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“But, after all, what use is it?”
“Why, sir, there is every probability that you will soon be able to tax it!”

Michael Faraday to William Gladstone, the Chancellor of the Exchequer, when he asked
about the practical worth of electricity [1].
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Zusammenfassung

Die vorliegende Dissertation befasst sich mit den spektroskopischen Untersuchungen von
Manganaten der Seltenen Erden im Bereich der Submillimeterwellen. Spektroskopisches
Merkmal der starken elektromagnetischen Kopplung ist die Existenz der Elektromagno-
nen – Spinwellen, die durch das elektrische Feld des Lichtes angeregt werden.
Die Lösung der Landau-Lifshitz Gleichungen für die zykloidale magnetische Ordnung

verbindet die inelastische Neutronstreuung mit den optischen Experimenten. Eine halb-
quantitative Übereinstimmung wurde zwischen der Theorie und diesen zwei experimen-
tellen Techniken erreicht. Zwei Mechanismen der magnetoelektrischen Kopplung, die
inverse Dzyaloshinskii-Moriya (IDM) Wechselwirkung und das auf den symmetrischen
Heisenberg Austausch basierte Modell, werden in einer perturbativen Art eingefürt.
Die Ferninfrarotmessungen an GdMnO3 zeigen die Existenz eines zweiten Elektroma-

gnons bei 75 cm−1. Diese Beobachtung deutet auf die Existenz von zumindest kurzwei-
tigen ferroelektrischen Ordnungsparameter in GdMnO3.
Die Untersuchung der Elektromagnonen in Eu1−xYxMnO3 Mischsystemen hat die

Rolle des Magnetismus der Seltenen Erden geklärt. Nachdem Y3+ Ionen diamagnetisch
sind und Eu3+ Ionen nur Van Vleck Paramagnetismus aufweisen, ist das Mn Untersy-
stem vorrangig für die magnetoelektrischen Eigenschaften der Selten-Erd-Manganaten
verantwortlich.
Die Untersuchung von DyMnO3 in äußeren Magnetfeldern hat gezeigt, dass, je nach

magnetischer Ordnung von Dy, die Elektromagnonen und die statische elektrische Pola-
rization entweder erhöht oder unterdrückt werden können. Daher spielt die magnetische
Ordnung der Seltenen Erde eine wichtige Rolle.
Nach der Rotation der Spinzykloide in äußeren Magnetfeldern ändern die Elektroma-

gnonen in DyMnO3 und TbMnO3 ihre Auswahlregeln nicht. Für diese Beobachtung fehlt
jedoch noch eine übereinstimmende theoretische Erklärung. Die genauen Messungen von
unterschiedlich orientierten TbMnO3 Proben ermöglichten einen schwachen elektrischen
Beitrag bei 21 cm−1 zu detektieren. Das ist die erste direkte Beobachtung einer dyna-
mischen Anregung der IDM Wechselwirkung.
Zusammenfassend, kann die IDM Wechselwirkung die statische elektrische Polariza-

tion und die schwache elektrische Anregung in der Hochfeldphase von TbMnO3 gut
beschreiben. Das HE Modell wird erfolgreich bei der Erklärung des Hochfrequenzelek-
tromagnons, dessen Auswahlregeln und des Spektralgewichts angewandt. Beide Modelle
sind jedoch noch nicht in der Lage die Energie und das Spektralgewicht des Nieder-
frequenzelektromagnons zu beschreiben. Weitere theoretische Anstrengungen sind nötig
um die noch verbleibenden offenen Fragen zu klären.
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Abstract

The present thesis is devoted to the spectroscopic study of rare earth manganites RMnO3

(R = Gd, Dy, Tb, Eu1−xYx) in the submillimeter frequency range. A dynamic manifes-
tation of a strong magnetoelectric coupling in these systems is the existence of electro-
magnons – spin waves excited by the electric component of the electromagnetic wave.
The exact analytical solution of the Landau-Lifshitz equations obtained for cycloidal

antiferromagnets builds the bridge between the inelastic neutron scattering and the
optical experiments. A semi-quantitative agreement is achieved between the theory and
the results by these two experimental techniques. Two suggested mechanisms of the
magnetoelectric coupling, the inverse Dzyaloshinskii-Moriya (IDM) interaction and the
symmetric Heisenberg exchange (HE) striction, are introduced in a perturbative manner.
The qualitative conclusions regarding both static and dynamic electric properties are
also in agreement with the experiment.
GdMnO3 is the system in which the electromagnons were first detected at low fre-

quencies. Far infrared measurements in GdMnO3 presented here have confirmed the
existence of a second high frequency electromagnon at 75 cm−1. The detection of an
additional mode suggests the existence of at least short range ferroelectric order. Such
order has not been observed in static experiments so far.
The electromagnons in Eu1−xYxMnO3 helped to clarify the role of the rare earth mag-

netism. As the Y3+ ions are diamagnetic and Eu3+ ions possess Van Vleck paramag-
netism only, it is the Mn subsystem that is primarily responsible for the magnetoelectric
properties of rare earth manganites.
The electromagnons in DyMnO3 and TbMnO3 do not change their excitation condi-

tions upon the flop of the spin cycloid in external magnetic fields. This fact still lacks
consistent theoretical explanation. Detailed measurements on TbMnO3 of different ori-
entations have allowed to prove the existence of the IDM electromagnon. The study of
DyMnO3 in external magnetic fields has shown that, depending on the Dy ordering, the
electromagnons and static electric polarization can be either enhanced or suppressed.
Thus, the magnetic order of rare earth moments still plays an important role.
As a general result of the present work, the IDM interaction is capable to describe

the static electric polarization and the weak electro-active excitation in the high-field
phase of TbMnO3. The HE model is successful in explaining the high frequency elec-
tromagnon, including its excitation conditions and the spectral weight. However, both
models are still unable to describe the energy and the spectral weight of the low fre-
quency electromagnon. Further theoretical and experimental efforts are required in this
direction.
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1 Introduction

Scientific discoveries have radically changed our everyday life over the last century.
The modern way of life would not be possible without electricity, for example. The
night lighting in almost all of its current forms, from room and table lamps to the
car headlights and pocket flashlights, uses electricity as a main or intermediate energy
source. Electric motors have made a lot of household tools and industry machines
possible. Nearly all air conditioning fans are run by some type of electric motor. The role
of electricity in the modern medicine is also tremendous. The majority of diagnostic and
treatment equipment is of electrical type, besides the most simple ones like thermometer
or endoscope.
The discovery of transistor in 1947 by J. Bardeen, W. B. Shockley and W. H. Brattain

at Bell Labs has led to the birth of the microelectronic industry. The miniaturization
and mass production of integrated circuits have made such devices as personal computer
and mobile phone available for average customers. Their accumulation in households
in the last decades was a prerequisite for the internet to become widespread, which has
further changed the society.
The distinguishable feature of social life in developed countries at present is the ability

to transfer information freely, and to have instant access to information that was difficult
or impossible to find previously. One of the important components of this information
flow is the ability to store it somewhere. Up to now, no practical universal storage
medium exists, and there are several kinds of storage, each with some advantages and
drawbacks. The two most important modern ones are the semiconductor memory and
hard disk drives.
In a semiconductor memory one bit of information is stored electrically either as a

charged or discharged capacitor or as a state of a trigger (i.e., the current flowing through
the one or the other transistor). Both variants need power supply to maintain the stored
information and belong to volatile storage. The single storage elements are organized
into big arrays, with electric lines connected to each of the elements, providing very fast
random access to the stored information.
The hard disk drives use thin films of ferromagnetic material on a rigid disk to record

data and are of magnetic type of storage. The single bits are represented as a local
direction of magnetization in the magnetic material. As the magnetization direction
can stay intact for years, the hard disk drives belong to the non-volatile storage class.
In order to read or write information from or to the particular region of the disk, the
read or write head mounted on the arm have to be moved to the proper radial position
of the disk. The desired azimuthal position is achieved by the rotation of the disk. The
read head is based on magnetoresistance, which means that the electrical resistance of
the material depends upon the strength of magnetic field. The change of the magneti-
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1 Introduction

zation, needed to write new information, is achieved via a magnetic field produced by a
small electromagnet in the writing head. The need of mechanical movements to access
particular information causes rather large random access times.
In attempt to overcome the shortcomings and limitations of the existing storage tech-

nologies, a number of alternatives to produce universal non-volatile random access mem-
ory (RAM) have emerged. One of them is the magnetoresistive RAM. Like hard disk
drives, it uses ferromagnetic material to encode binary information ensuring the non-
volatility. The single memory cells are arranged, however, into the grid with electrical
lines laid to each of the cells, like in the semiconductor memory, providing fast access
times. Although the reading via tunnel magnetoresistance is quite efficient in terms of
power consumption, the writing is still a problem. All techniques of the cell remagne-
tization, from the simplest via applied magnetic field to the most advanced using spin
transfer torque, require an electric current of different strengths to flow through the cell,
which increases the power consumption. In this aspect, the switching of magnetiza-
tion via applied electric field, without any currents flowing, is very promising. Another
possible application of this phenomenon, termed magnetoelectric effect, is in the elec-
trically controllable spin current polarizers, which are required in the emerging field of
spintronics.

Similar to magnetic materials, where the lowest lying magnons determine the switch-
ing characteristics of magnetic memory cells, the dynamics of the magnetoelectric effect
is crucial for the possible magnetoelectric memory cells. Moreover, the elementary exci-
tations in the magnetoelectric media are not well investigated and represent an interest-
ing topic for the fundamental research as well. The spectroscopic study of the rare earth
manganites, where the giant magnetoelectric effects were recently discovered [2], is the
main topic of this thesis. The next two sections give a short overview of the magneto-
electric effect and the relevant physical properties of rare earth manganites. Chapter 2
provides the theoretical background for the interpretation of experimental data. Details
of experimental setup and sample preparation are outlined in chapter 3. The crucial for
the understanding results on GdMnO3 and Eu1−xYxMnO3 compounds are summarized
in chapters 4 and 5. The chapters 6 and 7 are dedicated to the in-depth investigations
of the magnetoelectric excitations in DyMnO3 and TbMnO3, respectively. Chapter 8
concludes the results of the present work and outlines the directions for future research
in the field of magnetoelectric excitations.

1.1 Revival of the magnetoelectric effect

The magnetoelectric effect is the induction of magnetization in external electric fields or
electric polarization in external magnetic fields inside a material. The coupling between
electric and magnetic fields already exists in vacuum as described by the Maxwell equa-
tions. However, this coupling is a consequence of the dualism of the electromagnetic
field and is not related to material properties.

If the material does not possess any spontaneous polarization P0 or magnetization
M0, the strongest allowable magnetoelectric effect will be linear. In this case, an exter-

2



1.1 Revival of the magnetoelectric effect

nal magnetic field H induces a proportional electric polarization P ∝ H , and an external
electric field E induces a proportional magnetizationM ∝ E (see also Fig. 1.1). The fact
that such a magnetoelectric effect does not contradict to general symmetry considera-
tions and may exist in some materials with low symmetry was already discussed by Pierre
Curie [3]. However, the fundamental symmetry conditions, which are necessary for the
existence of the linear magnetoelectric coupling were not established until the late 1950s.
Namely, the time and space inversion operations, R and I respectively, are allowed to be
among the symmetry elements of the material only in combined form RI [4]. Using these
symmetry considerations, the linear magnetoelectric effect was shown to be allowed in
Cr2O3 [5]. Shortly afterwards this phenomenon was confirmed experimentally [6, 7].
Only after the discovery and theoretical understanding of the magnetoelectric effect, it
became clear why it was not discovered until 1960s. Not only the number of materials
that obey symmetry conditions is quite limited, but also the experiments have to be
carried out on a sample, which possesses a nonequal distribution of magnetic domains
(preferably single domain samples). Even then, the strength of the observed effect was
very small, compared to conventional susceptibilities, given by P ∝ E, and M ∝ H .
These problems have led to the decline of research in the field of magnetoelectricity after
1970s. For more information about the history of magnetoelectric effect, see Refs. [8, 9].
Materials which exhibit a static electric polarization P0 in the absence of external

fields are called ferroelectrics. In the same manner, materials showing spontaneous
magnetization M0 are called ferromagnets. Electric polarization in the former case and
magnetization in the latter case belong to the primary ferroic order parameters. The cor-
responding materials are termed ferroics. Materials that exhibit more than one primary
ferroic order parameter simultaneously (in a single phase) are termed multiferroics. Al-
though other primary order parameters, i.e. strain and, possibly, toroidal moment also
exist, only electric and magnetic orders will be considered throughout this thesis. On
the other hand, the ordered materials with non-primary order parameters (mostly anti-
ferromagnets) do not meet the definition, but are still included into consideration and
also called ferroics.
One property of ferroics that makes them suitable for memory applications is their

intrinsic ability to retain their state without any external stimuli for prolonged periods
of time. The example is the ferromagnetic layer in the hard disk drives mentioned above.
Another important aspect of primary ferroic order parameters is their strong interaction
with corresponding external fields. For example, the magnetization of the ferromagnet
can be switched via applied magnetic field relatively easy. The schematic interrelations
between primary order parameters and external stimuli are shown in Fig. 1.1. The left
part of the figure depicts external electric E and magnetic H fields together with the
common methods to produce them via applied voltage U or flowing current I, respec-
tively. In the right part of the figure, electric polarization P is schematically shown
by the surface charges, while magnetization M is represented by molecular currents.
In normal ferroics, only direct control of polarization by the electric field and of mag-
netization by the magnetic field, shown as black arrows, are allowed. However, in a
multiferroic with a magnetoelectric coupling, the cross-control of the polarization via
a magnetic field and the magnetization via an electric field are also possible, shown

3
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U

+ E

I

H

+ +
+

+

– – –

P

M

Figure 1.1: Electromagnetic state control in ferroics and multiferroics. The controlling electric E and
magnetic H fields together with the common methods to produce them via applied voltage U or flowing
current I are shown on the left side. The switchable polarization P and magnetization M of ferroic
materials are shown in the right side. In most ferroic materials polarization P can only be controlled via
external electric field E and magnetization M via magnetic field H (black arrows). In a magnetoelectric
multiferroic polarization P can also be controlled via magnetic field H and magnetizationM via electric
field P (green arrows).

as green arrows. The latter – electrically switchable magnetization – is of particular
interest for applications as was mentioned above.

Although some multiferroics were already known in the period of first investigations
of the magnetoelectric effect in 1960s, it is the strong magnetoelectric coupling that was
lacking at the time. Not surprisingly, that the discovery of improper ferroelectricity in
rare earth manganites in 2003 [2] has led to the revival of the magnetoelectric effect.
The ferroelectricity in these compounds emerges only as a consequence of a particular
cycloidal magnetic order, which breaks the space inversion symmetry. This directly
leads to the intimate coupling between electric and magnetic order parameters in these
materials. The representative experimental confirmation of such coupling in TbMnO3,
reproduced from Ref. [2], is shown in Fig. 1.2. This dielectric material undergoes the
antiferromagnetic transition into the incommensurate sinusoidally modulated phase at
TN ≈ 41 K. The magnetic order transforms into the incommensurate spin cycloid at
T ≈ 27 K. The data shown in the figure are measured in this cycloidal phase. The
left panels show the relative change of dielectric constant in external magnetic fields
along the crystallographic b axis. The corresponding changes of electric polarization are
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Figure 1.2: Magnetic field dependencies of the dielectric constant (left panels) and electric polar-
ization (right panels) along crystallographic c (upper panels) and a (lower panels) axes in TbMnO3.
Magnetic fields are applied along the b axis. The switching of electric polarization from c to a axis
at magnetic fields of around 5 T (see right panels) represents an example of magnetic control of the
electric polarization. The data are taken from Ref. [2].

in the right panels. The upper panels represent the changes of the physical properties
along the c axis, the lower panels contain the data along the a axis. At around 5 T, the
spin cycloid changes its orientation from the bc to the ac plane. This causes the giant
magnetoelectric effect, as the electric polarization, bound to the spin cycloid, switches
from the c to the a axis. The dielectric constant exhibits narrow peaks at the transition
fields, showing the magnetocapacitance effect. This switching of polarization in external
magnetic fields is one example of the magnetic control of the electric properties. Further
details of the magnetoelectric coupling in TbMnO3 and other rare earth orthorhombic
manganites will be considered in the next chapter.

After the first pioneering works on multiferroic manganites, there was no doubt that
strong magnetoelectric coupling is possible. However, the examples of the electric con-
trol of magnetic properties, which are interesting for applications, were still quite rare.
One of the reasons is the difficulty in producing electric fields large enough to switch
the direction of electric polarization. Another complication on this route stems from the
fact that the majority of the magnetoelectric multiferroics possess antiferromagnetic
order. The detection of the antiferromagnetic domains is much more difficult than of
ferromagnetic ones. One of examples where magnetoelectric effect was observed in both
directions in a single phase multiferroic is GdFeO3 [10]. The antiferromagnetic order in
this material has a weak ferromagnetic component along crystallographic c axis. The
weak electric polarization develops below T = 2.5 K also along the c axis. Figure 1.3,
reproduced from Ref. [10], shows the summary of the magnetoelectric coupling in this
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Figure 1.3: Magnetic field induced changes of polarization P and magnetization M at T = 2 K in
GdFeO3 (left panels) as the magnetic field H is repeatedly changed between -1.5 and 1.5 kOe (upper
panel). The right panels show electric-field-induced changes of P and M at T = 2 K as the electric
field E is repeatedly changed between -15 and 15 kV/cm (upper panel). All of the vector quantities P,
M, E and H are along the c axis. These experiments demonstrate the mutual controllability of P and
M with H and E in a single phase multiferroic. The data are taken from Ref. [10].

low temperature phase. The left panels demonstrate the temporal evolution of polar-
ization and magnetization (lower panels) as the magnetic field is swept between -0.15
and 0.15 T (shown in the upper left panel). The magnetization is hysteretically changed
between two saturation values. The electric polarization shows substantial changes at
the same fields as the reversal of magnetization occurs. This demonstrates the men-
tioned magnetic control of electric polarization. The electrically controlled changes in
magnetization are shown in the right panels. Here, again the time dependencies of
polarization and magnetization are plotted, but now in external electric field, which
changes repeatedly between -15 and 15 kV/cm (shown in the upper right panel). The
electric polarization switches between two saturation values and some small changes in
magnetization also occur at the same time. The observation of only fractional changes
of electric polarization in magnetic fields and quite small changes of magnetization in
electric fields is possibly due to the complicated character of the magnetoelectric cou-
pling in this material [10]. Namely, the interaction energy Eint has a form of a product
of three order parameters, polarization P , magnetization M and a hidden antiferromag-
netic order parameter of Gd subsystem, M ′: Eint ∝ PMM ′. The change of the sign of
any two of these order parameters does not change the energy of the system, allowing for
the independent changes in P and M . The partial coupling, detected experimentally, is
due to the statistical distribution of domain walls and their interaction with each other
and with pinning centers.

Complex domain structure and extrinsic lowering of the symmetry on interfaces in
thin films also plays an important role in BiFeO3, one of the few room temperature
multiferroics. Its high ferroelectric (TC ≈ 1100 K) and antiferromagnetic (TN ≈ 640 K)
transition temperatures, well suitable for applications, have stimulated research activ-
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Figure 1.4: Sketch of a possible magnetoelectric random access memory (MERAM) element. The
state of the bottom ferromagnetic layer (blue) encodes one bit of information. The bit is read by the
resistance of the magnetic trilayer, Rp is the resistance when the magnetizations (thick white arrows)
of upper and lower ferromagnetic layers are parallel to each other, and Rap when the magnetizations
are antiparallel. To write the bit the voltage V across the ferroelectric-antiferromagnetic layer (green)
is applied. The reversal of electric polarization P (green arrow) in the multiferroic also changes its
magnetic state causing the spins at the surface (small white arrows) to change their direction. The
exchange coupling at the interface switches the magnetization of the lower ferromagnetic layer. The
cyan curve demonstrates the suggested hysteretic behaviour of the device. Reproduced from Ref. [11].

ities on this material. The theoretical analysis of the magnetoelectric interaction has
indicated that direct electric control of magnetization is hard to achieve [12]. Domains
with the same magnetic structure but opposite direction of polarization were shown to
be degenerate in the bulk material and unstrained films. However, the partial polariza-
tion switching events with, for example, only z component reversed, are also possible in
bismuth ferrite. Such switching events are accompanied by the reorientation of the ferro-
electric axis and can also change the easy magnetization direction. Indeed, electrically
induced changes of the in-plane projection of the antiferromagnetic order parameter
were detected experimentally in relatively thick films [13]. In the following experiments,
thinner films with simplified domain structure and exchange coupled ferromagnetic layer
of CoFe were used to demonstrate the electric control of magnetization [14]. The ro-
tation of the magnetization by 90◦ in CoFe at room temperature was achieved by the
application of the in-plane electric field. Owing to these experiments, the magnetoelec-
tric random access memory (MERAM) cell, that was proposed earlier [15], has become
feasible. The sketch of a cell, reproduced from Ref. [11], is shown in Fig. 1.4. Single bit
of information is encoded as a magnetization direction of the lower ferromagnetic layer.
Due to the exchange coupling to the underlying multiferroic it is possible to switch the

7



1 Introduction

21

22

ε1

0 30

ν (cm
-1

)

0

1

ε2

20

22

24

ε1

0 30

ν (cm
-1

)

0

2 ε2

0 40
ν

0

1
ε2

GdMnO3 e ||a

B ||cB = 0
   9 K

B = 0
 55 K

B = 2 T
      9 K

B = 0
   9 K

B = 0
 55 K

B = 2 T
      9 K

23 K B = 0e ||a h ||c

e ||a h ||b

e ||b h ||c

TbMnO3 e ||a

B ||c

B = 0

 12 K

B = 0
 50 K

B = 8 T
    12 K

B = 0
 12 K

B = 0
 50 K

B = 8 T   12 K

Figure 1.5: Terahertz spectra of the real part (upper panels) and imaginary part (lower panels) of
dielectric function in GdMnO3 (left panels) and TbMnO3 (right panels). Symbols represent experimen-
tal data, solid lines – fits with Lorentzians. The novel excitation, called electromagnon, arises in both
materials in a magnetically ordered (spin cycloidal) state (absorption maxima in the lower panels at
T = 9−12 K and B = 0, blue triangles, compare with the high temperature data, black diamonds). The
inset demonstrates the electro-dipole activity (e‖a, h̃-independent) of electromagnons. The application
of magnetic field along the c axis suppresses the cycloidal spin order and causes the electromagnons to
disappear, demonstrating their magnetic origins (the data at B = 2 T for GdMnO3 and at B = 8 T
for TbMnO3, blue circles). The data are taken from Ref. [16].

magnetization via applied voltage, as described above. The state of the cell is read out
as a magnetoresistance of the trilayer, where the upper ferromagnetic layer has the fixed
direction of magnetization.

