess, that all the in-
formation about the geometry of the structure and of thedeadhcluded in the hopping and
the hybridization matrices. In practice, this means thet straightforward to implement even
complex nanostructures. In this respect, the input of thephng (and of the hybridization) pa-
rameters may be provided froat-intio calculations, e.g. a LDA projected to Wannier orbitals
[172], allowing also realistic calculations of hanoscopystems and possibly a quantitative
comparison with experiments (see Sec. 2.2 for more detailooav to merge many-body tech-
niques withab-initio calculations in the bulk systems).

Definition of a suitable local problem. In the Green’s function (2.55) one can easily un-
derstand that non-locality arises from the non-local fhations generated from the interplay



2.4 Extension to nanoscopic systems 65

between the purely local Hubbard interaction and the gegnuadtthe nanostructure itself,
i.e., from the hopping channels between the correlated atoms (or even from higher order
hybridization processeg;,;.V};, between different atoms via a lead). Note that, due to the
lack of translational invariance, it is, in general, not gib& to define a local problem for the
whole nanostructure as it is usually done for the latticdbjem, and one has to find an alter-
native. Here, the basic idea of nan@-® comes into play, i.e., one reduces the complicated
N-impurity Anderson model, defined by Hamiltonian (2.5@)at set of auxiliary AIMs. This
task is achieved by means of the relation

G (v) = [{G},(v)]

which represents essentially a real space generalizatibe ® MFT self-consistency condition
for the bulk case. Specifically, the Weiss figg;(v), i = 1, ..., N, is built from thei-th block

of the matrix Green’s functiotr(~) and from the corresponding local self-enebgy(v). Each
sitei of the nanostructure is therefore coupled to its own dynahbiathG, (/) that contains the
information about the environment of sitei.e. the rest of the nanostructure. Moreover each
local impurity problem is completely independent from thieess and this allows one to restrict
oneself only to theV,,., AIMs for the inequivalent atoms of the nanostructure. In rtingti-
band case Eq. (2.56) becomes a matrix equation with banaesdd he procedure described
above is illustrated schematically in Fig. 2.10.

We recall that in the non-interacting case the self-enesgghviously, zero, and therefore
the decomposition (2.56) does not imply any approximatiothe interacting case, instead, the
self-energy entering the Dyson equation (2.55) needs tolmpated numerically from each of
the auxiliary AIMs with the most convenient choice for thepumity solver.

aux. AlMs

2 lN

-1
gOZ

mapping:
{Gu}y ' +2u=65' Gor-

Figure 2.10: Mapping of the full problem onto a corresponding (set of}atle local prob-
lem(s) in nano-D'A.
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Loop in the nano-DMFT fashion. Let us start with the description of the self-consistency
loop at the nano-DMFT level, i.e. if one extracts from eaclthefauxiliary AIMs only a local
self-energy>;(v), i = 1,..., Nineqr This approximation implies that non-local correlations
within the nanostructure are neglected.

The Ni,eq inequivalent self-energies are then collected and a selfgy matrix in the site
(and orbital) space is defined, where the inequivalentlleed-energies are assigned to the
corresponding diagonal elements (blocks), according écstimmetries of the system. In the
general case the self-energy matrix reads, hence,

211<I/) 0 0
0 ZQQ(V) 0
sm=| ]
0 0 ENN(V)

as shown in the left panel of Fig. 2.9. In the simplest casesre/lall sites are equivalent, one
would have aV x N matrix with all identical diagonal elements, and zero elsese.

The self-energy:(v) is then plugged into the Dyson equation (2.55) in order tomat® again
the Green’s function of the whole nanostructure, and thege®is iterated self-consistently till
convergence.

At this level, the approximation of completely neglectingnAocal spatial correlations in
nanoscopic systems, is not justified. However, before ggdmg with the next approxima-
tion scheme, it is interesting to discuss some cases in wiooHocal spatial correlations are
expected become negligible

e non-interacting limit: U = 0. Trivial limit because the solution of each auxiliary impu-
rity model yieldsG(v) = Gy(v), corresponding to a identically zero self-energy.

e decoupled sites:t;; — 0, if the hybridization function is diagonal in the site indsx
A;;(v) < d;;. This can be considered the nanoscopic counterpart of dnei@timit in the
lattice problem. Each of the site of the nanostructure isgletely decoupled form the
others, i.e., the Hamiltonian is separable and each ternctictas with the Hamiltonian of
the AIM.

e strong hybridization: V;,, — oo, if each site is coupled to its own lead. The hybridiza-
tion becomes the dominating energy scale, and each sitéeitieély decoupled from
the rest of the nanostructure.

e large coordination: formally, z in a finite system cannot diverge, so that the limit
z — oo In which DMFT is exact, is not a well defined limit for the naDMFT. How-
ever, when the connectivity increases, non-local fluetumstare expected to become less
relevant.

Beyond this limiting cases non-local spatial correlatiomsy become significant. However,
this does not meaa priori that far away from the limiting cases the nano-DMFT is natitge:
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indeed the definition of some generic validity criteria Maé an important part of the testing
phase of the method.

Loop in the nano-DI'A fashion. In order to include non-local spatial correlations beyond
mean-field at the nanoscale, one needs to compute a twiatpduily irreducible local vertex
for each of the inequivalent auxiliary impurity model. Thssdone in complete analogy to
the case of the bulk DA (see Sec 2.3.2). Th#e, local A;’;Z“’ represents the input for the
parquet solver, as shown in the right panel of Fig. 2.9. Thiecemsistently solution of the
parquet equations ireal spaceyields the full non-local vertex™””'“, and the corresponding

jkim?
self-energy by means of the Dyson-Schwinger equation

n; vv'w
Sij(v) = U0y —UT? Y D FiiinGu( + w)Ga()Ginm (v + w). (2.57)

v'w kim

With respect to the bulk DA, however, no coarse-graining is involved in the parquetgigns,
which are solved in the full Hilbert space of the nanostreetulThis means that, concerning
nano-O'A, one does not rely on any further conceptual approximatieyond the locality of
the two-patrticle fully irreducible vertex.

2.4.3 Critical discussion& relation to alternative approaches

Above we have shown how one can describe non-perturbatoad &md non-local corre-
lation effects at the nanoscale. However, there are seyersdtion that one would need to
answer. Can DMFT provide a reasonable description of clheegaanostrucutures? In this
context, which are the physical situation where non-lokadtfiations are no longer negligible,
and to what kind of physical phenomena could these give o0i8eThe extensive test phase of
the method will provide useful information in this direatio
A limitation which is already known is that one cannot ddsenon-local interactionsvithin
this formalism. However, as already mentioned, the intcidagrammatic nature of the method
also allows for further improvements by means of the systienmaclusion of Feynman dia-
grams, as recently suggested in the context oathaitio DI'A [157].

Concerning related research lines, one should mentiotitb@ecomposition applied to the
nanostructure, in the present scheme, is just a speci@atah of general technique already
known in the literature, already applied to different kinfdsgstems. In general, the idea is
suitable to the study of inhomogeneous systems, and hasdpgdied to, e.g., the study of
bulk materials in the presence of two-dimensional intexfaby Potthoff and Nolting [173],
as well as to the case of LDA+DMFT calculations with localtgquivalent atoms within the
unit cell (see, e.g., Ref. [272]). An approach for quasi dimaensional systems, the chain
DMFT, reported by Biermanet al. [174], relied on the decomposition to replace a system
of weakly coupled (equivalent) chains by a single effectitaain, coupled to a self-consistent
bath. Another noticeable case is its application to ultichadoms on optical lattices, using the
so-called real-space DMFT (R-DMFT), by Snaetial. [175], where the inhomogeneity comes
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from the external, spatially dependent, trapping potéraplied to an otherwise translationally
invariant lattice. The present approach is similar to thBRFT, at least at the one-particle
level. The main difference being that in our case each siteals® coupled to a noninteracting
bath, and a possible inhomogeneity in the system arisesuedbdan external potential but from
the geometry or even the chemical composition of the nanctstre itself. Recently R-DMFT
has been also applied in the contest of the two-impurity Asmiemodel to analyze the interplay
between indirect magnetic exchange (RKKY interaction) Knddo physics [176, 177].

The application of DMFT to nanoscopic systems, on the otlaedhhas been already at-

tempted following alternative ways. A nano-DMFT scheme haen already proposed by
Florens [171], relying however on a specific cayley-treergetry. Realistic calculations of
strongly correlated transition metal nanoscopic devices@ correlated adatoms on surfaces
have also been carried out. In recent works, Jastohl. [178, 179] introduced anolecular
DMFT approach, which combines density functional theorytfie local density approxima-
tion) with many-body approaches. A contact devicdéfshell magnetic atoms is considered,
where local and non-local electronic correlations are esklrd within a cluster approach. The
use of a OCA [109, 110, 111] impurity solver allows the anislyd low temperature Fano res-
onances in the transmission function for Fe, Co, and Ni @ésvi@he interplay between orbital
degrees of freedom and the spin fluctuation responsibléhfoKondo effect was investigated
by Sureret al. [180] in a Co impurity on a Ci111) surface. Density functional theory and a
Krylov (hybridization expansion) CT-QMC [93] allows one @ocurately take local electronic
correlations into account within the whal€ multiplet.
Complementarily, the nanoscopic extension of DMFT amthbntroduced above is suitable to
study a large variety of systems, both for models and reatnads. Moreover it also allows,
when necessary, to overcome the limitation of considermyg local correlations typical of the
DMFT methods.



Chapter 3

Local and non-local correlations in
molecular systems: a test for nano-DA

In this chapter we apply the nanoscopic extension of DMFT Rhd, introduced in the
last section, to quasi one-dimensional model systems. ifhésao investigate the effects of
local and non-local correlations on electronic structuredatransport properties, and to test
the reliability of our method and to understand its strersgimd its limitations. In this respect,
the comparison with an exact numerical solution for the eyt of choice is of fundamental
importance for demonstrating the applicability of our medras a general and flexible scheme
to deal with correlated nanostructures.

As mentioned in the previous chapter, despite some atteémpigestigate correlation effects at
the nanoscale, a reliable approximation that allows to d&hl complex nanostructures made
of several coupled correlated sites is still lacking. Theaszopic extension of DMFT andIlA

we proposed in Sec. 2.4 is meant to fill this gap. From thetmagoint of view, as highlighted
in its flowchart (see Fig. 2.9), the approach can be implaseeat different levels of approx-
imation: (i) the nano-DMFT, where the internal self-cotsigy is assured at the one-particle
level only, and non-local spatial correlations are negiécand (ii) the nano-DA which is fully
self-consistent also at the two-patrticle level, and allow$o restore spatial correlations beyond
DMFT. However, the applicability of DMFT and its extensiciasnanoscopic systems is not
straightforward, and its reliability ia priori not known. Hence, in the preliminary test phase,
one needs to consider simple benchmark systems in orderd&rstand to which extent, and
under which conditions, each approximation employed isioéd.

3.1 Quasi one-dimensional molecules

In the preliminary test phase for nand-B we focus on quasi one-dimensional (Q1D)
molecular structures, which represent the ideal playgitdanan early stage analysis. In partic-
ular we focus orbenzendchemical formula @Hg) andcyclo-octatetraen€CsHg) molecules,
which are significant from several points of view.
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First of all, they fulfill an important requirement, cruti@r a precise benchmark, i.e., the
size of the Hilbert space of such systems is low enough tevadlmumerically exact solution
even in the interacting case, e.g., via ED of a low-energgatiffe Hamiltonian or QMC sim-
ulations. Moreover, a Q1D structure, such of those gfland GHyg, is probably one of the
most challenging cases for many-body calculations in ta@éwork of DMFT, since non-local
spatial correlations are expected to be particularly seiein such low-dimensional structures.
In this sense, the existence of an exact benchmark allowa fprantitative analysis of the
performance of both the nano-DMFT and nanbAdapproximations.

At the same time, monocyclic hydrocarbons (also knowsiamulenel as well as more
complex molecular structures, still raise both experirakand theoretical interests, as the de-
localized electrons play a role analogous to that of the conductiord barconvenstional
semiconductors. For instance, it is well known that elegtrdransport through benzene is
peculiar due to quantum interference (QI) effects [181,]18Bich are also significant in the
presence of a magnetic field, giving rise to the AharonowBceeffect [183, 184]. However it
is also believed that strong electronic correlations mogifantitatively transport properties in
the benzene molecule [185]. Recently it has also been sHmata benzene molecule contacted
to metallic electrodes behaves as a single molecule ttansisvice [186, 187], with possibly
huge impact on technological applications in the directidne.g., Ql-controlled molecular
electronics [188]. Another interesting feature that mak&szene somehow “special” with re-
spect to cyclo-octatetraene, for instance, is its aronmatiare (see below), where a resonating
valence bond (RVB) physics is also possibly playing a ro&9]1

As this chapter will be entirely devoted to the discussiothelse two-systems within the
nano-O'A, in the following a brief description of them, as well as tbe corresponding model
Hamiltonian, is provided, while in Sec. 3.2 the numericalulés are presented.

A briefintroduction.  Both benzene and cyclo-octatetraene are conjugated niatsgstems,
but as we will see their chemical nature is quite different.

Thebenzenemolecule is an aromatic hydrocarbon with molecular fqr-
mula GHs. It is nowadays understood that the tetravalent carbon st
(configuration: [He]1s22s%2p?) are arranged at the vertices of a hexa w,
nal planar ring. However, since its discovery the chemitraksure of the
molecule was greatly debated. Early theoretical investiga resulted in
several prediction, and led eventually to the Kekulé fommd90, 191],
where carbon atoms forms alternating single and doubledwaittl the nearest neighbors. This
hypothesis was experimentally contradicted, as X-rayattfon patterns show that all carbon-
carbon bonds have the same lengthiaf) A, intermediate between the single 5 A) and
double (.47 A) bond-length. Moreover, chemical analysis reveals théyarogen atoms have
the same reactivity. Valence bond theory can not accouralftine properties of the molecule,
and the benzene structure is instead understood in termsesioaance hybridbetween two
possible Kekulé structures. This property is also knownramaticity and, according to the
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Figure 3.1: Hybridization mechanism in C atoms. An electron in excitexhf the close®s shell to
one of the degenerajes, allowingsp hybridization between theand the remaining orbitals.

Huckel's rule [192], is predicted to manifest in structurgth a number ofr electrons equal
to 4n + 2, with n being a non-negative integer. The latter follows from gaeheonsideration
on basic chemical principles and can be explained in thedvaonk of molecular orbital (MO)
theory. In order to fulfill the octet rule (i.e., to reach amstable configuration with a closed
outer shell), carbon must use all the 4 electrons of its altel when bonding to other atoms.
However, only unpaired electrons can bond, and carbon h&ssa 2s atomic orbital (AO).
Since in carbon the gap betwenand2p AOs is fairy small compared to the binding energy
of the CC or the C-H chemical bond, it is energetically falde for the carbon atoms to pro-
mote an electron from ths to an unoccupie@p AO, because the excitation energy will be
compensated in the formation of the molecule. The procesksi® the hybridization &fs with
2p, and2p, AOs, and their linear combination (LCAO) results into thoEgeneratep? MOs
(the mechanism is shown in Fig. 3.1). The’ MOs are arranged, according to valence shell
electron pair repulsion (VSEPR) theory [193], in a trigopkanar configuration, which allows
them to be as far apart as possible form each other, and gwéad bonds with the hydrogen

s and the nearest neighbor carbon atomp’sorbitals. The remainingp. AO of each carbon
is directed perpendicularly to the? plane and tends to forma bonds with the other carbons’
2p. AOs. Whileo bonds are strong andelectrons localized around the nucleielectrons are
relatively mobile. This lead to the formation ofreelectron cloud and to charge delocalization
into a bonding MO shared among all carbon atoms of the benaegeThis scenario is consis-
tent with the unusual stability of the benzene molecule,issttndency to favors substitution
reaction of hydrogen atoms with other functional groupsragjaddiction reactions, as well as
with the other previously discussed properties.

On the other hand, theyclo-octatetraene or COT, is an annulene
with chemical formula @Hg. Because of its stoichiometric similarities t
benzene, also the structure of COT raised some controvéieyever,
unlike benzene, this molecule is not aromatic and is chariaed byfixed
alternating single and double C-C bonds, which determsaan-planatub conformation. In
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this case it is also worth stressing that a change in the ggleithe molecule may have strong
effects both on the spatial arrangement of the carbon atochsmits electronic structure. For
instance COT can react with potassium (K) to form a salfC®T, containing the dianion
COT?*~ which has ten electrons and fulfills the Hiickel's rule. Asomgequence it acquires a
planar structure and becomes aromatic.

A model Hamiltonian for = electrons. In chemistry, the Hiickel method [194, 195, 196, 197]
and its extension [198] are commonly used to predict theggnlewel (and the corresponding
degeneracy) of MOs aof electrons in conjugated hydrocarbon systems (like ethesezene,
or even graphite and carbon nanotubes). An effective eleictimodel for organic molecules
can be derived performing electronic structure calcutetiestricting to the orbitals [199], or
according to ther-electrons effective field theoryr(EFT) by Barret al. [200]). This follows
from the observation that the main physical processes irsyiseem are determined by the
characteristic length (or equivalently, energy or timedlsset by the strength of thebonds,
and therefore, one expect that the only relevant degreegeddm are those characterized by
scale comparable to those.

Hence, both systems can be described by effective Hamaltgrforr electrons of the form
introduced in the context of nanotB,, that we report below for the sake of convenience

Z Z tl] 10 ](7 —H Z Z CivCio +U Z CZTCZTCwa
+ Z Z mszw nko + V* nko i + Z Z Enkza 77ka nkw (3.1)

ink o o

Herec! (c,,) has to be interpreted as the creation (annihilation) dpewf an electron with
spino in the2p, Wannier orbital centered at the carbon atom. Herdenotes the equilibrium
chemical potential, possibly including the effect of a gattagel;. The Hubbard interaction
U, taking into account the (local) Coulomb repulsion betw#enr electrons, could depend
on the site index, e.g., if the system is made of atoms of different speciesvéver, here we
will only consider cases in which the nanostructure is madegaivalent carbon atoms. The
operatorsl;ka () describes fermionic degrees of freedom of a non-intergatnvironment
hybridized with the carbon atoms.

Though Hamiltonian (3.1) is physically sensible to dese@nnulenes structures, one has
still some degrees of freedom, e.g., the choice of the hgpgua hybridization structure. In the
following we discuss explicitly the configurations thatlbe considered in the present work
(see Figs. 3.2 and 3.3), keeping in mind that the main ainhisistage, is not focused on real-
istic simulations but rather to test the reliability of thenoscopic extension ofIDA on model
structures.

e Hopping structure: for both the benzene and COT molecules we consider the hgppin
configuration where hopping processes are restricteddceseneighbor sites only (N t’ in
the following) with amplitude, which sets the unit of energy.
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Figure 3.2: Schematic representation of the Q1D planar molecules deresd for the numerical calcu-
lations and tests in this chapter. The connectivity withia hanostructure is determined by hopping
channelst (between nearest neighborg),and ¢’ (longer range), and optionally each site can be
connected to a metallic lead via an hybridization charinelThe Coulomb interaction between
electrons is taken into account by an on-site Hubbard repuls.

In the case of the COT, the presence of single and double@uMabnds (and consequently its
non-planar structure) would result in a slightly differavierlap of AOs (i.e., hopping ampli-
tudes). For the sake of simplicity we neglect this effectsidering instead a planar structure
where the carbon atoms occupy the vertices of a regular edtahas would be the case, e.g.,
for the COP~ mentioned abové.

Moreover, it is also interesting to consider what happersher hopping configurations, i.e.,
when non-zero longer range hopping parameters are inteadws this is related to the con-
nectivity within the nanostructure. In the following we Wwdonsider the hopping configura-
tion where electrons can hop to any other site of the ring thithsamehopping amplitude
(*allt”). Obviously, as the hopping amplitude is a measure of teriap of orbitals belonging
to neighboring atoms, the hopping amplitude is in generaaehsing function of the inter-site
distance. However, from a purely mathematical point of viws case is also of interest, and
can be considered as the analog (on a finite system)fofiyaconnectedattice modef In
this sense, increasing the number of nearest neighboraiigadent to increasing the dimen-
sionality of the system: e.g., one can show that a Q1D benzegevith hopping amplitudes
t'=t andt” =0 (“ ttp"), corresponding to connectivity = 4, is topologically equivalent to a
3-dimensional octahedra with nearest neighbor hoppijrdso corresponding te=4 (and re-
sulting in the same spectral function, as shown in Fig. 3vhalogously, thall t configuration
can be mapped into a structure iB-@limensional space.

Lt is interesting to notice that, in the context of realidtRA+DMFT calculations, one would probably need
a fully self-consistent scheme for this system: indeedgcti@nge of orbital occupation and the fulfillment of the
Huckel's rule, lead to a relaxation of the molecular stroetand to the consequent change of the orbital overlap.

2e.g., the fully connected = o) Ising model, is often chosen as a valuable example to shatthiesaddle
point methodor the evaluation of the path integral of the partition ftioa (mean-field approximation) leads to
the exact solution [201, 202, 203].
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Figure 3.3: Spectral functionA®(v,T") of the non-interacting benzene and COT molecules, for two
values of the hybridizatio® = 27pV?2, and different hopping topologies, as described in the text
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molecule " =0) the relative height of the peaks reflects the respectigederacy, and the width of
thed-like peaks is determined by a tiny artificial broadeningneTinsets show the corresponding MO
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It is worth to make few remarks concerning the non-interac{l/ = 0) and isolated (" = 0)
benzene and COT rings. Due to their finite size, they displdiscrete energy spectrum, given
by the eigenstates of a tight-binding Hamiltonian. In tHN t case, the spectrum is also
particle-hole symmetric (with the conventional choice floe chemical potentigl = 0) and
both molecules are half-filled, with on average one elecper carbon atony) =1. However,
the most important difference between (uncorrelated) demand COT molecules, is that the
former is insulating with a gap = 2t between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO), while tatter presents a doubly degen-
erate peak exactly at the Fermi energy. Indli¢ case that we will consider for the benzene, the
spectrum is no longer particle-hole symmetric, and the muéehas just a single level below
the Fermi energy, corresponding to a filling @f) = 1/3 (at7 = 0) and a five-fold degenerate
unoccupied state above.

e Hybridization: in the following we will consider paramagnetic metallicdisadescribed
by a flat, featureless, and symmetric DPS- 1/2D, where we choose the half-bandwidth to
be D = 2t. The assumption is quite reasonable, yet in principle, deipg on the functional
form of ¢,.,, the formalism can be extended to a generic DOS, includiegptissibility to
consider also insulating, (anti-)ferromagnetic (of grieatrest in the framework adpintronic
devices [204, 205]) and superconducting leads. On the btrat, if one aims at a quantitative
prediction of (or to a comparison with experimentally measg) physical quantities, then a
realistic description of the leads’ electronic structiweniandatory [200].

Moreover, for the sake of simplicity, and to deal (at the begig) with systems in which all
sites are fully equivalent, we consider each site to be ctedato its own lead, so that the
hybridization matrix has the diagonal for, =V 9,,, and it is independent o

The hybridization can also be treated exactly, tracing beatférmionic degrees of freedom of
the leads, and yielding the so-called leads’ self-energmpare also with the corresponding
expression (3.2), which reads

Si(v) =V

nk

1

V— €k

00 (3.2)

which corrects ther-electrons propagator: Rgv) is an energy shifts of the eigenstates and is
zero in the limitD > ¢, while ImX(v) = 7pV? = I'/2 gives a Lorentzian broadening of the
peaks, due to scattering processes with electrons in théuction band of the lead(s). The
effect of the hybridization on the non-interacting spdctnactions of the benzene and COT
molecules is shown in Fig. 3.3, in the hopping topologies Wil be discussed in the follow-

ing.

e Interaction: we consider only the local contributi@nhof the Coulomb repulsion between
7 electrons. Although it is known that non-local contribuiscare not priori negligible at the
typical bonding inter-atomic distances, it has been sugdg200] to be a reasonable approxi-
mations inr conjugated molecules (for a related discussion, and algessrategy for includ-
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ing non-local interaction terms see Ref. [200] and refegsrtberein). However, the task of
determiningab-initio the value of the screened interaction in molecular junstisnobviously,
not trivial. A possibility would be to include it as a fittingarameter in order to reproduce
fundamental quantities from experiments. However, in dlieding U will be considered as a
parameter to be varied in order to analyze the role of eleiti@orrelations in different regimes.

3.2 nano-DMFT approximation level: results

In the following we present our calculations at the oneipl@rapproximation level (nano-
DMFT). The main goal of this section is to understand if, amavhich parameter regime, a
DMFT approach is appropriate. Therefore, we report hereutations for local and non-local
guantities sush as: site-dependent densities, doublgation, spectral function, self-energy
and zero-bias conductance, we extensively compare thikgésa numerically exact solution.

The impurity solver. Before starting the detailed discussion of our result®rimftion about
the algorithm used for solving the local problem (i.e., thgyke.site AIM) should be given. As
already pointed out in Sec. 2.4, our schemmaependenbf the impurity solver, and one has
the freedom of choosing alternative numerical methodslieegbe auxiliary AIMs, depending
on the quantity and/or the parameter regime of interest.

Specifically, most of the numerical results presented enfthlowing sections are obtained
using a Hirsch-Fye (HF-QMC) algorithm [103] as impurity\seid for both the nano-DMFT and
the exact solution. Our choice of the impurity solver waseddrat mapping complex, possibly
realistic, nanostructures, including also orbital degreefreedom. Moreover, the availability
of a HF-QMC for the exact solutidmotivated us to employ the same algorithm also for solving
the impurity problem in the nano-DMFTIDA approximations in order to have a quantitative
comparison to the exact solution in a extremely controlleg.w
This choice, however, restricts us to rather higher tentpezavith respect to the typical Kondo
scale which may be expected in such systems. Hence, forefapplications of the method,
CT-QMC [93] will be adopted as an impurity solver (see thdaak, Sec. 3.5) allowing for an
investigation of the low-temperature regime.

On the other hand, as far as the evaluation of two-particéntiiies are concerned, an ED
impurity solver revealed to be a better choice to propesgitithe high-frequency asymptotic
behavior of the vertex functions (cf. with Sec 3.4), yet iBiglso possible within state-of-the-
art QMC solvers [112, 162, 163].

3Note that the isolated benzene of COT molecules can be sekactly also by the direct diagonalization of
the corresponding Hamiltonian. However, if infinitelyterded bulk leads are connected to the nanostructure, the
diagonalization becomes unfeasible, while the system tilhhestreated within a QMC technique.
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3.2.1 Benzene molecule

The following results have been partially published in tiRSAJournals “Physical Review Let-
ters”: PRL 104 073101 (2010) [206] and “Physical Review B": PR86, 115418 (2012)
[207].

We consider the model for the benzene molecule describedeghedt panel of Fig. 3.2) in the
presence of an Hubbard interaction= 5¢, which is larger than the benzene gap= 2¢, and
may be representative of systems with poor screening (ee[208] and references therein).

Electronic structure. A general overview on the local physics of the system can beirdd
considering then-site spectral function at the Fermi energy which can be estimated [121]
directly from the local Green’s QMC function at=3/2 as

A(0) = / dvA(v) cosh™ (v/2T) = —BG(8/2), (3.3)

where the relation on the r.h.s. becomes exact in the limit b oo (7" = 0). At finite T
the hyperbolic function weighting the spectrut(v) is pinned around = 0 (e =¢g), and cor-
responds to averaging the spectrum over a frequency winddkhemrder of the temperature
T around the Fermi energy. The obvious advantage of using E8) is that one can extract
this information directly from the QMC data, without the de& an analytic continuation. In
Fig. 3.5 we compare our results for the on-site spectraltfondleft panel) and the site den-
sity and double occupation (right panel) between the nak=Dand the corresponding exact
solution. We show the behavior of those local quantities fasmetion of the ratio between the
hybridization strengtly” and the absolute value of the hopping amplitudeooking at theNN t
topology, i.e., with hopping processes only involving msameighbor sites, one immediately
observes that the agreement between the exact solutioreawodDMFT is very good when the
hybridizationV is large. This is understood considering that, in the lirhit> oo, the hybridiza-
tion becomes the dominating energy scale: each atom fornesiadbstate with its own lead
and hopping processes within the benzene ring are not dieaifyefavorable anymore. Hence,
each site is characterized by a local dynamics, and non-taceelations become negligible.
For the same reasons, one expects the opposite (molecuiar) =0, or equivalentlyl’/t =0,

in which the benzene ring is isolated, to be the most diffibal nano-DMFT, and non-local
correlations to be important. In fact, this seems to be tke:cahile the exact solution correctly
predicts the benzene ring to be insulating, the nano-DMETlte show instead a small biit
nite spectral weight at the Fermi energy (cf. left panel of Figh)3.Though thequantitative
difference is not too large, the result shows that nano-DMEdgests gualitative different
picture. Another indication that the nano-DMFT approximatoreaks down at some value of
V/t in the weak-hybridization limit, can be found in the behavib the double occupation
(main panel, right). In th&N t case, while nano-DMFT correctly reproduces the occupation
and the system is half-filled on the whole hybridizationgar{inset), the double occupation
are overestimated with respect to the exact solution in teakwhybridization limit. In fact,
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Figure 3.5: On-site spectral functiont(0) (left panel), site densitie&:), and double occupationg)
(right panel) as a function df’/t for the benzene ring. Note that all the sites are equivalasttd
symmetry. The nano-DMFT results (lines) are compared teiaet solution (symbols) df = 5¢
andT =0.05¢, for bothNN tandall t hopping configurations. Adapted after Ref. [207].

both the suppression of the spectral weight at the Fermiggreard of the double occupations
in the exact solution are determined by non-local spatiaktations, which are missing at the
nano-DMFT approximation level.

In light of the previous results, it is interesting to disstise role of an enhancement of the
connectivity, which, in a lattice model would lead to an ipement of the DMFT description
of the system. This situation is realized in the benzene outdefor theall t case, in which
hopping processes to all other sites of the molecule arevadovith the same hopping ampli-
tudet, so that each site has effectively no longer two, but fiveregtaneighbors. Though not
fully realistic, this situation is of theoretical interess far as the validation of our approxima-
tion schemes is concerned. The inclusion of longer ranggihgghas the additional effect of
breaking the particle-hole symmetry of the molecule: inifwdated, non-interacting case, the
system iawayfrom half-filling for ;.=0, while in the non-interacting case, the site-occupation
isonly (n)=1/3 (atT'=0). In contrast, at the value &f =5t there is a strong redistribution of
spectral weight and at=0 is almost half-filling. The deviation from half-filling isf the order
of some percent, the actual value depending on the hybtidizstrength (as it can be observed
in the inset of the right panel in Fig. 3.5). More noticealitytheall t topology no substantial
difference between DMFT and exact solution can be found(i, as well as in the single and
double occupations, even in the intermediate redion ¢, where deviation were already visi-
ble in theNN t configuration. In this case, however, no exact QMC solutsoavailable below
the threshold of” ~0.8¢ due to the well-known fermionic sign-problem. Therefore, @annot
check the molecular limit for thall t topology (at this value of U at least) with such an impurity
solver. Nevertheless, the Hamiltonian of the isolated mdican still be solved by an exact
diagonalization of the local Hamiltonian. This exact diaglization predicts an insulating state
also for theall t topology, while the nano-DMFT solution is metallic and cegtimates double
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occupation. This means that, despite the enhanced cowitgation-local fluctuation become
relevant at low enough hybridization, and the completetal@pproximation will eventually
break down. Moreover, a comparison of the curves in the pginkel of Fig. 3.5 shows that,
while theall t hopping structure drives the system slightly away from-fidihg, the value of
(d) in theall t configuration isalwayssmaller that in théNN tone, in the whole hybridization
range. This suggests that the enhanced connectivity daegaaden (substantially) local elec-
tronic correlations, yet it washes away the non-local onesylting in a improved agreement
between nano-DMFT and the exact solution.

Analysis of the self-energy. A deeper understanding of the origin of the observed agraeme
between the nano-DMFT and the exact solution is providechbyanalysis of the respective
self-energies for both hopping topologies. As before, $gbegin discussing tHeN t case first,
referring to Fig. 3.6, where we plot the correspondsedf-energy in Matsubara representa-
tion. In panels (a), (b), and (c) the imaginary part of the locHlseergy (the real part is zero
due to particle-hole symmetry, having subtracted the dartierm), while in panels (c), (d), and
(e) the non-local contribution to the self-energy are shéwlifferent values of//ts shown.

One can see that nano-DMFT nicely captures the local physicsirately reproducing the
exact self-energy at low (Matsubara) frequencies and thm&ging a reliable estimate for the
guasi-particle residue

7 —

—1
m. <1 B 8|m§;(wn) ) 7 (3.4)
n vp—0t
wherem* is the effective mass, renormalized by the interaction. l@nather hand the scatter-
ing rate is exponentially suppressed, due to the lack otatken of the non-interacting benzene
molecule, which is insulating (cf. Fig. 3.3). A differentlmevior is expected when the underly-
ing spectrum is metallic, e.g., in the case of the COT moke(sge Sec. 3.2.2).

However, the slope of the local self-energy around zeraueegy is evidently not enough to
capture the full picture, and non-local elements of these#rgy are, in general, non-negligible
with respect to the local ones. While non-local correlaiare quickly suppressed with increas-
ing hybridization (while the local ones remain sizable)stproviding a confirmation of the
genuine agreement between nano-DMFT and the exact sohftigerved in Fig. 3.5, they play
a pivotal role in the weak-hybridization regime.

This becomes clear analyzing more carefully the molecutat V' =0. As already mentioned,
in the non-interacting casé = 0, the isolated, half-filled, benzene molecule is a triviahd
insulator, with a gapA = 2t > T given by the energy difference between the HOMO and
LUMO. At finite U the situation is more complicated. While the estimatel@f) (main panel
of Fig. 3.5) in nano-DMFT is finite, though small, and copeads to a semi-metallic behavior,
the exact solution still predicts an insulating behaviohisTimply that the restoration of the
low-energy gap, with respect to the nano-DMFT, is due todargn-local contributions of the
self-energy, as shown in panels (d), (e) and (f) of Fig. 3.6.

A better understanding of the suppression of the low-enspggtral weight in the isolated
benzene molecule can be obtained by performingatiaytic continuation of the Matsubara

m*



80 Local and non-local correlations in molecular systems: &est for nano-DI'A

1 T T - T T T T T T T T
I exact sol. e d exact sol.e -« «
/\. nano-DMFT - - (d)
= ] = 0 —
= V/t=0.0 ) =
5 0 : 1 2 -\\ /
£ ] D %, o
B . m ... O..
(a) '.\_/ % V=00
-1 1 1 1 | 1 -1 1 1 1 1 1
1 T T T T T 1 T T T T T
gy exact sol. exact sol.e -
| or® * nano-DMFT - - - (e)
= \ =
[ = 1 >
= = <
=z 0 V=05 \ 19 V/t=0.0
N 1 —]
E 1 I’_él Vit=1.0
(b) \‘ e ~ 0 WL\
_1 1 1 1 - 1 1 1 1 1 1 1
1 T T T T T 1 T T T T
exact sol. exact sol.e +
/.. nano-DMFT - - | (f)
= ** = * V/t=0.0
< 2 =, VA=0.
.\E:E 0 V/t=1 .0 ‘. N \cé .. ‘.
I/él . I’:q= .. ..
- Y 2 s %, V/t=1.0
(c) \./ 0
_1 1 1 1 1 1 1 1 1 1 1
-10 -5 0 5 10 -10 -5 0 5 10
v/t v/t

Figure 3.6: Self-energy in Matsubara representation for the benzegenitheNN ttopology atl/ = 5¢
and7'=0.05¢. In panels (a), (b), and (c) we show the evolution witft of the imaginary part of the
local self-energy, comparing nano-DMFT (dashed linesh it exact solution (symbols). Note that
the real part is always identically zero due to the particde symmetry at half-filling. In panels (d),
(e), and (f) we show the non-local self-energies for nearegghbors {,i + 1), next-nearest neighbors
(¢, + 2), and next-next-nearest neighboig ¢ 3), respectively, obtained with the exact solution.
All other non-local components of the self-energy are eittientical to the ones shown here (since
all sites are equivalent) or zero due to particle-hole sytmmeAlso note thats,.; is, obviously,
identically zero in nano-DMFT. Adapted after Ref. [207].
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self-energy to the real axis, which whe show in Fig. 3.7 ferchtical case of the isolated0)
benzene ring. The analytic continuation has been perfoligedeans of a Padé interpolation
of the QMC dat&which allows to obtain both local and non-local (which argté only within
the exact solution) contributions of the self-energy.

Concerning the local self-energy (left panels), we carrpreg the data in terms ofleermi
liquid (FL) expansionaround the Fermi energy [90], yielding

(V) ~ —av + 1y (7?T? + %) + O(v?), (3.5)

where the coefficienta and~ control the quasi-particlmass renormalizatioand thescatter-
ing rate respectively. The Fermi liquid expansion (3.5) is justifiprovided: i) quasi-particle
excitations have a finite effective mass near the FermilJarel ii) the damping of the quasi-
particle is much smaller than the typical quasi-particlergy, i.e.,y < |v|, T. While one may
be doubtful that those condition are fulfilled in the preseof a strong Hubbard interaction,
one realizes that the nano-DMFT and the exact local selfggnshown in the lower and the
upper left panels of Fig. 3.7 respectively, look indeed HKe;l with a negative slope around
v=0 (a>0) and a negative and tiny damping factot 0. In general, the non-local self-energy
is non-trivial function, and the corresponding expansiemromplicated. Yet, observing the
analytic continuation, shown in the right panels of Fig., 3v& may still extract useful informa-
tion. One can notice that, due to the particle-hole symm#tgy(local and the) non-local terms
of the self-energy:;;(v) display an alternating even/odd symmetry with respeat for the
real/imaginary part, depending on the couple of inde>awd;. In particular, around the Fermi
energy, the nearest-neighbor contributidp, ; (v) is characterized by a large static contribu-
tion Rex;; 11 (v = 0) ~ ¢, while the imaginary part is at least(v). Similar observations also
hold for the other self-energy contributions. Hence, tast ipproximation, the most important
effect of the non-local self-energy consist in a renornaian of the bare hopping amplitude:
t—t+ReX; 1 (r=0). As those terms have the same sign, the overall effect istzaneement
of the effective hopping, which determines a further suggian of the spectral weight at the
Fermi energy of the benzene ring in the presence of non-taatlations.

This mechanism is more easily conceived by briefly consngethe case of a two-site system
at half-filling, connected by an hoopirtgfor which the local spectral function around he Fermi
energy can be written as

1 2T2 2
A(VNO)N— 7(71— +V>2 )
T v+ av — 1y (m?T? + 12)]" — (t +§)?

(3.6)

where we used the brief notatign= ReX;; ,; (¥ = 0). In the non-interacting caser(y, £ = 0)
the excitation spectra of the two-site system consists offieaks, separated by a charge gap

4Particular care is needed as the QMC data are affected bstiswltfluctuations, and may cause the Pade
interpolation to yield non-analytic functions on the realduency axis. While extremely accurate QMC data would
be needed to obtain a physically sensible spectral funsfi@ranalytic continuation, we expect the qualitative
features of the self-energy discussed here to remain valid.
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A =2t, so that its low-energy behavior resembles the one of thedmamolecule. The spectral
function (3.6) shows that, even in case of a tiny quasi-partlumping factory, the spectral
weight at the Fermi energy can still be suppressed by largdaxal correlations (cf. also with
the spectral function in the left panel of Fig. 3.10 and tHatesl discussion).

Another confirmation of our interpretation, comes alsairthe analysis of the self-energy in
theall t configuration, shown in Fig. 3.8. In the upper panels we sticomparison between
the nano-DMFT and the exact local self-energy’dt = 1, i.e. very close to the lowest value
of V/t accessible to the exact solution, the both imaginary pad {g@nce the quasi-particle
residue) and the real part (and hence the filling) are atelyreeproduced. Moreover, due to the
higher connectivity with respect to tidN t hopping configuration, any non-local contribution
of the self-energy is completely negligible with respecttte local ones, i.e., almost two order
of magnitude smaller (and therefore not shown). In pardicthis happens also to the nearest
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Figure 3.7: Analytic continuation on the real frequency axis of the (&all line) and imaginary (dashed
line) self-energy for the benzene ring in thN t topology atU = 5¢, T' = 0.05¢, and V' /t = 0.0.
Left panels: comparison local self-energy between theteQdMC solution (upper panel) and nano-
DMFT(QMC) (lower panel). Right panels: contributions oétbxact QMC non-local self-energy for
nearest-neighbors,{ + 1, upper panel), next-nearest neighbars{ 2, middle panel), and next-next-
nearest neighbors,{ + 3, lower panel), respectively.



3.2 nano-DMFT approximation level: results 83

T T T T T T T
exactsol. ¢ na na.
nano-DMFT — -

0 e ’.——-:

\\ P

VA=1.0 N 7
4L Y il
\ I/
vi=0.0 \ |/
‘J
_2 | | | | | | |
6 -4 -2 0 2 4 6

v/t

ReZj;(iv, )/t
7
\ N

Figure 3.8: Local self-energy in Matsubara representation for the éeezing in theall t topology at
U =5t andT = 0.05¢. comparing between DMFT (lines) and exact solution (syrsibat different
V/t. AboveV/t ~ 0.8, the exact local self-energy is accurately reproduced Imp+3MFT, while
non-local contributions are negligible with respect toltwl ones (not shown). Below this threshold,
no exact QMC solution is available, but the evolution of th@@DMFT self-energy shows that the
system becomes more correlated. Adapted after Ref. [207].

neighbor self-energy at low-frequentyn contrast to théN tcase. If one defines the ratio

Eij(yn :7TT)
= 7 3.7
K maX{ImZZ-Z-(wn)} 3.7)

then forV/t=1 one findsc2lY, ~ 0.01 and<)'! ~ 0.32, where the latter values corresponds to
the self-energy in panel (d) of Fig. 3.6).

Due to the sign-problem in the exact solution, we can stud\etrolution of the self-energy to-
ward the molecular limit only within nano-DMFT. The resutisows that the system becomes
more correlated( increases) upon decreasiigt, and that most likely also non-local correla-
tions eventually arise. This also explains why, in the limit — 0, nano-DMFT overestimates

A(0), in contrast with the exact ED value df 0) =0, as shown in the left panel of Fig. 3.5.

°Note that, instead, the asymptotic valueshi; (1, — oo) — 0 in all cases, as the only constant contribution
is the Hartree term, which is purely local in the Hubbard nidldeal interaction).
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Spectral function: analytic continuation of the QMC data. In order to have a better picture
of the behavior of the system, not limited to the Fermi lereFig. 3.9 we show the evolution
with V/t of the one-particle spectral function A(v) = —LImG” (v).

The spectra are obtained via analytic continuation on takavas of the DMFT(QMC) data
using a Padé interpolation and/or a Maximum Entropy metiEN]) [101]. A qualitative
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Figure 3.9: One-particle spectral functiod(v) = —2ImG" (v) for the benzene ring &f =5t and 7 =
0.05¢. Left panels: evolution ofA(v) with V/t in theNN t (red/orange) andll t (blue/cyan) hopping
configurations. The analytic continuation of the nano-DIMIBMC) data has been performed with
MEM (solid lines) and, only in the cadé/t=0.0, also with a Padé interpolation (dashed lines).



3.2 nano-DMFT approximation level: results 85

understanding of the effect of electronic correlationdrisaaly provided by a comparison to the
non-interacting ones of the benzene molecule for iditht andall t hopping configurations,
shown in the left panels of Fig. 3.3 (whergt ~ 0.4 corresponds td’/t=0.5).

In the NN ttopology, A(v) shares some similarities with the non-interacting spectrat
V' =0 (upper left panel of Fig. 3.9) the MEM predict two broad loneegy structures symmet-
ric with respect of the Fermi energy, due of the particleelgyimmetry, while the Padé method
resolves each structure into two peaks (see left inset) Tkeath effect of the interaction is
to shrink the low-energy structure toward the Fermi energy, and tlpeigydilled with some
spectral weight: a real filling in the Padé spectrum and aisps tiny peak in the ME one (see
right inset). At the same time, more structure appears anargg scale comparable wiflj,
which is identified with the lower and and the upper Hubbaadds. The coupling to the leads
additionally contributes to the broadening of the spectieiading to a semi-metallic behavior.
The redistribution of the spectral weight due to the intgoacis instead more drastic in the
all t topology. Already in the molecular limil{=0), nano-DMFT predicts a metallic solution,
which is in contradiction with the results of the exact diaglization (cf. with the discussion
of the left panel of Fig. 3.5). At finitd’/t (middle and lower panels of Fig. 3.9), the hybridiza-
tion to the leads favors the emergence of a resonance at thre &eergy, which is a genuine
many-body effect, arising from the interplay betwedérandV/, and it would not exist in the
absence of electronic correlations (cf. with the lower pefhel of Fig. 3.3). At the same time,
the hybridization induces an additional quasi-particlsgding factorl’/2 = 7pV2, which also
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Figure 3.10: Comparison of the nano-DMFT and exact one-particle spefctnation for the benzene
ring atU = 5t andT = 0.05¢. Left panel:NN thopping configuration at’/t =0, non-local spatial
correlations matter. Right panelll t hopping configuration at’/¢t = 1, the system is dominated by
local effects.
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controls the width of the resonant peak. Hence, toward thé In which the hybridization
becomes the dominating energy scale, the spectral weigbbiies more and more incoherent
in both hopping configurations, and tend to lose almostaltenergy features.

The comparison between nano-DMFT and the exact solutiorbegrerformed also at the
level of the one-particle spectral function. However, awalating statistics to perform an
analytic continuation of the exact QMC solution with the MEMcomputationally quite costly,
already for the case of the benzene molecule, while the FPaeiolation yields non-analytic
spectra due to difficulties in the interpolation procesgjioating from the statistical fluctuation
of the QMC data) for the non-local self-energkes(wv,,) for |i — j| > 1.

Hence, we restricted to the comparison of the following tepresentative cases, one for each
hopping configuration: (i) the molecular limit of the benzamolecule in th&N tconfiguration,
and (ii) theall t configuration forV//t =1, i.e. at the lowest possible value of the hybridization
for which the fermionic sign in the exact QMC solution islstibse to one. Both the analytic
continuation of the nano-DMFT(QMC) and exact QMC solutior abtained by means of
MEM,; for the isolated ring we provide, in addition, the onaricle spectral function obtained
by ED of the Hamiltonian; the results are compared in FigO3Ifh theNN t case (left panel),
we can see that nano-DMFT completely fails to describe tinednergy physics, predicting a
small yet finite spectral weight (or a tiny peak in the MEMngoare also with the r.h.s inset
of the upper left panle of Fig. 3.5), while both the QMC and Bfaa solution remarkably
yield the same amplitude for the gafx ~ 2.5 eV. In theall t case (right panel), where non-
local spatial correlations are negligible, nano-DMFT nolygoredicts the correct low-energy
physics, but it quantitatively reproduces the excitatipectra in the whole energy range.

Quantum transport in benzene junctions. Another interesting issue is the study of elec-
tronic transport in molecular junctions. As already memtid, one expects QI to play an im-
portant role in ring structures, and it reflects itself ire thresence oéntiresonancesn the
transmission function. This interesting phenomenon has bedressed by several authors, yet
neglecting electronic correlations [181, 182]. The redsoithis is that QI seems to be mainly
connected to the molecular topology. [182] As a consequeheemain qualitative features
connected to QI are captured already by tight-binding, oftdida-Fock kind of calculations.
However, the importance of non-perturbative electronicatations, and of their interplay with
Ql, in determining the transport properties of nanoscopicsures is well known, and has been
the subject of intensive investigation [185, 209, 210, 2Mgreover, the Coulomb interaction
plays a pivotal role in the study of both equilibrium and requilibrium transport for molecules
and atomic contacts in the Kondo regime [212, 213, 214, 215].

In the following we will study equilibrium conductance inroeene junctions, and we will
see that QI effects are clearly visible even in the non-adtng limit U = 0, while, in the
presence of an on-site interaction, effects of local (andlooal) electronic correlations become
important, in particular in the weak-hybridization regime ¢.

As it has been shown in Sec. 1.3.2 #ectronic conductanceG(e) = ¢/hT (¢) through
a nanostructure can be expressed in terms ofrdresmission coefficient obtained from the
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retarded and advanced Green’s function of the interaceggn. For the sake of clarity, we
report here the corresponding formula, obtained neglgetamntex corrections

T(e) = tr[DL ()G (e)Tr(€) G (€)]. (1.82)

In the expression above, both the Green’s functi6fi¢ and the scattering amplitudg g
are matrices in the sites indexes of the nanostructure. isnréispect, further clarification is
mandatory. In the literature the conductance through adrengng is usually calculated in the
configuration where the molecule bridges two leadly. Depending whether the leads are con-
nected to the nearest, next-nearest, or next-next-ngaseesbpposite) neighboring-sites of the
benzene ring, those configuration are labeledréiso-, meta, andpara-positions, respectively
[181].

The realization of those configurations in the nanostngctue are considering is indeed pos-
sible, yet it breaks the symmetry of the structure, i.e. oilehave two or three inequivalent
sites, depending on the position of the leads. Hence, weléeto avoid this additional compli-
cation, and we considered a configuration in which eachoditee benzene ring is equivalently
coupled to its own lead with identical, energy independscattering amplitudeB = 2rpV2.
Even in this configuration, however, one can define andutate atwo-terminalconductance
between sited, and R using the following form for thescattering matrices

{fL}ij = 27Tpv25Li5jL7 (383.)

{f‘R}ij = 27TpV25Ri(sz, (38b)

where, in practice, the only non-zero element is locatechemtain diagonal, in the position
corresponding to sité or R. Hence, when computing the conductance betweéraad aR
terminal, the form (3.8) for the scattering matrices implie=1", =I'r and one can show that
Eq. (1.82) simplifies to

T(e) =) TIGr(e)T. (3.9)

Obviously, in the configuration we consider, the Greenisction will still contain the informa-
tion thateachsite is contacted to its own lead. Despite this does not halraraatic effect on
the conductance in the limit < ¢, it is certainly of importance in the intermediate-to-sige

hybridization regim& or if one aims to a realistic description of transport praoisrof the

system under analysis.

With thecaveatthat the Green’s function is anyway modifed by the presehedditional leads

6This statement is based on the comparison the conductaracéuastion of the gate voltagg; (for more
detail see Sec. 3.2.3) in the leads’ configuration disalisgefar, and the one in which only two sites of the
ring are connected to the leads. In the latter configurati@ntranslational symmetry is explicitly broken by
the inhomogeneous coupling of the molecule to the leadsffamdtoms constituting the molecule are no longer
equivalent (Vineq = 3, 4,2 in the case obrtho-, meta, andpara-positions of the leads, respectively). As one
expects, we have found that the simultaneous presence eals, instead of two only, yields a suppression of
the conductance of the order@{T'/¢), due to the enhanced scattering rate for the propagatingefes.
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beyond the one to which voltage is applied, in the followirgmevertheless keep the usual lit-
erature nomenclature as we will refer to thitho-, meta, andpara-position, corresponding
to the transmission coefficient computed using Eq. (3.9hwhe non-local elements of the
Green'’s functionG?,;(¢)|” for |i — j| =1, |i — j|=2, and|i — j| =3, respectively.

A last complication, that we should discuss before turnmtihe numerical results, is related to
the choice of a QMC impurity solver. In fact, one does not hdivect access to the non-local
elements of the retarded (or advanced) Green’s functiahhaa to rely on an analytic continua-
tion of the self-energy, which is particularly unstabletloe exact solution, as already discussed.
If possible, one would rather pursue alternative ways, thgmethod which has been recently
reported by Karrasht al. [216] is indeed interesting: they showed that, in the caskesingle-
impurity Anderson model, the finite-temperature condnceon the real axis can be obtained
directly from the Matsubara Green’s function, by perforghan continued fraction expansion
of the Fermi functionwithoutthe need of any analytic continuation. A generalizationhaf t
method to extended systems, however, does not seem to bblposs

Due to the complications inherent to the analytic contifmmtve cannot easily compute the full
energy-dependent transmission coefficient, and we welhde, consider only theonductance

at the Fermi energyG(er)=(¢?/h)T (er), estimated as

62

- (2mpV?) |Gir(wn =), (3.10)

2
Gep) = %ZF|GO’LR(,H/N — 0)]’T ~ 2
where we drop the spin dependence of the propagator anctiglypinclude a factor2 for the
spin degeneracy. However, the presence of, e.g., (amtijfexgnetic leads or a magnetic field,
would obviously determine a spin-dependent conductance.

A guantitative estimate for the transmission coeffici€hlQ) may be obtained extrapolat-
ing the Green’s function in the limit,, — 0 with some fitting procedure. In the results shown in
the following we just consider the Green'’s function at thedst Matsubara frequency=n=T,
which, though being a rough estimate at our relatively highperature, is sufficient for un-
derstanding the qualitative behavior of the conductandberbenzene junction. In Fig. 3.11,
we show the equilibrium conductance at the Fermi enéi@y-) = (¢?/h)T (eg) through the
benzene nanostructure in tbegho-, meta, andpara-positions for botiNN t andall t hopping
topologies. As a general remark, valid for all connectiavs can see that (ex) increases like
V4 at low values of the hybridization, as it could be expectedting the scattering amplitudes
['in Eq. (3.10) perturbatively. A increases(:(er) exhibits a maximum due to the formation
of a resonant peak of width = 7p1/? between each site and its own lead. This effect is a con-
sequence of a non-perturbative interplay between theterirgeraction and the hybridization.
In theNN ttopology (upper panel), our calculation reproduces thaetdn of the conductance
in the metaposition, with respect to thertho- and thepara-position [181]. This effect is be-
lieved to be a generic characteristic of single-molecuheiions, and it has been explained in
terms of QI, arising only from the molecule’s topology and divectly related to the presence
of electronic correlations [182]. On the other hand, maagbeffects have been recently re-
ported [185] to be responsible for the formation of transmis minima (“Mott nodes”) in
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Figure 3.11: Conductances = G(er) through the benzene ring as a functionVoft for NN t (upper
panel) andall t (lower panel) hopping geometries l@dt= 5¢ andl’ = 0.05¢, comparing nano-DMFT
(lines) and the exact solution (symbols). Téwho, metaandpara labels refer to the conductance
computed between two of the metallic leads, as shown scheitatabove the plots. In th&IN t
case, QI effect are clearly visible. In tladl t case, instead, due to the symmetry of the problem all
connections are obviously equivalent. Adapted after R2&f7T.

molecules with open shell configurations. Yet, this effischot present in thall t topology
(lower panel), and(er) is the same in all three contact positions due to the pasicadpping
structure (note that the criteria given in Ref. [182] to peedestructive interference relies on
the assumption that only nearest neighbor hopping prosegsigin the molecule take place).
The comparison between nano-DMFT and the exact solutiowsktitat non-local correlations
(beyond DMFT) are not important both in the limit in which thmlecule is strongly coupled
to the leads and when the connectivity is high. This, in thatliof the results presented be-
fore, may not be surprising, since the conductance withettex corrections is essentially a
single-particle quantity.

If the suppression of7(¢r) is not a direct consequence of electronic correlationg) tie
need to understand what is the influencelofif any) on the profile of the zero-bias conduc-



90 Local and non-local correlations in molecular systems: &est for nano-DI'A

0.80 . . . . .

P - I U=0I -~
0.60 F NNt 3 nano-DMFT Hfg: -
0.40 | ortho y exact sol. U=5t

G [e%/h]

0 r 1 1 1
0-12 T T T T T T T
U=0
| nano-DMFT {U=3t -
0.09 NN t - U=5t —

meta exact sol. U=5t e

G [e%/h]
o
o
o

0.03
0 ¢ b
0-32 T T T T T T T
U=0
— 0.24 - NNt - nano-DMFT 4 U=3t - - |
.E U=5t —
“o 0.16 exact sol. U=5t o
S 008! |
0 o oo

0 0.5 1 1.5 2 2.5 3 3.5 4
Vit

Figure 3.12: Evolution with U/t of the conductance through the benzene ring in the threeacont
positions of theNN thopping configuration af’=0.05¢. Adapted after Ref. [207].

A(U)
orthoo meta  para position

U=3t ~2% ~3% ~7%
U=5t ~7% ~9% ~ 22%

Table 3.1: Percentage-wise reductiai(U), with respect to the non-interacting case, of the
maximum value of the nano-DMFT two-terminal conductanca imenzene junction. The
comparison of the data for different leads positions shdwas bnce QI are filtered out, the
higher the order of hopping processes involved in trangpoough the molecule, the higher
is the suppression of the conductance due to the local ottena Adapted after Ref. [207].
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tance. To this end, we report in Fig. 3.12 the results of oloutations at different values
of U/t in the whole hybridization range, including the non-int¢ag case, where also nano-
DMFT is obviously exact. As anticipated, the reduction & tonductance in th@etaposition

is observed already in the non-interacting cése0, supporting the hypothesis that it is a mere
topological effect. The presence of a finiteleads only to quantitative changes, suppressing
the conductance peak which appears in a hybridization eginy ¢, though this picture may
change if vertex corrections are taken into account.

Already in the non-interacting case, the channel-depearsigipression of the conductance re-
sults from (i) a reduction arising from the length of the twhuctance paths® between the
corresponding leads, i.e5(er) oc €7l and (i) a topological reduction due to QI in the dif-
ferent channels. In order to get information on éfiect of correlationson topof those effects,
we compare th@ercentage-wiseeductionA(U) of the conductance maximum &t 0 with
respect to its non-interacting value (at the same valueefdtioV/t). We find that the sup-
pression, at a given value 0f, increases with the distance between the sites throughwihéc
conductance is computed, i.8qtho < Ameta < Apara- ThiS is understood considering that the
Hubbard repulsion tends to localize the electrons in theemdé, and to penalize hopping pro-
cesses, hence further suppressing the conductance thitreiglependence on the (interacting)
non-local propagator. We summarize the correspondingegatu Table 3.1. For similar rea-
sons, wheri//t 2 1 the “local” physics of the hybridization dominates ovesmlocal hopping
processes, and again the largest the distance betwednagiidR, the faster is the suppression
of the conductance in the corresponding channel.

Moreover, nano-DMFT suggests that the effectlofs important only in the intermediate-
hybridization regimé/” ~ ¢ region. In the weak-hybridization regime the nano-DMFTvesr
for different values ofJ/ (almost) collapse onto one another, while the exact solytiedicts

a sensibly lower conductance all the way down toward the outde limit. This suggests that,
here, local correlations do not play any role in electrorams$port, while non-local do. This
aspect deserves further investigation: for instance ondadnrme interested to see what happens
if vertex correction to the conductance are included.
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3.2.2 Cyclo-octatetraene molecule

The results presented in this section, concerning the CO@&aule, are still unpublished.