The discussion of magnetoelectric multiferroics has concerned only the quasistatic
properties so far. The high frequency characteristics are also of great interest, both for
applications and fundamental research. On the one hand, the lowest lying excitations
will determine the performance of magnetoelectric memory. On the other hand, it is
not clear if the presence of magnetoelectric interaction will only slightly renormalize
the existing excitations, or if completely new ones will arise. The last question was
first considered theoretically in the period of first magnetoelectric studies [17, 18]. The
strong mixing of polar (phonons) and magnetic (magnons) excitations was found to exist
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1.2 Rare earth manganites RMnO3

only at nonzero wave vectors, when their frequencies coincide. At small wave vectors,
relevant for spectroscopic studies, the admixture of electric component to the magnetic
excitations and vice versa were small due to large difference of bare resonance frequen-
cies. The first experimental signs of mixed magnetoelectric excitations were detected in
GdMn2O5 [19]. In this work an increased absorption around 140 GHz was observed at
the multiferroic transition temperature. However, it remained unclear, whether these ex-
citations retain their magnetoelectric nature in the ground state at lowest temperatures.
The cornerstone of the magnetoelectric dynamics was the observation of broad and very
intensive absorption modes in the already mentioned rare earth manganites GdMnO3

and TbMnO3 [16]. The most important results of this work are reproduced in Fig. 1.5.
The left panels show the data for Gd manganite, the right panels - for Tb manganite.
The imaginary part of dielectric constant ε2, responsible for the absorption of radiation,
is shown in the lower panels. The electrically and magnetically unordered phase above
45 K is characterized by the broad absorption plateau in both materials (black open
symbols in Fig. 1.5). The absorption gradually rises upon cooling and transforms into
broad peak around 20 cm−1 in the cycloidal phase at T < 15 K (blue triangles). This
high frequency excitation is also visible as a step-like feature in the real part of dielectric
constant ε1, plotted in the upper panels.

The inset in the lower left panel of Fig. 1.5 shows the data for various orientations
of radiation relative to crystallographic axes. Such a polarization analysis allows to
unambiguously determine the selection rules for the novel excitation. The absence of
substantial absorption in the geometry represented by red colour means that the mode
can be excited neither by magnetic field oriented along c axis nor by electric field along
b axis. On the other hand, the presence of the mode in the geometry corresponding
to the blue colour evidences its excitation by either magnetic field along c axis or elec-
tric field along a axis. This leaves only electric field along a axis as a selection rule
showing electric nature of this excitation. The application of a magnetic field along
crystallographic c axis is known to suppress the spin cycloid and spontaneous electric
polarization in these materials [20]. At the same time, the novel excitation disappears in
these conditions (blue circles in Fig. 1.5) pointing to the magnetic nature of the mode.
The closeness of the resonance frequency of these excitations (20 cm−1) to the typical
frequencies of magnons together with the pure electric selection rules have led to the
name electromagnons. The observation of electromagnons in orthorhombic rare earth
manganites is supplemented by the rich possibilities to influence their properties in ex-
ternal magnetic fields. This combination makes these materials good model systems for
studying the magnetoelectric dynamics.

1.2 Rare earth manganites RMnO3

All orthorhombic rare earth manganites have a common crystal structure, but neverthe-
less exhibit different magnetic orderings. Only a few of them with a particular cycloidal
spin arrangement, which causes ferroelectricity, are the main topic of the present thesis.
It is instructive, however, to consider first a broader range of materials on both sides of

9



1 Introduction

145150155
Mn-O-Mn bond angle  φ (deg)

0

50

100

150

T
em

pe
ra

tu
re

 (
K

)

La

Pr
Nd

Sm
Eu

Gd TbDy
Ho

RMnO3

A-AF

cycloi-
  dal

sinusoidal

paramagnetic

up-up-
down-
down

Figure 1.6:Mn-O-Mn bond angle magnetic phase diagram of rare earth manganites RMnO3. Materials
with La, Pr, Nd and Sm show the single transition into the antiferromagnetic A-type phase. Rare earth
manganites starting with Eu possess an intermediate incommensurate sinusoidally modulated phase.
The low temperature phase for EuMnO3 is A-type antiferromagnet, for Tb and Dy rare earths - cycloidal
incommensurate order, and for Ho manganite - so called “up-up-down-down” commensurate spin order.
Depending on a magnetic history, the samples of GdMnO3 can show both A-type or sinusoidal spin
structures. The ordering effects of rare earth spins are neglected here. The data are taken from Ref. [21].

cycloidal order in the phase diagram Fig. 1.6. This allows to establish crucial trends in
a series of rare earth manganites that lead to the formation of frustrated cycloidal spin
structure. The considerations in this section, being qualitative in nature, help to better
understand the physical phenomena involved.

1.2.1 Crystal structure

Orthorhombic rare earth manganites are characterized by the same perovskite structure
with GdFeO3-type distortions. Before considering the real structure, it is easier to start
with the ideal cubic arrangement, shown in Fig. 1.7. It is possible to construct the
perovskite ABO3 from the alternating layers of BO2 and AO. These layers, viewed from
the top, are shown in the two bottom frames of Fig. 1.7. The front view of the structure,
highlighting the positions of BO2 and AO layers, is represented in the upper two frames.
Oxygen atoms are shown as small magenta circles, “B” atoms - as medium blue circles
and “A” atoms - as large green circles. Although the cubic structure has the same
lattice constants in all three dimensions, crystallographic axes are marked as different
and rotated by 45◦ in the ab plane to coincide with the orthorhombic setting in Fig. 1.8.
The cubic unit cell is marked by the solid gray line. In both upper frames and the
lower left frame it coincides with the B-O bonds shown as a black lines. The B-O bonds
form the diagonals of BO6 octahedron, which is better seen in the projection of three
dimensional view on the right side of Fig. 1.7. Here, the octahedron is shown by both
black diagonals and cyan edges, together with the directions of orthorhombic axes. As
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Figure 1.7: Crystal structure of an ideal cubic perovskite ABO3. Projections of different atomic layers
into bc and ab planes in the Pbnm setting are shown in the left part. Upper two frames are the front
views of the three dimensional structure, lower two frames are the top views of BO2 (left frame) and
AO (right frame) layers. Large green circles denote the A ions, medium blue circles - the B ions and
small magenta circles represent the oxygen ions. Gray lines show the boundary of the unit cell. The cell
boundary coincides with B-O-B bonds, shown as black lines, in both upper, and lower left views. B-O
bonds form diagonals of BO6 octahedron, which is highlighted by cyan lines in the three dimensional
projection in the right part of the figure.

will be shown below, the octahedral environment of Mn atoms plays an important role
for magnetic properties in rare earth manganites.

The real perovskite structures are nearly never perfectly cubic. The reason is that it
is hard to fulfil the relation between the radii of “A” and “B” ions, which is required for
the cubic lattice. In the case of rare earth manganites the radius of the rare earth ion
is rather small. This leads to the so-called GdFeO3-type distortions. These distortions
basically consist of a complex tilting of MnO6 octaedra in order to fill extra space around
the rare earth ion. They are represented in Fig. 1.8, which shows the crystal structure
of TbMnO3. The positions of atoms are plotted on a scale, the sizes of ions are reduced
for the sake of clarity. The top views of MnO2 and TbO layers, that are parallel to
the ab plane, are in the lower panels, the front view of the structure is repeated in the
upper panels. The unit cell, marked by solid gray lines, is doubled along the c direction
and is increased by a factor of

√
2 with simultaneous rotation by 45◦ in the ab plane in

comparison with the cubic structure. The upper left panel highlights the tilting of one
MnO6 octahedron, shown by its edges in cyan. Considering magnetic properties, there is
another much more important distortion of MnO6 octaedra. It is best seen in the lower
left panel of Fig. 1.8, where MnO4 sections of two octaedra are depicted by cyan lines.
Namely, the distances between Mn and O atoms are different for two diagonals of MnO4

sections. Direct calculations from the atomic positions [22] in case of TbMnO3 give
1.88 Å for the shorter Mn-O bond in the MnO2 plane, 1.93 Å for Mn-O bond in the c
direction and 2.28 Å for the longer Mn-O bond in the MnO2 plane. The direction of the
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Figure 1.8: Crystal structure of the orthorhombic rare earth manganites RMnO3 with R = Tb as an
example. The same type of projections into the crystallographic bc and ab planes in Pbnm setting is
used as in Fig. 1.7. Big green circles - rare earth ions, medium blue circles represent Mn ions and small
magenta circles are oxygen ions. Gray lines mark the border of the unit cell, black lines represent the
Mn-O bonds. Two different types of TbO planes are shown in the right frames. Two MnO2 planes
differ only in the positions of oxygen atoms along the c direction and result in the same ab view (lower
left frame). The whole MnO6 octahedron is represented by cyan lines in the upper left frame, which
demonstrates the tilting of MnO6 octaedra due to size mismatch of the rare earth ion. MnO4 sections of
two MnO6 octaedra, shown in the lower left frame, visualize the elongations of the one side of octaedra
in alternating directions due to Jahn-Teller effect.

longer diagonal alternates from one octahedron to the other. This phenomenon, which
is called cooperative Jahn-Teller distortion, will be discussed in more details below.

Summarizing the structural properties of rare earth manganites, the lattice constants
of relevant compounds are shown in Table 1.1. The designation of the axes is the same
as in Fig. 1.8 and is given in the nonstandard Pbnm setting of the space group # 62, as
it is common in the literature. Whenever available, the atomic positions were used to
calculate Mn-O-Mn angle φ of the bonds in the ab MnO2 planes. This angle plays an
important role in determining magnetic ground state and it is used in the phase diagram
Fig. 1.11. The data for pure compounds EuMnO3 and GdMnO3 are taken from Ref. [23],
and for TbMnO3, DyMnO3 and YMnO3 - from Ref. [22]. The lattice parameters of the
solid solutions Eu1−xYxMnO3 for x = 0, 0.1, 0.2, 0.3 and 0.5 are taken from Ref. [24],
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1.2 Rare earth manganites RMnO3

Material a [Å] b [Å] c [Å] φ [◦]

EuMnO3 5.340 5.866 7.448 146.47
GdMnO3 5.318 5.866 7.431 145.98
TbMnO3 5.293 5.838 7.403 145.36
DyMnO3 5.279 5.834 7.378 144.70
YMnO3 5.242 5.803 7.364 144.49

Eu1.0Y0.0MnO3 5.345 5.864 7.458 146.47
Eu0.9Y0.1MnO3 5.337 5.864 7.447 146.27
Eu0.8Y0.2MnO3 5.331 5.868 7.438 146.07
Eu0.7Y0.3MnO3 5.320 5.860 7.428 145.88
Eu0.6Y0.4MnO3 5.307 5.843 7.415 145.68
Eu0.5Y0.5MnO3 5.304 5.856 7.409 145.48

Table 1.1: Structural parameters of some orthorhombic rare earth manganites. The lattice constants
a, b and c are given in Pbnm crystallographic setting. The Mn-O-Mn bond angle φ in the MnO2 planes
is calculated from the atomic positions for the pure compounds and then interpolated for the Eu-Y
mixture. The data are taken from Refs. [22, 23, 24, 25] (see text for details).

and from Ref. [25] for x = 0.4. As there were no data for atomic positions in the family
of Eu1−xYxMnO3, linear interpolation between pure EuMnO3 and YMnO3 was used to
obtain Mn-O-Mn bond angle.

1.2.2 Jahn-Teller effect and orbital order

MnO6 octaedra in rare earth manganites are stretched along one of their diagonals. This
stretching is called Jahn-Teller effect [26] and is caused by the interaction of Mn 3d elec-
trons with the potential of the surrounding oxygen ions. This phenomenon occurs only
if the undistorted state of Mn is orbitally degenerate and, therefore, depends strongly
on the number of 3d electrons on manganese ions. The element valencies in rare earth
manganites are R3+Mn3+O2−

3 , leaving four 3d electrons on Mn sites.
If the effective negative charge of oxygen atoms would be homogeneously distributed

on a sphere around Mn, the energy levels of 3d electrons would rise, but still they
would be degenerate. The wave functions of these states are the well-known atomic
orbitals, which can be characterized by orbital number l = 2 and magnetic number
m = 0,±1,±2. This case correspond to the spherical environment on the left side of
Fig. 1.9. If the charges are localized on the real positions of oxygen atoms, the reduced
symmetry of their potential can lift the degeneracy of 3d states. The eigenstates will also
change and should be first constructed from the linear combinations of original atomic
orbitals. In the case of octahedral environment they are symmetric and antisymmetric
superpositions of two m = ±2 orbitals, symmetric and antisymmetric combinations of
m = ±1 orbitals and m = 0 orbital (see middle part of Fig. 1.9). It is easy to see that
the wave functions of three of new states point towards edges of octahedron (t2g states)
and of two other states - towards verticies (eg states). If the charges are held at the same
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Figure 1.9: Splitting of 3d energy levels in the crystal field. Five degenerate energy levels of atomic 3d
orbitals in equivalent spherical field are shown in the left part of the figure. Localizing the ligand charges
in the octahedral arrangement lifts fivefold degeneracy into threefold t2g and twofold eg energy levels
(middle of the figure). Stretching of octahedron along one direction with simultaneous compression
within perpendicular plane splits the energy levels further into twofold eg and non degenerate b2g, a1g
and b1g levels, shown in the right part of the figure. For the four 3d electrons of Mn3+ ion, represented
by cyan arrows, the tetragonal distortion is favourable as it lowers the total energy of the system.

distance from Mn atom and only redistributed towards the verticies of the octahedron,
eg states would interact more with the repulsive potential and rise in energy, while t2g
states would fall. The average energy of all five levels would be approximately the same
as the single degenerate level before redistribution.

The effect, as described above is called the crystal field splitting. The magnitude of
this splitting in manganites is smaller than the Hund energy, which results from the
Coulomb repulsion between two electrons with the opposite spins, placed on the same
orbital. Therefore, the state of Mn3+ ion with four electrons will be as shown in the
middle part of Fig. 1.9, first filling all different orbitals with single electron. The total
spin of such arrangement is S = 2 (high spin configuration). Octahedral environment
breaks spherical and cylindrical rotational symmetries, therefore, the orbital moment is
no longer a preserved quantity. Indeed, the new eigenstates are formed from orbitals
with the opposite magnetic numbers and projection of orbital moment on a predefined
direction is zero for all new states. Although another basis of eigenstates could be chosen
for t2g levels, and they have a pseudoorbital moment with effective l = 1, they are all
filled for Mn3+ ion and the orbital moment can still be assumed to be fully quenched in
rare earth manganites.

Let us assume now that two opposite oxygen atoms in the MnO6 octahedron are moved
away from Mn atom, while four other oxygen atoms in the plane perpendicular to this
diagonal are moved toward the center by amount needed to conserve the volume of the
octahedron. The elastic energy required for the distortion out of equilibrium position
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1.2 Rare earth manganites RMnO3

is quadratic in the magnitude of displacements. According to similar considerations
as above, t2g levels will split into eg and b2g levels, and eg states - into a1g and b1g
(right side of Fig. 1.9). The average energy of new eg and b2g levels will be roughly
the same as the former t2g level, so there will be no change in the total energy of three
electrons in these states. The average energy of a1g and b1g levels will also be the same
as the former eg level, but as only lower state is occupied, there will be a gain in the
total energy of the whole system. This energy gain could be shown to be linear in
the magnitude of displacements, so that the distorted state is always more favourable
then the symmetrical octahedral arrangement. This is a loose application of Jahn-Teller
theorem [26]. It states that for any configuration of atoms not lying on a straight line
and being in a degenerate state, a distortion will occur that will lift the degeneracy.
Thus far, only one MnO6 octahedron was considered. However, each oxygen atom is

a shared vertex of two octaedra in the perovskite lattice (see Fig. 1.8). The collective
distortions of MnO6 octaedra are called cooperative Jahn-Teller effect in this case. In
the rare earth manganites it occurs in the MnO2 layers, parallel to the ab plane, with the
alternating direction of the elongated diagonals. As the last occupied orbital is oriented
along these diagonals, such an arrangement leads to the orbital order, shown in the left
panel of Fig. 1.10. Blue orbitals represent the filled a1g Mn states, gray orbitals - empty
b1g Mn states, and small magenta orbitals - filled p states of oxygen ions, which are
directed along the Mn-O-Mn bonds. As can be seen, the oxygen orbitals always connect
one filled with one empty Mn orbitals in the ab plane. This is different from the pattern
in the crystallographic c direction, shown in the right panel of Fig. 1.10. Only empty
b1g orbitals with the larger extent along the c axis are shown here. Now, the p orbitals
of oxygen atoms connect empty manganese states. Such orbital anisotropy leads to the
anisotropic exchange interaction between Mn spins, which is considered below.
The orbital order can be destroyed by high temperatures as shown in the upper

panel of Fig. 1.11. The transition temperatures, as detected by the drop in resistivity,
are plotted by open black circles. The structural transition at the same temperature
T ≈ 750 K in LaMnO3 was also detected by the neutron diffraction [27]. The lattice
parameters become cubic above this temperature, so that a′ = c/2 = a/

√
2 = b/

√
2 is the

pseudocubic spacing. The point symmetry remains orthorhombic, however, indicating
that the Jahn-Teller effect becomes dynamic. Increasing the atomic number of rare earth
element decreases its ionic radius and enhances GdMnO3-type tilting of MnO6 octaedra
(seen as a decrease of Mn-O-Mn bond angle from the cubic 180◦). As the transition
temperature to the orbital disordered state steadily increases and cannot be detected
for elements heavier then Sm at all, the orbital order seems to be stabilized in strongly
distorted rare earth manganites.

1.2.3 Magnetic interactions and phase diagram

Some qualitative predictions about expected exchange interactions in rare earth man-
ganites can be obtained within the Hubbard model [28], which accounts for two main
interactions: the on-site Coulomb repulsion U , when two electrons with opposite spins
are put into the same orbital, and the hopping energy t which stems from the overlap
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Figure 1.10: Orbital order in rare earth manganites. The alternating order of filled a1g (blue) and
empty b1g (gray) orbitals in the MnO2 planes is shown in the left frame. Cyan or red arrows denote
electron spins. The groups of three arrows represent low lying eg and b2g electrons. Single arrows
correspond to a1g electrons which can virtually hop into nearest and next-nearest neighbours. The
exchange interaction between nearest neighbour orbitals (Mn(1)-O-Mn(2) path) is ferromagnetic, ac-
cording to Goodenough-Kanamori-Anderson rules. The next-nearest neighbour exchange interaction
(along Mn(3)-O-O-Mn(4) path) is expected to be antiferromagnetic, as the hopping occurs between
filled orbitals. The order along c axis is depicted in the right panel. Here, only the most relevant
for the exchange empty b1g orbitals are shown. The expected exchange between empty orbitals is
antiferromagnetic.

of atomic orbitals in the crystal. In the case t ≫ U , the model system is metallic with
the width of conduction band of the order of t. On the other side, when U ≫ t, the
system is in the state known as a Mott-Hubbard insulator with the energy separation
between the first excited states and the ground state of the order of U . The latter is a
good approximation in the rare earth manganites which are all good insulators. In zero
approximation, electrons are distributed according to the formal valencies of elements,
so all oxygen ions are completely filled and manganese ions have four 3d electrons. The
hopping term t is introduced as a small perturbation. The consideration of the per-
turbed state with a small admixture of the excited states, which have some electrons
“hopped” to another atoms (sites), leads to the corrections of the second order in t.
These corrections strongly depend on the orientations of spins on different sites and
are proportional to the effective exchange constants J . Performing the actual calcula-
tions for the systems with multiple occupied and empty orbitals is rather involved, even
within the Hubbard model. In the case of indirect hopping via oxygen orbitals they have
led to the formulation of the semi-empirical Goodenough-Kanamori-Anderson rules [29].
What follows is the application of these rules to rare earth manganites. The hopping
processes leading to the admixed excited states are not the only allowed in each case,
and they are presented only to visualize the expected exchange interactions.