The results presented so far for the benzene molecule stedwdmo-DMFT performs quite
well, with some intrinsic limitation which are well undeosid in terms of the missing non-local
spatial correlations. In order to have a wider picture of hlebavior of Q1D molecules, and
to understand how good nano-DMFT can describe them, we meedrnisider also different
situations. Specifically, the physics of a benzene jumctiothe weak-hybridization regime is
obviously dominated by the presence of a charge gap in themeracting DOS, and it would
be interesting to investigate how our approximation scheem®rms in the weak-hybridization
regime, as we mentioned before, of a correlated metallie.daghis respect we have followed
two different paths: (i) we considered another Q1D system, namely@4&T molecule, in-
troduced at the beginning of this chapter, and analyzedtald®elow, and (ii) we introduced
another control parameter, i.e., thate voltageV;, to be discussed in the next section.

Electronic structure of the COT molecule. The most striking difference between the COT
and the benzene molecule is the existence, in the disc@teinteracting spectrum, of a (dou-
bly degenerate) peak lying exactly at the Fermi energy. érptiesence of a local repulsion term
(assuming it small enough not to invalidate the MOs pictutteg lowest energy configuration
would be the one with two singly-occupied degenerate debétethe Fermi energy, thus realiz-
ing an effective two-levebU (4) AIM, relevant, e.g., for the description of carbon nanotube
QDs [217]. For the same reason, Kondo physics may be expatted temperature.

As a first application of nano-DMFT to the COT molecule, Istaonsider the molecular
limit V' =0, which has both the advantage of getting rid of the hybrithireenergy scale, and
to focus on a situation in which non-local correlation arpexted to be maximal (according
also to the analysis of the benzene molecule). @he-particle spectral function resulting
from the MEM analytic continuation of the nano-DMFT(QMC)tdaand the corresponding
Matsubara self-energy are shown in Fig. 3.13 for increasing valuedof
Let us start describing nano-DMFT results starting fromwleak coupling regime, i.el/ =t.
We show that the one-particle spectral function displaygakpat the Fermi energywhich
is disconnectedrom the high-energy structure of the spectrum. The lattewever, is not
entirely due to incoherent contribution of the Hubbard tsrak it will be even more clear
observing the evolution of the spectral function wifh but originates also from the evolution
with U of the non-interacting levels with eigenvalues (cf. witle tlpper right panel of Fig.
3.3). Moreover, we notice a quite peculiar behavior of theesponding Matsubara local self-
energy at low energy. In fact the absolute value ofllffvy,) decreases ag, — 0" down
to approximately the last but one Matsubara frequemcy 377, while at lower energy it
raises again. This determines a jump around(. This feature is still present also at higher

"Obviously, it cannot be a Kondo resonance with the lead$] as0, but it may be a Kondo resonance a la
DMFT within the C atoms of the COT ring.
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temperatures, yet less evident (see Fig. 3.14). A similaaber, can still be traced in the
local self-energy also df = 3¢, and the spectrum is shrinking toward the Fermi energy (as in
the case of the benzene molecule).[A& 5¢ the situation is already much different: the low-
energy structure of the spectral function is now composethbse connected peaks, which
resembles a renormalized version of the spectral functidoveer values ofU /¢, besides one
can clearly observe the formation of Hubbard bands, at arggrseale comparable witti. In
turn, the corresponding self-energy is smooth and lineaalyishing as/, — 0%, suggesting
the onset of a more conventional (but already strongly maadized) FL ground state. Further
increasing the interaction {6 =8¢, the system undergoes a Mott-Hubbard MIT (more precisely
a crossover), where the narrow peak at the Fermi energy bapmiared and the self-energy
diverges, although still deviating from the atomig (:v,,) ~ U? /v,, behavior.

The next step would be to understand whether non-local ledigas modify the nano-
DMFT picture presented above. Obviously, obtaining theespectral function, accumulating
statistics for the QMC is obviously even more costly tharhie tase of the benzene molecule,
because the Hilbert spagé&“: of the system increases exponentially with the number ateor
lated sitesV, in the benzene and COT molecules. Nevertheless, one camétean equivalent
information by the QMC data, analyzing tlhedependence of the nano-DMFT and the exact
local Green'’s function in the imaginary time representatas shown in Fig. 3.15. The relation
between the local Green’s function and the spectral weigtiteaFermi energy, already given
in Eqg. (3.3), is reproduced here, for the sake of clarity:

A(0) = /dl/A(u) cosh ' (v/2T) =~ BG(S/2). (3.3)

If we analyze the nano-DMFT results, we can clearly see thatgdbsolute value of);;(3/2)

is continuously decreasing with increasifig until becoming zero aroundf = 8¢, in corre-
spondence of the MIT, somehow recalling the behavior of thFD solution of the (bulk)
half-filled Hubbard model. On the other hand, in the exadttsan, G;;(5/2) is significantly
smaller than in the nano-DMFT case already at the lowestevald//t considered here, and
it is quickly suppressed with increasing for U > U.. We could estimate the exact critical
value to belU. = 2¢. In this respect, however, we have to consider two sourcexletermina-
tion that affect the QMC data: (i) the systematic error dutheoTrotter decomposition in the
HF-QMC algorithm [103] that is of the order ¢fAT)? ~ 0.027, in these calculations (recall
that AT = /L is the discretization step of the imaginary time domainy} éi) the estimate of
A(0) by means of Eq. (3.3) involves an integral over a finite frmgy window of the order of
the temperaturé’, so that we expect it toverestimatehe real value of4(0). A possible way
to overcome this problems, would consist in extrapolathmg results forAr — 0, as well as
decrease the temperature. However, this is extremelyycodtthin the HF-QMC: the overall
numerical effort of the exact solution of the impurity pretsi grows aQ N, (2N, — 1)N,2L?
(obviously nano-DMFT corresponds 1, = 1) and L? ~ 1/73 upon temperature for a given
AT [121]. An alternative, for future studies, would be to use B@MC as impurity solver
[93, 218] which does not suffer from the discretization erho- and scales only linearly with

B=1/T.
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As the isolated molecule can be diagonalized exactly, irora dispel the doubts arising
from the interpretation of the QMC data, we decided to complaem with the ED one-particle
spectral function, as shown in Fig. 3.16. The ED results sblearly that, already at/ = ¢,
there is no spectral weight at the Fermi energy, implyingh@t the peak observe in nano-
DMFT is either an artifact of the MEM analytic continuatiamable to resolve sharp peaks, or
it can exists only due to the absence of non-local correiatiand (ii) that even in the exact
QMC solution, when non-local correlations are includecdyatrelatively high temperature, we
are not able to resolve the charge gap, below a given thrésboly considering the estimate
ofm provided by Eq. (3.3). As there is no symmetry that requirgsak to be present at the
Fermi energy, this would suggest that the doubly degenergénstates of the non-interacting
COT molecule are split at an infinitesimal valuelof In this sense, the low-frequency behavior
observed also in the self-energy of the nano-DMFT may bepnééed as the fingerprint of
the presence of the gap, and the peak at the Fermi energy dhotine nano-DMFT spectral
function may be an artifact of the MEM employed in the analgntinuation procedure. On
the other hand, the situation changes considering the #oolto intermediate values af/¢:
while the ED gap increases and becomes sizable increasngtdraction, nano-DMFT still
displays a narrow peak at the Fermi energy, as the Hubbardsbstart to appear. At the
same time, the corresponding self-energy recovers grgdbal usual behavior for a metallic
solution (cf. Fig. 3.13). Eventually, & =8¢, both the nano-DMFT and the exact ED solution
are insulating, but nano-DMFT substantially underestasahe ED gap (which is of the order
of A ~ 4 eV) and therefore it cannot be expected, e.g., to yield atgatwe description of
transport properties.

The above analysis not only provides for more insights atfmeireal behavior of the system,
but also allows us to better understand the nano-DMFT eslitleed it seems possible that,
in nano-DMFT, local correlationalone are able to open a gap fér < ¢, as it is reflected

in the insulating-like behavior of self-energy at low-fusmcy. However, in the intermediate
coupling regime, the system is metallic and is charactérigea proper QP peak and a linearly
vanishing self-energy far, — 0. Eventually the system undergoes a Mott-Hubbard crossover
to an insulating state, as the interaction is further ireeea The exact solution, on the other
hand, isalwaysinsulating, and evidently such apparent “reconstructiohthe metallic state,
observed in nano-DMFT, does not take place. This is verylidae to the effect of non-local
spatial correlations.

Effect of the hybridization. Hitherto we have considered the COT in the molecular limit
only. However, we know from the analysis of the benzene nubedhat the presence of the
hybridization is supposed to suppress non-local spatrattagions, leading to an improvement
of the nano-DMFT description of the system. Therefore, ihisresting to study the evolution
of the system from the molecular limit to a weak-hybridiratregime. In Fig. 3.17 the nano-
DMFT and exact self-energy in the different regimes forvald values of//¢ are presented.
At V/t =0, the imaginary part of the exact QMC local self-energy isedijng forv,, — 0 for

all values ofU /t considered. More in generalll imaginary components of the self-energy are
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Figure 3.16: Comparison between the one-particle spectral functign) as a function ot/ /¢, for the
isolated ¥ = 0) COT molecule in the\NN t hopping configuration al” = 0.05¢ . Left panels: one-
particle spectral function obtained by MEM analytic conaition of the QMC data. Right panels: one-
particle spectral function obtained by exact diagonabrabf the many-body Hamiltonian. Insets
reproduce the low-energy structure of the spectra shadginin the corresponding main panel.
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either zero by symmetry or diverging, i.e., (v, — 0) — oo for j = i,i + 2,7 + 4. Let

us note that this is completely different from what was haypg in the benzene ring, where
Im>;; (1, = 0) ~0 for j= 4,742 (cf. Fig. 3.6). As already discussed, instead, the nano-DMF
self-energy is not metallic-like in the weak coupling, vehdhowing a metallic behavior in the
intermediate coupling regime.

On the contrary, at finit&’/¢, in the weak coupling regime both the exact and the nano-DMFT
local self-energy are metallic-like and linearly vanighesy,, — 0, while all non-local contri-
butions are strongly suppressed with respect to the maletioiit. As the ratiol’/U decreases
(in the plot we show data fdr/t =5 at '/t = 0.5) non-local correlations are no longer negli-
gible: the exact QMC solution is insulating, with the localfsenergy displaying non-metallic
behavior, while nano-DMFT is still metallic.

We can conclude that non-local spatial correlations, aet thterplay with the local ones, are
fundamental in order to estimate the correct critical valtithe interactiori/, for the MIT (or
crossover). The value @f. is also strongly dependent on the ratigU. In particular, within
the exact solutiort/. = 0 for V' = 0, which increases to a finit&,. value increasing’. On
the other hand, nano-DMFT predidts to be an increasing function &f/U, but generally
overestimates it in the whole weak-hybridization regimeestigated here.
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3.2.3 Gate voltage dependence in transport through molecart junctions

The results presented in this section are still unpublished

In an experimental setup, beside the source and the draimaes, the nanostructure can also
be coupled to a gate electrode, that is used to induce a shifeacchemical potential of the
system applying a gate voltade,. Besides being an easily tunable paramétgralso allows

to extract information about the electronic structure @f slgstem through the measurement of
the conductancé'(er — eVi).

For the sake of completeness, we should also mention thai¢b&onic conductance is often
also studied at non-equilibrium, both experimentally drebtetically, as a function of the bias
voltageV,, = us — g (as discussed in Secs. 1.1 and 1.2). However, the thedrééiseription

of transport properties out-of-equilibrium, would reguan extension of the present formalism,
involving the evaluation of the Green’s function on the Keld contour [88]. Therefore, in this
work, we deal with transport only within linear response.

Moreover,V; also grants control on the system’s density, which is oftenitacal parameter
in determining the physics of a system. As a general staterakttronic correlations due to
the Coulomb repulsion are expected to be most effective I&filiag, yet in a system with
competing energy scales, interesting phenomena may take plso away from half-filling.

In the specific case of the benzene molecule, the applicati@ gate voltage, and hence, e.g.,
the addition/removal of one electron, has mainly two imaoteffects:

e one can drive the molecule fromspin-singlet charge-neutral state|0) at half-filling,
with a closed shell of doubly degenerate HOMOs, to akbado regime, characterized
by two doublets|ic), as the additional electron/hole can be place in any of theéads
1=1,2, with spinc =1, ) [212, 213].

e the molecule doesot fulfill the Huckel’s rule (4n+ 2 electronsp non-negative integer)
anymore, and loses its aromaticity, which could possibileceitself in strong changes
in the structure of the spin-spin susceptibility.

Concerning the COT molecule

e in therealisticmolecule , i.e., the one with alternating single and doubleatent bonds
between the C atoms (see Sec. 3.1), the addition/removail efeztron can also have
important consequences on structure of the system itsefveder, in our model COT
system, consisting of a planar ring with equivalent bondg/ben all nearest neighbors,
the effect ofl; is related to the change of the filling mostly.

In the following, we apply a gate voltage and investigatetetenic and transport properties
of Q1D systems also off half-filling. In Figs. 3.18 and 3.18 showG (er — eV;;) between
opposite sites of the nanostructure, as well as the comekipg average densityn (1)) as a
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function of the gate voltadefor both the benzene and COT molecular junctions in the weak-
hybridization regime and intermediate value of the intBoscU /¢t = 2. The latter may be
realistic if one considers that the on-site interaction lua ¢arbon atoms of the molecule can
be screened by the conduction electrons of the leads. Fontine, in this situation, the interac-
tion is of the order of the HOMO-LUMO charge gap which for thenrAnteracting benzeneis

A =2t. This allows us to study the hybridization-driven MIT in tB®T junction already in

the weak-hybridization regime. This means that we will beeab explore, as a function of
Vs, all correlation regimes, i.e., cases where electronicetations are negligible, where local
correlations are dominant, and where non-local ones aégoai important role.

Let us start with thé/; analysis of thdenzene junction As already mentioned, one does
not expect large correlation effects in the transport prioge of the system if the chemical
potential lies within the gap. This is confirmed by the datéhen the hybridization is very
weak, i.e. V/t = 0.1 (upper panels of Fig. 3.18), al/;/t ~ 0 the conductance is very low
because of the gap, and the system is half-filled. Moredies physics, as well as the correct
order of magnitude for the conductance, is already well ilesd in a (non-interacting) tight-
binding approximation, with only quantitative correctsoto the conductance due to non-local
correlations. This is shown in the inset on the left-hane g the large contribution around
v, ~0 of the non-local (Matsubara) self-energy, ; (:v,,) (while the local one linearly vanishes
because of the gap). The picture changes at large endiggtt: one can see that the non-
interacting conductance peaks are suppressed by thedtberaand the step-like variation of
the site-density with; are smeared out, in addition to temperature effects alrpagsent in
the non-interacting data. In the region of gate voltag/t > 1, nano-DMFT overestimates
the conductance (and some differences are also observid filling) and an analysis of the
corresponding self-energy (inset on the right-hand sideyvs a clear non-FL behavior similar
to the one observed in the case of the COT molecule at hhlfefilin this light, the suppression
of the conductance would correspond to the presence of adp¥gap in the spectral function
of the interacting system, which nano-DMFT is not able tohes. This also means that,
concerning how the application of a gate voltage influeniceseliability of nano-DMFT, there
is not univocal tendency, and the quality of the resultsrmgjly system-dependent and subject
to the actual electronic structure.

Less surprisingly, instead, increasing the hybridizastnength toV/t = 0.5 (lower panels
of Fig. 3.18) leads to a better agreement between nano-DMidTilee exact solution in the
whole range of gate voltages analyzed. Quantitative diffees are still observed, but the
broadening of the many-body resonances avoid the formafidsizable) charge gaps in the
spectral function (as confirmed by the self-energy in treeth Therefore, we can conclude
that in this regime, the nano-DMFT approximation is alreadificiently good, and correctly
captures the physics of the system.

Similar results are observed when consideringGI&ET junction. As we have seen before,
in the limit V//U < 1 and at half-filling (/ = 0) the exact solution predicts the system to be

8Note that, as thel(; = 0) systems considered here fulfill particle-hole symmeivg,can restrict to the case
Ve >0 only.
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Figure 3.18: Zero-bias conductand@(er) between opposite sites of the benzene ring and site density
(n) as a function pf the gate voltad&;, in the NN t hopping configuration fof/ = 2¢, T' = 0.05t,
atV/t =0.1 (upper panels) anti/t = 0.5 (lower panels). The insets show the local and non-local
(between neighboring siteési + 1) self-energy in Matsubara representation for selectedegabf

eV /t, highlighted by the shaded area.
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insulating, while nano-DMFT yields a narrow peak at the Hemergy. This is also the case of
the weak-hybridization regime, e.qg.,Jatt =0.1 (upper panels of Fig. 3.19) where nano-DMFT
overestimates the conductance by roughly an order of magmin the low gate voltage regime.
Again, in correspondence of an insulating state, the |lddatgubara) self-energy displays a
non-metallic behavior at low-frequency, combined witlgkanon-local contributions. Moving
away from half-filling the agreement seems to improve, ket quality of the approximation
still depends on the ratiel; /t. Increasing the hybridization (lower panels of Fig. 3.1%) w
observe that arountl; ~ 0 the difference between the nano-DMFT and the exact condceta
is not as large as in the previous case, and indeed the conisyg local self-energy is linearly
vanishing forv,, — 0. The quantitative difference in the conductance is undetsin terms of

a suppression of the non-local Green'’s function due to weaticorrelations, shown in the self-
energy in the inset (for the ca$e =0 see also the full self-energy shown in Fig. 3.17). In this
regime, although some quantitative difference is stillbles we observe that the nano-DMFT
approximation provides a reasonable description of thelgotance and of the site-density in
the whole rang oéV /¢ values investigated.

3.3 Phase diagram of electronic correlations at the nanosta

The results we discussed so far provide already good inditato understand the role of
electronic correlations in Q1D molecules on a general giloimfact, we can depict a schematic
U — V phase diagram shown in Fig. 3.20, where we identify thremnsg a region (indicated
as | in the phase diagram) where electronic correlationsarémportant, a region (ll) where
the system is dominated by local correlations, and a redlgnw(here non-local correlations
beyond mean-field are non negligible with respect to thallooes.

Let us characterize those regions in more detail.relgion 1, located in the weak-coupling
and/or at strong-hybridization regime, a qualitativelpdesometimes quantitatively as well)
description of the system is provided already by a tightdlyig (non-interacting) approach. In
region Il local correlations substantially modify the behavior af 8ystem with respect to the
non-interacting case. Here, the nano-DMFT scheme is rait@rrate, at least concerning the
one-particle quantities we have analyzed here, as non $peaial correlations are shown only
to yield minor quantitative differences with respect to éxact solution. The actual extension
of this region may depend on the system under considerasiomedl as on other parameters,
as in the case of the gate voltage, discussed in the prevemti®s. Inregion Il , extended
to the weak-hybridization and/or strong-coupling regith@d” > 1, including non-local spatial
correlations beyond mean-field is crucial for the underdtag of the physics of the system in
study. This can be done, e.g., by means of nah@@s will be shown in the next section.
Moreover, one should notice that region Ill may extend ewendt so largd//t, depending
on the specific system considered (as we have explicitlysha the case of the benzene and
COT molecules).

In this picture, another element that can influence theaetsge extension of the different re-
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gions is the connectivity: we have shown that, in the case of the benzene moleculegas th
connectivity increases, non-local spatial correlatiomssignificantly suppressed. In the phase
diagram this corresponds to region Il, where nano-DMFTqrent well, extending to lower val-
ues ofl//U or equivalently, in region Il shrinking. In the limit of — oo non-local correlations
are washed away, and nano-DMFT is exact.
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Figure 3.20: Qualitative phase diagram of electronic correlations iokthfrom the analysis of Q1D
molecules. Strong correlations arise due to the presentieedbcal interactiori/, while are sup-
pressed by hybridization processes with the electronseohtim-interacting environment, controlled
by the scattering amplitudE = 7pV2. Hence, the phase space can be divided into three regions
(denoted above by roman numbers) depending on theldfio the black dashed lines are guides to
the eye, and the separation between the different regisgsma®th, as shown by the color gradient,
indicating the strength of local (red) and non-local (blekgctronic correlations.

Non-local spatial correlations and are non-negligiblehia weak-hybridization limil® <« ¢, while,

at a given value ot//t are rapidly suppressed &gt increases: the system is dominated by local
correlations and nano-DMFT a reliable approximation. Huwally the latter is also suppressed in
the strong-hybridization limit and correlation effect® @ubstantially taken into account already in
perturbation theory (e.g., Hartree-Fock approximation).

As in general expected within mean-field theory, also theneativity of the system play an important
role, further suppressing non-local correlations, ieducing the region of the phase diagram when
those are important (lower right panels). In the limit> oo non-local correlations due @ vanish.
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3.4 Including non-local spatial correlations

The results presented in this section, i.e., the evaluatiaime local vertex functions and the
corrsponding nano-DA results for Q1D molecules are still unpublished.

The comparison between DMFT and the exact solution in thedienand COT rings allowed
us to get an overview on its reliability and to understand there exist well defined parameter
regimes where non-local correlations are non-negligiloi¢he following we apply nano-DA

to both the benzene and COT molecules, thus including ncal-lmorrelations beyond mean-
field. Specifically, we limit to the molecular limit” = 0 and at half-filling, where (non-local)

electronic correlations are expected to be most important.

The results presented in the following represent the fpptiaation of the idea behindIlA,
in which all channels (botphh channels and thpp one) are indeed treated on equal footing, by
means of the parquet formalism. PreviouBMresults reported so far [145, 147, 168] relied
on theladder approximation. The ladder assumes the irreducible vetagtionI'*"'“ to be
local only in a specific channel, and the corresponding locat correlations are introduced
via ladder resummation of diagrams. Besides being of easj@ementation, the ladderilA
is only suitable for systems in which one of the channels geeted to be dominant over the
others, as in the case, e.g., of the magnetic channel in tk€dubic) Hubbard model close to
the AF transition.
As already discussed, the heart df ®is the local two-particle fully irreducible vertex, which
is extracted from the AIM, as described at the end of Sec22/halogously, in its nanoscopic
extension, nano-DA, a local fully irreducible vertex\?”'“ can be extracted from each of the
inequivalent auxiliary AIMs defined for a given nanosture. In both cases we considered so
far, i.e. the benzene and the COT molecule, all carbon atoenscpuivalent, and so are all local
two-patrticle fully irreducible vertices, so that we actyaleed to calculate only one of them,
thus mitigating the computational workload of the wholecaédtion.

Evaluation of the two-particle vertex functions: technicd details. Before we discuss our
nano-O'A results, it is worth giving some technical details on how fully irreducible local
vertex has been obtained here. Here, we consider the résudbovergechano-DMFT loop as
the input for a the nano-DA one-shot calculation. The implementation of a fully sediasistent
nano-O°A scheme is not yet available, and will be part of future prtge

The nano-DMFT results are obtained with an HF-QMC impurdlver, where the asymp-
totic behavior of one-particle quantities, i.e. the Graedinction and the local self-energy is
properly treated in order to minimize numerical errors duthe discrete FT (cf. also Appendix
B). On the other hand, at the two-particle level, many techlnssues arise from the statistical
QMC sampling of the generalized susceptibility (2.38). &mtjgular, the accurate and efficient
treatment of its asymptotic behavior still represents aiicant challenge, despite the attempts
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recently reported in this direction [162, 163, 219]. In famsymptotical instabilities for the
generalized susceptibility would yield low-quality resufor the vertex function due to the in-
version ofy””'“ in the Bethe-Salpeter equations, e.g., in the form (2.48a)(2.49b).

Hence, our strategy consists in computing two-particlentjtias of the converged AIM with an
ED impurity solver. In order to do so, we need to fit the Anderparameterg§l;, ¢,} in order
to define adiscretehybridization function of a system consisting/\y sites (one impurity and
N bath sites) which reproduces the hybridization functiotheforiginal AIM

N

Al) =Y Vv (3.11)

M
UV — €
—1 ¢

and can be used for the ED setup. Exploiting symmetries altolewer the number of in-
dependent fitting parameters, e.g. at half-filling, whre hybridization function fulfills the
conditionA(v) = A*(—v), itis reduced by a factor of two. Besides the error arising uthe
discretization of the bath, one can exactly evaluate themgdized susceptibility (2.40) directly
in the (Matsubara) frequency space, thus avoiding the rsspyinvolving the FT.

The ED results presented in the following have been perfdiimgether with G. Rohringer with
N,=5 sites in the AIM (including the impurity site), keeping (atist)160 (positive) fermionic
and bosonic Matsubara frequencies, which has require@gicin determination of the general-
ized susceptibility, a parallel calculation of abddd.000 CPU hours on the Vienna Scientific
Cluster (VSC). This allowed for a precise calculation of (Matsubara) frequency structure
of the two-patrticle reducible and irreducible vertex fuont (see also Ref. [158] for further
details).

The ED fully irreducible vertex is the input for the parquejuations. In practice, the
solution of the parquet equations is subject to numericakgre.g., arising from the inversion
of the Bethe-Salpeter equation, and mainly due to the fies of the frequency grid on which
the calculation is performed. This leads to a violation & thossing symmetries [165], which
would be instead fulfilled by an exact solution of the patoeguations. In turn, the symmetry
violations lead to numerical instabilities beyond the weakipling regime, which become more
and more severe as the temperature is lowered. In this tespe@nforcement of the crossing
symmetries at the level of the full vertgx"”' seems to improve substantially the algorithm
and allows one to reach converged solutions also beyond ¢lag woupling regime [165]. In
the actual algorithm of the nanot3, used to obtain the results presented in the following,
the enforcement of the crossing symmetry is not yet impléeterHowever, this was already
enough to analyze regions of the parameters’ space whicteleant in the present context.
Further improvements of the whole computational schemecartinly possible, as e.g., the
implementation of semi-analytical asymptotic behaviahaftwo-particle quantities [219, 166].
This, as will be discussed in the outlook, is expected tdhkrimprove the scheme form both
the accuracy and efficiency point of views.
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3.4.1 One-shot nano-DA results

In the following we show the ED results for the local two-paé fully irreducible vertex
in the four different channels: (d)ensity, (m)agneticin@glet, and (t)riplet (as defined in Sec.
2.3.2) and its effect on physical quantities obtained withe anno-ID'A scheme. However, it
is worth stressing once again that, being the fully irrediecvertex irreducible irverychannel
by definition, each vertex is just one of the equivalent corations of the only two independent
quantities:A+;, andA4, according to the following convention

Ad,m = ATT + A'N? (312&)

As = 2AT¢ — ATT? At = ATT' (312b)

As for the high-frequency asymptotics of the fully irredolel vertex, we expect this to be
alwaysgiven by the lowest order contribution, i.e. proportionakhe bare interactioty, as

it was explicitly discussed in Ref. [158], for a DMFT calctia of the bulk 3-dimensional
Hubbard model. This property is evidently connected to tiirisic fully irreducible nature of
the vertex, as all the high-frequency contributions to tegnagptotics, beyond the baté, are
originated by reducible diagrams. Here we will show tha firoperty holds, as expected, even
in the “extreme” case of Q1D systems.

Benzene molecule. Let us start the discussion of the results for the two-plartiglly irre-
ducible local vertex for different values &f/¢, shown in Figs. 3.21-3.24 with respect to its
asymptotics, i.e Ay —U, AW'“ U, A —2U, andAV"'>.

At U = t, due to the presence of the charge HOMO-LUMO dgap= 2t at the Fermi
energy of the non-interacting DOS of the benzene moleduéschanges of the fully irreducible
vertex with respect t&/ are tiny (and therefore the corresponding plot is not showm}his
case, to obtain accurate results for the asymptotic behavithe fully irreducible vertex is
challenging even in the case of ED, and shows that one isdhol@end to the knowledge of the
susceptibilities in a huge frequency range in order to perfoumerically stable inversions of
the Bethe-Salpeter equation(s), making evaluation ofdiseeptibility numerically demanding.

In the case/ = 2t, the local two-particle fully irreducible vertex is shownm Fig. 3.21.
The frequency structure of the vertex evidently resembleatwe expect from the analysis
of two-particle vertex functions in the AIM reported in R4lL58]. Although in this case we
achieve stable results for the inversion of the Bethe-S$atmeuation(s), the overall frequency
dependence of"*'“ is rather weak, and does not represent a quantitativelyrimapocorrection
to the static contribution in each channel: e.g., the secetke upper left panel of Fig. 3.21 has
to be compared t&/ = 2t.

Those results can be more precisely analyzed if consideregdimensional slices of the the
vertex, as, e.g., as shown in Fig. 3.22 along the lihe 7T, for w = 0 (upper panels) and
w = 207T (lower panels). Although the system is supposed to be alrbagond the weak-
coupling regime, due to the weak deviation from the asynpadtfinite frequency it is interest-
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Figure 3.21: Local two-particle fully irreducible verteA””'« in Matsubara representation for the
isolated {/ = 0) benzene ring in th&IN t hopping configuration, al/ = 2t andT = 0.05¢. In each
panel a representation of the vertex is plotted and the gmoreding asymptotics is subtracted, i.e. we
plot: A/ —U (upper left),A?”"“ +U (upper right),A%'“ —2U (lower left), andAY*"“ (lower right)
for w=0 as a function of the Matsubara indexes of the fermionic feegies.

ing to compare\*”'“ to the corresponding perturbative expansion in the Hubbdedaction:
beyond the lowest order contribution 6f(U), determining the asymptotics in each channel,
we also include the next term in the expansion, i.e. [fheontribution given by thenvelope
diagram(s), in analogy to Ref. [158]. For the sake of siniyljeve also restrict ourselves here
to the density and magnetic channels only, which alreadyatosithe full information carried

by ATT andAN.

Concerning the contributions at= 0, the numerical data fok’*'~ qualitatively resemble the
contribution of the envelope diagrafi® “, stemming from perturbation theory, while fay'«
the numerical data qualitative deviates from the predigtiof perturbation theory. At finite,
e.g.,.w = 2077, the agreement seems to systematically improve.
Besides quantitative deviations on the scale appear to lsamntial, they are still negligible
with respect to the bare interactiéh indeed, the weak frequency dependence of the fully irre-
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Figure 3.22: One-dimensional slice along the liné= 7T of the local two-particle fully irreducible
verticesAgl;;f in Matsubara representation, for the isolatéd=0)) benzene ring in thBIN thopping
configuraﬁon, at/ =2t andT = 0.05t. We compare the numerical results for= 0 (upper panels)
andw = 207T (lower panels) as a function of the Matsubara indexes ofemaibnic frequency,
to fourth-order perturbation theory (envelope diagram).

ducible vertex in this regime of parameters, suggests thaparoximation such as the parquet
approximation (PA), in which the (frequency dependentjeseis approximated with its static
contribution only, should already capture most of the ptg/siontained in the full nanodDA
approach.

At U =5t instead, in Figs. 3.23, when the energy scale set by theaitten is larger than
the one set by the non-interacting HOMO-LUMO gap, the situnais different. The fully irre-
ducible vertex displays a clear low-frequency structutepse amplitude is no longer negligible
with respect to the asymptotics, and rapidly decays to theesponding asymptotic values at
higher frequency. Furthermore, it is interesting to notitat, looking at the triplet channel
would suggest a rather smooth evolution/dt'~ = Aﬁ’“’ increasing the interaction beyond
weak coupling, besides the characteristic energy scalegimg according to the bare interac-
tion U. However, this is not the case for the other channels, in IwhlsoAﬁ”w appears. At
high values ofU/¢, e.g., in the singlet channel, the vertex displays a morepbtexrstructure,
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Figure 3.24: One-dimensional slice along the liné= 7T of the local two-particle fully irreducible
verticesAg’;’n“’ in Matsubara representation, for the isolat&d={0) benzene ring in th&IN t hopping
configuratfon, aty = 5t andT = 0.05¢. Perturbation theory can no longer describe the numerical
results, shown fow =0 (upper panels) and = 2077 (lower panels) as a function of the Matsubara
indexes of the fermionic frequeney
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with both positive and negative peaks (with respect to thyenasotics) while in the density
channel the sign of the whole structure is reversed.

The changes of the frequency structure of the vertex bey@adk woupling are evident consider-
ing the one-dimensional slices of the the vertex along thei= =T, for w=0 andw = 2077,

as shown in Figs. 3.24, and its features cannot be describygdae by the envelope diagram
contributions, which are negligible with respect to the euical data (and therefore not shown).
The origin and the interpretation of the non-perturbatof@logical evolution of the local fully
irreducible vertex requires further investigations, bugtynioe interpreted as precursors of the
Mott transition [167].

The calculation of the fully irreducible vertex is, howeyenly the first step of nano-DA.
In order to include non-local correlations with nand®we need to solve self-consistently
the inverse parquet equations for whidH”'“ represents the input. The real space Dyson-
Schwinger equation (2.57) involving the converged fulter*'« yields the nano-DA self-
energy, which allows to calculate other quantities of ieser

Considering the weak frequency dependence of the fulldircéble vertex in the weak
coupling limit (U = t, 2t), we perform the calculations both in the PA £ U) and the D'A
level (full A*'“). In the strong coupling regime, instead, the parquet saleeealed to be
unstable and no properly converged solution could be obdaat higher values df, due to
numerical violations of the crossing symmetries [165].
Let us start with a direct comparison of the nanbAself-energy (between nearest neighbors
i,1 + 1) to the nano-DMFT and the exact ones, shown in the upper mdrtey. 3.25 in the
U = 2t case. Already the level of PA, the nand-B represents a substantial improvement in
comparison to nano-DMFT (in which non-local self-energaes identically zero) and it is in
very good agreement with the exact solution. Considerieduh (but rather weak) frequency
dependence of the fully irreducible vertex does not prowadg further sizable improvement
with respect to the PA. The effect of non-local correlaticas be also explicitly seen in the
local Green'’s function in the imaginary time representgtishown in the lower panel of Fig.
3.25, where we compare the results obtained using the seffyes of the upper panel. In
this case, though the difference exists only on a quite sstalle, the improvement of nano-
DI'A over nano-DMFT is qualitatively remarkable: clearly, theesence of non-local spatial
correlations is crucial in restoring the charge gap of tb&ated interacting benzene molecule.

The results shown so far look quite satisfactory, and giessering indication of the relia-
bility of the method for including non-perturbative norcéd correlations beyond nano-DMFT.
However, the analysis of response functions, and their episgn within all the approxima-
tion levels discussed so far, is also important and repteseence, one of the main aims of
future works. Moreover, we also need to understand whers thee(small) residual difference
between nano-DA and the exact solution comes from. It may arise from nuna¢pcecision
issues, e.g., the finiteness of the frequency range in wthiglparquet and Bethe-Salpeter equa-
tion are solved, or it may also be due to a momentum dependadtice fully irreducible vertex
in Q1D systems.
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Figure 3.25: Comparison between nano-DMFT, nan®® and the exact solution for the isolated
(V' =0)) benzene ring in th&lN t hopping configuration, a/ =2t andT =0.05¢. Upper panel: non-
local self-energy (between nearest neighlipis- 1) in Matsubara representation. Lower panel: local
Green'’s functionz;; (), where only the nano-DA(PA) has been reported because it was essentially
indistinguishable from the nanoiA. Inset: zoom of the highlighted region.

COT molecule. In the case of the benzene molecule the very good agreemsvedrenano-

DI'A and the exact solution, was observed already at the PA.|&Vekt is still needed to be
investigated is the importance of the frequency dependehdee fully irreducible vertex in
a case where it is not negligible. An analysisA3#'“ in the COT molecule, in analogy with
the case of the benzene one, provides useful insights irdif@stion. In fact, we have seen
in the previous sections, the isolated COT molecule is nietadth in the non-interacting case
and within nano-DMFT at weak-to-intermediate couplingjle/fvithin the exact solution it is
insulating. In this sense, one expects that the fully irofale vertex could carry the information
the system needs to open the charge gap.

In the he COT, however, the covergence of the parquet eqsaditd” = 0.05¢, as usual, is
quite problematic, due to the numerical violation of thessing symmetry, already at the level
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of PA. Therefore, in this case we were forced to consider adrigalue of the temperature,
namelyT = 0.10¢, at which the parquet convergence is smooth up to the irntteracalues of
approximatelyJ = 4t.

We performed calculations &t = 3¢, for which the corresponding fully irreducible vertex,
calculated from a converged nano-DMFT loop is shown in Fi®263 The fully irreducible
vertex displays now a non-negligible frequency depend@ncemparison to the static contri-
bution. Remarkably, its frequency structure still resezslthe one of the vertex of the benzene
molecule at weak coupling, i.e., the one that can still bditavely understood by means of
perturbation theory (envelope diagrams) [158, 167]. Atgame time its asymptotics is well
behaved, clearly displaying the typidaltterfly structure expected f gg;g’, and reported also
in Ref. [158] in the metallic phase of thie=3 Hubbard model.
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Figure 3.26: Local two-particle fully irreducible verted””'“ in Matsubara representation for the
isolated { =0)) COT ring in theNN thopping configuration, &t/ =3¢t andT'=0.10¢. In each panel
a representation of the vertex is plotted and the correspgrasymptotics is subtracted, i.e. we plot:
AWY'w U (upper left), A%~ +U (upper right), AV~ —2U (lower left), andA?”'“ (lower right) for
w =0 as a function of the Matsubara indexes of the fermionic feagies.
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A one-dimensional slice of the the fully irreducible vertgbong the linev’ = 77T for w =0
andw = 207T, is shown in Fig. 3.27: The significant frequency structobserved cannot be
well reproduced by perturbation theory. Instead, we hgjtilin the insets the low-frequency
feature of A which are not clearly visible in the full range. We notice @pwaty = 0 in
Av¥'« which persists also at finite, and a wiggle inA\%*'“ which is instead washed away at a
high enough value ab. Those features appearing in the low-frequency range atgapty the
most relevant for describing the low-energy physics of §e&esn. Tracing back their origin
(which is evidently no longer related to the lowest ordegdians) is, however, absolutely not
trivial.

One needs to understand what is the effect of the frequenastste of vertex on the nano-
DTI'A results for physical properties of the COT molecule. In.RBg28 we show the non-local
self-energy (between nearest neighbgis- 1, shown in the upper panel) as well as the local
Green’s function in the imaginary time representation @owanel), comparing nano-DMFT,
nano-O°A and the exact solution. In the case of the self-energy, gelgart of the spatial
correlations arise already in the PA, i.e., from the lowedeocontribution of\**'“. Including
the frequency structure of the fully irreducible vertexthar improve the agreement, but non-
local spatial correlations are still sensibly underesteddy nano-IDA. The same conclusion
can be inferred from the estimate 4f0) provided byG(7 = (3/2): in contrast to the benzene
molecule, in the COT molecule non-local correlations ideld in nano-D'A do not seem to be
enough to open a charge gap.
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Figure 3.27: One-dimensional slice along the liné= 7T of the local two-particle fully irreducible
vertex A*”'“ in Matsubara representation for the isolatéd = 0) COT ring in theNN t hopping
configuration, af/ =3t andT'=0.10¢. In each panel a representation of the vertex is plotted fzend t
corresponding asymptotics is subtracted, i.e. we pﬂg'(:'“’—U (left), A;’,;”“’+U (right) forw=0and
w = 20T as a function of the Matsubara indexes of the fermionic feegy . Insets: the features
of the vertex in the low-frequency region are highlighted.



116 Local and non-local correlations in molecular systemsa test for nano-DI’A

0 nano-DMFT —
nano-DIr'A (PA) v
= nano-DIFrA —
B 0.1 | 7 exact sol.
*
E::: 0.2 §
_0-3 1 1 1 1 1 1 1

ReG;(1)

Figure 3.28: Comparison between nano-DMFT, nan®/® and the exact solution for the isolated
(V' =0) COT ring in theNN thopping configuration, &t/ =3t and7'=0.10¢t. Upper panel: real part

of the on-local self-energy (between nearest neighbars 1) in Matsubara representation. Lower
panel: local Green’s functio&';; () in the imaginary time representation.

Possible improvements in this respect may be expected higwaigh a fully self-consistent
nano-O'A calculation, while it also possible that non-local coaténs arising from a purely
local fully irreducible vertex, while improving with respieto the description of nano-DMFT,
are still not enough to accurately reproduce the exactisolut

In this respect the results presented above partially btivei so far unexplained, role of the
frequency dependence of the fully irreducible vertex inglhequet equations in the context of
nanoscopic systems. The results obtained call for furtinezstigation in different parameter
regimes, e.g., extending the analysis to systems with gefmibridization to non-interacting
environment. Another possibility concerns the direct gitton of theexacttwo-particle fully
irreducible vertex, in order to observe its momentum stngctindeed, the DA aims mainly at
treatingd =2, 3-dimensional systems, and it is possible that in the Q1D cassidered here the
assumption of the locality of the vertex is partially vi@dt While it is obviously a challenging
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task, it is still doable for Q1D system with a not too extenéiibert space. Moreover, it may

provide useful information about the limit of validity of na-DI'A, as well as suggest possible
parametrization of the vertex function, similarly to whatshbeen reported in the context of
functional renormalization group (fRG) technique [220].

3.5 Outlook

The analysis of electronic structure and transport praggen Q1D correlated systems rep-
resents the ideal testbed for the nanoscopic version of DMiIof its diagrammatic extension,
DI'A. We have described the parameter dependence of severtahguantities in different
regimes, aiming to provide a general picture of the role oadl@and non-local electronic corre-
lations. Moreover, the results presented so far showedhbanclusion of local and non-local
spatial correlations in nano-DMFT and in nand/®is possible. At the same time, these re-
sults point out other challenging problems and certaintpune further investigations. In the
following we briefly discuss other possible studies anceegtons of the methods employed
here.

Possible applications. According to the general criteria discussed in Sec. 3.3n @véow-
dimensional systems, nano-DMFT can perform extremely imedl wide range of parameters,
namely for large enough values 6f U and/or for high enough connectivity. At the same time
it is quite flexible and fast, compared to an exact solutidence, nano-DMFT is expected to
be an optimal and reliable tool to investigate higher dinmamd nanostructure made of several
atoms, for which an any exact solution in the presence ofreleic correlations is numerically
challenging or even prohibitive. In this respect, in thddaing chapters we will show ap-
plications of the method in the one-particle self-consisipproximation level, ranging from
guantum junctions to realistic nanocluster of magneticditeon metal oxides.

On the other hand, we have shown that restoring non-loceglations beyond mean-field in
a nano-D'A fashion may improve the physical description of the systdran the above criteria
are not met. However, in order to understand to which extemtwo-particle approximation
level can be trusted, and in order to understand its linoiteti we need to study the system
presented so far (and possibly others) in a wider range ahpeters. In this context, we plan to
compute the exact two-particle fully irreducible vertex fioe benzene and the COT molecules,
in order to analyze its momentum dependence, which we cenaitdimportant step toward a
deeper understanding of electronic correlations at theparticle level.

Algorithmic development. As the method has been recently established, there isciithr
for technical improvements in several directions.

Concerning thempurity solver, modern QMC can deal with multi-orbital systems and it
is often used in combination withb-initio input for real material, but has the disadvantage of
relying on problematic analytic continuation proceduresider to obtain physical quantities
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on the real axis. On the other hand, ED impurity solvers atuilissue, but are not suitable

for systems with many degrees of freedom.

In addition, the HF-QMC algorithm mainly used to produce tbgults presented above poses
severe limitation to the regime of low temperatures acbéssivhile in many cases of interest

nanoscopic systems are expected to display, e.g., Kondotgét an energy scale which are
exponentially small in the coupling constant. We plan toriowe in this sense, adopting a new
generation of CT-QMC impurity solver [93].

Concerning theomputation of two-particle quantities we plan progresses from two point
of views. On one hand, the knowledge of the local vertex fionstallows us to compute vertex
corrections for (nano-)DMFT/DA transport properties, e.g., conductance, optical cotintyc
in electronic transport and Seebeck coefficient in thermaadsport. This represents a topic of
forefront research, as effect of vertex corrections aréctfly neglected, except for sporadic
investigations [89, 221, 222].

On the other hand, we need to improve the quality and thei@fity of the calculation of the
vertex functions, in order to establish the approach to lukelyiapplied to all cases of interest.
We expect to make important steps forward in both directiom@ementing a semi-analytic
method to access high-frequency asymptotic behavior ®idbal quantities in the impurity
solver, extending the approach by J. Kaj219], as also explained in Ref. [158]. Eventually
one would like to apply a similar idea also to non-local veffignctions in the parquet solver,
though the possibility of an actual implementation in tlespect is still to be confirmed.

Further improvements to the actual available version optirguet solver are also manda-
tory for the nano-ID'A: the implementation of the solver in real space, in ordesply nano-
DI'A also to non-translationally symmetric nanostructures;implementation of more general
routines able to deal with system out of half-filling, in theesence of hybridization, and in the
case of site-dependent local fully irreducible vertex.



Chapter 4

Local Mott-Hubbard crossover in
mechanically controlled break junctions

In this chapter we analyze correlation effects in a narrova@fdimensional structure (or
constriction), which is realized in the experiments inuajve.g., a mechanically controlled
break junction (MCBJ) or a scanning tunneling microscop&Np. In particular we focus on
the relaxation of the electronic structure associated ttvargge of the size of the tunneling gap,
and hence of the tunneling barrier, simulating the MCB pgsce
We show that the non-perturbative effects of a local Coulosplolsion, present on the atoms
in the neighborhood of the constriction, can drive a metairtsulator transition, localized on
the atoms occupying the sharp edges of the junction. Thenasbéocal “Mott-Hubbard”
crossover seems to be a general feature of sharp quanturtignec

In the previous chapter we have applied the nano-approiaméd include (both local and
non-local) dynamical correlation effects in Q1D moleculamnnected to bulk non-interacting
environments (leads). In the description of the hybridorabetween the molecule and the
leads, we restricted ourselves to the case in which the lateecharacterized by one orbital
with a flat, featureless DOS. This is quite a standard agpration in model calculations, where
one is not particularly interested in the microscopic detafithe electrodes’ bandstructure, and
may be sufficient in the case of GaAs heterostructure QDsre&vthe role of the semiconductor
is mainly restricted to a charge reservoir. On the other handuantum junctions (QJ), a
microscopic description of the contacts plays a criticé.ro

4.1 Transportin quantum junctions: theory vs. experiments

As we have already mentioned in Sec. 1.1, experiments stiggesong dependence of
the tunneling current, and hence of the conductance, onrtdpegies of the chemical bonding
necessary to form a stable molecular junction. We have alationed the role of anchoring
(and side) groups [44] which modify the properties of the@cale and of its hybridization to
the electrodes. Obviously, a quantitative descriptiorrafigport properties in such molecular
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devices requires the energy spectrum of the whole junctiohtie hybridization between its
components, i.e., molecule and electrodes, which is datedrby the (e.g., LCAO) orbital
overlap to be realistically taken into account.

There is no doubt that the spatial arrangement of the atomsirig the junctions influences
the tunneling current. While in the experiments, there lijiausly, a certain degree of uncer-
tainty coming from the impossibility to resolve the precgemic configuration of the junction,
within model calculations this issue can be quantitatiagldressed. A recent interesting study
in this direction has been reported by Berthod and Giam4&28], where they analyze the
conventionally assumed proportionality between the thffiéial conductancé& =d1 /dVsp and
the local DOS of the junction. There it is shown that, alreadyn exactly solvable (non-
interacting) tight-binding picture, the electronic stiwe of the junction plays a fundamental
role in determining the conductance. They also considaspart beyond thguantum point
contact(QPC) picture, i.e., where tunneling processes involve ltoms at the edge of the elec-
trodes, and in particular they show that in the presencewaraktunneling channels between
extendedegions of the source and the drain (planar junctions), deateres of the local DOS
can be washed out, e.g., by quantum interference betwefenatit channels.

Beautiful results were also reported by Palatdsl. [224, 225] who developed aab-initio
package for STM simulations, showing that tips made of deffie materials (i.e., with a differ-
ent electronic structure) yield different STM images.

The state-of-the-art for theoretical calculation of QJeseonab-initio description of the con-
tacts within DFT, usually combined with non-equilibriumegns’s function (NEGF) technique
in the Keldysh formalism (see Ref. [226] for a recent reviéavaddress transport properties.
However, DFT methods tend to overestimate the conductaitbeegpect to the experimental
values: e.g., in calculations done for a singlé-BDT molecule bridging Agl11) surfaces
(see Ref. [227] and references therein) a valu@ ef0.24 GG, for the conductance at the Fermi
energy [227], which is orders of magnitude higher than thgeexental ones, discussed in Sec.
1.1, although the latter is extremely sensitive to the expamtal technique employed.

A possible explanation for the discrepancy between theondyexperiment can be ascribed
to many-body effect beyond DFT, as, e.g., recently pointédg Delaney and Greer [228]. In-
deed, this eventually represents the main motivation fediévelopment of the nanoscopic ex-
tension of DMFT, that we introduced here, or alternativerapphes [178, 179], within which
the structure of the junction can be modeled or taken intowtcab-initio, interfacing with
DFT, together with strong electronic correlations.

In particular, here we want to draw the attention to the rél@omicallysharpcontacts, which
are formed, e.g., in mechanically controlled break junc(®CBJ) or scanning tunneling mi-
croscope (STM), which are widely employed in transport expents (see also Sec. 1.1.2 for
a brief discussion about their experimental realizatidm)the presence of a narrow contact
region, quantum confinement may also play a role, and stetgjronic correlations between
spatially constrained electrons may ar&éso in the electrodes. As electronic correlations in-
duce changes in the electronic structure of the system, @yeatso expect this to drastically
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affect the transport properties of the junction beyond tregligtions of a Fermi liquid or DFT
picture. If this is the case, it would be of crucial importarto consider the effects of electronic
correlations also in the interpretation of tunneling expents.

4.1.1 Modeling sharp junctions

In the following, we introduce model structure consideredehin order to study sharp QJs.
In particular we discuss in detail a possible realizatiom ®CBJ, that will consider for the
analysis of the data presented in Sec. 4.2, within nano-DMWF& also show that the model,
with minor modification, is suitable to describe a STM: imsthespect, preliminary analysis is
already ongoing and a brief discussion is contained in thi®oki (Sec. 4.3) at the end of this
chapter. A schematic representation of the MCBJ and STMstres is given in Fig. 4.1 in
order to clarify the description presented below.

General discussion. In order to describe a MCBJ, we need to consider a spatiatnebed
and inhomogeneous structure, consisting of two idenfigdilmensional structures, represent-
ing the electrodes, separated by a distafdde often referred to atunneling gap As already
mentioned, in a MCBJ molecules can be adsorbed into the gapjrfg stable tunneling con-
tacts, and allowing for the observation of electronic tparsthrough molecular systems. Here
however, in order to keep the complexity of the system lowregrict to the analysis of cor-
relation effects in a structure where the contacts are aggghby a vacuum barrier, i.e., a QJ
without any molecule adsorbed into the tunneling gap. The advaniageospective for our
analysis, is that all correlation effects are with no doulstiag from the sharp contacts, and not
from the confined system bridging the junction.

Although one has some degree of freedom in the spatial agraegt of the atoms in the junc-
tion, here we will restrict to the case in which the QJs cdssi$ N atoms ordered according
to a simple body-centered cubiodg) lattice symmetry. Hence, each half of the QJ develops
symmetrically along the axis of the junction, and is made tpatom, occupying the sharp
junction of the electrode, andl, layers, where each layer labelég 1, ..., N, (increasing with
the distance from thep atom) containg? + 1) atoms. Obviously the metallic road which is
broken in the MCBJ process is infinitely long, i.e., its |&mg is large compared to thecclat-
tice constant. and we mimic this allowing each of the coteelaatoms in the outermost layers
to hybridize with non-interacting environments, desaliby a flat, featureless, and symmetric
DOS. Indeed, one expects electronic correlations to becediby the spatial confinement of
the electrons in the narrow region of the atomic contact,@oalomb interaction to be strongly
renormalized by an efficient metallic screening alreadygw A away from the edges of the
tunneling gap. Although this argument may seem rather naigeshall see that, even consider-
ing a structure with a few correlated layers, strong coti@hieeffects mainly affect the lonigp
atoms, i.e., the atoms localized at the sharp edges of théatirg structures.

For the sake of simplicity in the following we will refer toithrealization ag7V¢+! structure,
i.e., containingV, layers in addition to &ip atom. We will assume a single-band model, which
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may be suitable for Cu or Co junctions, though orbital séledunneling processes will prob-
ably also play a role in steel (Fe alloy) or materials wheeefthil orbital multiplet structure
needs to be taken into account. Hopping processes withisttheture are allowed between
nearest neighbor sites, with amplitudesndt’, for inter-layer and intra-layer processes, respec-
tively, andt’ will set the unit of energy. Hopping processes between tlefaging structures
are instead allowed only between tiiyg atoms occupying the sharp edge of each structure: in
this quantum point contact realization, this hopping, medi by the parameteégpc, allows us

to directly control the size of the nano-gdpl = dqpc by changing the distance between the
structures. Each atom belonging to the outermost layer df saucture half{= 4: in short

L and R) is connected via hybridization channglg, = V'é;,, with IV = ¢/, to its own non-
interacting lead described by a flat, featureless, DR@S1 /2D, the half-bandwidth arbitrarily
fixed to the valueD = 2¢'. Instead of a flat DOS, one could have, maybe more consigtent
assumed &-dimensionabccone for the non-interacting environment, but this is notestpd

to qualitatively modify the results presented below.

Hamiltonian for QJs. The junction discussed above can then be formally deschigetie
usual multi-impurity Anderson Hamiltonian, that we reploetow for the sake of clearness,

H= Z Z tijcly Cjo — 1 Z Z CigCio + U Z CzT%%Cu
T Z Z ”ﬂfcw nko T+ nklnko io) + Z Z Enkol nkcr Lk (4.1)

ink o

wherec! (c,.) has to be interpreted as the creation (annihilation) dpew an electron with
spino in a Wannier orbital centered on the correlated atdin a multi-orbital case; would
be a combined site and orbital index). The chemical potecsia include a gate voltagé;,
and the Hubbard interactidii; could depend on the indexyet, for the sake of simplicity, we
will not consider this possibility in the following. The O;HOrsl;ko (,1,) describes fermionic
degrees of freedom of a non-interacting environment hyteaiwith some of the atoms in the
junction. In Fig. 4.1 a schematic representation of thecttines considered in the following is
provided.

Comment on the configurations considered. In order to get rid of possible finite size effects,
i.e., to have a system which may be representative of theriexgetal one, we considered a
JP! structure, i.e., where each half of the QJ consiststigf atom andV, =4 additional layers,
corresponding tadV =110 atoms overall (andVineq= 14 inequivalent ones). Moreover, we ana-
lyzed the 7" structure in two different hopping configurations: a “hogeneous” case with

t =1, and an inhomogeneous” one, with- 2.5¢'. In both cases, we observed that electronic
correlations to drive the system toward a Mott-Hubbard sowsr, localized at thigp atom(s)
and characterized by deviations from the usual exponenghvior of the conductance as a
function of the tunneling barrier.
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In order to test the stability of the result with the size af 8ystem, we considered also struc-
tures with less thav, =4 layers. In particular, we analyzed in detai/&! structure, consisting
of atip atom and only one additional layer for each half of the QJresponding taV = 10
atoms overall (and onlyi,eq= 2 inequivalent ones: thigp and thelayer | atoms). It is worth
stressing that, in this realization, each of the four edemdayer | atoms is connected to the
tip, to the nearest neighbtayer | atoms, and to its own lead. In the present context, this syste
is interesting for several reasons, that we anticipate. here

One importantissue is to understand whether the presemocarof correlated layers contributes
to the emergence of the local Mott-Hubbard crossover: ahak see the answer is “no” (but
not without reserve, as will be shown in detail in Sec. 4.2hmanalysis of the results). How-
ever, taking at least one layer into account allows to shawtthe phenomenon is correlation-
driven and manifest itsetinly if all the atoms in the system are close to half-filling (mdegails
about this issue are also postponed to Sec. 4.2). Moredweretiuced size of the Hilbert space
(e.g., with respect to thg® structure) allows the exploration of a wider parameter eangh
limited computational effort. A direct comparison with axaet solution would have been of
great importance, but it is unfeasible: due to the couplinthpé leads, in the case of an ED, or
due to a severe sign-problem originating from the compdidditopping structure, in the case of
QMC.

Setting up a STM tip. A STM can be modeled analogously, and the scanning electsode
shaped as a single-cone-like structure, i.e., as one ofdllvesof the structure described above.
The atoms belonging to the outermost layer hybridize with-imderacting environments, repre-
senting the rest of the semi-infinitely extended microg@tso in this case described by a flat,
featureless, and symmetric DOS. In contrast to the MCB&ttre, thetip atom occupying the
sharp edge is directly connected to #@mple via a single hopping or hybridization channel.
However, the flexibility of nano-DMFT (and extensions)alsaves room for exploring other
setups besides this one, e.g.: i) one can consider alsoni@esas a spatially extended lattice
and include more tunneling channels between those lattesand theip atom of the scanning
electrode, or ii) one can include adatoms between the saanpléhe scanning electrode (EME
setup).
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top view:

side view:

STM

Figure 4.1: Left panels: schematic representation of3bkdimensional QJs considered: a mechanically
controlled break junction (MCBJ, above) and a STM (STM, bgldRight panel: a top view (above)
and a side view (below) show more details about the strustofeh QJs, the color coding denotes
inequivalent (violet) and equivalent (cyan) atoms, dubdolattice symmetry, and non-interacting
environments (red).

In the representative realization of QJ shown here (derasgd®! in the text) theunit structureof the
system consists oftgp atom two layers, denoted kg/er | andlayer Il, where electrons, due to spatial
confinement, experience an on-site Hubbard repuléiohe correlated atoms of the unit structure
are connected by nearest neighbor hopping charnn@gra-layer) and’ (inter-layer). Each atom
belonging to the outermost layer (i.e., the furthest fromtth) is also connected via an hybridization
channell” to a non-interacting environments, describing the bullhefjunction (where an effective
metallic screening of the interaction is assumed, see textifther details).

In the case of a MCBJ, the junction is made of two facing umiicgtre, separated by a tunneling
gap Ad, whose size determines the intg-hopping amplitudegpc. In the case of a STM, thp

is connected to a sample via an hybridization changl (or possibly a hopping channelgty,
depending on the details to the sample).
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4.2 nano-DMFT results

The results concerning the MCBJ, presented in the followarg partially published in the
APS Journals “Physical Review LettersPRL 104, 073101 (2010) [206] and “Physical Re-
view B”: PRB 86, 115418 (2012) [207].