Exchange interaction between nearest neighbour filled and empty Mn sites (Mn(1)-O-
Mn(2) path in the left panel of Fig. 1.10) is expected to be weakly ferromagnetic. The
electron with either spin can hop from the filled oxygen orbital to the empty orbital of
Mn(2). The electron with the same spin can now move from the filled Mn(1) state into
the released oxygen orbital so the whole process looks like electron from the filled Mn(1)
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1.2 Rare earth manganites RMnO3

orbital has hopped to the empty Mn(2) orbital. Energy correction in the second order
of perturbation theory depends inversely on the energy of the excited state. The energy
of the state, when all electrons on Mn(2) site have the same direction of spin (as shown
in Fig. 1.10) is lower then for the state with one spin reversed. Therefore, the energy
gain is larger for spins on Mn(1) and Mn(2) atoms aligned parallel to each other, which
can be described by effective ferromagnetic exchange constant J .
As the GdFeO3 distortion of perovskite structure increases, the distance between one

pair of the opposite oxygen atoms in the ab MnO2 planes decreases, while for the other
pair increases (see Fig. 1.8). This can lead to the hopping processes along the shortened
O-O path and next-nearest neighbour exchange interaction between Mn spins. Due to
superimposed orbital order, this interaction will be stronger along the b axis and is
represented by Mn(3)-O-O-Mn(4) path in Fig. 1.10. As the exchange is taking place
between two filled orbitals it is expected to be antiferromagnetic. The electron from
the filled oxygen orbital can hop into the filled Mn(4) orbital only if it has the opposite
spin relative to electrons in on the Mn(4) site. The formed vacancy can be filled by the
electron with the same spin from the the other oxygen site, and the new vacancy - in
turn by the electron from Mn(3) filled orbital. Such a process leads to the largest energy
gain in the case of antiparallel spin alignment on Mn(3) and Mn(4) sites, which can be
described by the effective antiferromagnetic exchange constant Jnnn.
Along the c axis, exchange interaction takes place between two empty Mn 3d orbitals

and is expected to be antiferromagnetic (schematically shown in the right panel of
Fig. 1.10). Here, one electron from the filled oxygen orbital can hop into one Mn site,
while the other electron - into the other Mn site. As the same orbital can only have
electrons with different spins, the energy gain from the exchange will be larger for
antiparallel spin orientation on the different Mn sites. This interaction is described by
the effective antiferromagnetic exchange constant Jc.
It is possible now to describe the magnetic phase diagram of rare earth manganites

in the lower panel of Fig. 1.11, at least qualitatively. Solid circles denote the transition
temperature into A-type antiferromagnetic state (see also Fig. 1.12), solid triangles -
into incommensurate sinusoidally modulated state, and solid squares - into cycloidal or
“up-up-down-down” states. The dependence on the rare earth element is presented by
the Mn-O-Mn bond angle φ. The data for pure compositions, shown by the black color,
is taken from Ref. [21]. In order to obtain the bond angle φ, the authors of the last paper
have used atomic positions from Ref. [22] for pure compositions except Sm, Eu and Gd
manganites. For the last three compounds, a linear interpolation between NdMnO3 and
TbMnO3 was used. The data for solid solutions of Eu1−xYxMnO3, plotted by the green
color, is the same as in Fig. 5.1, and is taken from Ref. [30]. The φ values for EuMnO3

and YMnO3 are calculated from the atomic positions and the linear interpolation is then
used for intermediate compositions. The different procedures to obtain bond angle φ for
pure EuMnO3 is the reason of the discrepancy between corresponding black and green
symbols.
If the nearest neighbour interaction within ab planes dominates, the spins will align

in ferromagnetic layers. The stacking of these layers along the c direction is antiferro-
magnetic, leading to the A-type antiferromagnetic order, in the notation of Wollan and
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Figure 1.11: Mn-O-Mn bond angle phase diagram of rare earth manganites RMnO3. Upper panel
shows the dependence of transition temperatures from the orthorhombic orbital ordered phase to the
pseudocubic orbital disordered phase upon bond angle φ. No transition was detected for rare earths
Sm to Ho. Lower panel demonstrates the magnetic phase diagram. Black points were obtained for pure
compositions, green points are for Eu1−xYxMnO3 solid solutions. Compounds with La, Pr, Nd and
Sm show the single transition into the antiferromagnetic A-type phase. Rare earth manganites starting
with Eu possess intermediate incommensurate sinusoidally modulated phase. The low temperature
phase for EuMnO3 is A-type antiferromagnet, for Tb and Dy rare earths - cycloidal incommensurate
order, and for Ho manganite - so called “up-up-down-down” commensurate spin order. Depending on
magnetic history, the samples of GdMnO3 can show both A-type or sinusoidal spin structures. The
ordering effects of rare earth spins are neglected here. The data for open and closed black symbols and
black lines are taken from Ref. [21], the data for the green points - from Ref. [30] and Table 1.1.

Koehler [31] (see the left panel of Fig. 1.12). This is the case for rare earth manganites
on the left part of the phase diagram with the small distortion of the structure and
negligible next-nearest neighbour interaction. Moving to the other side of the phase dia-
gram, Mn-O-Mn bond angle decreases from 180◦, optimal for the ferromagnetic nearest
neighbour exchange. Therefore, the ferromagnetic exchange constant J will decrease.
On the other hand, the increased distortions shorten the distance between one pair of
oxygen atoms, increasing the antiferromagnetic Mn-O-O-Mn interaction. If the next-
nearest neighbour interaction dominates in the ab planes, the spins will tend to form
two antiferromagnetic sublattices, embedded one into other with almost absent inter-
action between them. The presence of single ion anisotropy (easy axis) can stabilize
the so-called “up-up-down-down” spin order (shown in the right panel of Fig. 1.12),
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b

a

A-type

b

a

E -type

b

a

“up-up-down-down”

Figure 1.12: Commensurate spin structures relevant for rare earth manganites. Only spin arrange-
ments within ab planes are shown. The order along the c axis is simple antiferromagnetic for all types.
Gray lines mark the border of the magnetic unit cell in the ab plane. The designations for A- and E-
types were given in Ref. [31]. The name “up-up-down-down” comes from the spin order encountered by
following Mn zigzag chains along b axis. E-type and “up-up-down-down” spin structures look the same
on the scale of the simplest cubic cell (marked by green dashed line), which was probably the reason
for the misidentification in Ref. [21] (see text for details).

observed in HoMnO3. In the intermediate case, the strong spin frustration is present
within the ab layers, leading to a formation of novel cycloidal state at low temperatures.
The details of this frustrated spin order is the topic of the next chapter.
The last remark that has to be mentioned concerns a misidentification of “up-up-

down-down” as an E -type antiferromagnetic order. This mistake is present in Ref. [21],
but it has been corrected in Fig. 1.11. The patterns within ab planes for A-, E -type and
“up-up-down-down” spin orders are schematically shown in Fig. 1.12. The directions of
spins are chosen arbitrarily, and can be different in the real magnetic structures. Both
A- and E -types of antiferromagnetic order were proposed to describe magnetic phases in
the La1−xCaxMnO3 doped compounds [31]. The magnetic unit cell of these structures
requires at most doubling of the simplest cubic cell along all three directions, and is
marked in Fig. 1.12 by solid gray lines. It is clearly seen that the E -type and “up-up-
down-down” spin arrangements are different. The possible source of the misidentification
could be the fact, that the simplest square blocks of both spin structures look very much
alike: they always contain three spins in one direction and one spin - in the other.
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In a crystal lattice a small displacement of atoms from their equilibrium positions causes
forces that tend to bring atoms back. Due to inertia of atoms such displacements are
accompanied by the oscillations of atoms in the vicinity of their equilibrium. As the
atoms are coupled with each other, the full set of equations of motion has to be solved
to obtain the oscillation modes which are called phonons. These collective oscillations
have a form of plane waves characterized by the frequency ω, wave vector q and the
polarization (direction of the movement). Relations connecting ω with q are called
dispersion relations and they depend on the parameters of the crystal lattice. If there are
atoms which carry nonzero electric charge, some of these waves result in electric dipole
moment that is not vanishing after averaging across the whole crystal. The oscillating
electric moment of such optical phonons can interact with the oscillating electric field
of the same frequency causing resonant absorption of light. In other words, optical
phonons are responsible for the electro-active absorption in optical spectroscopy. Note
that due to very high speed of light the electromagnetic waves of matching frequency
have almost zero wave vector and optical phonons are located at the point with q ≈ 0
on the dispersion relation.

Analogously to the crystal lattice, magnetically ordered material additionally forms a
spin lattice. Small oscillations of spins around their equilibrium orientations also have a
form of plane waves and are called magnons. Magnons with nonvanishing average mag-
netization can also interact with electromagnetic waves but via an ac magnetic field.
Depending on the magnetic ground state such optical magnons are termed either fer-
romagnetic resonances (FMR) or antiferromagnetic resonances (AFMR). Therefore the
magnons are responsible for the magneto-active absorption. In materials with magne-
toelectric interaction however, magnons can gain electric activity (and phonons - mag-
netic). This is definitively the case in rare earth manganites and comprises the main
topic of this thesis.

The purpose of this section is to show the crucial properties of magnons on a set of
simple model systems building the theoretical basis for further experimental investiga-
tions. As the cycloidal magnetic structure in the ground state of frustrated manganites
is rather complex, we start with simple models then discuss more complicated structures
and finally consider 3-dimensional cycloidal antiferromagnets. Detailed theoretical tech-
niques used to describe magnons in such unusual spin structures are also presented. The
dynamics of local spins can be well described within classical electrodynamics. There-
fore, we restrict ourselves here to the classical treatment.
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2.1 Underlying equations

The equation of motion of magnetization in continuous media is described by the
Landau-Lifshitz equation [32]:

∂M

∂t
= γHeff ×M.

This equation has a clear physical meaning: magnetization is proportional to the spin
density which represents an angular momentum. The equation of motion is now the
Newton’s second law: the change of angular moment on the left side equals the net
torque on the right side. The torque tries to align the magnetization along the effective
field but this leads to the precession of the moment around its equilibrium direction. In
order to account for dissipation an additional term is usually added to the right side.
This damping term can be written in different forms which significantly differ only for
large dampings. In Landau-Lifshitz form [32] the equation of motion becomes:

∂M

∂t
= γ

(

Heff ×M− λ
M× (M×Heff)

M2

)

,

where γ = g|e|/(2mc) - gyromagnetic ratio, λ - damping parameter and Heff - effective
magnetic field acting upon an element of the sample with a local magnetization M.
The effective field is determined by the variational derivative of free energy by the
magnetization M:

Heff = − δF

δM
.

For the scope of this work it is sufficient to consider quasi-classical approximation when
the spins are considered as vectors with a fixed length (Heisenberg spins). In this case
the magnetization can be written as M = −gµBS = −g|e|h̄/(2mc)S. At temperatures
well below magnetic ordering the free energy F approaches internal energy E which is
the quasiclassical Hamiltonian H . The equation of motion for the j-th spin Sj becomes
then:

∂Sj

∂t
=

g|e|
2mc

Heff,j × Sj +
λ

h̄

Sj × (Sj ×Heff,j)

S2
;

g|e|h̄
2mc

Heff,j =
δH

δSj

. (2.1)

The ac magnetic field h of incident radiation is introduced directly into the effective
magnetic field Heff . In this case the linear equation (2.1) could be solved giving de-
pendency M(ω,q,h). The tensor of dynamic magnetic susceptibility χ̂ is now directly
obtained from the definition M = χ̂h. However in most cases only the dispersion rela-
tion of the magnons ω(k) together with the picture of the spins’ motion are of interest.
In these cases both the exciting magnetic field and dissipation term can be omitted and
the equation (2.1) is solved as the eigenvalue and eigenvector problem. The eigenvalues
give the dispersion relation and the corresponding eigenvectors - the associated motion
of the spins.
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2.2 Ferromagnets

2.2 Ferromagnets

In ferromagnetic materials all spins tend to align along the same direction. Ferromagnets
are the simplest magnetically ordered materials to consider and they are treated here
to introduce the basic techniques used for theoretical description of magnons.
The simplest model of dielectric ferromagnet is obtained by assuming that the ex-

change interaction between adjacent spins is negative. The corresponding 1D Hamilto-
nian reads:

H = −J
∑

j

(Sj · Sj+1). (2.2)

In the ground state all spins are aligned along the same direction Sj = S0 and the ground
energy is E = −JNS2. In the following the systems with further terms like anisotropy
will be considered building upon the basic ferromagnet described by Hamiltonian (2.2).

2.2.1 Ferromagnet with easy axis anisotropy in magnetic field

Firstly, a ferromagnet with easy axis anisotropy and in external magnetic field along the
same axis will be considered. It is described by the following Hamiltonian:

H = −J
∑

j

(Sj · Sj+1)−K
∑

j

(S
(z)
j )2 −

∑

j

(H ·Mj) =

= −J
∑

j

(Sj · Sj+1)−K
∑

j

(nz · Sj)
2 +

g|e|h̄
2mc

∑

j

(H · Sj).

The anisotropic term −K(nz · Sj)
2 makes the z direction energetically favourable and

in the ground state all spins are aligned along the easy axis: Sj = S0‖nz. Here nz -
the unit vector in the positive direction of the z axis. The term −(H ·Mj) is just the
Zeeman energy of magnetic moments in external magnetic field.
The first step in determining the magnon dispersion is to find the variation of Hamil-

tonian with respect to the j-th spin. In this case

δH = −JδSj · (Sj−1 + Sj+1)− 2K(nz · Sj)(nz · δSj) +
g|e|h̄
2mc

(H · δSj) =

= δSj ·
(

−J(Sj−1 + Sj+1)− 2K(nz · Sj)nz +
g|e|h̄
2mc

H

)

.

The effective magnetic field acting upon j-th spin is then:

g|e|h̄
2mc

Heff,j =
δH

δSj

= −J(Sj−1 + Sj+1)− 2K(nz · Sj)nz +
g|e|h̄
2mc

H.

As expected, the effective field Heff,j contains the unmodified external field H. The
anisotropy acts in the same way as the magnetic field trying to align the spins along the
easy axis. The first term in the effective field represents the coupling of adjacent spins;
the j-th spin tends to point toward the direction averaged across two neighbouring spins.
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The effective field Heff,j should be substituted into equation (2.1). We search for a
solution in form of a plane wave:

Sj = S0 +Aeı(qaj−ωt). (2.3)

The amplitude A of the wave is assumed to be much smaller than the equilibrium spin
S0. Thus, the terms quadratic in A can be omitted from the equation (2.1). From the
condition of a constant length of each spin Sj the vector amplitude A within the same
accuracy should be orthogonal to S0: A · S0 = 0 (Az = 0).
The substitution yields:

∂

∂t

(

S0 +Aeı(qaj−ωt)
)

=

(

−J

h̄

(

2S0 +Aeı(qa(j+1)−ωt) +Aeı(qa(j−1)−ωt)
)

−

−2K

h̄
(nz · S0)nz +

g|e|
2mc

H

)

×
(

S0 +Aeı(qaj−ωt)
)

.

The dissipation term λ is assumed to be zero and will be discussed separately. Omitting
quadratically small terms and reducing by the common factor eı(qaj−ωt), we get:

−ıωA =
J

h̄
(S0 ×A)

(

eıqa + e−ıqa − 2
)

− 2KS

h̄
(nz ×A) +

g|e|
2mc

(H×A);

ıωA =

(

2JS

h̄
(1− cos(qa)) +

2KS

h̄
+

g|e|H
2mc

)

(nz ×A).

The last vector equation is actually a system of two linear equations in variables Ax and
Ay:















ıωAx +

(

2JS

h̄
(1− cos(qa)) +

2KS

h̄
+

g|e|H
2mc

)

Ay = 0

−
(

2JS

h̄
(1− cos(qa)) +

2KS

h̄
+

g|e|H
2mc

)

Ax + ıωAy = 0

. (2.4)

The condition for the existence of nonzero solutions of the system (2.4) is the eigen-
value problem for coefficient matrix and non-trivial solutions are the eigenvectors of this
matrix. The determinant directly gives the dispersion relation:

−ω2 +

(

2JS

h̄
(1− cos(qa)) +

2KS

h̄
+

g|e|H
2mc

)2

= 0;

ω =
2JS

h̄
(1− cos(qa)) +

2KS

h̄
+

g|e|H
2mc

.

It is convenient, especially for further considerations, to introduce the following param-
eters:

ω0 =
2JS

h̄
; κ =

K

J
; h =

g|e|Hh̄

2mc2JS
. (2.5)

The dispersion relation can be written then as:

ω/ω0 = 1− cos(qa) + κ+ h.
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Figure 2.1: Schematic representation of a spin wave in a typical ferromagnet. The black dashed arrows
represent the ground state, the cyan thick arrows - orientations of spins in a wave and red arrows are
the deviations of spins from their equilibrium orientations. Upper panel is a front view, lower panel is
the top view. The spins in the top view are rotating along circular orbits (black dashed circles) in the
clockwise direction (pointed by gray arrows).

Substituting the found expression for ω back into the system (2.4) the polarization of
the spin wave is easily found:

Ax = ıAy. (2.6)

Thus, the result well known from many textbooks on magnetism is obtained: the spin
waves in a simple ferromagnet have a quadratic dispersion in the long wavelength limit
and exhibit a gap if either easy axis anisotropy or external magnetic field are present
(see, for example, Fig 2.2). The spins precess around their equilibrium directions with
the spins moving along circular orbits, as shown in Fig. 2.1.

2.2.2 The treatment of the exciting field and dissipation

Examination of the interaction of spins with the exciting magnetic field of incident
radiation allows to establish the connection between microscopic quantities describing
spin subsystem and the optical parameters measurable in experiments like magnetic
susceptibility χ̂. As was shown above, for magnons the easy axis anisotropy acts in the
same way as an external static magnetic field. Therefore it is assumed zero for simplicity
(K = 0). The magnetic field of the incident radiation has the form of a plane wave.
However, on the scale of magnons the wave vector of light can be assumed to be zero
with a good accuracy, q = 0. The magnetic field can be written then as he−ıωt. The
effective magnetic field acting upon j-th spin becomes:

g|e|h̄
2mc

Heff,j = −J(Sj−1 + Sj+1) +
g|e|h̄
2mc

H+
g|e|h̄
2mc

he−ıωt.

The amplitude A of the spin wave is now assumed to be not only much smaller than
the equilibrium spin S0 but also of the same order as the exciting field h. Thus, the
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terms containing product h ·A can be also omitted from the equation (2.1). It is easy
to see that the effective field Heff,j enters the equation (2.1) only as a vector product
Heff,j ×Sj . After omitting quadratically small terms the exciting field h appears in the
equation of motion only as h×S0. Therefore the component of h along the equilibrium
direction S0 does not play any role and will be assumed to be zero, so that h ⊥ S0. The
additional term in the equation of motion due to the excitation field is:

g|e|
2mc

h× S0.

The dissipative term can be transformed as:

λ

h̄

Sj × (Sj ×Heff,j)

S2
=

λ

h̄

(

Sj

(Sj ·Heff,j)

S2
−Heff,j

)

and after substituting the effective field, the plane wave of the form (2.3), and omitting
quadratically small terms we get:

λ

h̄

(

Sj

(Sj ·Heff,j)

S2
−Heff,j

)

= − H

h̄S
λAe−ıωt − λ

h̄
he−ıωt.

To simplify the subsequent expressions, the dimensionless damping coefficient αd and
resonant frequency in the absence of damping ω̃0 are introduced as follows:

λ = αd|M | = αdh̄S
g|e|
2mc

; ω̃0 =
g|e|H
2mc

.

Substituting these definitions into equation of motion (2.1) the following system of
coupled equations is obtained:











(−ıω + ω̃0αd)Ax − ω̃0Ay =
g|e|S
2mc

(hy − αdhx)

ω̃0Ax + (−ıω + ω̃0αd)Ay =
g|e|S
2mc

(−hx − αdhy)

.

After solving this system, the amplitude A = (Ax, Ay) is obtained as a linear function
of incident magnetic field h = (hx, hy) (both Az = 0 and hz = 0):

A =
g|e|S
2mc

ω̃2
0(1 + α2

d)− ω2 − 2ıωω̃0αd

(

−ω̃0(1 + α2
d) + ıαdω −ıω

ıω −ω̃0(1 + α2
d) + ıαdω

)

h.

The dynamic magnetization of a ferromagnet m = (mx, my) can be now obtained as
m = −ng|e|h̄/(2mc)A = χ̂h, where n is a volume density of spins. In the case when
absorption is not very large, α2

d ≪ 1, this yields a well-known expression [33] for dynamic
susceptibility tensor of a ferromagnet:

χ̂ =
∆χω̃2

0

ω̃2
0 − ω2 − 2ıωω̃0αd

(

1− ıαdω/ω̃0 ıω/ω̃0

−ıω/ω̃0 1− ıαdω/ω̃0

)

.
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Thus, the components of magnetic susceptibility have a Lorentz-like form featuring a
resonance at ω = ω̃0 with the amplitude ∆χ. Introducing the saturation magnetization
Ms = nSg|e|h̄/(2mc) the amplitude can be written as:

∆χ =

(

g|e|
2mc

)2
h̄Sn

ω̃0
=

g|e|
2mc

Ms

ω̃0
=

Ms

H
.

One notable consequence of this result is the violation of the Lyddane-Sachs-Teller re-
lation, valid for permittivity. It basically says that ∆ε ∼ 1/ω̃2

0 whereas for permeability,
as shown above, ∆µ ∼ 1/ω̃0.

2.2.3 Ferromagnet with next-nearest-neighbour interaction

As the last example the ferromagnet with next-nearest-neighbour interaction will be
considered. In the case when this interaction is antiferromagnetic a quite interesting
crossover to noncollinear spin order can occur. Already such a simple model resembles
the behaviour observed in rare earth manganites. The Hamiltonian of the system reads:

H = −J
∑

j

(Sj · Sj+1) + Jnnn

∑

j

(Sj · Sj+2).

First, the ground state of the system should be found which is the arrangement of
spins with the lowest possible energy. For the cycloidal or spiral spin arrangement the
angle between any two adjacent spins is α and between any two next-nearest-neighbour
spins is 2α. The energy of such spin order is

E = −JNS2 (cos(α)− jnnn cos(2α)) ,

where

jnnn =
Jnnn

J
(2.7)

is dimensionless next-nearest-neighbour interaction. The condition of the minimum of
the energy with respect to α is then:

sin(α) (1− 4jnnn cos(α)) = 0. (2.8)

This yields either sin(α) = 0 which is a collinear ferromagnetic state or 4jnnn cos(α) = 1
which has solutions only for jnnn > 1/4. It can easily be shown that the noncollinear
state is energetically favourable provided the last condition is satisfied, so the ferromag-
netic order is stable only for jnnn < 1/4.
The vector equation of motion of the spins in the ferromagnetic state is:

ıωA =
2JS

h̄

(

1− cos(qa)− Jnnn

J
(1− cos(2qa))

)

(nz ×A),

with the dispersion relation

ω/ω0 = 1− cos(qa)− jnnn(1− cos(2qa))
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Ferromagnet

Figure 2.2: Magnon dispersions in ferromagnets with different additional terms in Hamiltonian: with
easy axis anisotropy and in external magnetic field (black line), without any additional terms (red line),
with antiferromagnetic next-nearest-neighbour interaction at the critical value (green line) and above
critical value (blue line). The last curve has no physical meaning; the minima with negative energy
indicate that the ferromagnetic state is unstable against transition into the new cycloidal or spiral
ground state.

and the same polarization of the spin wave (2.6) as in a simple ferromagnet.
The condition of the minimum in the dispersion curve coincides exactly with (2.8)

if the substitution qa = α is made. Therefore, the dispersion relation shows minima
with negative energy for jnnn > 1/4 (see Fig. 2.2). Such solutions have no physical
meaning but they show that the system is unstable and another ground state should be
first found. The magnons in a 3D cycloidal antiferromagnet are studied in details below
and this short example is just illustrating that the properties of excitations in a system
reflect also the stability of the ground state.

2.3 Ferrimagnets

Ferrimagnets are materials with more than one type of spins possibly aligned antipar-
allel but still showing nonzero spontaneous magnetization. In this sense they form an
intermediate class between ferromagnets and antiferromagnets. Ferrimagnets are taken
into consideration here as a typical example to derive the properties of magnons using
standard solid state techniques with a unit cell containing two spins. The characteristics
of the magnons in an antiferromagnet could be then obtained as a limiting case of a
ferrimagnet. On the other hand, antiferromagnets will be treated further below in the
framework of the so-called co-rotating frame formalism. This technique is crucial for
the consideration of the incommensurate cycloidal antiferromagnets but is much less
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Figure 2.3: Schematic representation of a spin wave in a ferrimagnet for the lower frequency branch
at qa → 0 and Ω → 0. The black dashed arrows represent the ground state, the cyan thicker arrows
- orientations of spins in a wave and red arrows are the deviations of spins from their equilibrium
orientations. Upper panel is a front view, lower panel - top view. For this particular mode, the spins
can change their orientation in arbitrary direction.

widespread. Therefore, the comparison of results obtained by both methods for simple
antiferromagnets will provide the validation for this novel technique.

One of the simplest models of a ferrimagnet with antiferromagnetic coupling is de-
scribed by the following one-dimensional Hamiltonian:

H = J
∑

j

(

S
(1)
j · S(2)

j + S
(2)
j · S(1)

j+1

)

.

Here, two types of spins with different lengths S1 and S2 exist. The exchange constant
is assumed to be the same along the spin chain (see also Fig. 2.3). As there are two
nonequivalent spins in a magnetic unit cell now, two different equations of motion of the
form (2.1) should be written, each with a separate effective field acting upon the spins
of its own kind. For the model Hamiltonian given above these fields are:

g|e|h̄
2mc

H
(1)
eff,j = J

(

S
(2)
j−1 + S

(2)
j

)

;
g|e|h̄
2mc

H
(2)
eff,j = J

(

S
(1)
j + S

(1)
j+1

)

.

The solution can be again obtained in the form of a plane wave, but with different
vector amplitudes corresponding to spins of different length:

S
(1)
j = S

(1)
0 +Aeı(qaj−ωt); S

(2)
j = S

(2)
0 +Beı(qaj−ωt).

Here, the ground state values of spins are assumed to be S
(1)
0 ↑↑ nz , S

(2)
0 ↑↓ nz, A ⊥ nz

and B ⊥ nz (see Fig. 2.3).
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Figure 2.4: Schematic representation of a spin wave in a ferrimagnet for the higher frequency branch
at qa = 0 and Ω = S2−S1. The black dashed arrows represent the ground state, the cyan thick arrows
- orientations of spins in a wave and red arrows are the deviations of spins from their equilibrium
orientations. Upper panel is a front view, lower panel - top view. The spins in the top view are rotating
in the counterclockwise direction (gray arrow).

The two vector equations of motion for each sort of spins are:










ıωA =
J

h̄

(

2S2(nz ×A) + S1(nz ×B)
(

1 + e−ıqa
))

−ıωB =
J

h̄

(

2S1(nz ×B) + S2(nz ×A)
(

1 + e+ıqa
))

.

They are equivalent to the following system of four equations with four variables Ax,
Ay, Bx and By, where the notation Ω = h̄ω/(2J) is used:















































ıΩAx + S2Ay + S1
1 + e−ıqa

2
By = 0

−S2Ax + ıΩAy − S1
1 + e−ıqa

2
Bx = 0

−S2
1 + e+ıqa

2
Ay + ıΩBx − S1By = 0

S2
1 + e+ıqa

2
Ax + S1Bx + ıΩBy = 0

. (2.9)

Expanding the determinant of this system the following characteristic equation is
obtained:

Ω4 −
(

S2
1 + S2

2 − S1S2(1 + cos(qa))
)

Ω2 +

(

S1S2

2
(1− cos(qa))

)2

= 0.

The solutions of this equation are two branches of magnon dispersion in the model
ferrimagnet:

2Ω1,2 =
√

S2
1 + S2

2 − 2S1S2 cos(qa)± (S1 − S2). (2.10)
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Figure 2.5: Schematic representation of a spin wave in a ferrimagnet for the lower frequency branch
at qa = π and Ω = S2. The black dashed arrows represent the ground state, the cyan thick arrows
- orientations of spins in a wave and red arrows are the deviations of spins from their equilibrium
orientations. Upper panel is a front view, lower panel - top view. The smaller spins do not move at all
while the bigger spins rotate in the top view in the clockwise direction shown by the gray arrow.

Figure 2.7 illustrates them for a few representative ratios S2/S1.

Substituting the obtained dispersion relations into the system (2.9) the polarization of
spin waves can be found. It has a somewhat complicated character, two limiting cases,
qa = 0 and qa = π, will be discussed below:

qa = 0, Ω = 0 The only constraint which the system (2.9) imposes is S2A + S1B = 0
- the deviation of a spin is proportional to the length of spin in the ground state.
This zero frequency mode has a meaning of changing the ground state orientation
of spins in an arbitrary direction (see Fig. 2.3). The mode also has a nonvanishing
magnetization in the direction of the bigger spin and therefore can interact with
external magnetic field.

qa = 0, Ω = S1 − S2 In this long wavelength spin wave the deviations of spins of differ-
ent kind are the same: A+B = 0, and the spins are moving along circular orbits:
Ay = ıAx (see Fig. 2.4). Contrary to the previous mode the dynamic components
of the magnetic moments are compensated across the unit cell and there is no
magnetization associated with this mode.

qa = π, Ω = S2 In the lower frequency short wavelength spin mode the smaller spins
do not participate at all: B = 0, and the bigger spins are moving like in the
ferromagnet: Ax = ıAy (Fig. 2.5).

qa = π, Ω = S1 On the other hand, the spin mode where the bigger spins are fixed,
A = 0, and only smaller spins are moving, By = ıBx, is a higher frequency mode
(Fig. 2.6).
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Figure 2.6: Schematic representation of a spin wave in a ferrimagnet for the higher frequency branch
at qa = π and Ω = S1. The black dashed arrows represent the ground state, the cyan thick arrows
- orientations of spins in a wave and red arrows are the deviations of spins from their equilibrium
orientations. Upper panel is a front view, lower panel - top view. In this mode, the bigger spins are
still while the smaller spins rotate in the top view in the counterclockwise direction shown by the gray
arrow.

A simple antiferromagnet can be obtained assuming S2 = S1 = S. In this case the
two ferrimagnetic branches (2.10) become degenerate and simplified to a well-known
expression [34]:

ω

ω0
=

∣

∣

∣
sin

(qa

2

)∣

∣

∣
, (2.11)

where definition (2.5) is used for ω0. At qa = π any linear combination of these two
modes is also allowed in an antiferromagnet. We should take this into account when
considering the results for a simple antiferromagnet.

2.4 Simple collinear antiferromagnet

Antiferromagnetic materials possess magnetic order but with fully compensated mag-
netic moments, so the net magnetization is zero. There are a lot of ways to realize
antiferromagnetic state, especially in three dimensional crystals. The incommensurate
cycloidal order relevant for the low temperature phases of some rare earth manganites
is a rather complicated possibility and requires for its treatment extended theoretical
tools. Here, the simplest one dimensional collinear antiferromagnet will be considered in
the framework of so-called co-rotating frame formalism in order to introduce this tech-
nique. Without substantial complications the model antiferromagnet can be assumed
being anisotropic with hard, medium and easy magnetic axes, respectively:

H = J
∑

j

(Sj · Sj+1) +Kx

∑

j

(nx · Sj)
2 +Ky

∑

j

(ny · Sj)
2.
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Figure 2.7: Two branches of magnon dispersion in a ferrimagnet with different spin ratios S2/S1.
The black curves corresponds to the case of a pure antiferromagnet where two magnon branches are
degenerate. The green curves are plotted for the same spin ratio as used in schematic drawings 2.3 -
2.6.

The spins in the ground state are aligned along the easy z axis but with alternating
direction, which can be schematically denoted as “up-down-up-down-...” order (see also
Fig. 2.8). The key idea here is to introduce such a reference frame which gets rotated
by 180 degrees around the x axis when moving from one spin in a chain to the next.
In such reference frame the central spin points always “up”. Moreover, all other spins
also have the fixed direction independently upon which spin is chosen as “central” one:
the nearest neigbours are antiparallel with the central spin, the next nearest neigbours
are parallel and so on. In some sense, the alternating antiferromagnetic order in real
space is transformed into the uniform ferromagnetic order in the co-rotating space. As
the Hamiltonian of this system is uniform from the beginning, this eliminates the need
to include two spins in a unit cell which can be viewed as a simplification in the case
of collinear antiferromagnet. It should be noted that the “rotations” in the description
above should not be interpreted literally; they are applied to spins only and do not
change the orientation of crystallographic axes, for example.

In order to proceed with a formal considerations it is convenient to introduce the
operator R̂α of rotation around the x axis by the angle α. In the component matrix
notation it is:

R̂α =





1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)



 . (2.12)
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Figure 2.8: Schematic representation of a spin wave at qa = π/2 in the anisotropic antiferromagnet.
The black dashed arrows represent the ground state, the cyan thick arrows - orientations of spins in a
wave and red arrows are the deviations of spins from their equilibrium orientations. Upper panel is a
front view, lower panel - top view. The spins in the top view are rotating along almost circular orbits
(black dashed ellipses) in the alternating directions (pointed by the gray arrows).

For example, if α = π:

R̂π =





1 0 0
0 −1 0
0 0 −1



 .

Of course, the rotations around the same axis are commutative and additive: R̂αR̂β =

R̂βR̂α = R̂α+β. Therefore, we may write (R̂β)
j = R̂jβ. The antiferromagnetic ground

state can be written now as Sj = R̂jπS0, where S0‖nz.

The last key element in the current approach is to consider not only the ground state
in the co-rotating frame but the amplitude of a spin wave as well:

Sj = R̂jπ

(

S0 +Aeı(qaj−ωt)
)

=





0
0

(−1)jS



 +





Ax

(−1)jAy

0



 eı(qaj−ωt). (2.13)

As the new approach first appears only when the solution of the vector equation
of motion is searched for in particular form (2.13), all previous steps like calculating
effective magnetic field stay intact. One complication with this approach is that the
rotation operator does not commutate with the operations of vector or scalar products.
This means that the vector equation of motion should be expanded into components
and therefore the component form is included in (2.13).

Performing aforementioned substitutions and after simplifications and using defini-
tions (2.5) the following system which describes spin waves in a collinear antiferromagnet
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Figure 2.9: Two branches of magnon dispersion in different antiferromagnets. The black line corre-
sponds to the case of a fully isotropic antiferromagnet where two magnon branches are degenerate. An
antiferromagnet with easy plane anisotropy is represented by the red curves, while degenerate branches
in an antiferromagnet with easy axis anisotropy are shown by the blue line. The green curves represent
a fully anisotropic antiferromagnet and are plotted for the same parameters as used in Figures 2.8, 2.10
and 2.11.

is obtained:










ı
ω

ω0
Ax + (1 + κy − cos(qa))Ay = 0

−(1 + κx + cos(qa))Ax + ı
ω

ω0
Ay = 0

. (2.14)

The magnon dispersion is then easily derived:

ω/ω0 =
√

(1 + κx + cos(qa))(1 + κy − cos(qa)). (2.15)

It is important to note that parameter a here is a distance between adjacent spins and
not the size of the magnetic unit cell which is a′ = 2a (see Fig. 2.11). It is therefore
possible to say that in the co-rotating frame formalism the “reduced” unit cell and
“extended” Brillouin zone (with −π < qa < π) are considered. In order to compare the
current results with the predictions made for ferrimagnets the substitution a → a′/2
should be made. The dispersion relation is then defined across two Brillouin zones,
−2π < qa′ < 2π and should be folded back into the first Brillouin zone to obtain the
second magnon branch. Performing this procedure and assuming the antiferromagnet
isotropic, κx = κy = 0, exactly the expression (2.11) comes out. The folded magnon
dispersion for some representative values of anisotropy are shown in Fig. 2.9

The polarization, which is another important property of spin waves, is given in the
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Figure 2.10: Schematic representation of a magnon at qa = 0 in an anisotropic antiferromagnet. The
black dashed arrows represent the ground state, the cyan thick arrows - orientations of spins in a wave
and red arrows are the deviations of spins from their equilibrium orientations. Upper panel is a front
view, lower panel - top view. The spins in the top view are rotating along elliptical orbits (black dashed
ellipses) in the alternating directions (pointed by the gray arrows). This magnon possesses nonvanishing
dynamic magnetization along the x axis shown by the thick blue arrow.

co-rotating frame by:

√

1 + κx + cos(qa)Ax = ı
√

1 + κy − cos(qa)Ay. (2.16)

In order to obtain polarization in the laboratory reference frame, spin rotation (2.13)
should be applied. All schematic drawings 2.8, 2.10 and 2.11 have been plotted taking
this fact into account.
Figure 2.8 schematically shows the spin wave in a fully anisotropic antiferromagnet for

qa = π/2. This is a magnon at the boundary of the magnetic Brillouin zone in Fig. 2.9.
The magnon at qa = −π/2 has the same motion of spins except that the deviation
of each second spin should be reversed. As the frequencies of these two magnons are
exactly the same (green curves at qa′ = π in Fig. 2.9), any linear combination of them
is also allowed. It is easy to see now that the sum of these two spin waves gives the
magnon shown in Fig. 2.5 while their difference is the magnon in Fig. 2.6.
The magnons at the center of the magnetic Brillouin zone are more interesting as

the magnetization does not vanish after averaging the spin deviations across the whole
crystal. These magnons can therefore interact with the magnetic component of radiation
and can be seen as absorption peaks in the optical spectroscopy.
The magnon schematically shown in Fig. 2.10 corresponds to qa = 0 in the co-rotating

frame. The main motion of spins occurs in the y direction and the properties of the
antiferromagnet along this direction (anisotropy κy 6= 0 in this case) determine both the
frequency of the magnon and the magnitude of the small deviations in the x direction (see
dispersion relation (2.15) and polarization (2.16)). However, it is this small component of
spins along the x direction that is responsible for the magnetic moment associated with
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Figure 2.11: Schematic representation of a magnon at qa = π in the anisotropic antiferromagnet. The
black dashed arrows represent the ground state, the cyan thicker arrows - orientations of spins in a
wave and red arrows are the deviations of spins from their equilibrium orientations. Upper panel is a
front view, lower panel - top view. The spins in the top view are rotating along elliptical orbits (black
dashed ellipses) in the alternating directions (pointed by the gray arrows). This spin wave has nonzero
dynamic magnetization along the y axis shown by the thick blue arrow.

this magnon. The bigger component along the y direction is fully compensated already
inside the magnetic unit cell. The magnon at qa = π shown in Fig. 2.11 is very similar
but with the main motion of spins along the x direction and magnetic moment along the
y direction. It is interesting to trace, how the wave with qa = π 6= 0 in the co-rotating
frame is still able to produce a magnetic moment with q = 0. The key component here is
the static antiferromagnetic order which can be considered as a frozen standing spin wave
with qa = π. As the spin waves are small deviations superimposed with the static order,
they are “interacting” with the static standing wave in some sense and can get shifted
in the q-space by the wave vector Q of the static order. The details of this process differ
in each case and are contained in the expression (2.13). Namely, the x component is left
intact while the y component always gets shifted. This property of spin waves is also
responsible for the difference between magnon branches even in the degenerate cases.
Although the frequencies of two branches can coincide for all wave vectors, they still
have different polarizations which can be accessed in experiments like polarized neutron
scattering or polarization analysis in optical spectroscopy. For example, two magnon
branches for a fully isotropic antiferromagnet (black curve in Fig. 2.9) are degenerate.
However, the magnon at qa = 0 on one branch has spin deviations along the x direction,
while the magnon on the other branch - along the y direction. Note, that the linear
combination of these two magnons correspond to the zero frequency spin wave shown in
Fig. 2.3.

Selective shifting of wave vector depending on polarization makes dispersion repre-
sentation in Figure 2.9 not entirely correct. The problem can be well seen in Fig. 2.11
for example. Although the y components of spins point in the same direction and have
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the wave vector qa′ = 0 as shown in Fig. 2.9, the x components point in alternating di-
rections and have qa′ = 2π (or qa = π). Therefore, the x and y components of the same
magnon come from different Brillouin zones. In other words, the first and the second
Brillouin zones are not equivalent. If the spin wave dispersion is measured with some
polarization sensitive technique, one magnon branch in the first Brillouin zone would
turn into the other branch in the next Brillouin zone and vice versa. The inequivalence
of Brillouin zones is not very significant in the case of simple antiferromagnet considered
here. However, in the case of incommensurate antiferromagnet the absence of magnetic
Brillouin zone and shifting of wave vectors lead to quite unusual magnon dispersion.

2.5 Cycloidal incommensurate antiferromagnet

The low temperature magnetic order in multiferroic manganites like TbMnO3, DyMnO3,
EuxY1−xMnO3 in the doping range 0.2 < x ≤ 0.5 and, depending on the cooling history,
also in GdMnO3 appears to be incommensurate cycloidal with the spins lying either in bc
or ab planes. This has been proved using neutron diffraction at least for TbMnO3 [35].
For the first time, the spiral and cycloidal magnetic orderings were proposed simultane-
ously in connection with different materials in the late 1950s (see, for example, Ref. [36]).
Shortly afterwards, the magnon spectra were calculated using co-rotating frame tech-
nique [37]. The first theoretical model describing ground state ordering in orthorhombic
manganites appeared almost at the same time as the the discovery of induced ferro-
electricity [21]. Already at that time it was stressed out that the competition between
ferromagnetic nearest-neighbour and antiferromagnetic next-nearest-neighbour interac-
tions in MnO2 planes plays the main role for the establishment of frustrated magnetic
order.
The important step towards description of excitations in multiferroic manganites was

the work [38] where the mixed spin-phonon Hamiltonian was considered. The authors
have also used the co-rotating frame technique and made a number of predictions re-
garding electro- and magneto-active modes in optical spectroscopy and the positions
of peaks in the inelastic neutron scattering spectra. However the limited information
included in this paper and the large number of topics covered have made it rather hard
for inexperienced reader to comprehend the model proposed. The simpler model con-
sidering the magnetic subsystem only was published later [39] and contains possibly the
most detailed and closest description of the model that will be presented below. The
spin-phonon interaction in the form suggested in [38] will be considered indirectly later
by introducing the Dzyaloshinkii-Moriya term as a small perturbation.

2.5.1 The unit cell and Brillouin zone

Contrary to one dimensional models above, the spatial coordinates of nearest and next-
nearest neigbours play an important role in three dimensional antiferromagnets. Fig-
ure 2.12 schematically shows the positions of manganese atoms which are assumed the
only magnetic ions in the model. Different exchange paths taken into account in Hamilto-
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Figure 2.12: Schematic representation of the orthorhombic (gray dashed rectangle) and cubic (black
dashed rectangle) unit cells used in the Heisenberg model of cycloidal antiferromagnet (left side). Upper
panels are front views, lower panels - top views. Only manganese atoms (blue circles) relevant for
the magnetism are shown. The lines represent different exchange interactions: the nearest-neighbour
ferromagnetic interaction J (cyan lines), the next-nearest-neighbour antiferromagnetic interaction Jnnn
(magenta lines) and interlayer antiferromagnetic interaction Jc (red dashed lines). The coordinate
system, the indexing scheme and definitions of lattice parameters a, b and c used in the text are also
shown. The corresponding orthorhombic (gray rectangles) and cubic (black rectangles) Brillouin zones
are presented in the right side. The hatched triangles are also formally accessible in the dispersion
relation but represent physically redundant areas and should be discarded (see text for the details).

nian below are also shown. After cooperative Jahn-Teller distortions the crystallographic
unit cell becomes orthorhombic and contains four Mn spins (gray dashed rectangles in
the left side of Fig. 2.12). However, using co-rotating frame technique, it is possible to
consider fewer different spins in the reduced cell. Indeed, the antiferromagnetic inter-
layer order can be easily treated with the unit cell halved along the z‖c direction, as was
shown above. Moreover, the incommensurate cycloidal order within MnO2 planes makes
it impossible to introduce a magnetic unit cell at all. The obvious choice of a reduced
cell with only one spin would be the cubic unit cell. The drawback of such a choice is
that the propagation vector of spin cycloid is oriented along the diagonal of the cubic cell
(see Fig. 2.12) which would make the spin modulation wave vector multicomponent in
the cubic coordinates. Therefore, the indexing is still done along orthorhombic principal
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axes (see Fig. 2.12) but with the halved spacing along both x and y axes. Note that the
cell spanned across the associated spacing parameters a, b and c is not a unit cell even
for undistorted cubic structure: the in-plane translations would produce twice as much
Mn sites as actually present. However, it is easy to account for this fact: the site with
indices (j, k) is occupied if and only if the indices j and k have the same parity (both
are even or both are odd). For example, assuming that initial indices j and k are both
zero, the site (j, k) in Fig. 2.12 is occupied. The sites (j, k ± 2) and (j ± 2, k) are also
occupied, but not the sites (j, k ± 1) or (j ± 1, k). Thus, it is actually the counting
scheme of the atoms on a square lattice rotated by 45 degrees to the coordinate system.
The choice of the too small reduced cell automatically implies that the associated

Brillouin zone, shown in the right side of Fig. 2.12 would be too large. The solution
is also quite simple: in this case it is necessary to discard the hatched triangles in the
Fig. 2.12 and the remaining diamond-shaped area is again the Brillouin zone of the cubic
unit cell.
It should be noted that the seemingly excessive complications with the choice of the

reduced cell are common in the community. The careful consideration of works [40, 41],
for example, shows that the authors use the orthorhombic unit cell parameters a′ = 2a
and b′ = 2b, at least in the MnO2 planes. However the dispersion relations are plotted
up to the values qb < 2π/b′, crossing the boundary of the second orthorhombic Brillouin
zone, which is equivalent to qb < π/b, staying inside the first cubic Brillouin zone, used
in the present variant.
Another notation for the wave vectors is common inside the neutron scattering com-

munity. The wave vectors are expressed in the units of the translation vectors in the
reciprocal space [42]. For example, the wave vector (0, 1, 0) in crystallographic units
corresponds to the vector (0, 2π

b′
, 0) in the physical units which equals to (0, π

b
, 0) in the

present notation. The wave vector of the static spin cycloid (0, 0.28, 0) [43] transforms
then in the same way into the physical vector (0, 0.28·π

b
, 0).