In the following we present the nano-DMFT analysis of catiein effects in transport proper-
ties of MCBJ: after discussing how to simulate the MCB prgces show how the conductance
profile is affected by the presenze of electronic correlathrough the analysis of the electronic
structure and electronic properties of the system. Consgldifferent realization of the MCBJ
allow to identify universal properties of the phenomenoa.,, independently on the details of
the parameters of the model, and discuss the role of sizetgffe

4.2.1 What happens in the MCB process?

Here, we essentially address the problem of the relaxatidheoelectronic structure of
the system by changing the size of the tunneling gajbetween thdip atoms at the edge of
the two facing structures. The physical motivation is tontifg possible correlation effects,
analyzing the dependence of the conductance on the sizes diimeling gap. While in the
experiments, the MCB process is reasonably associatecaw#rrangement of the electrodes’
lattice structure. Although the appropriate lattice stuue could be obtainedb-initio at any
size of the tunneling gap, for the sake of simplicity we widhsider it to be frozen. In the model
calculations we carried out, we can obtain an estimate Stantelqpc between thdip atoms
fromtqpc, i.€., the overlap of the electrons’ atomic-like wave fuoies of thetip atoms. For the
tunneling amplitude between two atoms, the following fafilog functional dependence (see
e.e.qg, Ref. [231] and references therein) can be assumed

tQPC/t/ — <dQPC/a)anFx1 — dec/a), (42)

wherea =1+ 1" + 1, beingl and!’ the angular momentum quantum numbers associated to the
orbitals involved in the tunneling process. Herdefines the unit of length, and it is chose so
thattypc/t' =1 corresponds tdgpc/a = 1. While the above relation is reasonable in at long
distances, it evidently brakes down in the limdiip/a < 1, wheretgpe/t" would diverge. A
more general expression would require a detailed knowledidgee microscopic mechanism
dominating transport on that length scale, which is highdyp-trivial. In the following we
estimated, p according to Eq. (4.2) with=1{'=2, i.e., assuming &-like orbital character
for the correlated atomic orbitals. In this respect, notd the physical phenomenon (i.e., the
local Mott-Hubbard crossover) that will be discussed in fillowing is not affected by the
exact estimate afgpc, €.9., on the character of the orbital involved. Howeveis @onvenient

to introduce a length scale: in fact, the (correlation-@nvdeviation from an usual exponential
behavior of the zero-bias conductance on the width of thedlimg barrier is best observed
considering a functiolz (e, dopdtorc])-
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As it has been shown in Sec. 1.3.2 thectronic conductanceG(¢) = e?/hT (¢) through a
nanostructure can be expressed in terms oftttwesmission coefficient obtained summing
over all possible transmission channels

=> 3 ) TilGai(e)’Ty, (4.3)
o €L €R

wherei andj run over the indexes of the correlated atoms sitting in thterowst layers of
the L (left) and R (right) half of the QJ. As already discusdbe choice of a QMC impurity
solver pose several problems in the evaluation of the Gsekemiction on the real frequency
axis. Hence, also in this case we will limit to consider of doaductance at the Fermi energy.
With the form (3.8) of the scattering matrix for the two-tenal conductance, one can estimate
the conductance at the Fermi energy as

2
€
G(er) = ﬁT(EF) ~ 2% h 27rpV2 ZZ |G (e =7T)|". (4.4)
el ieR
Hence, the conductance depends in a non-trivial wagse® through the non-local propagator
connecting the atoms belonging to the outermost layerseatito halves of the MCBJ.

Electronic structure: non-interacting case. Useful insights on the physics of the system can
be gained analyzing the electronic structure of the ineajait atoms in the MCBJ already in
the non-interacting case. This can be done consideringltiezl spectral function A(v, '),
which can be obtained exactly by the (trivial) analytic ¢onation on the real frequency axis of
the non-interacting Green'’s function. Here, the depenel@mcthe scattering rafeis explicit

to remind that not all the sites of the structure are direotiynected to a lead.

Hence, in Fig. 4.2 and 4.3 we show the local spectral funatibthe tip and of the only
inequivalent atom ofayer 1in all the realization of QJ discussed above. For each atom we
compareA(v, I') for representative values of the ratigep/t', namelytqpc/t’ =0 corresponding

to the extreme case where the two halves of the QJ are far apdrthe Wannier orbitals’
overlap is vanishingtopc=t', andtqpc = 2.25¢', which would describe a situation where the
tips are strongly bound. While the latter value may be unrealigtirepresents an interesting
limit of the model in the presence of electronic correlasicas we will see in the following.

It is immediately clear that, already in the non-interagtiimit, the local spectral function of
any of the atoms of the QJs is more complicated than the ondsed®1D molecules, and
already an artificial Lorentzian broadening 0.1¢") causes the tails of the peak to merge,
creating acontinuumlocal DOS, with a bandwidthl” ~ 4t’. This means that the level spacing
Ae is not the dominating energy scale, and hence the systent &pected to behave as a QD:
in particular, this explains why, in the following we will hbe able to observe conductance
guantization (only expected at temperatures Ae).

The mostimportant detail, however, is the following featighared by all realizations of MCBJ:
while the spectral function of thigp atom is very sensitive to variation &fpc, as one would
expect, this has (almost) no repercussion onldlger atoms (although we show only the atom
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Figure 4.2: Spectral functiom® (v, T') of the non-interacting Q5LJ in the hopping configuratiomree
sponding tat = 2.5¢' (upper panels) ant=t’ (lower panels). The portion of the occupied spectrum
(atT=0) is denoted by color filling, and the width of thelike peaks is determined by an artificial
broadening. Left panels: local spectral function of tipeatom (" = 0). Right panels: local spectral

function of the firstlayer atom " =0).
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Figure 4.3: Spectral functiond?(v, T") of the non-interacting Q2LJ in thie=#" hopping configuration.
The portion of the occupied spectrum {a&0) is denoted by color filling, and the width of thelike
peaks is determined by an artificial broadening. Left patetal spectral function of thép atom
(I'=0). Right panel: local spectral function of the oéyer atom {"=0.1t').
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belonging to the layer closest to thip) which is not obvious. It is also important to notice
that, atU = 0, the topc-dependent relaxation of thep’s electronic structure is accompanied
by a strong variation of the site-densify). The change iA(v,T"), and the corresponding

variation of (n), suggests that already in thdsenceof electronic correlations, the relaxation
of the electronic structure of the junction has a strongugfice on the tunneling current. We
shall see that, in the presence of electronic correlatiomsy have even more dramatic effects
and lead to unexpected phenomena.

Local Mott-Hubbard crossover. Let us consider now what happens in the presence of a lo-
cal Coulomb repulsioi/ = 10t' ~ 2.51. We estimate the conductancethrough the 7!
structure according to Eq. (4.4), as discussed above, tbrthe "homogeneous" and "inhomo-
geneous" hopping configurations. The dependend@ oh tqpc (0r equivalently, onigpe) is
shown in the upper panels of Fig. 4.4, comparing the fibitand the non-interactingy = 0
results. Let us begin with some consideration about theint@macting case: in a tunneling
process, the tunneling current is expected to drop exp@iignvith the width of the potential
barrier. In the situation we are considering, the barrierstgis of vacuum or, more in general,
of a dielectric medium present between tipeatoms of the two symmetric structures of the QJ.
Indeed, on a semi-log scale, a linear decrease of the camhett asdqpcincreases is actually
observed for distance&,pc/a > 1. While in the homogeneous cage= ') an exponential

tapc/t
100 ? ‘II 1{2 1{4 1{8 j[sl (t=t)
! u=0 -A-
\ U=10t ——
. 000 ¢ o e U=0 5
10 | ol T~ 1 7B (t=2,51)
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-4 U=10t" —e—
g 10 1
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S 10° ¢ .
| U=10t’
108 ¢ : 1 Vst
: T=0.125¢’
10'10 1 : 1 1 1 1
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Figure 4.4: Conductancé through the7!! structure as a function obpc anddgpc, Where the depen-
dence (4.2) is assumed. The resultstfer2.5¢’ (triangles) and =+’ (circles), atl’ = 0.125¢, in the
presence of electronic correlatioris £ 10¢’, red solid line) are compared to the non-interacting case
(grey dashed line) on a semi-log scale (and log-logdpg), highlighting the faster than exponential
drop of theG in the MCB process.
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drop of G with dopc is observed also at shorter distances, in the inhomogerme®ug=2.5t')
the conductance displaysm@aximunmupon decreasindqgpc: this behavior may be related to the
formation of a bonding and anti-bonding pair of "extendeditals originated by the overlap
of the localizedtips orbitals. In the presence of electronic correlations, thedcctance is in
general suppressed with respect to the non-interactingyatanyvalue ofdgpc, yet conserv-
ing the exponential behavior in the tunneling regitiec/a < 1, with anuniversalexponents:
G(dgpc) xexp(—Bdgpc/a), which does not seem to depend on the microscopic detailseof t
structure, i.e.lU, t, andt’.

However, in an intermediate regimgpc/a 2 1 (or topc/t’ 2 1), the conductance clearly shows
achange of the exponenp, reflected in anon-linear behavior of G(dgec) in the logarithmic
plot of Fig. 4.4, in both hopping configurations. The fadtesn exponential conductance be-
havior alone, although suggesting this phenomenon to brelation-driven, is not sufficient
to prove this statement. Hence, one can investigate theteffeslectronic correlations on the
evolution withtgpc of local quantities, such as thsite-dependent densityn) = (n++n,) and
thedouble occupation(d) = (n4n,), or the localspectral function at the Fermi energy A(0).
One realizes immediately that, as in the non-interactirsg che change afpc, associated to
the MCB process, mainly influences ttie atoms only, and not the other inequivalent atoms of
the 7! structure: in Fig. 4.5 we show the results for tipeandlayer | inequivalent atoms for
botht = 2.5t (left block of panels) and=1' (right block of panels), according to the labels in
the plots. In order to understand the behavior oftth@atoms(s), it is fundamental to notice that,
in the non-interacting case, the site-dependent defsjtdisplays a non-trivial dependence on
topc, and it is spatially strongly inhomogeneous, i.e., its ealaries sensibly from atom to
atom in the junction. AU = 10t' instead, theip are half-filled, as well as all other atoms in
the 7 structuré (see e.g.layer | atom)independentlpntopc. This means that the evolution
of (d) with tgpc in the non-interacting case is only reflecting the variatas the density, i.e.
(d) = (n4n;)=(n?)/4 (in the paramagnetic case). On the other hand, when thetdénfiked

at half-filling, the suppression dtl) upon decreasinthpc is the hallmark of the enhancement
of electronic correlations due to the MCB process.

Analogously, density fluctuations can induce strong delpace of A(0) on topc, due to an
asymmetric evolution of the non-interacting spectral fiorcwith respect to the Fermi energy.
At U =10t' and half-filling instead, the suppression.4f0) corresponds to a shift of the spec-
tral weight from the Fermi energy to the incoherent Hubbandids.

Further confirmation of the validity of this picture comesrh the site-dependent nano-DMFT
local self-energy shown in Fig. 4.6 for theip andlayer | inequivalent atoms of thg7!®!
structure for botht = 2.5¢" andt = t' hopping configurations. Each self-energy is compared at
two selected values afpc/t’, representative of two extreme cases of the MCB process: one

et us note here, that in the=t' configuration, theiip atom isnot exactly half-filled in the whole range of
topc/w: indeed, this could explain why the deviation from the plakponential behavior are less evident with
respect to the=2.5¢' case, as will be more clear in the following.
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Figure 4.5: Evolution with tgpc of the site-dependent density) (upper panels), double occupation

(d) = (nyny) (middle panels), andi(0) (lower panels), limited to théip (red symbols) andiayer

| (blue symbols) inequivalent atoms of tg8° structure. The results in the presence of electronic
correlations { = 10t’, color symbols) fort =2.5¢' (triangles) and =t (circles), atl’ = 0.125¢/, are
compared to the ones of the non-interacting system (greypsign

corresponding to the "contact" regime, i.e., when the ipehopping is of the same order
of magnitude oft’ (precisely,topc/t’ = 1.5 is shown), and one deep in the tunneling regime,
where the overlap between ttips’ Wannier functions is substantially reducegdc/t' =0.25).
In both hopping configurations, the imaginary part of thealoself-energy of theip atom
becomes more and more insulating-liketgsc/t' is lowered, consistently with the decrease of
the double occupation@l) at this site, while théayer | atom is metallic-like and almosggpc
independent. Moreover, one can notice that in the ¢ase.5t thetip self-energy (shown in
the upper left panel of Fig. 4.6) is larger than the correglpumnone fort =t" (lower left panel)
and it is probably directly related to size of the drop of tbaductance-, shown in Fig. 4.4,
which seems to be steeper in the former hopping configurdhian in the latter one.

In conclusion, we have observed deviations in the deperdehihe exponential decay of
the conductance with the size of the tunneling gap in a MCBHil&\tonsidering only trans-
port properties may lead to misinterpretations, the seemaovided by the analysis of several
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Figure 4.6: Evolution withtgpc of the local nano-DMFT self-energy;;, atU =10t and7 =0.125¢/,
for t =2.5¢' (triangles) and =+’ (circles), limited to theip (red/violet symbols) anthyer | (blue/cyan
symbols) inequivalent atoms of tigg®! structure.

spatially-resolved local quantities clearly show that pfienomenon is correlation-drive, and
that can be entirely ascribed at the rearrangement of tbrehéc structure of the lontgp atoms:
electronic correlations, due to spatial confinement ofeleetrons in the narrow restriction of a
sharp QJ, are enhanced by increasing the tunneling gapndnde a locaimetal-to-insulator
Mott-Hubbard crossover of the tip atoms, which dramatically influence non-local transport
guantities through the QJ in an absolutely non-trivial way.

4.2.2 Universal features of the local Mott-Hubbard crossoegr

The next question we aim to answer is whether this phenomeanrbe regarded as a
general feature of atomically sharp quantum junctionsrdéieoto proceed, we will focus on the
J? structure: which allows to understand if the presence ofisdVayers of correlated atoms
is a necessary condition to observe the local Mott-Hubbeydgsover. Obviously, considering
the 712 structure represents a huge reduction of the numerical leadkwith respect to the
JP one, and as the self-consistent solution of the nano-DMFRR#&oNs in this case require a
limited computational effort, it allows us to explore a widamge of parameters.
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Critical threshold for the Mott-Hubbard crossover. In the following we will proceed as be-
fore, i.e.: first we show the fingerprint of the local MottiHbard crossover in the conductance
G through the7 ™! structure, and then we will interpret the results analytiveglocal quantities
of the only two inequivalent atoms.
The dependence @f on tqpc (Or equivalently, onigpg) is shown in Fig. 4.7, comparing the
results for different values of the local interaction including the non-interacting cagé= 0.
Moreover, as we have seen no qualitative difference arisorg different hopping structures,
here we limited ourselves to the homogeneaust() hopping configuration.

There are mainly two elements to be noticed here: (i) thearsality of the exponential be-
havior in the tunneling regime, and (ii) the existence ofitcal value of the interactiorU.. for
the hallmark of the Mott-Hubbard crossover to be observeterconductance.
In fact, we can see that the expongntletermining the exponential decrease&-oht distances
dopc/a > 1 (as previously discussed) is the same for both/fte and the 7 structure, and
is U/t' independent, although the conductance is progressivelyreased by increasirig/t'.
Those universal features are shown in Fig. 4.7, where thegoonding data are compared.
However, in the regimégpc/a < 1 (that we called contact regime) the profile of the conduc-
tance strongly depends on the structure and interactiampeters. The data for thgl? struc-
ture, however, show that the changefois weak or even absent in the weak-to-intermediate
coupling regimel/ ~ W = 4t’, while is well pronounced, e.g., &= 10t'. The change in the
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Figure 4.7: Comparison between the conductadééhrough the7[?! (triangles) and the7®! (circles)
structures as a function é§pcanddgpc, where the dependence (4.2) is assumed. The data at differen
values of the interactiol//t/, for t = t' at T'= 0.125¢', are compared, highlighting the faster than
exponential drop of thé& in the MCB process, taking place only above a critical valfighe local
interaction.
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Figure 4.8: Evolution with tgpc of the site-dependent density) (upper panels), double occupation

(d) = (nyny) (middle panels), andi(0) (lower panels), for both thép (violet/cyan symbols) and
layer | (red/blue symbols) inequivalent atoms of tfé?! structure. The results in the presence of
electronic correlation§’ = 10¢’ (left panels) and/ = 5¢’ (right panels) fort =+, atT =0.125¢', are
compared to the ones of the non-interacting system (greypsign

exponent is also more pronounced in tfi€ structure with respect to th¢'® one, and this
can be ascribed to finite size effects, responsible for tywmarcharge fluctuations in the atoms
of the 7 structure.

Hence, in Fig. 4.8 we analyze local quantities of tipeandlayer | atoms for two representa-
tive values of the interactioti/¢/, comparing the results to the corresponding non-intergcti
ones. As in the case of thgl®! structure, also here the physics of the system can be unddrst
considering the role of charge fluctuations induced by thenge oftqopcin MCB process. At
U = 5t (right panels) thdip atom becomes half-filled only in the limitpc/t’ > 1, so that
A(0) increases atopc/t’ — 0: as a consequence no change in the exponential behavioe of th
conductance can be observed in the MCB process. On the ahdy &t/ = 10¢' thetip atoms
stays half-filled on the whole ranggpc and the strong electronic correlations induce a Mott-
Hubbard suppression of the spectral weight at the Fermiggneas well as the change in the
exponent3 on the exponential dependence of the conductahoe the distancégpg, i.€., on
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Figure 4.9: Evolution withtgpc of the local nano-DMFT self-energy;;, atU =10t and7 =0.125¢/,
for t =1t (triangles) and =’ (circles), limited to theip (red/violet symbols) antayer | (blue/cyan
symbols) inequivalent atoms of tigg?! structure.

the size of the tunneling gap. A similar argument can alsogpdied to the local quantities of
thelayer | atoms, which yet still maintain a weakpc dependence, in contrast to the case of the
JP structure. This can reasonably be ascribed, e.g., to Bt effect, suggesting thistyer

| is only weakly affected by thép atom, but there is some difference betwdéggyer 1l being
sorrelated sites or non-interacting leads.

In this respect, important information, enclosed in the-siépendent nano-DMFSelf-energy

is shown in Fig. 4.9 for both thigp andlayer | inequivalent atoms of thg[?! structure. Already
atU =5t, i.e., when spatial charge fluctuations induced by the ghaftqpc/t’ in the MCB
process are still allowed, and the site-dependent dersityt yet locked at half-filling, the
imaginary part of théip atoms’ local self-energy shows only a weak insulating tewgiewhile
one of thelayer | atoms istqpc independent. AU = 10¢/, instead, each atom in the structure
is half-filled, and strong electronic correlations are amted in the MCB process, contribut-
ing to a faster than exponential suppression of the condoetastqpc/t’ is decreased. The
phenomenon can still be mainly ascribed to tipeatoms, whose imaginary part of the local
self-energy displays a remarkable insulating tendencmpared to the weak changes in the
layer | atoms’ one, agqpc/t’ — 0.
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Dependence on the size of the junction. A systematic analysis of junctions of different size
also supports our claims of universality of correlatioiven phenomena induced by the MCB
process are physically sensible. We compute the conduetanough a serie off [Ve+! struc-
tures, which only differ in the numbéy,of correlated layers beyond thip atom in each of the
unit structure of the MCBJ, and in Fig. 4.10 we compare thalte®btained forv,=1, 2, 3,4
atU =10t'. The comparison confirms that the functional dependende of dopc is (almost)
independenof N,in the tunneling regimedgpc/a 2 1). It is noticeable that, forv, > 1, also
the conductance profile in the contact reginigec/a < 1) does not change qualitatively 4%
is increased suggesting that the layers far frontifhdo not play a relevant role in determining
the conductance profile. However, increasing the numblayeirs NV, determines a quantitative
suppression of the conductance with the size of the junction

We can also consider the layer-resolved local spectralweigthe Fermi energyl(0) in
all the structures discussed above. In each of the paneligof4711 we showA(0) for all
inequivalent atoms of the correspondigg™«*! structure as a function of the layer lakel
here, L and R denote the outermost left and right layers otiheture, respectively, while the
tip atoms are in the middle. The values.#f0) that we show for two values afpc/t’, are
representative of the conta¢bbc/t’' =1.5) and tunneling#opc/t’ =0.25) regimes. As already
discussed, one can see, e.g., in th& structure (upper left panel of Fig. 4.11), in the MCB

process A(0) show (almost) no dependence &pc/t’ in each of the layer atoms, while it is
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Figure 4.10: Main panel: Comparison between the conductaficérrough 7Vet1] structures as a
function of dopc (andtgpg), for t =t" andU = 10¢/, atT = 0.125¢'. All structures share a universal
exponent3 in the tunneling regimégpc/a 2 1, independently on the number of correlated lay€ys
as well as a qualitative behavior in the contact regifgec/a < 1, with the exception of théV, =1
case, where finite size effects connected to charge fltiotuan thelayer | atoms play a relevant role.
Inset: highlight of the contact regiafypc/a S 1.
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Figure 4.11: Layer-resolvedA(0) for 7!Ve+1 structures consisting a¥, =1, 2, 3, 4 correlated layers,

for t =t andU/t' =10t', atT = 0.125¢'. The suppression of thig atoms’ local spectrund(0) is
clearly observed comparing the data for two representatiees oftopc/t’ = 1.5 (diamonds) and
topc/t’=0.25 (cirles), and it is stabilized a¥) increases.

significantly suppressed in thigp atom. A similar behavior is also observed in € (upper
right panel) and7® structures (lower left panel), yet with a slight tendencyloétuations in

the value ofA(0) to increase as the size of the MCBJ is reduced. In the extrase/c® (lower
right panel), the suppression d{0) with topc/t’ is sensibly stronger with respect to the other
structures, and also affect theyer | atoms, which are also the outermost ones, here.

In conclusion, we have shown that faster than exponent@r&ssion of the conductance
with the size of the tunneling gap in a MCBJ is an universdlfiessof those kind of systems. We
have ascribed this phenomenon to a Mott-Hubbard crossovehing the londip atoms, i.e.,
to the rearrangement of the local electronic structure¢ediby local electronic correlations. A
necessary condition for the phenomenon to manifest regjaitéhe atoms of the structure to
be at (or close to) half-filling: as this tendency is suppdrby the presence of a local Coulomb
repulsion, it results in a threshold value of the HubbardrattionU, to observe deviation for
the expected exponential behavior of the conductance.

We have analyzed the dependence of the phenomenon on ttué $12eQJ considering several
JWetll structures, which differs only for the number of correlatagers N, beyond thetip
atoms in each unit structure of the MCBJ. The general behav¥ithe conductance and of the
layer-resolved local quantities is qualitatively the samall the structures considered so far
and confirms that the phenomenon is a robust feature of MCBJ.
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4.3 Outlook

The above analysis rises also some questions which may lik fudther investigation, as
discussed in some detail in the following.

So far we have not yet mentioned the possibility of includiog-local correlations beyond
nano-DMFT. Although non-local spatial correlations in 8adimensional structures considered
above arenot expected to play a determinant role due to the higher coivitgavith respect
to, e.g., the Q1D molecules discussed in the previous chdp&mere suspicion is not enough
to discard the possibility. However, the calculation off&"t!! structure within nano-DA
requires: (i) to evaluat&Vi,eq inequivalent fully irreducible vertex functions and (i solve
the parquet equations in the Hilbert space of the whole sysle this respect, to perform a
calculation at the two-patrticle levalithoutthe efficiency improvements discussed in Sec. 3.5,
requires a prohibitively computational effort, with theepent implementation of nanoFB.

Another importantissue in this direction is includivgrtex correctionsin the conductance,
which requires the knowledge of the appropriate two-ati@rtex function. How would the
scenario depicted above change? May one expect the feafuttes conductance, induced by
Mott-Hubbard crossover, to be possibly enhanced?

It is interesting to notice that the Mott-Hubbard crossoseam also be observed in the "ex-
treme" case of a7l” structure, consisting only of thiép atoms, i.e., in theéwo-impurity
Anderson Model (TIAM), as a function of the hopping parameter. However, sigstem is
particle-hole symmetric and half-filled anyvalue oftqpc (provided;: =0 as in all cases dis-
cussed above) thus favoring the development of the locat-Mobbard crossover, although
a possible non-trivial dependence on the fillifig can be observed changing the on-site ener-
gies of the impurities. Moreover, due to its reduced Hillspece, compared to all othgt™e*1!
structures, a complete nand-B study of the TIAM, including non-local spatial correlati®
and vertex corrections to the conductance, would certdirlyloable even within the actual
numerical implementation of the method.

Another possible application, that we have partly alreadtycgpated, concerns with the
possible existence oflacal Mott-Hubbard crossover in a STM. In particular, how does the
rearrangement of the local electronic structure of the miogntip of an STM induced by a
change in the tunneling gap (if any) influence the tunnetingent? And more generally: how
reliable is the assumption that the real space profile ofuhaeling current reflects locally the
spectral function of the sample? In this sense, nano-DMRT ifa@ extensions) can be a suitable
tool to shed light on those issues.

Obviously, the nano-DA is flexible enough to allow plenty of different applicatis. How-
ever, in order to achieve a quantitative comparison witheeirpents, arab-initio description
of quantum transport through complegrrelatednanostructure seems to be mandatory, e.g.,
as an extension of the recently introdu@ddinitio DI'A [157].






Chapter 5

Effects of size reduction on half-doped
manganite Lay sCag sMnO 3

Recent experimental evidence suggests the destabifizapon size reduction, of the anti-
ferromagnetic and charge-orbital order in the half-dopednganite Lg ;Ca, sMnO;, in favor
of a ferromagnetic metallic phase. The size-induced chawofi¢he crystal structure are sug-
gested to be responsible for this phenomenon. Hence, watigat the effects of size reduction
merging ab-initio and many-body methods. We perform a DFVHD analysis of the bulk as
well as of a defect-free nanocluster in isolation, consiggthe full structural optimization of
the experimentally measured crystal structure. The prietheoretical analysis is remarkably
compatible with the experimental scenario, and intereggyirpredicts the correlation-driven
stability of the charge-orbital state in bulk LaCa, sMnQO;, even in the absence of long-range
magnetic order. We also show size reduction to be differen the application of hydrostatic
pressure. Finally, we consider a model finite-size strustaharacterized by the optimized pa-
rameters of the nanocluster, in order to perform a systecraatialysis as a function of system
size: preliminary nano-DMFT results suggest the onset abdnital-selective Mott transition,
driven by an external gate voltage.

Manganese oxides, widely known asnganiteshave been one of the main areas of re-
search within the strongly correlated electrons commusiitge the experimental observation
of a colossal magnetoresistance (CMR) effect [232], ibe,dverwhelming relative change of
the electrical resistance upon the application of an eatenmagnetic field.

Indeed, manganites are fascinating compounds, and digglagnplex phase diagram as a func-
tion of temperature [233, 234], pressure [235], magne#tdf{233, 236], and doping [237],
characterized by spin, charge, and/or orbitally ordereasph. The properties of the ground
state are determined by the interplay of several competieggy scales, possibly including
electron-phonon and Coulomb interaction. Besides mangraxental and theoretical inves-
tigations carried out for the manganites, the origin of tidRCregime and the nature of the
paramagnetic insulating (PI) phase are still unclear. htigadar, among the proposed scenar-
ios, it was suggested that this physics may arise due to #sepce of intrinsic inhomogeneities
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and their strong tendency toward phase separation on tresoale [238], or due to the local-
ization of charge carriers through lattice polarons [23H),241, 242]. Hence, the knowledge
of the ferromagnetic metallic (FM) phase alonenst sufficient to understand the CMR effect,
which requires the knowledge of the competing phases as well

Recently, another parameter to tune the physical progestienaterials, namely size, became
part of the scenario: size control is attractive from a tedbgical point of view, as it can
be achieved chemically, at relatively low-costs. While $tnongly correlated materials, theo-
retical modeling of size-driven phenomena are rare, weyaata study of the effect of size
reduction on the structural and electronic properties tffd@ped manganite LgCa ;MnOs.
The present theoretical analysis, supported by evidenoesdifferent experimental techniques
suggests size control to be a suitable tool to tune electqomperties for functional material,
with a possible impact on technological applications.

5.1 About mixed valence manganites

It is worth to recall some basic properties of the mixed vedgemanganites, mainly con-
sidering the La_,Ca,MnOs; compound, in order to establish a basic knowledge and ease th
understanding of the theoretical analysis presented iriadll@ving. By contrast, a in-depth
review on the vast field of manganites is certainly beyoreldbope of the present work, and
we rather refer to review articles [238, 243] for a deepedirea
The field of manganites can be dated back to the 1950’s, whiglked and van Santen reported
the existence of ferromagnetic metallic (FM) phase in migegstals of manganese oxides
LaMnOs;-CaMnQ;, LaMnO;-SrMnG;, and LaMnQ-BaMnQ;, [236]. However, the interest of
a wide portion of the scientific community was only raisedhia 1990s, due to the experimental
observation of a large magnetoresistance (MR) effect.dddhe relative change in resistivity
|AR/R(0)| = |R(H)/R(0) — 1] upon the application for a magnetic field was way higher
than the one observed in artificial magnetic/non-magnatidtilayer systems: up t60% at
room temperature in thin films [233, 234]. The enthusiasmpiossible technological appli-
cation was however weakened by experimental evidenceg f2@@esting that a higher MR
could be obtained only at the expense of lowering, sensiéigvioroom temperature, the Curie
temperaturd >, which determines the onset of the FM phase. At the same tiraeglatively
high magnetic field necessary to induce the MR achievéd; 1 T, in contrast toH ~0.01 T
required by artificial multilayer systems, prevents mantgs to be suitable for magnetic data
storage applications [238].