2.5.2 Cycloidal antiferromagnet with easy plane anisotropy

The basic model which is able to reproduce the ground state of frustrated rare earth
perovskites but still can be treated analytically is described by the following Hamilto-
nian:

H =
∑

l

∑

j

∑

k=j,j±2,...

(

−J(Sj,k,l · Sj−1,k+1,l)− J(Sj,k,l · Sj+1,k+1,l) + (2.17)

+ Jnnn(Sj,k,l · Sj,k+2,l) + Jc(Sj,k,l · Sj,k,l+1) +K(nx · Sj,k,l)
2
)

.

The first two terms represent the ferromagnetic superexchange between two nearest
Mn spins via oxygen orbitals (cyan lines in the left side of Fig. 2.12). The third term
is an antiferromagnetic exchange between next-nearest manganese atoms along the y
direction via two oxygen atoms (magenta lines in Fig. 2.12). The fourth term describes
the antiferromagnetic coupling along the z direction between MnO2 layers (red dashed
lines). The last single ion anisotropy term makes yz an easy plane to fix the direction
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of possible spin cycloid as observed experimentally. Without the anisotropy both spin
cycloids in the yz and xy planes and also the proper screw spin arrangement along the
y axis would be all degenerate. It is easy to see that the form of (2.17) together with
special summation rules discussed above account for each exchange path exactly once
(see also Fig. 2.12 for the indexing scheme).
Like in the case of a simple antiferromagnet, the rotation operator (2.12) is applied to

the fixed spin vectors to obtain both the ground state and the spin waves. This operator
describes both, the antiferromagnetic ordering along the z direction, and cycloidal order
along the y direction. As both of them can be obtained via rotations around the x
axis the presence of two different magnetic orders along different axes does not lead to
significant complications:

Sj,k,l = R̂kα+lπ

(

S0 +Aeı(qr−ωt)
)

= R̂kα+lπ

(

S0 +Aeı(qaaj+qbbk+qccl−ωt)
)

=

= (−1)lS





0
sin(kα)
cos(kα)



 +





Ax

(−1)l cos(kα)Ay

−(−1)l sin(kα)Ay



 eı(qaaj+qbbk+qccl−ωt).
(2.18)

The spins form the cycloid along the y direction with the angle α between two nearest
neighbours.
In order to find the ground state of the system, dynamic part will be assumed zero,

A = 0 and the expression (2.18) substituted into Hamiltonian (2.17). The energy of
such spin configuration is then:

E = −JNS2(2 cos(α)− jnnn cos(2α) + jc),

where definitions (2.7) and

jc =
Jc

J
(2.19)

are used. Minimizing the ground state energy the following equation is obtained:

sin(α)(1− 2jnnn cos(α)) = 0.

The noticeable difference from the similar equation (2.8) for one dimensional spin chain
is a smaller factor outside jnnn. This reflects different number of nearest and next-
nearest neighbours in one and three dimensional models: in one dimensional chain each
spin has two nearest and two next-nearest neighbours while in the three dimensional
model each spin interact with four in-plane nearest neighbors and only two next-nearest
spins along the y direction.
The trivial solution α = 0 corresponds to A-type antiferromagnetic ordering typical for

rare earth manganites on the left hand side compared to Gd in the phase diagram 1.11.
It is again easy to show that the non-trivial solution cos(α) = 1/(2jnnn) corresponding
to (generally) incommensurate cycloidal order has the lowest energy in the whole range
of its existence. Therefore, the transition from A-type to cycloidal spin order occurs at
the critical value jnnn = 1/2 within the current model. Equation cos(α) = 1/(2jnnn)
has generally two solutions: with positive and negative angle α. These two solutions
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correspond to the spin cycloids rotating in the opposite directions and they can be
obtained one from the other by the spatial inversion. As will be shown below, the
direction of spin rotation in the cycloid characterizes the direction of spontaneous electric
polarization in the ferroelectric domain.
Consideration of dynamic properties of the cycloidal antiferromagnet starts with the

calculation of the effective magnetic field Heff,j,k,l acting upon spin Sj,k,l. In present
case it has more terms as in the previous sections due to larger number of adjacent
interacting neighbours:

g|e|h̄
2mc

Heff,j,k,l =− J(Sj−1,k+1,l + Sj+1,k+1,l + Sj−1,k−1,l + Sj+1,k−1,l) +

+ Jnnn(Sj,k+2,l + Sj,k−2,l) + Jc(Sj,k,l+1 + Sj,k,l−1) + 2K(nx · Sj,k,l)nx

Substituting the effective magnetic field into equation of motion (2.1) the spin waves
are searched for in the form (2.18). After simple but rather lengthy calculations in the
component form it is possible to obtain the following system of equations:











ı
ω

ω0

Ax + P (q)Ay = 0

−Q(q)Ax + ı
ω

ω0
Ay = 0

. (2.20)

The dispersion relation of magnons in a cycloidal antiferromagnet is now easily found:

ω

ω0
=

√

P (q)Q(q), (2.21)

together with the polarization of spin waves:
√

Q(q)Ax = ı
√

P (q)Ay. (2.22)

Here P (q) and Q(q) are defined as following:

P (q) = 2 cos(α)(1− cos(qaa) cos(qbb)) + jnnn cos(2α)(cos(2qbb)− 1) + jc(1− cos(qcc));

Q(q) = κ+ 2 cos(α)− 2 cos(qaa) cos(qbb) + jnnn(cos(2qbb)− cos(2α)) + jc(1 + cos(qcc)),

where definitions (2.5), (2.7) and (2.19) for ω0, jnnn, jc and κ are used. The expressions
P (q) and Q(q) in the form above can be used to determine the properties of magnons
in both A-type and cycloidally ordered phases by substituting the appropriate values
of α. As the magnetically induced ferroelectricity and electromagnons appear only
in frustrated cycloidal phase, only cycloidal state will be considered further. After
substitutions cos(α) = 1/(2jnnn) and cos(2α) = 1/(2j2nnn)− 1 the expressions P (q) and
Q(q) are simplified to:

P (q) = 2jnnn sin
2(qbb)−

cos(qbb)

jnnn
(cos(qaa)− cos(qbb)) + jc(1− cos(qcc));

Q(q) = κ+
1

2jnnn
− 2 cos(qaa) cos(qbb) + jnnn(1 + cos(2qbb)) + jc(1 + cos(qcc)).
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Figure 2.13: Magnon dispersion in a cycloidal antiferromagnet for a direction parallel to the x axis
and passing through the static modulation wave vector Q. The black line is the unshifted dispersion
of magnetic moments polarized along the x axis while the red lines correspond to shifted dispersions of
two modes polarized in yz plane. The model parameters used are taken from Ref. [39]. Green circles
with error bars are experimental data from Ref. [44] measured by inelastic neutron scattering. The
gray band around 30 - 40 cm−1 was interpreted by the authors of [44] as a crystal field excitation of
Tb3+ ions, but could be well fitted by a magnon branch as well.

As in the case of simple collinear antiferromagnet, the rotations (2.18) should be
applied to both the dispersion (2.21) and polarization (2.22). This rotation leads to the
shifting of wave vectors by the static modulation vector which can be best seen from
the static order:

R̂kα+lπS0 = (−1)lS





0
sin(kα)
cos(kα)



 =
S

2





0
−ı
1



 eıQr +
S

2





0
ı
1



 e−ıQr, (2.23)

where Q = (0, α
b
, π
c
). The alternative expression above was obtained using complex rela-

tions cos(kα) = (eıkα + e−ıkα)/2, sin(kα) = (eıkα − e−ıkα)/(2ı) and (−1)l = eıπl = e−ıπl.
Thus, the static magnetic order in cycloidal phase consists of two waves with opposite
wave vectors. The polarizations of these waves are not equal and would correspond to
the left and right circularly polarized waves if they had nonzero frequency. Exchanging
the amplitudes of static waves is equivalent to the change α → −α and represent the
spin cycloid rotating in the opposite direction. Such cycloid also satisfies the solution
cos(α) = 1/(2jnnn) and corresponds to another possible domain in the sample.

From the structure of the static order it could be expected that the dynamic wave
vector in the co-rotating frame would be shifted by both static vectors in the laboratory
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Figure 2.14: Magnon dispersion in a cycloidal antiferromagnet for a direction parallel to the y axis
and passing through the static modulation wave vector Q. The notations of solid lines and parameters
used are the same as in the Fig. 2.13. The neutron scattering data shown as green circles together with
the gray absorption band are taken from Ref. [44].

frame. Indeed, the dynamic part of (2.18) can be transformed to:

R̂kα+lπAeıqr = Ax





1
0
0



 eıqr +
Ay

2





0
1
ı



 eı(q+Q)r +
Ay

2





0
1

−ı



 eı(q−Q)r. (2.24)

The magnon in a cycloidal antiferromagnet consists of three components: the one com-
ponent is linearly polarized along the x axis with the unchanged wave vector q and two
components with wave vectors q + Q and q − Q polarized circularly in the yz plane.
The sum of two circular polarizations does not yield linear polarization because circular
components have different wave vectors. As the static modulation vector Q is incom-
mensurate with the lattice parameter b, the wave vector shifting can not be represented
by the reduced magnetic Brillouin zone and should be done directly.

2.5.3 Inelastic neutron scattering spectra

One of the best methods to obtain the properties of magnetic subsystem is the neutron
diffraction. The cycloidal spin order in TbMnO3 was established by analyzing elastic
neutron Bragg reflections [35]. On the other hand, the access to magnon dispersion at
arbitrary wave vectors is enabled via inelastic neutron scattering experiments which will
be briefly discussed below.
Figures 2.13 - 2.15 show the predicted dispersion curves of magnons in a cycloidal

antiferromagnet along different directions. The black line in each figure shows the un-
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Figure 2.15: Magnon dispersion in a cycloidal antiferromagnet for a direction parallel to the z axis
and passing through the static modulation wave vector Q. The notations of solid lines and parameters
used are the same as in the Fig. 2.13. The neutron scattering data shown as green circles together with
the gray absorption band are taken from Ref. [44]. The band around 30 - 40 cm−1 was interpreted as
a crystal field excitation of Tb3+ ions, but could be also attributed to a magnon branch as well.

shifted dispersion of the x components of spins while two red lines represent the two
possible polarizations of spin components in the yz plane. The cuts of a Brillouin zone
were chosen to coincide with the neutron scattering experiments [44]. The data reported
there are reproduced as green circles with error bars and provide a valuable test of the
present model. The parameters of the model are taken from Ref. [39]. The authors of
Ref. [39] also used neutron scattering data [44] to estimate exchange constants but have
not provided any fits of the experimental spectra.

Overall, the model fits the data rather well on the qualitative basis and can be even
said to fit the data semi-quantitatively. The most noticeable disagreement is the ab-
sence of the highest energy magnon branch in Fig. 2.14 in experimental data. The
careful reading of Ref. [44] shows that the region of the reciprocal space where this
branch is expected was not accessible in the scattering geometry which could explain
this discrepancy. The model also predicts the existence of weakly dispersive branches
close to 40 cm−1 in the wave vector scans along x and z directions (see Figs. 2.13 and
2.15). However, these branches exactly overlap with the absorption band (the gray
shaded frequency intervals in Figs. 2.13 - 2.15) which was interpreted as a crystal field
excitation of Tb3+ ions by the authors of [44]. It is possible that either this absorption
band is actually the missing magnon branch, or Tb crystal field excitation hampers the
detection of magnons in this energy interval. To clarify this question further investiga-
tions possibly involving other experimental techniques are necessary. In any case, the
model describes the neutron scattering data rather well, especially given the fact that
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Figure 2.16:Magnon dispersion in a cycloidal antiferromagnet in the vicinity of Γ point. The notations
of solid lines and parameters used are the same as in Fig. 2.13. The black and red circles with error
bars show magnetic absorption lines in TbMnO3 observed at T = 22 K in THz spectroscopy.

no refinement of exchange constants was made to obtain better fits. Such a refinement
can be made taking the polarization of spin waves into account, which is available both
from the model predictions and the experiments, at least partially. This task requires
the deeper understanding of neutron scattering geometries with the access to the raw
data and is beyond the scope of this thesis.

2.5.4 Antiferromagnetic resonances in optical spectroscopy

The magnons can also be seen in optical spectroscopy as magneto-active absorption
lines. Due to very high speed of light the wave vector of these magnons is almost zero,
q ≈ 0, and corresponds to the Γ point in the Brillouin zone. Figure 2.16 shows dispersion
curves around Γ point for the same cycloidal antiferromagnet as in Figs. 2.13 - 2.15. The
black line is the unshifted dispersion of the magnon with magnetic moment along the x
axis while red lines are two magnons with polarization in yz plane. As the energies of
magnons only in Γ point are of interest, the choice of the cut along the y direction in
Fig. 2.16 is quite arbitrary.
The black and red circles with error bars are frequencies of AFMR lines observed

in TbMnO3 at T = 22 K. The measurements were performed on single crystals in a
polarized THz beam and carry valuable experimental information about the magnon
polarization. The black point denotes the magnon observed when the magnetic field of
radiation is oriented along the x axis while two red points are magnons observed along
the y direction. The higher frequency magnon can also be observed along the z axis
(see also Fig. 7.3). Except for the lower frequency magnon along the y direction there
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Figure 2.17: Schematic representation of a magnon at q = 0 in the cycloidal antiferromagnet. The
black dashed arrows represent the ground state, the cyan thicker arrows - orientations of spins in a wave
and red arrows are the deviations of spins from their equilibrium orientations. Upper panel is a front
view, lower panel - top view. The upper row of spins in the front view and lower row of spins in the
top view with equilibrium spin orientations in gray show spins in the next layer along the z direction.
The spins in the co-rotating frame are moving along elliptical orbits (black dashed ellipses) as shown
by the gray arrow. This spin wave has nonzero dynamic magnetization along the x axis shown by the
thick blue arrow.

are substantial deviations of the experimental data from the predictions of the model
which will be discussed below.

The mode with magnetic moment along the x direction which originates from the un-
shifted dispersion in the co-rotating frame has zero frequency within the present model.
The schematic movement of spins in this mode is illustrated in Fig. 2.17. The upper
part of the figure is a front view of two layers of spins ordered antiferromagnetically
along the z direction. The ground state spin cycloid is well seen in this representa-
tion. To obtain additional information about deviations of spins from their equilibrium
orientations the top view is also required and is shown in the lower part of the figure.
The view of one of the layers is shifted and separated by a gray dashed line form the
view of another layer for clarity. All spins always have the same inphase deviations
and the same orientations in the co-rotating frame. They are translated into inphase
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oscillations of spin orientations along the x direction in the laboratory frame giving
rise to uniform magnetic moment along this axis. Contrary, the components of spins
along y and z directions are canceled out across the whole crystal due to continuous
rotation of the ground state spin orientation. Substituting q = 0 into equations (2.21)
and (2.22) shows that both the frequency and amplitude of this mode along the x axis
are zero due to P (0) = 0. The movements of spins in this case are simplified to uniform
rotation of the whole cycloid around the x axis or, in other words, to the change in the
phase of the static cycloid. The mode is therefore often called phason in the literature.
There is also a general explanation why the frequency of the phason is zero: all spins
are equivalent even taking Hamiltonian (2.17) into account, so it is possible to chose
any spin to point, for example, strictly in the positive z direction without changing the
energy of the system. Now, due to the incommensurability of the spin cycloid with the
lattice constant, it is always possible to find some location on the spin cycloid to put
the spin pointing in the positive z direction so that the spin at a given fixed location
would point in the arbitrary predefined direction. Therefore, all spin cycloids with the
spin at a given location pointing in any direction have the same energy so it is possible
to continuously rotate the spin cycloid without changing its energy. Such property of
the phason remains intact even after introduction of any anisotropy in the plane of spin
cycloid as long as it does not violate translational invariance of the Hamiltonian and the
ground state stays incommensurate. The possible explanation of the nonzero frequency
of the phason observed experimentally is the pinning of the spin cycloid on various
defects [45]. In such scenario the ground state remains incommensurate cycloidal in
average. The randomly distributed defects introduce spin direction anisotropy on their
sites also braking translational invariance. The emerging P (0) 6= 0 in equations (2.21)
and (2.22) leads to both nonzero frequency and magnetic moment along the x axis of
the phason and it is this case that is explicitly shown in Fig. 2.17.
Another contribution to the optical absorption is produced by two degenerate magnons

with the wave vectors q = ±Q in the co-rotating frame. Examining polarization of
these magnons in the laboratory frame using equation (2.24) it is easy to see that
these magnons have nonzero magnetic moment which rotates in the yz plane clock- or
counterclockwise depending on the sign of the wave vector. The degeneracy of these
two magnons would be lifted in the presence of anisotropy in the plane of spin cycloid
and the new splitted modes will be linearly polarized. It is therefore better to examine
the symmetric and antisymmetric superpositions of the magnons at q = ±Q which
represent two possible linearly polarized modes. According to (2.24), the symmetric
combination is polarized along the y axis while antisymmetric - along the z axis.
Figure 2.18 schematically shows the antisymmetric mode. Being the combination of

two propagating magnons with opposite wave vectors, this mode is a standing wave.
The nodes are located at the sites with the spins pointing along the z direction whereas
the antinodes are located at spins along the y direction. The x and y components of
magnetic moment cancel out after averaging across the whole crystal and only the z
component makes a contribution to the optical absorption. The higher experimentally
observed AFMR mode (upper red circle in Fig. 2.16) can be attributed to this mode as it
has z polarization too. The fact that it is also observed along the y axis can be explained
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Figure 2.18: Schematic representation of the antisymmetric combination of magnons with q = ±Q in
the cycloidal antiferromagnet. The notations are the same as in Fig. 2.17. The spins in the co-rotating
frame are moving along elliptical orbits (black dashed ellipses) as shown by the gray arrow. This mode
is a standing wave with the nodes on the spins pointing along the z direction and it has nonzero dynamic
magnetization along this axis shown by the thick blue arrow.

assuming some remaining elliptical polarization of the mode instead of pure linear. The
symmetric mode shown in Fig. 2.19 has similar structure as the antisymmetric one and
is discussed in more detail below. It has dynamic magnetic moment in the y direction
which coincides with experimentally observed excitation condition of the lower AFMR
mode (lower red circle in Fig. 2.16).

In summary, although the current model has some shortcomings like inability to de-
scribe nonzero frequency of the phason or the splitting of the modes in yz plane, it still
predicts the existence of three AFMR modes with correct excitation conditions. It also
delivers a valuable information about the movement of individual spins in the analytical
form. Moreover, other models can introduce more complicated interactions as small
perturbations over the ground state and the excitations we derived in this chapter.
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Figure 2.19: Schematic representation of the symmetric combination of magnons with q = ±Q in the
cycloidal antiferromagnet. The notations are the same as in Fig. 2.17. The spins in the co-rotating
frame are moving along elliptical orbits (black dashed ellipses) as shown by the gray arrow. This mode
is a standing wave with the nodes on the spins pointing along the y direction and it has nonzero dynamic
magnetization along this axis shown by the thick blue arrow. In the presence of IDM interaction the
mode also gains an electric dipole along the x axis shown as a thick purple arrow.

2.5.5 Inverse Dzyaloshinskii-Moriya model of electromagnons

The first model proposed to describe the static electric polarization [46] and the strong
optical absorption [38] both emerging in the cycloidal state of rare earth manganites
was based on the inverse Dzyaloshinskii-Moriya (IDM) interaction. Another name
widespread in the literature and used by authors of Ref. [38] is the spin current model.
This interaction, first introduced phenomenologically [47], is basically a correction to a
superexchange which accounts for the spin-orbit coupling [48]. In its general form the
single term is written as:

HIDM,j =
∑

α

dα

(

rj+ 1

2

)

· (Sj × Sj+1) .

The Dzyaloshinskii-Moriya vectors dα depend on the local symmetry of the bond con-
necting two spins. In case of the perovskite structure of rare earth manganites the
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following vectors are allowed by the symmetry of Mn2O bonds [49]:

dα = γ
(

δj→j+1 × rj+ 1

2

)

.

Here, γ is the strength of the interaction, vector δj→j+1 connects Mn spins j and j + 1,
and rj+ 1

2

is the displacement of the oxygen atom from the middle of the Mn-Mn bond.
Using the properties of the mixed vector product the following expression for the IDM
interaction part of the Hamiltonian can be obtained:

HIDM = γ
∑

j

(

δj→j+1 × rj+ 1

2

)

· (Sj × Sj+1) = γ
∑

j

rj+ 1

2

· ((Sj × Sj+1)× δj→j+1) .

Taking the coordinate system and summation rules used in the present work into ac-
count, the IDM part takes the form:

HIDM = −γ
∑

l

∑

j

∑

k=j,j±2,...

(

rj− 1

2
,k+ 1

2
,l · (δ−1,1,0 × (Sj,k,l × Sj−1,k+1,l)) +

+ rj+ 1

2
,k+ 1

2
,l · (δ1,1,0 × (Sj,k,l × Sj+1,k+1,l))

)

,

(2.25)

where vectors δ−1,1,0 and δ1,1,0 are:

δ−1,1,0 =





−a
b
0



 ; δ1,1,0 =





a
b
0



 .

In order to find displacements rj+ 1

2

and, therefore, the electric polarization P, con-
sideration of the phononic part of the Hamiltonian is required. Re-examination of the
full spin Hamiltonian is also needed to account for the influence of the Jahn-Teller dis-
tortions on the magnetic structure. However, if the interaction constant γ is assumed
to be small it is possible to use the ground state (2.23) and magnons (2.24) to calculate
both static and dynamic spin induced polarizations in a perturbative manner. Indeed,
the additional IDM energy (2.25) is linear in the displacement. Adding to the general
quadratic term, the IDM interaction will lead to the shift of equilibrium atom positions
in order to minimize total energy. On the qualitative basis the shifts of oxygen atoms
will occur in the following directions with roughly the same amplitudes:

rj− 1

2
,k+ 1

2
,l ↑↑ δ−1,1,0 × (Sj,k,l × Sj−1,k+1,l) ; rj+ 1

2
,k+ 1

2
,l ↑↑ δ1,1,0 × (Sj,k,l × Sj+1,k+1,l) .

An average electric polarization P is then proportional to:

P ∼
∑

l

∑

j

∑

k=j,j±2,...

(

rj− 1

2
,k+ 1

2
,l + rj+ 1

2
,k+ 1

2
,l

)

∼
∑

l

∑

j

∑

k=j,j±2,...

Pj,k,l,

with the partial space dependent polarization

Pj,k,l = δ−1,1,0 × (Sj,k,l × Sj−1,k+1,l) + δ1,1,0 × (Sj,k,l × Sj+1,k+1,l) .
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The expressions above contain products of spins which are assumed to be complex
numbers. In order to obtain the real physical quantities it is necessary to take real
or imaginary parts from the final result. Maintaining all intermediate expressions in
complex form greatly simplifies the calculus. However, care should be taken in handling
expressions containing the product of two or more complex quantities as Re(ab) 6=
Re(a)Re(b) for complex a and b. Namely, there are two types of products. One is a
mathematical separation of the complex amplitude of the wave as in A · exp(ı(kr−ωt)),
where the product should be taken in the complex form. Another type is the product
of two real physical quantities like Sj,k,l × Sj+1,k+1,l, where the product of the real or
imaginary parts of the factors is indeed used. In the case above this does not lead to
much of complications as only the zero and first order terms in amplitude A are of
interest. The expression for the static spin order (2.23) is real as a whole and for the
real p and complex a it is possible to exchange the operations of multiplication and
taking real or imaginary part: Re(pa) = pRe(a).
Substituting expressions (2.23) and (2.24) for the total spin Sj,k,l = R̂kα+lπS0 +

R̂kα+lπAeıqr, the partial space dependent polarization Pj,k,l up to the terms linear in
the wave amplitude A can be easily found:

Pj,k,l(q) = 2bS2 sin(α)





0
0
1



+ 2bSAye
ıqr cos(α)

(

cos(qaa)e
ıqbb − 1

)





0
0
1



 +

+ SAxe
ı(q+Q)r





ıb
(

cos(qaa)e
ıqbb − eıα

)

a sin(qaa)e
ıqbb

ıa sin(qaa)e
ıqbb



 +

+ SAxe
ı(q−Q)r





−ıb
(

cos(qaa)e
ıqbb − e−ıα

)

−a sin(qaa)e
ıqbb

ıa sin(qaa)e
ıqbb



 .

The first term without wave amplitude A gives the static part of electric polarization
P0. For the spin cycloid in the yz plane it has the only component along the z axis P

(z)
0 ∼

NbS2 sin(α) and it vanishes in the collinear phase. It also changes sign upon reversal
of α, showing that the antiferromagnetic domains are simultaneously the ferroelectric
domains.
The other terms linear in A represent the dynamic part of electric polarization PA.

In order to prevent the canceling out during summation over the crystal these terms
should have no harmonic spatial dependence. This is achieved either at q = 0 for the
second term or at q = ±Q for the last two terms. In the first case the whole term will
be still zero due to the factor cos(qaa)e

ıqbb − 1 = 0 at q = 0. In the second case y and
z components will be zero as they both contain factor sin(qaa) = 0 because of Qa = 0.
Taking only the space independent part of electric polarization into account, the only
remaining component along the x axis is:

P
(x)
j,k,l(+Q) = P

(x)
j,k,l(−Q) = 2bSAx sin(α).

Both magnons at q = +Q and q = −Q have the same contribution to the dynamic
electric polarization. This means that the antisymmetric superposition of these magnons
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shown in Fig. 2.18 has no electric moment while the symmetric combination has electric
dipole moment along the x direction P

(x)
A ∼ NbSAx sin(α) shown as a thick purple arrow

in Fig. 2.19. The symmetric mode thus represents an electromagnon which is active
along the x axis for the yz spin cycloid. Like the static polarization, the electromagnon
disappears in the collinear phase. The simultaneously present magnetic moment along
the y direction of this mode gives rise to a linear dynamic magnetoelectric effect given
by a nonzero element χxy of the magnetoelectric tensor.
A detailed examination of the motion of spins in the symmetric mode provides a

more intuitive explanation of the origin of IDM electromagnon commonly found in the
literature. In the moment of time as illustrated in Fig. 2.19 all spins pointing in the
positive z direction have deviations in the negative direction of the x axis and vice
versa, the spin pointing in the negative z direction deviate in the positive x direction.
Therefore, the spin cycloid in the whole crystal is slightly rotated around the y axis at
this moment of time and the movement of spins in the symmetric mode can be viewed as
a small oscillatory rotation of the cycloid. Now, the electric polarization is determined
by the orientation of spins only and should also slightly rotate around the y axis away
from its ground state direction along the z axis. Such rotations give rise to the dynamic
component of electric moment along the x axis.

2.5.6 Heisenberg exchange model of electromagnons

One important prediction of the previous model is the coupling of the excitation condi-
tion of electromagnon to the orientation of the spin cycloid. However, the experimental
findings have shown the opposite, as electromagnons were always excited by an electric
field along the x direction, irrespectively whether the spin cycloid was in xy or yz planes.
Such discrepancy stimulated the search for new underlying mechanisms. A successful
attempt is the exchange striction model of spin-phonon coupling based on the symmetric
Heisenberg exchange (HE) [40, 50].
The nearest-neighbour exchange constant J depends generally upon the positions r

of the oxygen atoms in Mn-O-Mn bonds and it is possible to expand it in Taylor series:

J(r) = J(0) +
∂J

∂r
· r = J(0) +

∂J

∂φ

∂φ

∂r
· r. (2.26)

Here φ is the Mn-O-Mn bond angle (see Fig. 2.20). In this case the most important
dependency comes not from the displacement of oxygen atoms itself, but indirectly
from the change of Mn-O-Mn bond angle caused by the displacements. The exchange
constant J is maximal for the straight angle φ = π and decreases with decreasing angle
as it follows from the Goodenough-Kanamori-Anderson rules. The equilibrium angle
φ0 substantially differs from π for rare earth manganites in question (see Fig. 1.11), so
the nonvanishing first derivative ∂J/∂φ > 0 exists and is the same for all Mn-O-Mn
bonds. On the other hand, the tilting Jahn-Teller distortions, schematically shown in
Fig. 2.20, lead to the alternating derivative ∂φ/∂r. Using the same indexing scheme as
in Fig. 2.12, the derivative can be represented as ∂φ/∂x ∼ (−1)k. Assuming that the
oxygen displacements are caused by the applied electric field E it is possible to write
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Figure 2.20: Scheme of the symmetric Heisenberg exchange interaction accounting for the Jahn-Teller
distortions in rare earth manganites. The ab crystallographic plane of the orthorhombic unit cell with
the most important for the model tilting distortions is shown in the left frame. The blue circles are Mn
atoms with the spins shown as black arrows. The magenta circles represent the oxygen atoms with the
black lines along Mn-O-Mn bonds. The dashed gray lines show the bonds in the undistorted perovskite
structure. The uniform shift of all oxygen atoms along the a direction shown on the right side causes the
modulation of the ferromagnetic nearest neighbour exchange along the b axis. The exchange constant
between the left and two middle Mn spins is increased while the exchange constant between the right
and the middle spins is decreased. The induced spin rotations are shown by the black curved arrows.

r ∼ E and rx ∼ Ex. Substituting (2.26) into the general expression for the exchange
interaction J(Sj ·Sj+1), the first term gives the nearest-neighbour ferromagnetic exchange
already included in (2.17). The second term is the required spin-phonon coupling and
can be expressed as [40]:

HHE = −gEx

∑

l

∑

j

∑

k=j,j±2,...

(−1)k ((Sj,k,l · Sj−1,k+1,l) + (Sj,k,l · Sj+1,k+1,l)) . (2.27)

Within the present indexing scheme it is possible to write (−1)j instead of (−1)k under
the sum. Indeed, (−1)j−k = 1 as j − k is always even. Now, (−1)k = (−1)k · 1 =
(−1)k(−1)j−k = (−1)j . The physical meaning of such a symmetry will be clear below.

The coupling of magnons to the lattice vibrations occurs schematically as follows.
The uniform shift of all oxygen atoms in the MnO2 planes along the x axis, shown in
the right frame of Fig. 2.20, causes the angle φ to increase for the two left Mn-O-Mn
bonds and to decrease for the two right bonds. The increased exchange constant for
the two left Mn-O-Mn bonds would cause the left Mn spin to align with the two central
spins while the right Mn spin would tend to misalign with the central spins due to
the decreased exchange constant for the two right bonds. The effective torques due to
oxygen displacements act upon Mn spins in alternating directions while moving along
the zigzag Mn chains in x or y directions. The torque forces are shown in the right
frame of Fig. 2.20 by the curved arrows. Therefore, the uniform shift of oxygen atoms
in MnO2 planes caused, for example, by the uniform electric field along the x axis is
expected to couple to the magnon at the boundary of the Brillouin zone.
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The electric polarization can be easily found according to the thermodynamic relation
P = −∂H/∂E. Analogously to the case of IDM interaction, the x component of the
averaged polarization is given by:

P (x) ∼
∑

l

∑

j

∑

k=j,j±2,...

P
(x)
j,k,l,

with the space dependent polarization

P
(x)
j,k,l = (−1)k ((Sj,k,l · Sj−1,k+1,l) + (Sj,k,l · Sj+1,k+1,l)) .

Substituting expressions (2.23) and (2.24) for the total spin Sj,k,l the following expression
is easily found:

P
(x)
j,k,l = 2S(−1)k

(

S cos(α) + Ay sin(α)
(

1− cos(qaa)e
ıqbb

)

eıqr
)

.

The static term vanishes for the spin cycloid due to alternations of spin-phonon in-
teraction along the y axis. However, it predicts a nonzero spontaneous polarization for
the “up-up-down-down-...” spin order [40] typical for rare earth manganites at the right
part of the incommensurate phases in the Mn-O-Mn bond angle diagram 1.11.
Contrary to the static term, the dynamic part of electric polarization exists only in

the noncollinear magnetic structures as, otherwise, sin(α) = 0. In order to obtain the
average dynamic polarization the wave exponent has to be exp(ıqr) = exp(ı(±π/b)bk) =
(−1)k or exp(ıqr) = exp(ı(±π/a)aj) = (−1)j . The seemingly four different wave vectors
are actually the same and they are at the same point in the reciprocal space. They
correspond to the four black circles in the corners of the Brillouin zone in Fig. 2.12. The
ambiguous representation of the zone corner point explains the existence of two different
notations for the spin-phonon coupling (2.27).
Figure 2.21 shows the exaggerated motion of spins for the zone corner magnon. It can

be well seen that for the moment of time depicted in the figure the first two spins in the
zigzag Mn chain are almost perfectly aligned with each other. Therefore the Mn-O-Mn
bond between the first and the second Mn spins forms almost a straight angle. The
same is also true for the third and fourth spins and so on. The second and the third
spins in the chain are contrary quite misaligned so the Mn-O-Mn angle for this pair is
considerably smaller than the straight angle. The average displacement of oxygen atoms
required to produce such a pattern occurs in the positive x direction producing dynamic
electric polarization P

(x)
A ∼ NSAy sin(α) shown as a thick purple arrow in Fig. 2.21. In

the next half period of spin wave oscillation the picture will be the opposite and the
displacements of oxygen atoms will be in the negative direction of the x axis.
Up to now only the coupling of electric field along the x axis to the magnons was

considered. In general, the uniform shift of all oxygen atoms in one of the crystallo-
graphic directions leads to the modulation of the exchange constants along other axes
as well. Indeed, as can be easily seen from the crystal structure shown in Fig. 1.8, the
shift of oxygen atoms along the x axis leads to the modulation of exchange constants
along y and z directions, the shift in the y direction leads to modulations along x and
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Figure 2.21: Schematic representation of the magnon in the corner of the Brillouin zone in the cycloidal
antiferromagnet. The notations are the same as in Fig. 2.17 with additional magenta circles representing
oxygen atoms in MnO2 planes. The spins in the co-rotating frame are moving along elliptical orbits
(black dashed ellipses) as shown by the gray arrow. In the presence of HE interaction the oxygen atoms
move towards the center of Mn-O-Mn bond if the adjacent spins are almost collinear and in the opposite
direction if spins are less aligned. The overall motion of oxygen atoms yields the electric dipole moment
along the x axis shown as a thick purple arrow.

z directions and the shift in the z direction causes the modulation along the x axis.
The new coupling terms along x and z axes do not result, however, in the excitations of
magnons because the spin order along these directions is collinear and is not sensitive
to the small modulation of exchange constant. It is the combination of the structural
peculiarities of the distorted perovskites and the sensitivity of the cycloidal spin order
to small perturbations of the exchange constant that leads to the unique excitation
condition e‖a of electromagnons within Heisenberg exchange model.

Further theoretical attempts based on the symmetric exchange to describe low fre-
quency electromagnons also exist [41, 51]. One of the approaches is to include various
additional terms into the spin Hamiltonian to obtain an elliptical cycloidal state. These
elliptical distortions lead to the appearance of electro-activity at other wave vectors on
the magnon branches with lower frequencies. However the amplitude of elliptical dis-
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2.5 Cycloidal incommensurate antiferromagnet

tortion required to obtain the observed strength of the low frequency electromagnon is
too high and the origin of the low frequency electromagnon is still under the debate.
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3 Experimental techniques

Most of the results in this thesis were obtained using quasi-optical spectrometry in the
frequency range 60-1200 GHz (2-40 cm−1). From the experimental point of view, this
range fills the gap between microwave and far infrared regions of the electromagnetic
spectrum. From the physical point of view, the photon energies match the magnons, i.e.
excitations of the spin subsystem in a large number of magnetically ordered materials.
As the ferroelectricity and magnetoelectric effects in rare earth manganites are caused
by magnetic order, terahertz (THz) spectroscopy is a natural choice for the study of
magnetoelectric dynamics in these systems. A general overview of Mach-Zehnder in-
terferometric arrangement, some specific details of the most crucial components of the
spectrometer, and the measurement procedure are discussed first. Details of the spectra
treatment in the case of coherent radiation, typical for the present setup, are provided
afterwards. The samples of rare earth manganites, studied in this work, are discussed
in the last subsection.

3.1 Mach-Zehnder interferometer

A schematic drawing of a Mach-Zehnder spectrometer is shown in Fig. 3.1. The radiation
originates from the backward wave oscillator (BWO), which can be viewed as a point-
like source with a good accuracy [52, 53]. The lens in front of the BWO transforms the
diverging spherical beam into the parallel one. The beam splitter consists of a wire grid
polarizer. The radiation with electric field perpendicular to the wires passes through,
while the radiation with electric field along the wires is almost perfectly reflected. This
implies that the beams in the main and reference arms have orthogonal polarizations.
Another wire grid polarizer in front of the beam splitter is used to adjust the amplitudes
of the main and reference beams. Both beams are joined together in the same way –
the polarizer with the setting, rotated by 90◦ relative to the beam splitter, reflects the
main beam and passes the reference beam to the detector. As the polarizations of these
two beams are still orthogonal to each other, they cannot interfere. A wire grid analyzer
is placed before the detector to rotate the polarizations of the beams to the common
direction. The combined beam is focused on the detector – a liquid helium cooled
bolometer. Two lenses in the main arm are used to focus the beam on the sample,
which is placed in the common focal plane of the lenses. The sample has to be at least
2-3 wavelengths in diameter in order to avoid diffraction effects. Smaller samples can
also be measured, but only in the scanning mode, where the changes in transmittance
as a function of magnetic field or temperature are of the interest (see below). Identical
lenses are placed in the reference arm to compensate for the additional phase shift due to
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Figure 3.1: Scheme of a submillimeter Mach-Zehnder interferometer. The main arm with the sample
is in the upper left of the scheme (red rays), while the reference arm is shown in the right bottom
by the green rays. Short arrows indicate the polarization of the beams. 1 – backward wave oscillator
(BWO), 2 – lenses, 3 – attenuators, 4 – chopper, 5 – wire grid polarizers, 6 – wire grid beam splitters,
7 – Oxford cryomagnet, 8 – movable mirror, 9 – oscillating mirror (phase modulator), 10 – bolometer.

the optical thickness of the lenses in the main arm. The beams in both arms are reflected
by 45◦ incidence mirrors. One of the mirrors is able to oscillate at low frequency (around
20-30 Hz), while the other can be continuously moved within a range of 10 mm. Both
of these degrees of freedom are necessary during the phase measurements. In order
to apply magnetic fields up to 8 T and at temperatures ranging from 2 to 300 K, the
sample is placed in a commercial cryomagnet from Oxford Instruments. It has four
optical windows fitted with 50-70 µm thick Mylar (polyethylene terephthalate = PET
foil), which is highly transparent for the radiation in the THz frequency range.

Backward wave oscillators are vacuum tube-based sources of continuous radiation.
Free electrons are emitted by the heated cathode and accelerated by the voltages up to
6 kV. The electrons are collimated into a narrow beam by an external magnetic field and
travel along the slow wave structure. The emitted waves travel in the opposite direction,
which leads to the name BWO. The maximum energy transfer from the electron beam
to the THz radiation takes place, when the effective phase velocity of the radiation co-
incides with the velocity of electrons. The velocity of electrons ve is proportional to the
square root of the accelerating voltage U , ve ∝

√
U . Thus, by changing the voltage U ,

the frequency of the radiation can be tuned by a factor of 1.5-2. On the contrary, the
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3.1 Mach-Zehnder interferometer

intensity of the outcoming radiation cannot be tuned intrinsically. A set of fixed attenu-
ators is used instead, to meet the transmittance of particular samples. In order to cover
the frequency range 38-1050 GHz, 9 backward wave oscillators of different construction
are used. Compared to other sources of continuous THz radiation like photomixing
generators or synchrotron radiation, BWOs are very compact and often provide much
higher output intensities. The most observable drawback is almost complete cessation
of the production (with only one single Russian company on the market). For more in-
formation about BWOs and other optical elements of the submillimeter Mach-Zehnder
interferometer, see Ref. [53].
The liquid helium cooled bolometer is available commercially as a detector for far

infrared spectral range. At the core of the bolometer is a small piece of semiconductor
with a very high temperature coefficient of resistivity at 4 K. The incoming radiation
heats the semiconductor and the rise of its temperature can be detected as a change of
the resistance. Very low specific heat at helium temperatures also significantly increases
the sensitivity of the bolometer. As the absorbed heat is measured directly, it also has
almost frequency independent characteristic. However, such a detector does not have a
well defined zero – the resistance can slowly drift with the time due to various factors.
In order to overcome this feature and also to increase signal to noise ratio, a lock-in
detection technique is used in both transmission and phase measurement modes.
In the transmission measurement mode, the reference arm is closed with a thick

absorber of THz radiation, and only the main path is used. The beam is modulated
mechanically by the chopper, which is made of a metal disc divided into sectors. The
size of the sectors is chosen in such a way, that the radiation can fully pass through the
empty sectors and is completely reflected by the metal ones. This ensures the maximal
depth of the modulation. The detected signal as a function of frequency is measured
twice: the first time without the sample, yielding the reference spectrum Iref(ω), and the
second time with the sample, obtaining Isam(ω). The intensity transmission coefficient
through the sample is calculated as T (ω) = |t(ω)|2 = Isam(ω)/Iref(ω). Here, t(ω) is the
complex transmission coefficient (see the next section). The procedure above is accurate,
if the radiation reflected from the sample can be ignored. In reality, however, this part
of radiation is reflected back by various optical elements and still reaches the detector.
The frequency-dependent interference of these secondary beams with each other and
with the primary beam leads to the formation of a complex structure of maxima and
minima in the observed spectrum. These irregular oscillations are superimposed to the
intrinsic spectrum of the sample, giving it a “noisy” look (see Fig. 3.3, for example).
However, the standing wave pattern is highly reproducible and can easily be obtained
e.g. on the next day, provided the measurement arm was not changed in between. The
limited sample volume in the Oxford cryomagnet (26 mm bore) with a lot of metallic
cladding increases the effects of the standing waves. If higher quality spectra in zero
magnetic fields are required, another cryostat with larger windows and sample volume
is used. Another way is to measure the detector signal as a function of magnetic field
or as a function of temperature at a fixed frequency. In most cases, the changes of
the sample properties are not large enough to significantly alter the amplitude of the
reflected wave or the diffraction pattern from the small sample. A much smoother curve
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is obtained, allowing to detect fine changes in the optical parameters of the sample.
Calibration without the sample is normally not performed, but the whole dependency
is scaled to give the same value of transmission as obtained from the spectrum at the
initial conditions (zero field or some fixed temperature).
In the phase measurement mode, both arms of the interferometer are opened. The

main beam is phase modulated via the oscillating mirror, while the movable mirror in
the reference beam adjusts the static phase shift. In order to better understand the
procedure of phase stabilization, automatically performed by an electronic block of the
spectrometer, a simple mathematical formulation would help. Assume that the electric
field at the detector of the wave from the main arm is Esam sin(ϕsam − ωt), and of
the wave from the reference arm is Eref sin(ϕref − ωt). The power P detected by the
bolometer is proportional to the time average of the square of the total electric field.
The square of the total field can be transformed to

P (t) ∝ (Esam sin(ϕsam − ωt) + Eref sin(ϕref − ωt))2 =

= E2
sam sin2(ϕsam − ωt) + E2

ref sin
2(ϕref − ωt)+

+ EsamEref (cos(ϕsam − ϕref)− cos(ϕref + ϕsam − 2ωt)) ,

with the time-averaged value

P ∝ E2
sam + E2

ref + 2EsamEref cos(ϕsam − ϕref).