Crystal & electronic structure. The manganese oxides are characterized by the generic
chemical formula R_,A,MnO;, where R is a trivalent rare-earth-metal element and A isa-di
lent alkali-earth-metal element. The oxygen is in“a ©xidation state and the relative fraction
of Mn** and Mr¥t is determined by the dopant concentratiguletermining the mixed valence
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nature of the compound. In the idgarovskite cubic unit cell, the rare earth atoms (or the al-
kali, if any) sit at cube corner positiorg, 0, 0), while the Mn atom sits at body center position
(1/2,1/2,1/2) and oxygen atoms sit at face centered positidrig, 1/2,0). The five-fold de-
generate3d orbitals of the isolated Mn ion are split, due to the mixinghwihe surrounding
oxygen octahedral environment, into two manifolds: thedoanergy,, orbitals ¢,,, d.., and
d,.) and higher energy, orbitals (..., andd,>_,2) as predicted within ligand field theory.
Thet,, manifold lies below the Fermi energy, and the Hund’s excldagors the population
of the t,, orbitals with three electrons in3/2 spin state (Hund'’s rule), while the, orbitals
contain either one or zero electrons, depending on the salefthe Mn atom: M#" are in ad?
configuration, while MA™ are in ad* configuration. As the energy cost of a double occupation
within the¢,, manifold is, due to the Coulomb repulsion, larger than tlysted field splitting,
the additional electron determines an asymmetric occoipatf the electronically degenerate
e, States. As a consequence, the surrounding oxygen octatedeagoes a static distortion
(Jahn-Teller effect) and elongates along ¢herystallographic direction, removing the degener-
acy and further lowering the symmetry of the system, in otdeninimize the energy of the
system. See also the upper panels of Fig. 5.1 for a scheregtiesentation of the crystal field
and Jahn-Teller splittings.

Onset of charge, spin orbital ordered phases. Each manganite compound displays a com-
plex phase diagram, determined by the competition of sirattand electronic phases: the
termperature versus Ca doping phase diagram of IGa, . MnO; is shown in the lower panel

of Fig 5.1 for the sake of copleteness.

As already mentioned, the FM phase plays an important rol¢hto realization of a MR
effect (an explanation is provided in the related paragegghe end of this section) and it has
been widely investigated in the past. Its origin is convamily owed to thelouble-exchange
mechanism [244, 245], which allows the charge to move in ranitgs by the generation of a
spin polarized state. The Mr), orbitals are delocalized due to a strong hybridization it
O 2p, and charge transfer is hence allowed via the following @ssc

Mni* O, Mn** — Mn{*O, Mn}" — Mn**O, Mnj*, (5.1)

i.e., the initial and final states are connected by a virstetie due to tunneling processes through
the oxygen bridging nearest neighbor Mn atoms. The effedtimneling amplitude for the
double-exchange process is proportional to the3Wland O2p overlap:t o< |tq,[* /A, whereA

is the charge transfer energy between the configuratiotieiprocess (5.1).

The t,, orbitals, on the contrary, do not hybridize with the @'sand are localized. In the
presence of a local Hund’s exchangebetween the, andt,, electrons on the Mn atoms, an
effective FM exchange develops between the localizgdpins belonging to nearest neighbor

1The ligand electron pair, located a the edges of the O octaltegel with the electrons in thiorbitals of the
Mn: hence, thel-orbitals pointing toward the ligands (i.e., thg) are higher in energy with respect to the ones
pointing between them (i.e., titg,).



142 Effects of size reduction on half-doped manganite LgCagsMnO 3

Mn*
C b}
XE_EZ
e e  —
g a IA
.L"+ JT
& g g o
[ e
3 3d 4 2|ad £
g _rII CF g —I CF x‘f
(%] I (7] I
.E N .E — ll. .+ “
5 A 5 T S ek
E 2g g 2 ._I z &
” " x2,yz -
crystal structure
O :orthorombic (Jahn-Teller distorted) electronic phases
O* :orthorombic {ochtahedron rotated) B S
- - | FM : Ferromagnetic metallic
300 O l ('msulnﬁng] l FI :ferromagnetic insulating
s ) : AF :antiferromagneticinsulating
250 [ CAF : canted antiferromagnetic
— CO :charge & obitally ordered
s A= g y
o .
o 2000 ) T8 L
= (metallic)
=
% 150 -
g antiferro ) b
ﬁ 100 (insulating)
AF {CAFT -

L :
eIy 1 - 1 1 L b |

(
00 01 02 03 04 05 06 07 08 09 1.0
Cax

Figure 5.1: Upper panels: crystal field splitting of the five-fold degeate3d manifold into lower
tay and highere, levels. M atoms, due to the asymmetric filling of the manifold, are Jahn-
Teller active, and undergo an elongation of the Njn@Ztahedron, determining further splittings
in both manifolds. Thed orbitals are sketched on the right-hand side: the red/biler coding
indicates positive/negative charge, respectively. Lgvegrel: temperature versus Ca dopinghase
diagram for the La_, Ca.MnO3 compound, the colors highlight the different crystal stinoes, while
the electronically ordered phases are separated by blatil (8 dashed) lines. The red solid line
is a guide to the eye tracing the temperature evolution ofhtl&édoped compound from a high-
temperature paramagnetic insulating phase, through a Rllm@ne (belowl ) to an AF insulating
and CO state (beloWp). The right-hand side inset shows the complex charge,abrlibhd magnetic
order in the CO phase. Adapted after Ref. [238].
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Mn, and it is mediated by the hopping processes of the ititiefaelectrons. Indeed, in the
range(.2 < x < 0.5, a stable FM phase is observed also in the bulk L.&a,MnO; compound.

However, many manganite compounds, including L&a,_,.MnOs, display also features which
indicate strong deviations from double-exchange behavitie charge and orbitally ordered
state observed in the bulk half-doped manganitgsCa, sMnOs is one of the fascinating phe-
nomena exhibited by those compounds. Bulk 1@a, ;MnO; displays a charge-ordering (CO)
transition atl'-o = 155 K, associated with a real space ordering of*NiiMn** speciesind:1
pattern. It is accompanied by orbital ordering (OO) and acstrral change from orthorhombic
to monoclinic symmetry, giving rise to an insulating growstdte [247, 248, 249, 250, 251].
Below 155 K, the crystal structure is of monoclinic symmetryq; /m) and an AF order sets
in [252]. The magnetic structure is characterized by theated “CE” order, consisting of
zigzag FM chains that are coupled AF in the crystallographiplane. Theac planes are
stacked AF along the crystallographiidirection. A noteworthy feature of the crystal struc-
ture concerns the Jahn-Teller distortions: while IMatoms display sizable distortions, with
two long bonds along the FM chain and four short bonds, theé &oms on the zigzag chains
display instead negligible distortions, with nearly sianiMn-O bond lengths. Moreover, the
average Mn2-0 distance is smaller than that of Mn1-O [247].

Being at the edge of a strongly first order transition upoaliog [246], and bridging two
phase characterized by completely different order, the @dEthe FM ones, the half-doped
Lay 5Ca 5sMnO; represents a peculiar system susceptible to externalrpattons. Indeed, the
insulating CO state has been reported to be destabilizéddyor of a FM metallic phase, by
various means, including magnetic field [253], doping ximhstrain, pressure [254], and elec-
tric field [255]. Recently, a few experimental studies on t@a, sMnO3 [256, 257, 259], as
well as on Lg ¢Ca, ;MnO; [258] and Pg 5Ca, sMNnO; [259], reported that the destabilization of
the CO state can be achieved even through size reductiontotitethrough size control also
opens up the possibility of exploring the tunability of th©@©O state and of the associated
MIT between the FM and CE ordered phases.

The origin of MR effect: insights from multilayer systems. While the underlying mecha-
nism controlling the CMR in the CO AF phase of half-doped imgenites is still a matter of
debate [238], it is interesting to discuss the MR effect ia tontext of trilayer systems, e.g.,
following the simple arguments of Ref. [261]. It shows thag toexistence of FM and AF
tendencies may give rise to the MR effect, and suggests ¢asib@havior may be determined
by the destabilization of the CO order in the half-doped naauitg La ;Ca, ;MnOs.

It is well-known that impurities in metals are screened ly shrrounding conduction elec-
trons, inducing oscillations in the electron density thetalys as a function of the distance from
the impurity (Friedel's oscillations). Analogously, theepence of a magnetic impurity induces
decaying oscillation in the spin polarization of the elentdensity, which can influence the
spin orientation of a neighboring impurity. Hence, the eaale coupling between the impurity
magnetic moments will result into a FM or AF alignment, degiag on their relative distance.
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The discovery of AF coupling between the iron layers of a F&/€trilayer system [260] can be
remarkably explained in this terms, where the thicknese®hbn-magnetic (NM) layer affects
the nature of the magnetic exchange.

The presence of FM iron layers stacked AF, i.e., with an adteing magnetization, determines
a MR effect. below we provide an intuitive explanation of ffeenomenon restricting, for the
sake of simplicity, to a model FM/NM/FM trilayer system.

Let us consider the electrical current flowing through tlgstem, carried by the conduction
electrons. In a FM background, the resistance experiengegip up and spin down carriers
within a given layer will differ, as well as the resistancégorating by scattering processes at
the FM/NM interface. On the other hand, within the NM laydectrons in both spin channels
experience the same resistance, but generally this is lawpaced to the one within the FM lay-
ers, and here will hence be neglected. For the sake of sittype will include the resistance
through the FM layer and due to the scattering at the interfiache effective parameters,

AR=-(1/2)(R-R))*/ (Ry+ R)

R T R|
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Figure 5.2: Left panels: schematic illustration of the electronic staue of a trilayer system, made
of two FM layers (light green) separated by a NM layer (gregample DOSV(E) of 3d and4s
orbitals for the spin up (blue) and spin down (orange) corepts are shown: the magnetization
caused by an excess population in one of the the spin chaimeldicated by the thick arrows
above/below the DOS. At zero magnetic field & 0, upper panel) the FM layers are stacked AF,
i.e., with magnetization pointing in opposite direction.the presence of an external magnetic field
(H # 0, lower panels) each FM layers have the same polarizatialucing a negative MRAR =
R(H) — R(0). Right panels: circuit representation of the trilayer egst In a FM background the
effective parameteR,, taking into account the resistance due to charge transpititvthe FM layer
and the one originating by scattering processes at the FMiitdiface will be different for the two
spin components. After Ref. [261].
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and R, labeling the resistance in the different spin channels.

Under those conditions one can calculate the overall segist experienced by a current
flowing through the system, which is conveniently obtaimedsidering the spin up and spin
down components of the current separately. In the conftguran which the FM iron layers
are AF stacked, which is realized in the absence of an exteragnetic field, H = 0 (up-
per panels of Fig. 5.2) the spin up component of the curreltexperience a resistande;
(transport within the left-hand side FM layer and througa NiM/FM interface) and a resis-
tanceR, (transport through the NM/FM interface and within the ri¢ifaind side FM layer), i.e.,
it experiences an overall resistanBe+ R|. Analogously, for the spin down component the
magnetic environment results to be “reversed”, but therall resistance that it experiences
is R, + Ry, i.e., identical to the spin up component. Combining théstasces in parallel, it
yields an overall resistance at zero figh{0) = $(R, + R;). In the presence of a magnetic
field H instead, the FM iron layers are FM stacked (lower panelsthabthe spin up and spin
down components of the current experience a resistafgeand 2Rz, respectively, yielding
an overall parallel resistanc®(H) = 2R+R,/(R++ R;). The MR is, hence determined by
AR=R(H) — R(0)=—2(R:—R})*/(R:++R,), so that the larger the difference between the
resistances of the individual spin components, the higleeMR.

As already discussed, charge transport in manganitesasiassd to the double-exchange pro-
cess, and it is realized by effective Mn-Mn hopping procesbeough the bridging O atoms.
One may hence expect a similar behavior: in the AF phase ttersyis insulating, and the
resistance is huge, while in the FM metallic one, carrieesrapbile and experience a lower
resistance. The main issue relies on the possibility tgéighe transition, e.g., by the destabi-
lization of the AF insulating phase by means of a reasonakBlkexternal magnetic field, at a
temperature which is easily accessible for applicationssfriikely room temperature). While
in the bulk those conditions are not met, the recently regbetffect of size reduction include,
e.g., a lowering of the field required to melt the CO ordeli259].
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5.2 Realistic model for manganites

The onset of the CE magnetic ordering in doped manganitextée explained within the
double exchange model, and more recent theoretical asahaskinvoked an important role
played by the Jahn-Teller distortions, occurring at the*Mions, together with the Coulomb
interaction [262, 263, 264]. Hence, in the following we stalde effect of size reduction on the
CO-00 state of Lg;Cay sMnO; (hereafter LCMO) by using a combination of DFT and DMFT:
by extracting arab-initio bandstructure through the self-consistent solution of dhicSham
equations, one is able take into account, e.g., Jahn-TaiB&wrtions, while DMFT allows to
include strong electronic correlations beyond DFT, eathily local Coulomb interactions.

For the DFT calculations, we used a combination of two methdd) plane-wave-based
pseudopotentials and (b) muffin-tin orbital (MTO) basediaear muffin-tin orbital [127] and
Nth order MTO (NMTO) [128]. For (a) we used projected augrneednivave (PAW) pseudopo-
tentials with an energy cutoff a0 eV and performed calculation within a spin polarized gener-
alized gradient approximation (GGA) [125] as implementethe Viennaab-initio Simulation
Package (VASP) [265, 266, 267, 268]. From a self-considdéit calculation, a low-energy
model, consisting of twe, orbitals per Mn ion, was constructed using the NMd@vnfolding
technique. The following Hubbard Hamiltonian was definethe downfolded NMTO basis

H= Z Z tzm]m’clmg Jm!o’ — Ac Z Z Nimo

imjm’ oo’

+U anan“W + Z Z — S0 )Mimno Mo ot — jSZ Nimt — Mimy )+ (5.2)

imm’ oo’ m

wheret;,,;,, are the elements of the one-particle GGA Hamiltonian in themfolded NMTO
Wannier orbitals; the Coulomb interaction betwegrelectrons is parametrized in terms of an
intra-orbital Coulomb interactioti =5 eV and a Hund’s exchangk=0.75 eV, taken from the
literature [269] and represent realistic values for dopaaganites. In case degenerate orbitals,
e.g. thet,, orbitals in a cubic symmetry, the Hamiltonian has to be imardgrunder orbital
rotation, yielding the relatio/’ = U — 2./, which is, however, often considered a sensible
choice also when the degeneracy is only fulfilled approxetyg[121], as in the present case,
where thee, are split by the Jahn-Teller crystal field. Furthermore, dhorbitals are coupled
to a (classical) spin representing the half-filled and lzeal t,, electrons by7 =1.35 eV [262].
Hamiltonian (5.2) was solved within DMFT(HF-QMC) in the saspirit as previously carried
out in Ref. [262] in the context of pure LaMrOFinally, Ae is the parameter that takes into
account the site-dependent double-counting correctib2@][(see below).

With respect to the standard DFT+DMFT method, the presesg exhibits further com-
plications. Among the eight Mn atoms contained in the LCMOnoinic unit cell, one can
identify threelocally inequivalent types ofMn atoms: there are two pairs of “trivalent” (i.e.,
Mn3*-like) atoms, Mn1(1) and Mn1(2), and four “tetravalenti’d., Mr**-like) Mn2 atoms.
Any exact treatment of non-local correlation effects wittihe LCMO unit cell, e.g., in the
same fashion as in Ref. [141] in the context of monoclinic,Y® hardy feasible. Therefore,
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we employ awo-fold approximationwe neglect the inter-orbital elements of the local Green’s
function at each Mn site, and we also neglect non-local spadintributions between Mn sites
¢ andj within the unit cell. Hence, for each of the inequivalent Moras one can define an
auxiliary two-orbital AIM. The solution of each auxiliarynipurity problems yields a purely
local self-energy, as shown in Fig. 5.3. Considering thatthiw this approximation, to each
equivalent atoms corresponds the same local self-enengycan define a matrix self-energy
for the whole unit cell, which is diagonal both in the site &imel orbital indexes. The self-energy
is used to update the Green’s function and the previous siepserated till self-consistency.
This procedure formally corresponds to the multi-orbitahgralization of the approximation
scheme already introduced in Sec. 2.4 in the case of fingierys, applied here to the LCMO
unit cell.

Moreover, due to the presence of inequivalent Mn atoms, & mecessary to explicitly
consider asite-dependendouble counting corrections in terms of a site-dependent density
and an average Coulomb interaction defined as [121]

~ U+WM-1)U+ (M —-1)(U-3J))
Ae - U = @M —1) ,

(5.3)

where M is the number of orbitals in the low-energy model. In the presaseVl =2, as we
restrict ourselves to the My, orbitals, and/’ = U — 2.J due to (approximate) cubic symmetry
of the perovskite unit cell, resulting in an averaged intéoa U = U — §J which takes into
account the mutual screening of theorbitals.

aux. AlMs

MoL(l)] Y
=

Figure 5.3: Approximate scheme employed to treat the inequivalent Mmatwithin the
LCMO unit cell. Each type of locally inequivalent Mn atomse.j Mnl(1), Mn1(2), and
Mn2, is mapped onto an auxiliary two-orbital AIM, labelgd and|1) and representing the
NMTO downfolded basis of the, orbitals. The solution of each auxiliary AIM yields a of
local 2 x 2 (diagonal) self-energy matricéég (v): collecting them and exploiting their sym-
metry relations yields a self-energy matrix for the wholét gell, which is used to update
the Green’s function by means of the Dyson equation.
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5.2.1 GGA+DMFT results: bulk & nano structure

The results presented in the following, concerning the-sorgrol of the charge-orbital order-
ing of LCMO are based on the paper published in the APS Josfiysical Review Letters”
PRL 107, 197202 (2011) [272].

In the following we show how we performed ttadb-initio analysis of bulk and nanoscale
LCMO, in order to compare the systems’ crystal and electrgtiucture in a physically sen-
sible context. The spin polarized calculations suggesthiamges in the crystal structure, due
to size reduction, to be held responsible for the destalitim of the CE phase in favor of a
FM metallic one, already within DFT. Including electroniareelations within DMFT indicates
a trend toward CO and OO even in the absence of long-range. oFdeally, we show the
structural and electronic changes, induced by the apitaf hydrostatic pressure, to lead to
a different scenario compared to the one determined by fhetsfof size reduction.

Crystal structure ab-initio & comparison with experiments. In order to build the mono-
clinic unit cell of LCMO, we considered the experimentallgasured structure [247], hence-
forth referred to asex,, and we performed the structural optimization, yielding structure re-
ferred to asSyyi, in order to compare with parameters®f,qe (see below) on the same footing.
The performed DFT calculations showed the CE insulatingspha be stable by8 meV/f.u.
over the FM metallic solution. The calculated electronraature in terms of density of states
and magnetic moments are found to be in good agreement vatie treported previously in
literature [270].

In order to study the problem of nanoscale LCMO, we first tzda large supercell in the
monoclinic structure, from which a cluster of diame2er3 nm having approximate spherical
shape was cut out (cf. Table 5.1). In the construction of ingters, care has been taken to main-
tain the stoichiometry as closely as possible. For thicsire, referred to as,an, We carried
out a full structural optimization: the positions of them®were relaxed towards equilibrium,
using the conjugate gradient technique until the HellmBayaman forces [271] became less
than0.001 eV/A. Following this procedure, thznm cluster contains a total 870 atoms and
the3 nm cluster contains a total @H0 atoms, pushing it to the limit of our DFT structural opti-
mization. In order to perform the DFT calculation on the tdnsa simple cubic supercell with
periodic boundary conditions was used, where two neighlariusters were kept separated by
10 A, which essentially makes the interaction between clustages negligible.

The considered DFT cluster sizes are smaller than the ewpetal realizations [256] of sizes
15 nm. Hence only the inner region of the above constructedansi®f2 —3 nm size is ex-
pected to mimic the prototypical behavior of the experiraéiytstudied clusters. In order to
understand the consequences of the size-controlledstalichanges for such relatively larger
clusters, we hence constructed a model bulk system, whichefee to asSmoeger It is built
out of the structural units belonging to the innermost core e next to the core layer of the
optimized LCMO in the nanoscale geomet$y,,, and subsequently imposing the symmetry
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considerations, as shown in detail in Table 5.1. The coostnu of S.qe l€ads to consideration
of the local oxygen environments around Mn atoms as well agilthand rotation connecting
two MnOy octahedra, the same as that in the core regias,of

Thelattice parametersand the Mn-O bond lengths 6¥,04e1are compared to the bulk struc-
tureSpui in Table 5.2. The detailed structural information can bexoigd in the supplemental
material (SM) of Ref. [272]. We find that the lattice parasrstofSyqer ShOw substantial re-
duction compared to those 8f,k. The change in the parameter appears to be the largest with
a change of about 19 A, with moderate changes in ttheandc parameters, 0d.09 A. Qualita-
tively, this trend of reduction in lattice parameters angbahe nature of reduction agree very
well with the crystal structure data extracted from x-raffreiction of nanoclusters of LCMO
of 15 nm size (cf. Fig.4 in Ref. [256]). We note that the reduction in lattice paragngtn
the model structure gave rise to ab6t reduction in the volume compared to that of the bulk
system; the first experiments [256] repor2@ reduction. In this respect, let us notice that the
6% reduction was obtained fa¥,oqe; cONstructed out of,an, 0f 3 NmM, while a similar proce-
dure forSpano Of 2 Nm gave rise to larger volume reductic@¥4): this indicates that the volume
reduction increases upon decreasing cluster size, jusditiie difference between the obtained
volume reduction on th2—3 nm cluster and the experimentally observed volume redoctio
the 15 nm cluster. One of the important structural quantities éattthorhombic strain :

(c—a) 2(a+0—\/§b)
(c+a) (a+c+/2b)

where O$ gives the strain in thec plane, while OS is that along thé axis. ForSyu, the
orthorhombic strain is highly anisotropic with a negligiblalue of OS ~ 0.002 and a high
value of O§ ~ 0.021. For Syeder We find instead the orthorhombic strains to be comparable:
OS, ~0.02and O$~0.01. Thistrend is also in very good agreement with experimeatallts

by Sarkaret al. [256], where the where the lattice parameters have beerredfédy powder
X-ray diffraction (XRD) measurements.

However, the experimental scenario is not lacking ambyguwithile the suppression of the
CO state upon size reduction it is a well established phenomets origin is not yet clear. In-
dependent experimental investigations [274, 275, 27&nted that the lattice parameters and
unit cell volume are slightly larger than in the bulk coupiats, and that the room temperature
Pbnm perovskite structure, lattice distortion, Mn-O distan@exl octahedral tilt are practically
unaffected by the particle size. The inconsistency of theearental data point to the difficul-
ties connected to the experimental synthesis of mangalistecs, e.g., impure phases, grain
boundaries, and non-stoichiometry. Itis indeed knownvheation from perfect stoichiometry
may strongly affect the magnetic properties of both bulk aalo samples, see e.g., Ref. [276]
and references therein.

However, the present theoretical calculation is devoidhefse difficulties and unbiased
toward any experimental structure, as we perform a compkxtenetrical optimization of a per-
fectly stoichiometric nanocluster. The theoretical ofitimtion, carried out at zero temperature,
shows structural changes involving (i) a reduction in voduamd (ii) a change in orthorhom-

oS, =2 (5.4)

0S, =
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build supercell =

cut out nanocluster »

monoclinic unit cell

perform atomic relax-ation

extract strucktural unit

monoclinic unit cell

h=T.4% A

Table 5.1: Construction of the model structures analyzed within DF$.aAstarting point the experi-
mentally measured LCMO structufy,r was considered. A structural optimization was performed
to obtain the lattice parameters for the bulk monoclinic LOIgtructureSyyik; the different inequiv-
alent La, Ca, Mn and O atoms are labeled accordingly. Da&mi$,ans an approximately spherical
LCMO cluster of2—3 nm size was cut out of &x,r supercell, and a structural optimization was
performed; the Mn@ octahedra belonging to the outermost surface layer, nettietsurface, and
core region, are shown in magenta, brown and blue, respéctiVAs only the core region of the
2—3 nm size nanostructure can be considered representatives @xperimental 5 nm cluster, a
structural unit was extracted from the shaded regio§.gfo and used to buildmneger (i) structural
unit chosen from .., already defines the lattice parameter(ii) applying inversion about Mh(1)
atom, the lattice parameteris defined; (iii) applying mirror reflections passing thigh apical oxy-
gens (marked as dashed lines) the lattice paramésedefined; (iv) the fully constructed unit cell of
Smodel- La/Ca atoms are not shown for clarity. Adapted after Ref2]2

Table 5.2: Lattice parameters and Mn-O bond lengths (in A)Safoqel in comparison taSpuk. The
entries for the Mn-O bond length from left to right corresgdn that along the FM chain, between
the FM chains, along thiedirection, and the average. In the case of2MDithe average distance with
the inequivalent O atoms along each given direction is t§R&8].

Shulk Smodel
Lattice parameters a=5.47,b=7.58, c=5.48 a=>5.28,b=7.49, c=5.39
Mn1(1)-O 2.18 1.93 1.94 2.02 1.97 1.92 1.91 1.93
Mn1(2)-O 2.09 1.92 1.94 1.98 1.97 1.92 1.91 1.93

Mn2-O 1.92 1.92 1.94 1.93 1.92 1.88 1.92 1.91
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bic strain from an highly anisotropic one in bulk to a neadgtropic one on the nanoscale.
Those structural changes are indeed is in qualitative aggrewith the experimental findings
in Ref. [274] in which the low-temperature structural datdaich are the relevant ones for
the CO phase, differ significantly between the bulk and taeatlusters. It confirms that our
constructed model structure captures the essential stallchanges in the nanoscale surpris-
ingly well, and proves that the role of surface beyond whatlisady taken into account in
construction of the model structure is small.

Destabilization of CO order. Next, we calculated the electronic structure$agqeand com-
pared it with that ofS,,. In order to understand the following results, it is usetutecall that
the main result from the analysis of the crystal structuthésreduced difference between the
average Mm-O and Mr2-O bond lengths ifSy0¢e than inSpyk. Hence, one expects that the
charge disproportionation (CD) between Mand M sites to decrease i#,oqer FUrthermore,
we note that foiSy the difference between the longest and the shortest Mn-@-tergths is
large for Mnl and tiny for Mr2. This gives rise to the crystal field splittiny between the two
Mn e, states, Mr8z%-r* and Mnz? —y?, as large a6.63 eV for Mn1 sites and less than02 eV
for the Mre sites. In contrast fof,04e, the bond length differences are much more similar for
both types of Mn sites. This is reflected in similars for the nanomodel, i.e0.15 eV for Mn1
sites and).10 eV for Mn2 sites. Together these two effects weaken CO as well as G.Ha:
This ordering is important to stabilize the AF structurerfdun the bulk. Indeed, with charge
and orbital ordering weakened, we find FM to be stablebyneV in Syoqe, in @accordance
with the experimental observations [256, 257].

The microscopic origin of the size-controlled transitioorh AF to FM, therefore, can be
traced back to the size-induced structural changes. Thespwndinglensity of states(DOS)
of Spuk With AF ordering of Mn spins, in comparison to that 8fq4e With FM ordering, are
shown in Fig. 5.4. Considering the DOS {8y, the crystal field splitting due to the Jahn-
Teller distortions between MAz2-r? and Mnz? — 42 is clearly seen. In the majority spin
channel, Mn3z2-r? states at the Mhsite are more occupied than the Me?-r? states at the
Mn2 site, giving rise to CD between Mrand Mr2. We also find OO at the Mnsites with a
preferential occupation of MBz2-r2 over Mnz? — 2. The CO, although incomplete, together
with the AFM spin ordering gives rise to an insulating saatwith a small but finite gap at
Er already at the DFT level. Considering the DOSSgfqe, We find that the splitting between
Mn 322-r? and Mna? — 4?2 is less pronounced and the Md and M d states to be similar.
The reduced)\ together with the increased bandwidth, compared to the &mlicture, drives
Smodel t0 @ metallic phase with a finite density of states at the Femergy £ . The increased
bandwidth is caused by the reduction in volume as well as byFtfd ordering which allows
hopping processes within a double exchange mechanism 2254,

Role of electronic correlations. So far we have discussed the effect of the changes of the
crystal structure, in particular in terms of the distor8aof the oxygen environment, due to
size reduction. Those effect have a direct influence on kdetrenic structure of the system
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and seem to play a determinant role in the destabilizatigdh@tharge, orbital and magnetic
order observed in the bulk. However, as the electronic gondition of the Mn atoms involve
an opendd shell, strong correlation effects are naturally expecéed their relevance, e.g., in
determining the nature of the pressure-induced MIT or palhO; [262] or in CMR spectra
in doped compounds [263] has been recently shown.

While at the nanoscale spatial confinement, and possiklieitk of a proper metallic screening
of the Coulomb interactions, may enhance correlation &ffebe interplay between electronic
correaltions and the lattice distortions is highly nowitii. Hence, it is reasonable to investigate
the role of electronic correlation in the absence of longgeamagnetic order, i.e., considering
a paramagnetic ground state. The analysis of the broken symphase is more complicated:
besides requiring the implementationad hocself-consistent DMFT equations [98], in the
present case one has also to be careful to properly takedotwmat the presence of the inequiv-
alent kinds Mn sites within the unit cell, and is thereforsiponed to future works.