As the fields Esam and Eref are assumed to be constant (not modulated), only the
interference term can be detected by the lock-in amplifier. The arms of the interferometer
are adjusted during initial assembly to have the same optical length without the sample
and with the movable mirror near the middle of the range. The phase difference can be
written then as

ϕsam − ϕref = ϕt + δϕ− 2π

λ
d− 2π

λ
∆l = ϕt −

2π

λ
(d+∆l) + δϕ = ∆ϕ + δϕ.

Here, δϕ = (2πδl/λ) cos(Ωt) is the phase modulation of the main beam due to the
oscillations of the mirror with the amplitude δl and frequency Ω, ϕt is the phase of
the wave transmitted through the sample with the thickness d, 2πd/λ is the phase of
the wave in the reference path gained on the same distance d as the thickness of the
sample and ∆l is the compensating displacement of the movable mirror. The necessity to
subtract the term 2πd/λ in the expression above can be easily demonstrated, as follows.
The transmission phase for a virtual sample made of air is ϕt = 2πd/λ. The term under
discussion and ϕt cancel each other then, yielding ∆l = 0, as expected. Rewriting the
interference term, we get

P ∝ EsamEref cos(∆ϕ+ δϕ) = EsamEref (cos(∆ϕ) cos(δϕ)− sin(∆ϕ) sin(δϕ)) .

Assuming moderate modulation depth δϕ = δϕ0 cos(Ωt) < 1, the expression above can
be expanded into Taylor series up to the terms quadratic in the amplitude δϕ0. The first
term with cos(δϕ) gives zero and second harmonic contributions in terms of modulation
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3.2 Analysis of the spectra

frequency Ω. The zero frequency component is not detected experimentally and will
be omitted in the following expression. The second term with sin(δϕ) gives the first
harmonic contribution:

P ∝ −EsamEref cos(∆ϕ)
δϕ2

0

4
cos(2Ωt)− EsamEref sin(∆ϕ)δϕ0 cos(Ωt). (3.1)

The algorithm of the automatic phase compensation procedure can now be easily
explained. The amplitude of the first harmonic A1 ∝ −EsamEref sin(∆ϕ)δϕ0 depends
on the displacement of the movable mirror ∆l, because ∆ϕ = ϕt − 2π(d + ∆l)/λ.
If A1 is positive, the mirror is moved in one direction, otherwise – in the opposite
direction. The mirror will then move towards the position where sin(∆ϕ) = 0. The
directions of the movements are chosen in such a way that ∆ϕ = 2πm are the stable
points. The integer number m is called the interference order. From the stabilization
condition ∆ϕ = 2πm = ϕt−2π(d+∆l)/λ it follows that the mirror position is generally
dependent on the wavelength: ∆l = (ϕtλ)/(2π)− d−mλ. The only exception is when
the interferometer is in the zero-th order. This fact is used to find it manually. Note that
the optical thickness of the sample (ϕtλ)/(2π) = nd is almost wavelength independent,
unless a strong dispersion of the refractive index n is present. In zero-th interference
order the mirror displacement is directly related to the transmission phase of the sample:
∆l = (ϕtλ)/(2π)−d. The overall procedure is similar to the transmission measurements.
The mirror position without the sample is obtained first, to get the calibration curve
∆lref(ω). The measurement with the sample yields ∆lsam(ω). The required phase shift
across the sample is now ϕt(ω) = 2π(∆lsam(ω) − ∆lref(ω) + d)/λ(ω). If the phase
shift is measured as a function of magnetic field or temperature, the calibration is not
performed, but the whole curve can be shifted by a constant value, to coincide with the
known point.

It can be easily seen from expression (3.1), that if the amplitude of the first harmonic
is zero, the amplitude of the second harmonic is maximal and is proportional to the
field in the main arm Esam. Therefore, the absolute value of the complex transmission
coefficient |t(ω)| =

√

T (ω) ∝ Esam can be obtained by measuring the amplitude of the
second harmonic. This mode is often used in the magnetic field or temperature scans.

During the measurements at room temperature without magnetic field, the sample
can be removed for the calibration simply by hand. In the case when one of the cryostats
is involved, a special sliding sample holder is used, allowing removal of the sample out of
the beam. The Oxford cryomagnet has its superconducting windings in the form of two
split coils, inducing magnetic field in the horizontal plane. The beam can pass through
the central hole of the coils, or along the perpendicular direction between the coils. The
change between these arrangements is achieved via rotating the whole cryomagnet by
90◦ with a lifting crane. The arrangement where the magnetic field is directed along
the beam is called Faraday geometry, while the arrangement with the magnetic field
perpendicular to the beam is called Voigt geometry.
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Figure 3.2: Cross section of the plane-parallel sample with the thickness d, permittivity ε and perme-
ability µ. The incident wave with the amplitude Ain (shown as a black arrow) comes from the left. The
reflected wave with the amplitude Ar propagates back in the negative z direction. The transmitted
wave with the amplitude At travels further towards the detector. The cumulative electric field at the
left boundary of the sample is denoted as Ex, on the right boundary – as E′

x (shown as red arrows).
Similarly, the total magnetic field on the left boundary is Hy, and on the right boundary is H ′

y (blue
circles, magnetic fields are directed normal to the plane of the figure).

3.2 Analysis of the spectra

All measurements in the present work were done in the slab geometry under the normal
incidence of the radiation onto the samples. The electric and magnetic fields of the
beam were always directed along the principle axes of the dielectric ε̂ and magnetic µ̂
tensors. In this case the complex transmission and reflection coefficients can be obtained
in the simpler model, which assumes that the plane-parallel sample is isotropic with
permittivity ε and permeability µ. The cross section of such a sample is shown in
Fig. 3.2.

Assume that the linearly polarized incident wave with the amplitude Ain falls on the
sample of the thickness d from the left. What should be calculated are the amplitudes
of reflected Ar and transmitted At waves (shown as black arrows in Fig. 3.2). The polar-
ization of the waves is assumed with the electric field along the x axis and the magnetic
field along the y axis. The propagation direction of the waves is along the z axis. The
total electromagnetic field of the radiation inside the sample can be decomposed into
two waves, traveling in the opposite directions. The wave with the positive propagation
direction has the relation E+

x = ζH+
y between electric E+

x and magnetic H+
y fields at

each point within the sample. Here,

ζ =

√

µ

ε

is the dimensionless impedance (Gaussian units are assumed). The electric field at the
right boundary of the sample E+

2,x is connected to the field on the left boundary E+
1,x via

the relation E+
2,x = E+

1,xe
ıkd. The wave vector k can be calculated from the dispersion
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relation
k =

√
εµ

ω

c
,

where ω is the angular frequency of the coherent radiation. Here, the form eı(kz−ωt) of a
plane wave is assumed. Similarly, for the wave with the negative propagation direction,
the relations E−

x = −ζH−
y and E−

2,x = E−
1,xe

−ıkd hold. Using these four equations, it is
possible to connect the total electric Ex = E+

1,x + E−
1,x and magnetic Hy = H+

1,y +H−
1,y

fields on the left boundary with the total fields E ′
x = E+

2,x + E−
2,x and H ′

y = H+
2,y +H−

2,y

on the right boundary (see also the definition of the matrix Ŵ below). This relation
can be written in the matrix form V′ = M̂V, where

V =

(

Ex

Hy

)

; V′ =

(

E ′
x

H ′
y

)

; M̂ =

(

cos(kd) ıζ sin(kd)
ıζ−1 sin(kd) cos(kd)

)

.

The matrix M̂ is called transfer matrix.
The choice of the total electric and magnetic fields as intermediate variables has at

least two advantages. Firstly, in the absence of conducting surfaces like two dimen-
sional electron gases, the tangential components of both electric and magnetic fields
are continuous across the boundaries. In the case of a single layer, as in Fig. 3.2, the
fields just outside the sample are the same as just within the sample, that is, V on the
left boundary and V′ on the right boundary in Fig. 3.2. In the case, when the sample
consists of m different layers, the relation between fields at two outermost surfaces has
the same form V′ = M̂totalV. The total transfer matrix M̂total is easily calculated as a
product of transfer matrices of single layers: M̂total = M̂1M̂2 . . . M̂m. Secondly, if the ef-
fects of polarization rotation within the sample have to be accounted for, more complex
4×4-matrix formulation [54] is required. However, it is a generalization of the present
method and it also uses the total fields as intermediate variables. Two dimensional
conducting surfaces can also be easily described within the current formalism, see the
supplementary material of Ref. [55], for example.
The total electric and magnetic fields on the left side of the sample are composed

from the amplitudes of incident and reflected waves (see Fig. 3.2). Generally, such
composition can also be written in the matrix form: V = ŴA, where

A =

(

A+

A−

)

; Ŵ =

(

1 1
1 −1

)

;

A+ is the amplitude of the wave traveling in the positive direction of the z axis, and A−

– of the wave in the negative direction. Either electric or magnetic field can be chosen
as an amplitude of the wave. Both choices lead to the same result up to the sign of the
reflection coefficient. The matrix Ŵ above is written for the case when electric field is
the amplitude of the wave: A+ = E+

x and A− = E−
x . The system of equations to find

the reflected and transmitted waves is then:
(

At

0

)

= Ŵ−1M̂Ŵ

(

Ain

Ar

)

;

(

t
0

)

= Ŵ−1M̂Ŵ

(

1
r

)

.
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Here, the fact that there is no wave coming from the detector is used. The complex
transmission t and reflection r coefficients are defined as t = At/Ain and r = Ar/Ain.
Solving the last system of two equations in two variables t and r, the following expression
of the transmission coefficient through a single layer slab can be obtained:

t =

(

cos(kd)− ı
ζ + ζ−1

2
sin(kd)

)−1

. (3.2)

If the sample is anisotropic, the values of permittivity and permeability should be
taken along appropriate principal axes. For example, in the case shown in Fig. 3.2,
ε = εx and µ = µy are to be taken. The values of εy and µx can be obtained on the same
sample by rotating the incident polarization by 90◦. In order to obtain the z-components
of permittivity and permeability, at least one other sample with the x or y axis along the
beam is required. If the excitations of both electric and magnetic nature are intermixed
in the material, the full set of six measurements on three different samples is necessary
in general to unambiguously determine selection rules of the observed modes. Examples
of such polarization comparison for terbium manganite are given in Figs. 1.5 and 7.3.
The complex transmission coefficient t = |t|eıϕ can be constructed from two real

values of transmission coefficient |t| and phase shift ϕ. Expression (3.2) contains two
complex parameters ε = ε1 + ıε2 and µ = µ1 + ıµ2, which are equivalent to four real
variables. Therefore, the complex transmission is generally not enough to determine
optical parameters of the sample. However, magnetic response is limited to the narrow
absorption modes of ferromagnetic or antiferromagnetic resonances at THz frequencies.
Outside these resonances magnetic susceptibility is negligible, and µ = 1 with a good
accuracy. In this case the formula (3.2) can be either used to fit experimental spectra,
or can be viewed as a system of two equations in two variables ε1 and ε2 in order to
obtain the permittivity of the sample directly. If a magnetic response is present in the
sample, it can be well described in most cases by a Lorentz-shaped absorption mode in
µ:

µ(ω) = 1 +
∆µω2

0

ω2
0 − ω2 − 2ıωγ

Here, ∆µ is the strength of the resonance, ω0 is the resonance frequency and γ is a
half-width of the resonance. A direct fit of transmission and phase spectra is used then
to obtain both magnetic and dielectric properties of the material.
An example of the transmission spectrum together with the fit is shown in Fig. 3.3.

The frequency in this and all other figures in the thesis is represented in the reciprocal
wavelength λ−1 = ω/(2πc). Such units are directly proportional to the frequency ω and
are common in the infrared spectroscopy. Comparing with other common frequency
and energy units, 10 cm−1 = 300 GHz = 1.24 meV = 14.4 K. The oscillations in the
spectrum are caused by multiple reflections on the sample surfaces. The sample can
be viewed as a Fabry-Pérot resonator with a low quality factor. The condition of the
transmission maximum is that an integer number of wavelengths should fit into the
double optical thickness of the sample: 2nd = mλ. The experimental oscillations are well
fitted by formula (3.2) allowing to reliably determine the refractive index n ≈ √

ε1 = 3.77
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Figure 3.3: Example of a transmission spectrum of TbMnO3 with electric field along the b axis and
magnetic field along the a axis. Symbols represent experimental data, solid line is a fit with a constant
ε = 14.18 + ı0.53 and Lorentzian in µ. Parameters of the magnetic mode are ∆µ = 0.01, ω0 =
22.36 cm−1 and γ = 4.61 cm−1. The oscillations in the spectrum are due to Fabry-Pérot interferences,
caused by multiple reflections on the sample surfaces.

from the transmission spectrum. The phase spectrum is not needed in this case. The
slow decrease of the transmission with the frequency is well described by the constant
imaginary part of permittivity ε2 = 0.53. The broad minimum of the transmission at
23 cm−1 is caused by the phason, which is excited magnetically (h‖a) in this polarization
(see Fig. 2.17 and explanations in the text for the details). The parameters of the
resonance obtained from the fit are ∆µ = 0.01, ω0 = 22.4 cm−1 and γ = 4.6 cm−1.

3.3 Sample characterization

The samples of rare earth manganites RMnO3 were synthesized by a floating zone
method at the Moscow Power Engineering Institute [56]. The powders of Mn2O3 and
R2O3 were milled, mixed and preliminary annealed at temperatures around 1300◦C. The
obtained substances were then milled again and pressed into the bars. The density of
the bars after the subsequent heat treatment at 1400◦C was about 80% of the theoret-
ical value. The floating zone growth was performed in an apparatus with a radiation
heating in Ar flow. The grown crystal rod was kept in the in-process annealing furnace
at 1400◦C during the growth and was cooled down at a rate of 200◦C/h afterwards.

The samples for the spectroscopic measurements were cut in the form of thin plates.
Two crystallographic axes always lie in the plane of the plate and the third is normal
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to the plate. The samples are often designated by this third crystallographic axis. For
example, “a-cut” sample has a axis normal to the largest surface, and b and c axes
lie in the plane of the sample. Three different “cuts” are enough to obtain all six
possible experimental geometries required for the polarization analysis of the excitation
conditions.
X-ray diffraction experiments were performed on the powder of the crushed single

crystals at room temperature. No impurity phases were detected for all compositions
concerned in the present work. The Rietveld refinement of the diffraction data was
performed for GdMnO3 [57] and Eu1−xYxMnO3 [24] manganites. The obtained lattice
parameters and Mn-O-Mn bond angle φ were in a good agreement with the litera-
ture data [23]. The single crystal X-ray diffraction measurements were performed on
DyMnO3 samples at the X-ray center of the Vienna University of Technology. The
orientations of all three crystallographic axes were easily determined and the samples
have shown good crystalline quality. Extensive magnetic susceptibility and specific heat
measurements performed on GdMnO3 and Eu1−xYxMnO3 compounds have allowed to
construct detailed magnetic phase diagrams [24, 57]. The transition temperatures from
these diagrams agree well with the data from the low frequency [24] and high frequency
(see below) dielectric measurements.
The optical data, described in the next chapters, also provide a characterization of

the samples at THz frequencies. The observation of three distinct values of dielectric
permittivity εa, εb and εc along the principal axes is an indication of the overall good
quality of single crystals. The transitions between different magnetically ordered phases
are often seen in the temperature scans of the permittivity and provide the high fre-
quency data for the construction of the phase diagrams. A well-defined separation of
the excitation conditions in different polarizations is another evidence that the crystals
are not twinned and maintain the long range order across the whole size of the samples.
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electromagnon

Electromagnons, strong electric-dipole active excitations with a typical energy of a few
meV, were originally detected in GdMnO3 [16]. Such features like very strong and
broad absorption peak of THz radiation already distinguished them from the magnons,
or spin waves. Magnons are spectroscopically observed at q = 0 and also called antiferro-
magnetic resonances (AFMR). The polarization analysis has confirmed this assumption
unambiguously showing the excitation condition e‖a, i.e. the mode is seen for the elec-
tric field of incident radiation parallel to the crystallographic a axis only. Additional
experiments [58] have identified the source of the spectral weight of electromagnons.
These novel excitations mostly couple to the lowest lying phonon, although the coupling
to other phonons probably also exists. Finally, “high frequency electromagnon”, the ex-
citation at 75 cm−1 which is outside of the range of THz spectrometer was investigated in
Ref. [59] using far-infrared transmission technique. The whole set of these experimental
findings makes GdMnO3 one of the best candidates to introduce the general properties
of electromagnons and will be presented in this chapter.

4.1 Zero field THz and FIR spectra

The high-temperature paramagnetic phase in GdMnO3 is followed by an incommensu-
rate antiferromagnetic phase below TN = 42 K (B = 0 path in the phase diagram in
Fig. 4.3). This phase is characterized by a sinusoidally modulated spin structure of the
manganese spins, with the Gd spins still remaining paramagnetic [57]. In low fields
(B < 0.1 T) and under zero-field cooling conditions the incommensurate structure re-
mains the stable phase down to 8 K and is followed by a complex canted ferrimagnetic
structure of Gd and Mn spins. In finite magnetic fields along the c axis (B > 0.1 T)
the incommensurate phase is transformed to a canted antiferromagnetic state with the
ferromagnetic c axis components of the manganese and gadolinium spins oriented anti-
parallel. Details of this structure are unknown, but it is clear that in this phase the Gd
spins participate in the magnetic order. Between 8 < T < 17 K this spin arrangement
strongly competes with the incommensurate ordering and depending on the magnetic
history the canted antiferromagnet can be stabilized even in zero external magnetic
fields.
Ferroelectric polarization along the a axis with the strength comparable to other rare

earth manganites arises only in magnetic fields B‖b [20]. However, small spontaneous
polarization P‖a still exists in zero magnetic fields above Gd ordering temperature. As
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Figure 4.1: Terahertz dielectric spectra of GdMnO3 along the a axis. Upper panel - real part, lower
panel - imaginary part. Symbols - experiments, lines - fits using the sum of Lorentzians. The spectra
are representative for the paramagnetic phase (55 K), incommensurate sinusoidal phase (23 and 9 K)
and for the phase with Gd ordering (2.5 K).

the ferroelectricity disappears in the Gd-ordered phase the care must be taken not to
cross the transition temperature during the polling of the sample in the external electric
field [20]. The weakness of the polarization in GdMnO3 is easy to understand taking into
account that this compound is located at the boundary between A-type and cycloidal
spin ordering in the Mn-O-Mn bond angle phase diagram in the Fig. 1.11. Cycloidal
structure is heavily suppressed by the competing A-type ordering and needs assistance
in the form of external magnetic fields B‖b to become stable ground state.