In order to take into account thefluence of the missing electronic correlationsn GGA, we
performed (paramagnetic) DMFT calculations for b&Hyx andSmogel Structures. We consid-
ered the low-energy Mn,-only Hubbard Hamiltonian (5.2), obtained by menas of the TV
downfolding technique from a apramagnetic GGA calculation

Let us consideS, . Theorbital occupations of the three types of inequivalent Mn sites,
listed in Table 5.3: already at the DFT level (in bracket® tWo types of inequivalent Min
sites are more occupied than the dmites. In this respect, calculations performed for the-half
doped manganite P£Ca, sMnO; by Anisimov et at. [273] showed negligible CD. The CD
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Figure 5.4: GGA spin-polarized DOS, projected onto Md (black solid line) and M2 d (green solid
line) states calculated for the CE insulating phaségii (left panel) and the FM metallic phase of

Smodel (right panel). The positive and negative values correspéndhe majority and minority spins,
respectively. The zero of energy is setfgt. Adapted after Ref. [272].
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Figure 5.5: GGA+DMFT spectral functiond(v) (solid lines) for thee, states of three inequivalent
classes of Mn atoms, for th&,,x andSmogel Structures, compared to the corresponding GGA param-

agnetic DOS (dashed lines). The black and green lines gumesto the3z? — r2 andz? — 3 states,
respectively. Adapted after Ref. [272].

obtained in the present case is presumably driven by thefisgm Jahn-Teller effect at the
Mn1 site. In addition to the CD, within DFT the system also digplarbital order. Electronic
correlations enhance both kinds of ordering dramaticatigking CO and OO nearly complete.
This establishes the correlation-driven stability of C@ &0 with almost complete CD in the
paramagnetic phase.

Furthermore, we compute the DFT+DMEBpectral function for bothSpx andSmoede, Obtained
via the analytic continuation of the QMC data by means of MEiMhe presence of electronic
correlations, spectral weight is transferred to high fesgpies in the form of Hubbard bands:

Table 5.3: Orbital occupationgn) = (ny + n,) for Mn 322 —r2 (first entry) andz? —y?* (second entry)
states, calculated within GGA+DMFT for the different inaglent types of Mn atoms in the unit
cell of Spuk andSmoeder In brackets the corresponding GGA occupancions are giéf| |

Shulk Smodel
3,242 22 —y? 35242 22 —q?
Mni(l) _ 0.87(0.50)  0.01(0.11) 052 (0.31) _ 0.09 (0.20)
Mn1(2)  0.85(0.47) 0.01(0.12) 0.72(0.38)  0.04(0.19)

Mn2 0.04(0.15)  0.09(0.25)  0.16(0.21)  0.16 (0.25)
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the almost complete CD and enhanced orbital polarizatid?) @the Mn sites determines the
opening of a gap at the chemical potential of the the DFT+DMpéctral function for the bulk

structure even without long-range spin ordering, as shawthe left panel of Fig. 5.5. Note

the opening of the charge gap is stabilized by long-rangdddau interactions which, being

neglected in DMFT, in the present calculation reduce tortHartree contribution, taken into
account on the GGA level. However, in the DFT paramagnetiShia& charge disproportion-
ation is incomplete and the insulating solution is obtaioely by assuming the long-range AF
spin ordering.

Turning toSmoge, the DFT occupancies show Mrnlike and Mri*-like sites to be similar
with only a weak CD. The inclusion of the correlation effettisough DMFT enhances CD
to some extent following the trend seem f8y,x. However, CD remains incomplete with
an average occupation of Mnlike and Mni*-like sites of (n) ~ 0.6 —0.7 and (n) = 0.3,
respectively, in comparison to the valugs ~ 0.9 and (n) ~ 0.1, respectively, obtained for
Shukk- At the same time, this leads to a metallic DFT+DMFT spedtrattion for Syoges With
finite weight at the chemical potential, as shown in the trjggmel of Fig. 5.5.

The above analysis conclusively establishes that sizectietuleads to the weakening of
charge disproportionation. Note that, although,, does not maintain strict stoichiometry, the
constructedSyqel iS Strictly stoichiometric, pointing to the fact that ddsteation of CO is
driven by the structural changes due to size confinemetiterahan due to deviation from
half-doping.

Comparison with the system under pressure. As one of the major structural changes upon
size reduction is the volume compression, it is worthwhaledmpare the structural and elec-
tronic changes induced by size reduction to those occuualgr hydrostatic pressure. To this
end, we carried out calculations of LCMO, with uniformly teed lattice parameters wit¥;
reduced volume, the atomic positions being optimized in Dieferred to as structur&yess
The details of the optimized structure are given in the SM ef. R272]. Following the self-
consistent DFT calculations @)yess the Mne, only low-energy Hamiltonian was constructed
and the corresponding Hubbard Hamiltonian was solved IBM&T. Compared t&moge, We
find that at the DFT level CD and orbital polarization are imueaker, even though the volume
is the same. In this less polarized configuration, wherMalkites are filled withn) ~0.5 elec-
trons (i.e.,1/8 filling) and electronic correlations are less relevante DMFT orbital and site
occupations remain very similar to the DFT values with ~ 0.4 —0.6 electrons per site, and
the system is far away from a metal-insulator transition{MIThis leads us to conclude that
the nanoscopic system is much closer to a MIT than bulk;Ca, sMnO; under hydrostatic
pressure. Although compression of volume and Mn-O bondgdrapboth in nanoscale and
on the application of pressure, the larger;@%the case of nanoscale compared to that under
pressure makes the Mry bandwidth smaller for the former, through reduction in MAMD
bond angle. The size reduction and application of hydrmspatessure, therefore, should be
considered as two very different routes.
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In conclusion, we have studied the effect of size reductiorcltarge-orbital order in half-
doped LCMO manganites. within DFT+DMFT. Our analysis iradés that the size reduction
leads to a substantial reduction in volume as well as a chiartye nature of the orthorhombic
strain. The structural changes under size reduction aponsgble for a weakening of both
charge and orbital ordering, making the ferromagnetic hietstate energetically favorable
compared to the CE-type AF insulating state, which is theigdostate of the bulk structure.
While such effect has been observed, the experimentatisituia faced with difficulties, like
the possible presence of impure phases, the grain bousgdanid non-stoichiometry. The the-
oretical calculations were carried out considering a meri@nocluster in isolation, and, there-
fore, devoid of such complications. Through constructibrihe@ model structure, the issue
of non-stoichiometry was also avoided. Furthermore, weliptehe nanoscopic system to be
closer to the MIT in comparison to the system under pressitlethe same amount of volume
reduction, suggesting that the structural changes indogsize reduction an by the application
of hydrostatic pressure to be of different nature.

In this picture, the role of electronic correlations is tthance a preexisting CO order, which
is entwined with the amplitude of the crystallographic disbns. Hence, electronic correlation
can either result in dramatic effect, as in the bulk, wherengt tendencies toward CO ordering
are predicted also in the absence of long-range order, oelb&eav, as in the nanocluster (or in
the system under pressure), leading to an incomplete CD.

Beside static Jahn-Teller distortions, one may also censit lattice dynamics by introducing
an electron-phonon coupling. The interplay between stamrgelations and lattice distortion
allows to explain the insulating nature of the paramagrsttite, in which electrons are easily
trapped as Jahn-Teller polarons [263]. In the present fnarie the electron-phonon coupling
could also play a role: it can either favor or contribute te trestabilization of the CO order,
depending whether it enhances the differences between ttiealld M2 octahedra. How-
ever, due to the non-trivial interplay between the Couloefiutsion and the electron-phonon
coupling, a prediction in this sense may be hazardous.
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5.2.2 nano-DMFT results for finite-size nanocluster

The results presented in this section are still unpublished

The theoretical DFT+DMFT results discussed above are daabér consistent with the experi-
mental observations, and also suggest the possibility mieadsiven MIT. As we have already
mentioned, the relatively high magnetic field > 1 T) necessary to trigger a CMR effect in
the manganites, compared the one of artificial multilayestems, represents the major draw-
back of those compounds and prevent their employment farilpletechnological applications.
Obviously, a system close to a phase transition is instegtayhsusceptible to the application
of external perturbation, including electric or magnetgd, hydrostatic or chemical pressure,
and mechanical stress. Hence, size-engeneered LCMOrslastine verge of the MIT consti-
tute a promising possibility for a tunable device. In thispect, a systematic analysis of the
properties of manganites as a function of size would be itheghly desirable.

In order to investigate a LCMO nanocluster within DFT+DMP\e need to define a suitable
lattice model, characterized by the lattice parameteraiobtl by a DFT structural optimiza-
tion. As discussed, the results obtained suggest thedatistortions to be responsible for the
destabilization of the AF insulating phase, hence poinbngthe key role of the structural
optimization. Unfortunately, the numerical workload asated to this process is already chal-
lenging in the case of 2— 3 nm size nanocluster (to be compared toth&m cluster realized
in the experiments), and tlad-initio realization of larger clusters is not feasible. Therefore,
need to find an alternative method to study the size depeedefithe electronic structure, and
eventually of the magnetoresistance of LCMO nanoclusters.

Interfacing DFT & nano-DMFT. In this respect, the flexibility of the nanoscopic extemsio
of DMFT may be a suitable alternative, if supplied with a igat input extracted from DFT.
Hence, we build a finite-size structure of Mn atoms, hendbfeeferred to asSinie. This is
done extracting a crystal unit from the core regiorSgfie, replicating it in all directions and
then cutting out a cluster having approximate sphericgyshBlote that the hopping parameter
used forSynie are extracted from the core region 8f,, and hence are determined by the
lattice parameters and distortions obtained by means dfttiaic relaxation 08,an0

In order to understand what kind of result nano-DMFT woulelg; in the following we
consider an[,ﬁf’tL structure, i.e., a nanocluster made’ot=46 Mn atoms overall, corresponding
to Nineq = 23 inequivalent atoms due to inversion symmetry. The systedesribed by the
low-energy Hamiltonian (5.2) where the sums over the Mnxedds now limited by the finite
size of the nanocluster, i.é=1, ..., N. The on-site energy of bo orbitals of each Mn atoms,
as well as the hopping amplitudes between nearest neighbatdns are extracted from the
NMTO downfolded real-space one-particle Hamiltoniap,.,, while the interaction parame-
ters are those discussed in Sec. 5.2 and considered in thieysenalysis. It is important
to notice that, in order to obtain a highly symmetric nanstgdu, which is important to lower
the number of inequivalent atoms, such a procedure maysygeklstem which deviates from
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perfect stoichiometry. For instance, in the present ratibn of the LCMO nanocluster there is
an unbalance of M(1), Mn1(2) and Mr atoms which slightly deviates from the rationi : 2,

as indeed it containg2: 12: 22 Mn atoms, respectively (see also 5.3). This would mostyikel
have an effect on the physics of the system.

Another issue to consider in the interface between DFT and+E3VIFT concerns the double
counting corrections, which is highly non-trivial, as @dy discussed in the context of the stan-
dard DFT+DMFT. Here, we correct the on-site energy of eachatbm with an Hartree-like
term U n,,,, where we take fot/ the averaged Coulomb potential (5.3) and gy, the GGA
density of each type of Mn atoms in the monoclinic unit celSgfger

Once all the elements of the multi-impurity Anderson Haarilan have been defined, one
can proceed to the numerical solution of the system, by mefanano-DMFT. Employing the
nano-approximation, each locally inequivalent Mn atom &pped onto an auxiliary two-orbital
AIM, describing the correlated M#, orbitals interacting with a classical, spin. The solution
of each auxiliary AIM yields a localx2 (diagonal) self-energy matr&’;g (v). According to the
symmetry relations defining the equivalent sites, a sedrgy matrix for the whole nanocluster
is build, and it is used to update the Green'’s function by mezrthe Dyson equation. The
process is iterated until self-consistency.

Before turning to the results, let us notice that the numbstractly locally inequivalent atoms
is sensibly higher than all the previously presented apptios of nano-DMFT. Besides the
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Figure 5.6: Schematic representation of the choﬁ%ﬁt]e structure: red, blue, and green color corre-
spond to the inequivalent types of Mn atoms, labeled MnINIh)1(2), and Mn2 atoms, respectively.
Within nano-DMFT, for each locally inequivalent atom ona cefine an auxiliary AIM: six for each
type of Mnl atoms and eleven for the Mratoms overall. The solution of each auxiliary AIM yields
a local2 x 2 (diagonal) self-energy matrEég (v).
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intrinsic differences between Mnand Mr2 atoms, one would expect the main differences
(among atoms belonging to the same Mn class) to arise betat®ens of the inner region
(henceforth “bulk” atoms) and atoms on the surface of thaacluster (henceforth “surface”
atoms). Although a sharp separation between the two kindsoofhs cannot be done, a naive,
yet intuitive, way to discriminate bulk and surface atomsuldobe to consider each atom’s
connectivity within the present realization of tﬁéﬁe structure. Hence, one can label as surface
atoms the Mn atoms with = 2, 3 nearest neighbors, and as bulk atoms the onesawitht, 5, 6

nearest neighbors.

Electronic structure. In the following, we present preliminary results of nano-BMpara-
magnetic calculations for th.éf[,ﬁ?t]e cluster. According to the nominal valence of the ¥Mrand
Mn**+ atoms in the nanocluster, an average occupancy of (almesstpobff-stoichiometry) half
an electron per atom is required to achieve charge neytrabtfor bulk La ;Ca, sMnOs. At
this density one does not expect strong correlation effddtsvever, as already discussed, a
nanoscopic system can be contacted to macroscopic chageogs, so that the amount of
electric charge within the cluster would depend on the @muim chemical potential of the
junction, and can also be controlled by means of a gate witag In the weak-hybridization
regimel’ < U, T (let us recall here, thdt =27pV? is the scattering amplitude to the reservoir
DOSp for an hybridization strengtl’), the effect of the reservoir on the local spectrum of the
nanocluster would be negligible. Hence, one can consideistilated nanocluster and perform

a systematic study as a functiongf.

In Fig. 5.7 the results for thepectral weight at the Fermi energyA(Er) are compared to
the orbitally-resolved occupationsper selected sitegu;,,) = (n;,+ + nin,) and averaged on
the whole clustefn) custer= % Ef\il % anzl (n;m), as a function otVy;, wheree is the electric
charge, for theV =46 sites cluster,

At eV; =0 all Mn atoms inSf[iﬁ?t}e are half-filled, with on average one electron pgorbital,
and display a charge gap at the Fermi energy. A divergentimaagpart of the nano-DMFT
self-energy in Matsubara representation in bqtlorbitals suggests that the system is a Mott
insulator. The Mott phase persists unfil; ~ 1 eV, when the occupation of the low-lying
level (thez? — 42 in the case of Mih and the3z% — 2 in the case of MR) is driven out of half-
filling and undergoes a transition to a metallic state, while othee, level remains insulating.
This is confirmed by the corresponding imaginary part of$b#-energy displaying a typical
FL behavior for the former, and diverging for the latter. lhistregime all kind of Mn atoms
display orbital polarization, but only a weak CD betweeniMimd Mr2 atoms is observed.
The orbital selectiveMott phase is destabilized at higher voltage values:lat~ 2 eV both
orbitals of Mr2 atoms exhibit metallic character, while M3z — »? are still blocked into the
Mott insulating phase tiltV; = 2.5 eV. This suggests that the crystal field splittidgoetween
the Mn e, orbitals is similar for the M atoms and larger than in the Mmones. Above a
voltage threshold the transition to the metallic phase mmete, and further increasing;
rapidly weaken correlations effects, as the average clostaipation(n)qusier decreases.
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Figure 5.7: Evolution as a function of the gate voltadgg; of the spectral weight at the Fermi en-
ergy A(Er) and orbitally-resolved occupations;,,) for representative bulk (left panels) and sur-
face (right panels) Mn atoms of théf[iﬁ?t}e structure. Solid and dashed lines correspond to the
322 — r? and2? — y? states, respectively, while the dot-dashed line denoteclirster average
(N)cluster = & SV 3 S 2 _(nim). The insets show the imaginary part of the local self-energy

Y (wy,) in Matsubara representation for selected values/ff.
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In order to further shed light on the nature of the Mott phatestronic phases suggested by the
previous analysis, it is useful to consider the nano-DMipé&ctral function of representative
atoms of theﬂﬁ?e structure, which are obtained via the analytic continuatibthe QMC data
by means of the MEM. The resulting spectral function, showfig. 5.8 for some represen-
tative bulk and surface atoms of t fﬁ}e confirm the orbital selective character of the Mott
phase, as a function of the gate voltage
At eV =0 (upper panels) all spectra display a charge gap of drdatthe chemical potential.
Concerning the Mhatoms, the energy shift between thé — 2 andz? —? states, reminiscent
of the crystal field splitting due to the static Jahn-tetlestortions, is clearly visible in both the
lower and the upper Hubbard bands. This determines, in therldlubbard band, the states
with 22 — y? character to lie closer to the Fermi enerfy than the3r? — 22 ones. While the
evolution of the spectral function upon increasivig is non-trivial, the splitting is probably
responsible for the? — 32 states to cros&’» before the3r? — 22 ones, as can be observed in
the upper panels of Fig. 5.7 related to the Matoms. In the M2 atoms instead, the spectral
function ofz? — y? and3r? — 2?2 states look quite similar.

AtlargeeVg, i.e.,eV;=3.7 eV, as shown in the lower panels of Fig. 5.7, both orbitaldldha
atoms considered display a finite spectral weight afthe value depending both on the orbital
and on the kind of Mn atom). In general, we observe that thereisubstantial qualitative
difference between the bulk and surface atoms (of the sam&it). The reason for this is
probably the size of the system considered, and more praeoldifferences are expected upon
increasing it.

In conclusion, we have investigated a finite-size LCMO rtalnstersfﬁﬂe, which we have build
replicating the unit cell of the core region 6f.,. Depending on the filling, which can be
controlled by means of a gate voltage, we observe differieatrenic phases. At half-filling
strong electronic correlations dominate and each Mn atoim & Mott-like insulating phase.
Driving the system away from half-filling, we observe a widage of voltages in which the
system displays a site-dependent orbital selective Matsehwhich is probably determined by
the Jahn-Teller splitting between thg states in the Mf'-like atoms. Further lowering the
filling weakens electronic correlations and drives theodnster to a paramagnetic metallic

phase.
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5.3 Outlook

Concerning the theoretical analysis of bulk and nanosadfedoped manganite LCMO, we
have shown that, by means of DFT+DMFT, one is able to proudedependent confirmation
of the recent experimental scenario [256, 257, 258, 25@jgssting the destabilization of the
CO order to be determined by the structural changes of theidrdmbic distortions and Jahn-
Teller splittings, upon size reduction.

We also considered a finite structure, with the aim to ingasé clusters of different size,
expanded in all three dimensions around their center of sstnym This is certainly possible
from the point of view of the numerical workload, within nabd/FT. However, issues may
rise to obtain the proper hopping parameters, due to thedaekproper atomic relaxation of
larger finite clusters. Amb-initio calculation beyond th& nm cluster is not feasible. However,
we expect further atomic relaxation to be important in theletwon of the nanocluster physical
properties toward a bulk behavior.

Moreover, while the Coulomb interaction certainly playsi@portant role in determining the
electronic properties of the manganites, one should alssider theeffects of the electron-
phonon interaction and its interplay with the Coulomb repulsion. How may the plog
between the electronic and lattice degrees of freedom mtuif present theoretical picture?
Another interesting point also concerns the analysis o$ylséem in the (spontaneously) broken
symmetry phases. Alternatively one can break the symmetmdans of the application of
an external magnetic field/, and compute the resistané¥ H), e.g., from the static optical
conductivitys(©2=0) [263], and estimate the CMR.



Conclusions

In the field of strongly correlated electronic systems, dherwhelming amount of experi-
ments which can be realized in modern research laborateaes frequently to the discovery
of novel physical phenomena. However, for many of those phmama, a comprehensive un-
derstanding of their microscopic origin remains elusivenisTis often due to the theoretical
difficulties to deal with many-body effects entailed by @lenic interactions. In particular,
in the case of nanoscopic systems, the confinement of etextnto narrow, low-dimensional
regions as well as the lack of a proper metallic screeningeapected to enhance their mu-
tual interactions. As a result, at the nanoscale, the physioften dominated by electronic
correlations.

This work aims towards a better understanding of correfagéffects, in nanoscopic sys-
tems, where very little is known beyond the framework of imfyumodels. To this end we
developed a novel tool, based on existing many-body teciesigvhose flexibility allows us to
access electronic and transport properties of complexstaratures, involving many degrees
of freedom and inhomogeneities, in the presence of straggjrehic correlations. Supported
by the results obtained on a variety of systems, we belieakthie proposed scheme may have
the potential to establish itself as a breakthrough for migaksimulation in this field.

In this respect, chapter 1 is meant to give an overview on thrdwof nanoscopic systems,
both from the experimental and theoretical point of vieweTinst part describes the systems
of interest and the experimental techniques which are aelewm the context of this work. In
the second part we discuss the interplay between the ditfereergy scales in the framework
of standard models, such as the Anderson impurity model jAWhich is an important tool
for the description of electronic correlations. In this o, we show the fingerprints of strong
electronic correlations at the nanoscale, e.g., the Cduldotkade and the Kondo effect, which
heavily affect electronic and transport properties of ty&tem. The latter are mainly investi-
gated by means of transport spectroscopy, which repretieimain contact between theory
and experiments. Hence, in the last part of this chapter s@uds the formalism of quantum
transport in nanoscopic systems, and the connection ttduedtical evaluation of the electri-
cal conductance.

The aim of chapter 2 is to introduce the many-body theory egga in the rest of this
work. A natural starting point is the dynamical mean-fiddeéary (DMFT) and its justification
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as the local approximation for the self-energy of infiniieaensional fermionic lattice models.
In particular, we derive the well-known self-consistenti@gons of the mapping on the AIM,
and discuss some details of the impurity solvers employetiapter 3, 4 & 5. We illustrate the
density functional theory (DFT) and its interface with DMPEAWhich was necessary to obtain a
realistic description of manganites systems (see chajter 5

In nanoscopic systems, also correlation effects beyonadh+fiel are expected to be of impor-
tance, and require to consider extensions of DMFT. A briedreew on the available tech-
niques can convince that, among those, the most suitable &pplied to nanoscopic systems
is probably the dynamical vertex approximation{®). In this respect, we introduce the two-
particle and parquet formalism at the basis dfA The last part of this chapter is devoted
to the description of the novel method we developed to appiFD and DI'A to correlated
nanostructures (see chapters 3 & 4).

In chapter 3 we test the nano-DMFT and nanbADmethods on models of quasi one-
dimensionalr-conjugated ring molecules. The availability of a numdhcaxact benchmark,
due to the few degrees of freedom involved, make those sgstenideal reference system to
explore the effects of electronic correlations. Hencellaves us to understand the reliability
of the approximation employed. Scanning the parameterxsespa identify the regions where
local and/or nonlocal electronic correlations are relévamparticular, both a high-connectivity
within the nanostructure and the hybridization to non+iatéing metallic leads rapidly suppress
non-local spatial correlations, so in a wide range of patamsend structures the nano-DMFT
is a reliable approximation. In the opposite limit, nondbspatial correlations may heavily
influence the physics of the ring, generally driving theteystoward an insulating phase. This
can be directly observed in the suppression of both the afyatesolved one-particle elec-
tronic spectral function and the intrinsically non-loaartsport properties, i.e., the conductance
through the nanostructure.

In specific cases, we include non-local correlations beymoean-field by means of nanotB,
which generally leads to an improvement over nano-DMFTJéh@sults are not yet published].
The analysis in the direction of molecular systems, howesgdar from being exhaustive and
calls for further systematic investigations. Possibleagsh lines include the investigation of
interference effect in ring nanostructure in the preserice magnetic field (Aharonov-Bohn
effect) as well as transport properties through nanosirastbridging magnetic or supercon-
ducting leads. On the other hand, the evaluation of twaglarvertex functions represents
a challenging numerical task and requires further devetygrof numerical tools in order to
improve both the efficiency and the applicability of the ired.

In chapter 4 we exploit the versatility of nano-DMFT to buitebdel structures for to simu-
late mechanically controlled break junctions, where a uatgap bridges two facing contacts
made of several correlated atoms, resulting in a tunnelamgds. In the presence of electronic
correlations, we predict deviations from the exponentigdehdence of the conductance on the
width of the barrier, expected in the case of tunneling iniatpoontact geometry. A spatially-
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resolved analysis of the electronic structure of the jurcindicates a strong tendency towards
a metal-to insulator transition (or rather a crossoverpimwg the atom sitting at the sharp
edge of each of the contacts. In contrast the rest of themyistaveakly affected by the size
of the tunneling gap. The calculations carried out for saiveralizations of quantum junctions,
suggests the phenomenon to be a general feature, which raaypewobserved experimentally,
e.g., detecting the conductance anomaly in transport measumts.

In the above analysis, the crystal structure of the juncisokept fixed. While on one hand
this allows to disentangle the effects of electronic antidatrearrangements, on the other hand
it may be not a realistic description of the experimentaldibons. Structural effect could be,
nevertheless, taken into account resorting to the combmat the present approach witt-
initio techniques.

In the last chapter, we discuss an important contributieh we made to clarify the con-
troversial experimental scenario on the effect of size cédn on the half-doped manganite
Lay5Ca sMnO;. The destabilization upon size reduction of the complexgéarbital (CO)
and antiferromagnetic ordering is an uncontested expatahevidence. However, its interpre-
tation is somehow unclear due to possible issues regardengtality of the sample. Hence, we
study a defect-free and stoichiometric cluster throughctimabination ofab-initio DFT(GGA)

& DMFT methods, to be able to compare the results to the casieedbulk on equal footing.
This allows us to identify the changes of the lattice paramsatiue to size reduction, and the re-
sulting crystal field, as the microscopic origin of the @dslization of the ordered phase. While
DFT alone already provides a remarkably qualitative ageegmith the experiments, DMFT
also suggest that electronic correlations favor the ra@in of a CO ordering even in the ab-
sence of a long-range magnetic order.

The above results are obtained neglecting dynamic latigterdions (phonons). However, it
is well known that the coupling between the electronic aiicka degrees of freedom, and its
interplay with the Coulomb interaction and the Hund'’s exayg play a relevant role in bulk
manganites, Hence, a reasonable question arise: how aoalkdkie scenario for the manganite
nanocluster change in the presence of electron-phononing@p

As a final remark, we notice that the above method, due toaisputational complexity, is
limited to clusters of a few nm. Hence, a thoughtful analgsisa function of size of the ex-
perimentally realized clusters size, ranging frobnm to a fewum (the latter displaying bulk
properties), although highly desirable, is hardly feasilh this respect, we presented some pre-
liminary results suggesting that cluster of different sineld be investigated with nano-DMFT.






Appendix A

Linear Response conductance

In the following we provide the details of the derivation bétlinear response conductance
through an extended interacting system.

Decomposition of g (2€2;). Below, we derive the decomposition (1.71) of the currentent
correlation function into a bubble term and the vertex adio@s. For the sake of clearness, we
recall the definitions (1.67) of the correlation function

Ko (18%) = /0 Car <TTJQ(T)JQ,(0)>eZQW, (A.1)

wherea, o’ = L, R, and the expression (1.68) of the current flowing in and baetdcattering
region (compare also with Fig. 1.8, which indicates the @@fsthe positive current) reads

Jp =1 Z L (Ciacﬁo - 0;0010)7 (A.23)

JR =1 Z VR(CIUCNO' - C}LVUCTU)‘ (A2b)

Explicitly substituting the expression of the current (Ar2the correlation function (A.1) yields

g
K (1) =(0VR) (1) ) /O dr &7

x (T { el (F)ena (T)elo (0)4,(0) = el (e, (T)el, (0)er, (0)
= o (7)o ()l (0064, (0) + ey, (T)eo (el (0)e, (0] ). (AD)

As each term within the time-ordered product is formally a+hacal two-particle Green’s func-
tion (or generalized susceptibility) which can be writtarterms of its Fourier representation

szém(Tlu To, 7_3 53 Z Z sz:Zm v, ! w gV @milvtw)r i (VW) (A.4)

v/
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The above relation can be used to evaluate the imaginaryitiragral as

B
/ dr X;’Tkaém(T T, 0) ZQT = 52 Z szém v, Vlv Q)v (A5)
0

v/

which defines the physical susceptibility, (). The generalized susceptibility itself can
naturally be decomposed into a bubble term, describingriiegendent propagation of two
particles, and the vertex corrections, as

X;‘Tkoé;m(% Vl? Q) - _BGMU<V + Q)Gmw< )51/1/’500’ (A6)
o Z Gjlf” v+ Q>ij40( )FJC;CJ; J3]4<V7 V/v Q)ijch’(’/ + Q)Gj3i0’<yl)'
{ites

Replacing the integral of each time-ordered product wighsthsceptibility (A.4) and hence with
the expression (A.5) and its decomposition (A.6) with thepger index structure, the correlation
function (A.3) can be recast as

thbble(’lgl) ZVR ZVL Z Z (A.7a)

X [Gnio (2w + ZQ[)GMU(ZVH) — G (1 4+ 180) Grre (1)
- Grla(“/n + ZQI)GZNJ('“/n) + Gréa(“/n + ZQI)GlNJ(ZVn)]

KE™(00) = — (1Vr) (1) B2ZZ > (A.7b)
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X Fo7 (1w, w,8)

J1J2;J3J4

X [Gnjoor (W +180) Giyror (W) = Grjyor (W, +180) Gyyner (10,)]

yielding the form (1.71) in terms of the bubble and vertexections contributions.

Analytic continuation of the correlation function.  For the sake of simplicity, let us consider
the bubble contributions and the vertex corrections séglstra

In order to perform the analytic continuation of thabble contribution to the correlation
function KPP rely on the analytical properties of the bare current vexehv,,, 1, + ;) in
the complex plane. Introducing the complex variableendw in place of the fermionic and
bosonic Matsubara frequency, respectively, the bare ¥ esteefined as

a2, 2 4+ w) = (1 = 2641) V2 [ga(z + w) — gu(2)], (A.8)

where the prefactor just takes into account the proper sgnsF for o= L, R respectively. As
the bare current vertex (A.8) is defined in terms of the naeriacting Green'’s function of the
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//)-\\ Im(z) =0 Figure A.1: Contour integral (red solid line) in the

---------- —e———"" complex plane, chosen in order to perform the an-
) > X In(z+w) =0 alytic continuation of the bubble contribution to

""""" —— " the current-current correlation functidtig, (w).

> The poles of the bare vertex functiop(z, z+w)

Re(2) are located along the (dashed) lines(#m= 0
and Imz + w) = 0 of the complex plane, divid-
ing it into three regions, labeled by = 1,2, 3.
Within each region, the corresponding bare ver-
tex, defined in terms of the leads’ non-interacting
Green’s function, is analytic.

leads at the interface sites, its poles are located alontint® Im(z) =0 and Im(z + w) = 0.
Those lines divide the complex plane into three regionschviare labeled by the additional
indexk=1,2,3 and where)\f](z, z + w) is analytical in both of its arguments.

In order to perform the analytic continuation of the baretereiin each of those regions,
one has to make the appropriate choice to shift in the compbme the position of the poles
of both ¢,(z) andg,(z + w) case by case, i.e., introducing the substitutiors ¢ + :0™ and
w— £ +07%. In practice, this is done using the standard technique ®@¢place the sum
over the Matsubara frequency with an energy integral oveatproper contour in the complex
plane, as shown in Fig. A.1, in each of the regions.

The bare vertex[®], analytically continued to the real axis, assumes thevotig form

A = (1= 200) V2 [gh(e + Q) — gi(e)], (A.9a)
M2 = (1 = 20,1) V2 [g" (e + Q) — g2(e)], (A.9b)
AL = (1= 26,1) WVZ[gh(e+ Q) — gale)], (A.9c)

whereg”“(¢) are the corresponding retarded and advanced analytimcariton of the Green’s
function of the leads.

As for © — 0 both A} and A2 will eventually vanish, the only term eventually contrilmgg
to the linear conductance is the one proportionaﬂﬂ) so that the bubble contribution to the
retarded correlation functioR;, (dropping the irrelevant terms) reads

KL (Q Z / T e ) — f(o) (A.10)

2m
X AT (€, € + Q) G0 ()M (€, € + Q)G vy (€ + Q),

where f(e) = (e°“+1)~1 is the Fermi distribution of the electrons in the scatteri@gion, and
e is the energy measured with respect to the Fermi level. Ifpmréorms carefully the limit
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() — 0, the bare vertex reduces to
A2 = (1 = 26,.)2m V20" (€), (A.11)

wherepj (¢) is the DOS of the L or R lead, given by the imaginary part of #tarded Green’s
functiong] x(¢). Defining
Lo=27V2pl(e). (A.12)

and rearranging all the prefactors, the limit (1.65) yieddentually the expression for the con-
ductance (1.77) that we report below, for the sake of clesrne

N 0f(e)
G =25 /_oode (- T)T@’ (A.13)
where the (spin-independent) transmission coefficiem3)lreads
T(e) = T'L(e)Gin(e)Lr(€)G i (€). (A.14)

On the other hand, the analytic continuation oftkeex correction term of the current-current
correlation function, i.e K" is quite complex and a complete derivation is beyond thpesco
of this work. Therefore, we just provide the result and afldiscussion of its derivation.

Following Oguri [89], the analytic continuation can be daweording the Eliashberg theory
of the analytic properties of the vertex part [91]. As a fumetof three complex variables,
F(z, z,w) has poles along the horizontal lines(lh=0 and Imz + w) =0, along the vertical
lines Im(z") =0 and Im(z'+w) =0, and along the diagonals [m—2z') =0 and Im(z+2'+w) =0.
The latter divide the complex plane int6 regions, in each of whicl'(z, z, w) is analytical in
all of its arguments. Analogously to the bubble term, thegnal performed along the proper
contour in each region of the complex plane yields the cpoeding analytic continuation.
However, one can show that most of those contributions Hgtuanish as the analytically
continued frequenc{) — 0, either becausal! — 0, in this limit, if & = 1, 3 (according to the
properties of the bare current verta¥', as discussed above), or due to the Fermi distribution
function arising from the contour integral [89]. Hence, tmdy non vanishing contribution to
the linear conductance has the form

2 2 2
AR (6,€) = AR (e, €085, w05, + Py, (€ €), (A.15)
WhereP%.m (¢, €) has a complicated expression in termg$@#, ¢, 0) and accounts for the vertex

corrections. Hence, the scattering rates change accdyadag

Iy =2mp V7,

) 2] (A.16)
TRijujs = 2mpRVR 07 NONjy + Prijujy (€ €).
The above results modify the (spin-independent) transamsefficient (A.14) as
T(e) = Y TG, () Ry (€ )G, (e), (A.17)

J1,J4€S

yielding the final expression (1.80), which includes verterrections.



Appendix B

About the asymptotic behavior of
correlation functions

In the HF-QMC method, widely employed within DMFT (and itstexsions) as a solver
for the impurity problem [93, 103, 113], one has to switchkbaad forth between the fre-
guency and the time representations by means of a Fouriesfbran (FT). The intrinsic lim-
itation, imposed by the numerics, to a finite grid in any o thourier-conjugated domains
deeply influences the accuracy of the FT, in particular eominig the asymptotic behavior of
the Matsubara correlation functions (e.g., Green'’s fumstiand two-particle susceptibilities).
An improper treatment of the asymptotic behavior may leaddocurate, possibly unphysical,
results. Hence, the FT has to be performed with care.

In the following we discuss the usual method employed to owerthe quality of the FT
within HF-QMC, relying on an expansion in terms of ggectral momentsWe focus mainly
on the asymptotic behavior of the one-particle Green’stion¢cwhile we also briefly discuss
a possible strategy to be applied to the susceptibility airipular we provide the details neces-
sary to apply the method in the framework of the nanoscopersion of DMFT. For the sake
of clearness, below we recall the relevant multi-impurityd&rson Hamiltonian

Z Z tijcly Cjo — H Z Z CigCig U Z m%%%
T Z Z mkcw 77k0 nk’lnkcr io + Z Z Enkcr 77k<7 77k’ (Bl)

ink o
and the generic element of the inverse Matsubara one-ga@ireen’s function
. vV
-1 _ ink " jnk
{G }ij(“/n) == Zl/n(sij + tij - Z m - Zija (BZ)
nk

where we recall that j are the real-space indexes labeling the position of the sftthe nanos-
tructure, whilen labels the non-interacting environment with the dispersedatione, ;..
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Asymptotic behavior and FT within the HF-QMC. Within the nanoscopic extension of
DMFT, one deals with electronic correlations by mapping dhiginal system into a set of
auxiliary AIMs. Each of the local AIM is defined by a WeisslfieG,(:v,,), and (within the
present implementation) its numerical solution is obtdingh a HF-QMC solver. However,
in order to perform the QMC sampling, one needs to switch &ithaginary time domain,
defining the FT of the Weiss field

Go(7) = % > Golwy) €7 (B.3)

In the HF-QMC, the sampling is performed on auxiliary flumting Ising fields, living on a
discrete imaginary time grid in the intenjal 5) [103]. The sampled dat@(7) can be projected
back, by means of another FT, to the frequency domain

B
G(wy) = /0 dr G(t)e "7, (B.4)

where the Dyson equation is most conveniently evaluatedrder to extract the (local) self-
energy. Due to the discrete sampling procedure, the numbgme slicesL spanning the
time domain defines the Nyquist frequeney./5 as the maximum frequency of the Fourier
component that can be obtained without aliasing error. Hewehe accuracy of a discrete FT
is poor already below the Nyquist frequency. The importasfagbtaining a reliable FT in the
whole frequency domain can be understood if one considatarthny physical quantities are
directly evaluated from the Green'’s function, e.qg., thesitynn) =1—G(7=0"), also related
to the sum over the Matsubara frequencies of the Green’sifunc

In order to improve the asymptotic behavior of the one-pbriGreen’s function, one relies
on a high-frequency expansion in terms of #pectral momentsMi(f), which are determined
only by the Hamiltonian. The knowledge of few low-order gpaicmoments allows to deter-
mine the coefficient of a suitable polynomialodel function g(«v,,) for which (i) the asymp-
totic behavior is the same as the one of the original Greemstfon, and (ii) the corresponding
FT g(7) is knownanalytically. While the model function recovers the asymptotic behawfor
the Green'’s function in the high-frequency regime, it preably provides a poor description
of the low-energy physic of the system, enclosed in the Gsdenction. Hence, provided the
output of the QMC sampling, one can define

Ag(7) = G(1) = g(7), (B.5)

so that the FT (B.4) can be written as
s
G(wn) = glwy) + / dr Ag(r) """ = g(wy) + Ag(uwn), (B.6)
0

where the FT of the difference functiahg(7) has to be performed numerically. However
Ag(w,), which encloses all the information about the low-energysids, isby construction
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asymptotically vanishing for — oo and its numerical evaluation does not introduce any errors
in the asymptotic behavior of the Green’s function.

While the above construction allows for an analytical tneenit of the asymptotic behavior,
the numerical FTr — v is still unstable, as the range in whicky(:v,,) is required, usually
extends far above the Nyquist frequency//. In order to overcome this problem, one usually
employs aspline interpolationof Ag(7) which yields the difference function on a finer grid:
L — L>> L, corresponding to a lareger Nyquist frequency. A possiblelémentation of the
spline, including physical boundary conditions for theenplation, is also discussed in this
appendix.

An analogous procedure is required to evaluate the FT (B\w)Iving the Weiss field (al-
though this usually requires no additional interpolatidn)particular, a careful treatment of the
asymptotic behavior of both the one-particle Green’s fiamcand the Weiss field is relevant
for the evaluation of the self-energy, obtained by the Dysguation

Z(ujn) - gO_l('“/n) - G_l(“/n)v (B7)

which tends to be unstable in the high-frequency regime duled matrix inversions. Within
DMFT (and its extensions) the whole FT procedure discusbeudey and represented schemat-
ically in Fig. B.1, has to be performed at each step of thesaisistency loop.

Spectral moments of the one-particle Green’s function. The expansion of the Green’s func-
tion in terms of the spectral moments can be obtained comsgliéis Lehmann representation

e Bee + e Bem
ol = 3 3|5 lmmi E8)

Wy + € — €

Exploiting the identity

(W, + e —en) ' = 1/& = L i < — 66) (B.9)

€m — €& W,
1-— " k=0

W,

some algebra, and the cyclic property of the trace, yield

O/ 1 Nkt L/ 1 \k+L
Gotm) =3 () M =3 (o) ({hed) (B.10)
k=0 " k=0 "
whereLfc, = [...[[¢;, ®], H],..., H], i.e., the commutator of the annihilation operator with

the Hamiltonian, iterated times, andO) denotes the thermal average of the operétor

If we consider Hamiltonian (B.1), where for convenience ¢hemical potential is included
into the definition of the local elements §f, then the lowest order spectral moments appearing
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G(“’n) g(! (""JVN.)

high-frequency expansion
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Figure B.1: Advanced FT scheme to properly treat the asymptotic behafibe one-particle Green’s
function and of the Weiss field within HF-QMC,

in the expansion (B.10) are given by

i k=0
MR )t + U(ni—o)0i; k=1 (B.11)
1o * '
Z tigtgj - Utij(<ni_o> + <nj_0>) + U2 <ni—o>5ij + Z V;nk Jnk k:27
¢ nk

where the spin index has been restored to highlight the cross dependenté dfon (Nn_g).

Spectral moments of the self-energy. The expression for the spectral moment expansion
of the self-energy can be obtained in the following way. Wasider the real-space Dyson
equation (B.2) retrieving only the lowest orders:in, in the expansion of the hybridization
function, and introducind the expansion of the self-engagy

1
{7}y m) m wdy ety = =3 ViV L | = B0 =2, (B.12)
n nk n

while a general expansion for the the Green’s functiby{:v) reads

Gij(wy,) ~ (L)cf—?) + <i)zcg) + <L>Scf]2) (B.13)

why, wh, Wy,
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The aim is to obtain an expression for the coefficienits in terms of the unknown spectral
moments of the self-ener@y*), so that the latter can be extracted from the comparisonastw
the expansions (B.10) and (B.13) of the Green’s functionn@eareful about its matrix nature,
the Green’s function (B.12) can be inverted and expandettjivig the coefficients

(51‘]' ]’C:O
g (0)
cff) — _tw + EZ (1 (0) (0) k 1 (B.14)
va Jﬁk+2 +Z(ti€+2w )(%’"‘Eéj) k=2.
k l

ina-F) Lok i
Imposingc;;” = M,;” yields eventually the spectral moments of the self-energy

5 _ ) Ulnieo)di; k=0 (B.15)
e U2<ni_g> (1 - <ni_o>)5ij k=1.

Let us notice, that the =0 andk = 1 spectral moments(*) of the self-energy are purely local
due to a non-trivial cancellation between the mome¥it§), which holds in general for any
Hubbard-like Hamiltonian, see e.g. Refs. [277, 278].

Spectral moments of the Weiss field. In the following we show that the Weiss fie{d, of
the auxiliary AIMs, defined as

Goi () {G“} (wp) + 24 (), (B.16)

has the same spectral moments of the local element of théntenacting Green’s function of
the whole nanostructure. The latter property holds gelyei@ any Weiss field corresponding
to a subset of degrees of freedom of the system; in partidiiaids in the case af-+p models
for strongly correlated materials, where electronic datren are treated within DMFT (and
hence the auxiliary AIM is defined) only in the subset of therbitals.

In order to be proven the above statement requires the a@uof the high-frequency ex-
pansion of{G“} (1), together with the spectral moments (B.15) of the self-gyeto be
plugged in the Dyson equation (B.16). The former can be nbthtonsidering the expansion
of the inverse of the local element of (B.13), which reads

o_ L o (AN oy @

{G”} (1) wn{cn- wncii + (Wn> [(cu )" — ¢ }} (B.17)
Adding the high- energy expansion for thg (:v,,) and substituting the explicit form (B.14) for
the local coefficients'", the moments of the self- energy cancel out, eventuallyingl

i !

{gol‘}_l(ll/n) ~ Wy + t“ — Z ‘/;nk sz — Z ti[t&‘. (818)
nk

0£i
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The latter result is obtained evaluating carefully the exp'ron(cgil))z—cgf) for all ¢, as
2
(ngl))z 02(22) ( — tii + 22(20)> - Z (tif + Ez(g ) te + EZZ Z ‘/znk ink Ez(zl)
l

* (1)
i i (1))2 2 _ > ke Vit Ve — 2z [=1
mplying (c!)? = ff = § 2o et | .19
S { > Vit Virge — ZS ) — D oy ticter 1Fi :

Finally the expansion of the inverse Weiss field (B.18) sead

~ 1 (0) 12 (1) (2)
Goi(wy,) ~ <wn)dij + (_Zl/n) dii" + <w ) d;i’. (B.20)
where the coefficients
0) _
dij =1

A —— (B.21)

ZJ
Z mk; + Z tzftfza

coincide with the expansion coefficientg) of the Green'’s function, given in (B.14), in the
absence of the self-energy.

High-frequency models for the one-particle Green’s functon. Finally, it is necessary to
define two independent model, for tldgagonal(i.e., in the case = ;) and theoff-diagonal
(= # j) elements of the Green’s function. For convenience, hereafe adopt the notation
w,, = z, substituing the Matsubara frequency with the complexaldei-.
An appropriatediagonal modelreads

gdia(2) = L 1 + a% +(b+ az)%, (B.22)

z—a—"b/(z—c) z oz

wherec+ 0 would including higher order contributions in the series\a By the comparison
of the high-frequency expansions of the model (B.22) antd@éystem Green’s function (B.10),
one can easily extract the coefficients of the model

_ M(l)
{ Z_ M“ () (B.23)

and its FT can be obtained performing the Matsubara sum iadimplexz plane, as

T " ds — g 207 B.24
Z%_ZO mff Z_Zoz fl)e ™ <0, (B.24)

wheref(z) is the Fermi function. The expression of the FT for positivaginary timer >0 is
recovered exploiting antiperiodic property of the fermi@mimaginary time Green’s function

G(r>0)=—-G(t - pB). (B.25)
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In order to perform the Matsubara sum (B.24) it is necessargduce the model function to
simple fractions, as

daia(z) = — ( S ) (B.26)

Zp—2_\z—2y Z—2z_

wherez, andz_ are the roots ofi;.(2) = 0. Relations (B.24) and (B.25) yield the FT of the
local model

1 ' g+ (r—B) g (7—=B) 5 o7
gaia(T > 0) = P [(— )(A)m + (Z—)W] (B.27)
Analogously, an appropriatg#f-diagonal modelreads
0 e e o ab
9ott(2) = 2—bz—c  22(1—0b/z) " 22 T (8.28)
yielding the coefficients
(1)
a= M
. B.29)
_ar® (
{ b= Mij /Mz'j )

with the additional condition thaj,; = 0 trivially, if the corresponding;; = 0. Reducing the
non-local model to simple fractions form yields

wnl2) = 5 =5 (=52 (8-30)

and to the corresponding FT

(B.31)

9T =00 =35~ @yt

- Sl

In the particular case in which~(z) (either diagonal or off-diagonal) hasdauble polethe

model is reduced to the form J

(Z — Z())Z7
with the coefficients being =1 andzy, =a/2 in the former andl = a« andz, = 0 in the latter
case. Hence, the corresponding FTs are given by

Jdouble2) = (B.32)

e—ZO(T_B) [ eZOB

Gdoubl T > 0) =

Once the approximating functions are known in both domains, only needs to perform the
numerical FT of the difference between the Green’s fundiioa the corresponding model.
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Interpolation: cubic spline. As already discussed, in addition to the expansion and to the
definition of the approximating models by means of the mamenthe Green’s function, we
need a spline interpolation of the QMC Green’s function (@precisely, of the difference
with its model) in the imaginary time domain, 5). A brief derivation and the numerical
implementation of the standard scheme is provided, e.dReiin [279]. In the following we
recall the basic steps in order to stress the important ehafiche boundary conditions A
spline interpolation is necessary to get&r) with as many points as needed in order to get a
reasonably accurate FT.

In general, given a tabulated functign=y(x;) withi=1, ..., N and given also the second
derivatives of the function at these points, it is possiblaterpolate the function and compute
its value in any given point within the whole interjal , x v]. While the spline isby definition
a polynomial constrained to pass through all the points@tabulated functiog(x;), in order
to obtain a spline which ismoothn the first derivative, andontinuousn the second derivative,
one needs to employ a cubic polynomial , defined by

1 1
y = Ay, + By + G <A3 — A) (xj+1 — x) 2y2’-' + G <B3 — B) (xj_;’_l — x) 2y;'+1. (B.34)
It is easy to verify that this form grants thgt = v”(z;), and it is trivial to obtain the second
derivative of the polynomial,

y" = Ay! + By}, . (B.35)

At this point, the math assures that one is able to obtainrteepolating function in any point
within the interval[z,, z]. A set of N —2 equations can indeed be obtained requiring the first
derivatives to be continuous across boundaries betweenntervals (obviously one cannot
require this condition for both the extreme points of theimal). The condition reads, hence,
for each value of the index

dy |V L dy (U
— == B.36
d(L’ T=Tj41 d(L’ T=Ty ' ( )
resulting in a set of equations fgr= 2, ... N — 1, which reads
Yir1— Y Yi— Y1 1 1
Tjy1 — T - Tj—Tjq 6(:6”1 a xj)y;/“ - g(x’“ a xj_l)y;/ - E(xj a xj_l)y;'/‘l'
(B.37)
If one consider , for the sake of simplicity, the case of a hgemeous mesh, i.h=z,.1 —z;
foreachj=2,..., N—1, the system can be easily written in the compact matrix form
14 1 0 0 ...00 ! U1 — 2 + 15
1 4 1 0 ...00 ! Yo — 2 + s
00 1 4 1 ...00 ? 6 ,
00 ... 0 1 4 10 . -
00 .. 0 0 1 41 YN Yn-2 — 2Yn-1 + YN
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However, the set contains unknowns, i.e., the set of derivativeg §, but only N —2 linear
equations, and is therefore not solvable until the two remgiconditions are imposed. The
simplestboundary conditions would require the second derivative at the extreme points of
the interval to be vanishing: this method is currently knoagmatural spline, and yields a
tridiagonal system (which can be solved@i/N) operations) in terms of the unknowgs for
1=2,...,N—1. However, the latter condition isot consistent with the physical (and mathe-
matical) properties of the imaginary time Green’s functiand may yield unstable results (see,
e.g., Ref. [112] and references therein). More physicadlystble conditions can be imposed
considering that the function to interpolate interpolaie;;(7) = G,;(7) — gi;(7), verify the
following conditions

dy (3=1) dy (=N-1)

hat ot =0 B.38a

dx T=x1 dx T=TN ( )
Y'Yy =0, (B.38b)

which follow from the presence of a (physical) discontigwft the Green’s function at = 0,
determined by theum rule
G0N +G(B) =1. (B.39)

Imposing the equations (B.38a) and (B.38b), we modify theaéiqns forj =2 andj =N —1,
which depend on”, andy” , while the othersV —4 equations remain unchanged. Condition
(B.38a) is indeed

Y2 — U1 oy 1, yvn—yn- 1, 1
— —hy; — =h —— 4+ =h —hyy = 0. B.40
- gy — ghye + ——=—— + chyn 1 + ghyy (B.40)
Using relation (B.38b), i.e. replacing; with —y{ and solving for the latter, leads finally to
" 1 6 " " B 41
Yi1=7 ﬁyN_yN—l“'yZ_yl — Yo T Yn-1 (- (B.41)

Substituting this expression in equatigns 2 andj = N —1 and using relation (B.38b) in the
latter again, one eventually obtain the following equadidior j =2

6 /5 9 1 1 5, , 1,
22y, =2 TN — = = - B.42
12 <4y1 192 +ys + 1UN-1 4?JN) 1Y +ys + 1Yn-1 ( )
while for j=N—1
6 1 1 9 5 1, 15,
(=g += o= Synat Syn) = v B.43
e ( i + 12 T Yn-2 nAs + 4yN> 12 tYn_—2 T 1 IN-1 ( )
The system in matricial form is therefore
15 1
100 1 vy 29— Sy +yn—a + FUv1 — Tun
L4 10 0 Y3 Y2 — 2y3 + Ya
01 4 1 0 ? .
. . = ﬁ
00 ... 1 4 1 J L L .
10 ... 0 1 & Yn-1 —3Y1+ 3Y2 +Yn—2 — FYN-1 + TYN
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The system is now solvable, but no more tridiagonal due temomplex boundary conditions.
The knowledge of the second derivatives of the tabulatectiom allows to interpolate it in any
point within the intervalzy, zx].

Representative results. In order to illustrate the accuracy of the method, in Fig. Bt2
shown representative results, obtained for the exact QNMi@iso of a benzene ring in thgN t
hopping configuration, for the standard parametées2t, V=0 and7 = 0.05¢ (compare with
the extensive discussion in Sec. 3.2 and the correspondbggstions). In the upper left panel
we compare the result of a naive discrete FT against the daeel by means of the spectral
moment expansion and a spline interpolation: the formewstascillatory behavior with zeros
(or poles, in the general case) at multiples of the Nyquésidency instead of displaying ayw,,

discrete FT o

spilne —— s(1)
A, k=1 ——
(=]
. £ 0.75 - 0 50 100 150
= " 1.1 . .
G % 05 .
O = . "
E .2 1 — ..‘ . -f
= I 025 AS .
2 L
| | | | | 0 0-gl | ]
3 -2 - o 1 2 3 0 50 100 150
V,/(TVAT) v/t
0 i T ] T
, \ 0 ¢
-0.1 3 .
» < —
E » [ =
g 02 Gi(1) 7 2 002
T .03 9aial?) q
0.4 | . -0.04
0.5 ' .
0 B2 B 0 B2 B
T T

Figure B.2: Upper panel: comparison of a naive FT (open cirles) and aaradvspline (red filled
symbols) based on the spectral moment (orange) expansitmedbreen’s function (left panels);
asymptotic behavior of the local self-energy, givensty) = U2(n)(1—(n)) (right panel). Lower
panels: local Green’s functiafi;; (7) against the corresponding modgk(7) (left panel); difference
function Ag;;(7) and its spline interpolation (right panel).
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asymptotic behavior at high-frequency. In general, theémergy physics cannot be described
correctly by al/w, term, in particular in the present case, where the systemsiglating.
In the upper right panel the asymptotic behavior of the Ieedi-energy is shown: the latter
decays to its spectral momext" = U%(n)(1—(n)) in the high-frequency regime. Note that,
due to the numerical implementation of the QMC, the resulés@nted here (and in the rest
of this work) are consistent witk(®) = 0, as the Hartree shift/(n), which determines the
frequency-independent contribution of the self-energnsady taken into account in a shift of
the chemical potential. Finally, the lower panels show twal Green'’s functiol;;(7) against
the corresponding modedi(7) (left panel) and the difference functidxy,; (1) = Gy (7)—ggia(7)
with its sum rulespline interpolation (right panel).

Asymptotic behavior of correlation functions. The whole scheme is not limited to the one-
particle Green’s function, but can also be extended to qtifikties, yet not without supple-
mentary difficulties. Within this work, in order to obtairreliable asymptotic behavior for the
generalized susceptibility, we employed an ED impurityweolwhich relies on its Lehmann
representation and requires, hence, no FT at all. HowewdC &ill represents the most natu-
ral choice for for complex systems, e.g, clusters with mawoyng or including orbital degrees
freedom. Hence, for the sake of completeness, in the fatigwie briefly discuss how a proper
FT of the susceptibility can be achieved within the HF-QM@&d aemand to Ref. [112] and
references therein for a deeper reading.

While the one-particle Green’s functi@n(7) is a smooth function of, with a single disconti-
nuity atT = 0, the two-particle Greens function depends on three indégr@rimaginary time
variables, e.g., see the definition of the generalizedeqigality (in thephnotation) introduced
in the context of the AIM, and reported below for the sake afity

XZ,';:(“;U, = X(l/a, (v +w)o; Vo, (V + w)a) =

VvV Vo
outgoing electrons  incoming electrons (B 44)

B
N / d71dT3dTs Xoor (T1, T2, T3 ) VT E IR @I TS
0

with
Xoo' (T1, T2, T3) = <TTCI,(TI)CO(TQ)CL, (Tg)CU/(O)>. (B.45)

In the case of DCA or cellular-DMFT [134], the correlatiomfttion would also depend on the
the three vectors, £/, ¢ of the Brillouin zone of the cluster. It is evident that a dir&T, and
the corresponding spline process, is extremely expenagéinsically inaccurate. The main
reason for it, is the complex structure of discontinuityebrand planes in the tridimensional
space, but also to the non-trivial task of performing a mdilthensional spline.

Hence, the correlation function (B.44) can be obtainedéfitbquency and reciprocal space
by contracting the fermionic operators pairwise and ewualgahe corresponding FT for each
configuration of the auxiliary fields in the HF-QMC. Notedttthis is only possible as for a given
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configuration the Wick’s theorem [67] holds, as the Hubbk&tchtonovich transformation of
the interaction term maps the many-body Hamiltonian inteasemble of decoupled auxiliary
fields [103]. Hence, the evaluation of the correlation fime requires the FT (for a very large
number of configuration) of a functiong;, ;) which displays singularities. However, it is
possible to split ug(r;, 7;) as

9(7i,75) = ¢z — 75) + dg(7, 7). (B.46)
where

L
1
99 (m) = 7 Zg<7—i+j—177-j)7 (B.47)
j=i

doenotindicate a non-interacting Green’s function, but ratherttime translationally invariant
part ofg(7;, 7;) and depends on onevariable. One can show thaf’ (;) contains the singular-
ity, but as it only depends on the differenge-7;, it can be easily FT using a spline, in the same
spirit as discussed above. The résgtr;, ;) is a smooth function, and can be accurately FT by
fitting it with a two-dimensional polynomial. Overall, thidecomposition allows to achieve
reliable results even if(r;, 7;) is only known on a rather sparse mesh [112].

It is worth mentioning at least an alternative method to mbaareliable asymptotic behavior or
two-patrticle correlation functions within DMFT, which hagen recently proposed by Kuhe
[219]. While it has been implemented for a HF-QMC, it is neleless, general, and do not
rely on any assumption on the impurity solver.

In this scheme, the two-particle correlation functions4é@8.is split into a low- and high-
frequency regions. The complication, with respect to treeca the one-particle Green’s func-
tion or the self-energy, is that the low- and high-frequeregions are coupled, as it can be
easily seen recasting the correlation function (in a giveamoel-) as

v vriw

X v'w =\ . Xgmwrﬁlugwxugu’w’ (B48)

wherex’”'“ = —BG(v)G(v +w)d,,. is the particle-hole bubble, adt”'“ is the vertex function
irreducible n channel the corresponding channel. Thidyessown considering the definition
of the susceptibility if terms of the full vertekX*”'“ and the Bethe-Salpeter equation relating it
to the irreducible verteX””'~ (cf. also with Sec. 2.3.2 for a detailed discussion of thedim-
matic formalism): plugging the latter into the former evaity yields relation (B.48).

It is possible to show [219] that the asymptotic behaviorhaf two-particle correlation func-
tion is essentially determined by particle-hole bubblesl Bence by the one-particle Green’s
function, which is more easily accessible in a wide freqyetmmain.

Albeit the original method [219] was developed in the specase of a susceptibility cor-
responding to the response testatic perturbation, i.e., for a correlation functioff”'“=, an
extension to finitev has been recently carried out implemented within an ED impsolver
[166], in which the knowledge and the understanding of thefkatures in the frequency de-
pendence of the local two-particle vertex functions [15&)] exploited in order to identify the
region where the vertex function display a non-perturleatighavior.
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