Figure 4.1 shows terahertz spectra of GdMnO3 for the electric field parallel to the a
axis and at different temperatures. The data have been obtained with the ac magnetic
field parallel to the b axis. This geometry has no contribution from the antiferromagnetic
resonance seen at 21 cm−1 for h‖c and the pure dielectric response can be presented. A
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4.1 Zero field THz and FIR spectra

broad relaxation-like contribution can be observed already in the paramagnetic phase
at T = 55 K (black circles and lines in the lower panel of Fig. 4.1). Although the sample
is not magnetically ordered, this absorption plateau can be probably due to magne-
toelectric fluctuations in the vicinity of transition temperature at TN = 42 K. This
over-damped excitation grows in the sinusoidal phase and increases the low frequency
dielectric constant (red squares and lines in lower and upper panels of Fig. 4.1). It is
this broad excitation that has been called electromagnon [16]. Its over-damped char-
acter in sinusoidal incommensurate phase is typical for other orthorhombic rare earth
manganites like Eu1−xYxMnO3, DyMnO3 and TbMnO3. Substantial narrowing of the
electromagnon is observed below 20 K allowing to determine its characteristic frequency
of 25 cm−1 (green triangles and lines in Fig. 4.1). This narrowing is associated with
the transition to the cycloidal spin structure and the onset of ferroelectric polarization
in other manganites. The same mechanism is applicable to GdMnO3, according to the
refined data in Ref. [20]. The polarization analysis similar to TbMnO3 was also done
for GdMnO3 and has confirmed the e‖a excitation condition. Thus, the electromagnon
is an excitation of magnetic origin stemming from the particular spin order and it gains
its electroactivity through the magnetoelectric interaction.
The dielectric strength of the electromagnon decreases below the temperature of the

Gd ordering. The intensity of the electromagnon at 25 cm−1 decreases and instead an
additional narrow peak appears at 15 cm−1. This peak is most clearly seen in T = 2.5 K
spectra (blue diamonds and lines in Fig. 4.1) but can be detected at T = 5 K as well.
This splitting reflects the fine structure of the electromagnon and is observed in TbMnO3

as well (see Chapter 7).
Apart from the “low frequency electromagnon” described above there is another ex-

citation in GdMnO3 at 75 cm−1, the so called “high frequency electromagnon”. As its
frequency is outside the range of THz spectrometer, the far infrared Fourier-Transform
spectroscopy was used to obtain data in this frequency range. In order to obtain the
complex permittivity both reflectance and transmittance had to be measured. The re-
flectivity was obtained on an optically thick sample with negligible contribution from
the second surface [58]. The crystal was then polished down to 220 µm for the transmit-
tance measurements [59]. The obtained spectra have been transformed to the dielectric
permittivity by inverting the Fresnel optical equations for transmittance and reflectivity
which neglect the interferences within the sample. These interferences are seen as a
Fabry-Pérot type modulation and are the reason for the apparent data scattering at
room temperature and between 20 cm−1 and 60 cm−1. An attempt to take into account
the interferences did not improve the quality of the solution probably because of im-
perfections of the sample surface. Figure 4.2 represent the far-infrared spectra of the
dielectric permittivity of GdMnO3 in the frequency range relevant for electromagnons.
The results by the infrared transmittance rapidly loose the accuracy below 40 cm−1.
Therefore, in this frequency range the data by BWO spectroscopy from Figure 4.1 are
plotted as closed symbols.
The strong and narrow mode at 120 cm−1 in Fig. 4.2 is the lowest phonon. Its

hardening at low temperatures is a well known manifestation of anharmonicity. Another
important parameter of the phonon mode, its dielectric strength is not readily seen in
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Figure 4.2: Complex dielectric permittivity of GdMnO3 in the far-infrared frequency range. Open
symbols - experimental data obtained from transmittance and reflectance spectra [59], closed symbols
- data obtained from the complex transmission coefficient [16, 60], solid lines - model based on a sum
of Lorentzians.

the current representation and will be discussed later in the context of interplay with
electromagnons. The low frequency electromagnon located at 25 cm−1 is most easily
detected at the lowest presented temperature T = 9 K in the imaginary part of the
dielectric permittivity (blue upper triangles and lines in the lower panel of Fig. 4.2). A
very broad absorption in the frequency range between lower electromagnon and up to
the phonon is the high frequency electromagnon. This excitation, like the low frequency
electromagnon, increases its strength upon cooling from T = 50 K (red squares) into the
sinusoidally modulated antiferromagnetic phase (green diamonds) and further down to
the cycloidal phase (blue triangles in Fig. 4.2). One of the still puzzling features of the
high frequency electromagnon is the nonvanishing contribution deep in the paramagnetic
state (T = 70 K, black circles and lines). The residual absorption plateau survives even
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Figure 4.3: Magnetic phases in GdMnO3 and external magnetic fields B‖c [20, 58]. Black circles and
red squares were obtained from the magnetization measurements, green diamonds are from dielectric
experiments. The region of weak ferroelectricity in zero magnetic fields between T = 23 K and down
to the Gd ordering temperature observed in Ref. [20] is not shown, and is probably sample dependent.

at room temperatures (orange left triangles and lines in Fig. 4.2). Such temperature
evolution of the high frequency electromagnon is hard to explain by thermal fluctuations
only and remains an open question.

Although the trace of the phonon at 120 cm−1 is clearly seen in the spectra of the
ε1 (upper panel), only the low frequency electromagnon can be detected there. The
reason of this effect is small dielectric contribution (∆ε ∼ 0.5) of the electromagnons
compared to the contributions of the phonons (

∑

∆εi ∼ 10). A very broad nature of
the high frequency electromagnon with a damping γ = 125 cm−1 smears out effects in
the real part of dielectric constant. It is also the reason for the shift of the maximum
of ε2 towards lower frequencies in the lower panel of Fig. 4.2. The dielectric spectra in
the far-infrared frequency range were fitted using the sum of several Lorentzians and
represented in Fig. 4.2 by the solid lines. The parameters of electromagnons obtained
from these fits can be found in Ref. [59]. However an external factor different from
temperature appeared to be more convenient to control the emergence of electromagnons
– an external magnetic field along the crystallographic c axis. The main findings of these
experiments will be presented in the next section.

4.2 Coupling of phonons and electromagnons

A detailed H-T phase diagram of GdMnO3 for magnetic fields B‖c, obtained using
dielectric [16] and magnetic [20] data, is shown in Fig. 4.3. An external magnetic field
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Figure 4.4: Spectra of the a axis dielectric permittivity of GdMnO3 at B = 0 T (incommensurate
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permittivity, lower panel: imaginary part. Closed symbols - terahertz experiments, open symbols -
infrared spectroscopy. Solid lines are fits accounting for electromagnons and phonons. The narrow line
at 76 cm−1 is probably due to impurity. The inset shows reflectance spectra around the phonon at
120 cm−1.

favours the canted antiferromagnetic phase where no electromagnons can be observed.
This phase competes with the incommensurate sinusoidal ordering and simple removal
of external field does not bring the sample back to the original state. The heating up
to T = 17 K is needed to restore the sinusoidal spin structure. Very low critical fields
B ∼ 0.2 T of this magnetic phase transition at temperatures around 15 K provide very
convenient method to suppress electromagnons. It is easy then to detect spectroscopical
changes associated with this transition without interference from other effects which
may arise in high magnetic fields.
Basic result of experiments [58] performed in magnetic fields B‖c is shown in Fig. 4.4.

The complex dielectric permittivity above 40 cm−1 was obtained via Kramers-Kronig
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relation. Augmenting Fourier-Transform reflectivity with the THz data has increased
the accuracy of the procedure. Closed symbols in Fig. 4.4 are direct measurements at
THz frequencies while open symbols are based on the far-infrared reflectance. The tem-
perature of T = 15 K is chosen as having the lowest critical magnetic field. Therefore the
data at B = 0 T (black symbols and lines) represents sinusoidal phase and the measure-
ments done at B = 2 T (red symbols and lines) are deep in the canted antiferromagnetic
phase (see Fig. 4.3). The most prominent effect seen both in ε2 (lower panel in Fig. 4.4)
and ε1 (upper panel) is the suppression of electromagnon in the canted phase. This is a
strong evidence that although the electromagnon is seen as an electric excitation, it has
magnetic origin. The numerous experiments and attempts to describe electromagnons
theoretically have shown that low and high frequency electromagnons can have different
microscopical origins. Some evidence can be seen in Fig. 4.4 too. The low frequency
electromagnon at 25 cm−1 is suppressed completely, but some absorption maximum at
50 cm−1, closer to the high frequency electromagnon still exists in the canted phase.

The second effect of the magnetic phase transition is better seen not in the dielectric
permittivity but instead directly in the reflectance spectra. A small frequency range
around a phonon at 120 cm−1 is represented in the inset in Fig. 4.4. The phonon feature
in the reflectance spectra is considerably increased in the canted antiferromagnetic phase.
As this feature is directly related to the strength of the phonon it is clear that the
phonon gains in intensity upon suppression of the electromagnon. The above findings
have allowed to draw another important conclusion concerning spectroscopical origin of
electromagnons: they gain their spectral weights mostly from the lowest phonons. The
quantitative investigations [58, 59, 60] have shown that other phonons are involved too,
although to the lesser extent.

Although the microscopic origin of the high frequency electromagnon has settled on
the symmetric Heisenberg exchange model [40], the prediction of the earlier model [38]
based on the antisymmetric Dzyaloshinskii-Moriya interaction is still quite informative.
For the dynamic properties the main result of these calculations is the occurrence of
two modes, one of which is derived from the phonon mode with a frequency close to the
eigenfrequency of the uncoupled phonon, and one originating from the spin wave. The
theory predicts the enhancement of the phonon eigenfrequency ω0 by ω2

p/(2ω0), where ωp

is the frequency of the electromagnon. Taking ωp ∼ 20 cm−1, based on the low frequency
electromagnon, the phonon shift observed across magnetic phase transition [58] can be
well explained.

4.3 Summary

GdMnO3 together with TbMnO3 were pioneering systems to reveal electromagnons [16].
The key experiments to confirm the electric excitation of electromagnons and their cou-
pling with the phonons were done on GdMnO3 samples. However gadolinium manganite
also has its drawbacks. The first is its position in the Mn-O-Mn bond angle phase di-
agram Fig. 1.11. It is located at the boundary between A-type antiferromagnetic and
cycloidal orderings at low temperatures. This makes the most interesting cycloidal
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4 GdMnO3: introducing an electromagnon

phase metastable at best and reliably available in the external magnetic fields B‖b only.
Another feature of GdMnO3 is the existence of strong and anisotropic magnetism of
Gd3+ ions. This not only leads to the complicated magnetic phase diagram at low tem-
peratures (Fig. 4.3), but also poses a question about the role of rare earth ion in the
formation of the cycloidal spin order. Natural mixture of Gd isotopes has very large
absorption coefficient for thermal neutrons, over 1000 cm−1 in the case of GdMnO3 for
neutron wavelength in the range of 2− 5 Å [61]. This makes neutron scattering experi-
ments impossible, at least on the natural isotopic mixture, and closes this experimental
possibility to determine the magnetic structure and the magnon dispersions. In fact
all magnetic phase assignments in the present chapter are made on the basis of mag-
netization data and in analogy to another rare earth manganite with known magnetic
structure - TbMnO3. The aspects of this multiferroic material are postponed for later
while the next chapter concerns with the series of Eu1−xYxMnO3 - manganite without
rare earth magnetism.
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5 Eu1−xYxMnO3: manganese vs.

rare earth

A common property of Gd, Dy and Tb-manganites, which are concerned in the present
work is the existence of two competing magnetic sublattices, of Mn and of the rare earth.
It was not quite clear what is the role of the rare earth subsystem in the magnetoelectric
interaction. In order to separate the role of the rare earth from the magnetoelectric
effects in manganites it was expedient to repeat the experiments on manganites without
rare earth magnetism. Such a system is provided by Eu1−xYxMnO3. The electronic
configuration of the trivalent A-sites in this compound are either nonmagnetic ([Kr])
for Y3+ ions, or posses only Van Vleck paramagnetism (4f6) with J = 0 for Eu3+

ions. Doping by yttrium is here a tuning parameter which allows to gradually change
the Mn-O-Mn bonding angle. From the point of view of multiferroic properties, it
makes Eu0.2Y0.8MnO3 equivalent to GdMnO3 and Eu0.5Y0.5MnO3 to TbMnO3. Most
of the results presented in this chapter were obtained previously in [24, 30] and further
refined in [62]. These findings however are quite important for the understanding of the
underlying mechanisms which lead to the formation of electromagnons. Experimental
data for Eu1−xYxMnO3 with the main focus on THz excitations are briefly summarized
below.

5.1 Multiferroic phases of Eu1−xYxMnO3

Detailed investigation of magnetic and dielectric properties of Eu1−xYxMnO3 have been
published in [24]. From these data a magnetic and electric phase diagram has been con-
structed which is reproduced in Fig. 5.1. In the doping range 0 ≤ x ≤ 0.5 Eu1−xYxMnO3

orders antiferromagnetically between 45 K and 50 K only slightly depending upon the
yttrium content. The antiferromagnetic order is incommensurate and probably sinu-
soidally modulated similar to other rare earth multiferroics. On further cooling another
magnetic transition takes place. Depending on the doping range, this low-temperature
phase is either canted antiferromagnetic (A-type) for x < 0.2 or spiral and ferroelectric
for x ≥ 0.2. For x ≈ 0.2 the spatial phase separation of both phases was observed [62],
with the possibility to tune their fractions by applying a static magnetic field during
cooling. Compounds with high yttrium content x > 0.5 are hard to grow in the or-
thorhombic phase and they often include impurities of hexagonal phase of YMnO3. For
this reason they are difficult to investigate in detail [63].
Terahertz properties of Eu1−xYxMnO3 have been published in [30]. From the point

of view of the magnetoelectric effect and the observation of electromagnons, the phase
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Figure 5.1: (T,x) phase diagram of Eu1−xYxMnO3 reproduced from [30]. The notation of magnetic
phases is given on the basis of magnetization data. Incommensurate collinear and cycloidal phases are
antiferromagnetic while canted A-type is weakly ferromagnetic. Two ferroelectric phases differ by the
orientation of the spontaneous electric polarization. The exact magnetic structure of different phases
is still unknown and is indicated in analogy to other perovskite multiferroics.

diagram in Fig. 5.1 can be divided into five regions:

1. In the whole doping range 0 ≤ x ≤ 0.5 the paramagnetic and paraelectric phase
above T ∼ 50 K is followed by the incommensurate antiferromagnetic phase with
possibly collinear sinusoidally modulated ordering of Mn spins. This phase does
not show any electric ordering and only weak magnetoelectric effects are observed.
The electromagnons are over-damped and not well defined.

2. In the low-doping range 0 ≤ x ≤ 0.1 the collinear phase is followed by the canted
antiferromagnetic phase which is weakly ferromagnetic and shows no magnetoelec-
tric effect and no electromagnons are observed.

3. At low temperatures the phase around x = 0.2 is characterized by a spatially
separated coexistence of both canted and cycloidal antiferromagnetic structures.
The cycloidal phase is characterized by spontaneous electric polarization along a
axis and the electromagnons are clearly observed in the spectra. External mag-
netic fields suppress the cycloidal phase in favour of canted weakly ferromagnetic
ground state, which leads to strong magnetic field dependence of the dielectric
permittivity.

4. For 0.3 ≤ x ≤ 0.5 and at low temperatures the ferroelectric phase is not sensitive
to external magnetic fields B‖c up to 7 T. The electromagnons are strong and well
defined in this region of the phase diagram.
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5.2 Canted antiferromagnetic phase: x = 0.1

5. In the region 0.4 ≤ x ≤ 0.5 and within a narrow temperature range just below
collinear phase there are two ferroelectric phases with electric polarization parallel
to the a and c axes which compete with each other. This leads to the weak
dependence of dielectric permittivity upon external magnetic fields.

In the next sections two examples of lower frequencies (below 40 cm−1) magnetoelec-
tric excitations in these compounds with their temperature and magnetic field depen-
dencies for representative doping levels will be presented. As is the case for other rare
earth manganites like GdMnO3, DyMnO3 and TbMnO3, high frequency electromagnon
also exists in the doping range 0.2 ≤ x ≤ 0.5. Its frequency drops from 80 cm−1 for
x = 0.2 [64] to 55 cm−1 for x = 0.45 [65].

5.2 Canted antiferromagnetic phase: x = 0.1

As an example of magnetoelectric excitations at low doping, Fig. 5.2 shows the terahertz
spectra of Eu0.9Y0.1MnO3 in geometry with e‖a. Here the data at 40 K and at 20 K
are representative for the properties in the incommensurate collinear and canted anti-
ferromagnetic phases, respectively. In a collinear phase at T = 40 K a broad absorption
with a weak frequency dependence can be observed (red symbols in a lower panel of
Fig. 5.2). This dissipative plateau corresponds to a weakly dispersive refractive index
represented as red symbols in the upper panel of Fig. 5.2. Consistent with other man-
ganites with frustrated magnetic order at low temperatures, this typical feature of the
sinusoidal phase is the electromagnon seen as a broad Debye-like relaxation. The exper-
imental spectra in the collinear phase can be well fitted by a Debye relaxator. Typical
relaxation frequency of this excitation estimated from the fit (red lines in Fig. 5.2) is
10 cm−1 which corresponds to the inverse lifetime rather than to eigenfrequency in this
case. Contrary to other manganites however, the electromagnon does not evolve into a
well defined excitation in Eu0.9Y0.1MnO3 at low temperatures. Instead the system or-
ders antiferromagnetically with slight canting below 34 K and shows no electromagnons.
This can be well seen as a substantial reduction in both absorption coefficient and re-
fractive index (black symbols in Fig. 5.2). The narrow mode observed in the spectra is
the antiferromagnetic resonance of the canted spin structure with h‖c excitation condi-
tion [66]. Due to the magnetic nature of this mode the spectra are represented in terms
of complex index of refraction n + ıκ =

√
εµ. This antiferromagnetic resonance can be

well fitted by a magnetic Lorentzian with an eigenfrequency of 19 cm−1 (black lines in
Fig. 5.2).
The magnetoelectric contribution to the dielectric permittivity in Eu0.9Y0.1MnO3 can

be suppressed in external magnetic fields which favours the canted magnetic phase. An
example of such behaviour is well seen in the magnetic field dependencies of permittivity
in the temperature range of the phase transition and is shown in Fig. 5.3. Following the
evolution of curves at B = 0 the phase transition from the higher absorptive collinear
state at higher temperatures to the lower absorptive canted phase at lower temperatures
is evident at T = 34 K. As external magnetic fields stabilize the canted phase, no changes
in the permittivity are expected below the transition temperature (black and red curves
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Figure 5.2: Terahertz spectra of Eu0.9Y0.1MnO3 in the collinear (40 K) and canted (20 K) antiferro-
magnetic phases [30]. Upper panel - refractive index, lower panel - absorption coefficient. The narrow
mode at λ−1 ≃ 19 cm−1 represents the antiferromagnetic resonance (h‖c). The broad additional ab-
sorption for T = 40 K is of magnetoelectric origin. Symbols represent the experimental data, lines show
the fits using the sum of Lorentzians and a Debye relaxator.

in the Fig. 5.3). On the other hand, initially in the collinear phase, the sample undergoes
a transition into the canted phase at gradually increasing magnetic fields depending on
temperature (green, blue and orange curves in the Fig. 5.3). According to the data, the
transition temperature increases up to T = 40 K at B = 5 T.

In the view of the Mn-O-Mn bond angle phase diagram Fig. 1.11 Eu0.9Y0.1MnO3 lies
to left of GdMnO3 outside of the boundary to cycloidal antiferromagnetic orderings and
in accordance with its ground state. It is noticeable however, that the electromagnon
contributions in the form of the overdamped relaxations are already present in the inter-
mediate temperature range. Their existence points to the onset of the spin frustration
in the system and is possibly explained by a short range cycloidal order due to thermal
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5.3 Cycloidal antiferromagnetic phase: x = 0.5
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Figure 5.3: Magnetic field dependence of the complex dielectric constant ε = ε1 + ıε2 on the border
between collinear and canted antiferromagnetic phases. Zero field transition takes place at T = 34 K
and is shifted up to T = 40 K at B = 5 T.

fluctuations.

5.3 Cycloidal antiferromagnetic phase: x = 0.5

In the high yttrium doping regime of Eu1−xYxMnO3, the electromagnons at low tem-
peratures are seen as narrow well defined excitations with substantial spectral weight.
Consistent with other spin frustrated orthorhombic manganites the electromagnons are
observed for polarizations of THz radiation with e‖a only. Typical terahertz spectra
in heavily doped composition Eu0.5Y0.5MnO3 are represented in Fig. 5.4. The imag-
inary part of permittivity responsible for the absorption is shown in the lower panel
while the real part of permittivity corresponding to the refractive index is in the upper
panel. A flat background absorption plateau seen in paramagnetic phase (black circles
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Figure 5.4: Spectra of the dielectric permittivity of Eu0.5Y0.5MnO3 for e‖a. Upper panel - real part,
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ferroelectric phases with P‖c (green colour, 20 K) and P‖a (blue colour, 10 K).

in Fig. 5.4) transforms into a broad Debye-like contribution in the collinear phase (red
squares). From the fits of this overdamped electromagnon (red lines) its damping fre-
quency can be estimated as Γ ∼ 20 cm−1. Upon further cooling of the sample into the
ferroelectric phases the electromagnon narrows down and gains in intensity and spec-
tral weight (green diamonds and blue triangles in Fig. 5.4). It can be well fitted by a
Lorentzian mode with eigenfrequency of ω ∼ 18 cm−1. Such temperature evolution is
typical for all other orthorhombic manganites concerned in the present work with two
differences. The first one is the absence of magnetic ordering of the rare earth A-site ion
at low temperatures. It is therefore obvious that the ferroelectricity and the emergence
of electromagnons are due to the magnetism of Mn atoms and magnetic properties of
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rare earth ions are not vital here. The second difference is another ferroelectric ground
state P‖a compared with GdMnO3, DyMnO3 and TbMnO3 which all exhibit P‖c axis
in zero magnetic field. The phase with P‖c also exists in Eu1−xYxMnO3 in the narrow
temperature range just below collinear phase (see phase diagram in Fig. 5.1). It can be
completely suppressed by the external magnetic field B‖c of around 5 T. According to
the present theories the ferroelectricity in these compounds is caused by the particular
inversion symmetry breaking cycloidal ordering of Mn spins. As such the direction of
spontaneous electric polarization is bound to the orientation of spin cycloid. The later
is dependent upon many factors as magnetic anisotropy and external magnetic fields.
It is quite possible that the absence of the second magnetic subsystem in the form of
strong magnetic rare earth ions in Eu1−xYxMnO3 is enough to favour another ground
state of Mn spin cycloid.

Concerning the properties of Eu1−xYxMnO3 in the high doping range in external
magnetic fields, no suppression of the electromagnons at low temperatures for magnetic
fields up to 7 T along c axis can be observed. According to the Mn-O-Mn bond an-
gle phase diagram (Fig. 1.11), the highly doped samples lie within the region of low
temperature spin frustration. According to the structural analysis [24], the composition
Eu0.5Y0.5MnO3 should be located between GdMnO3 and TbMnO3 and the suppression
of cycloidal ordering in moderate magnetic fields could be expected. The possible rea-
son for the increased critical field along c axis might be the pinning on the disorder
introduced by the yttrium doping.

The temperature range where the ferroelectric phase P‖c exists can also be increased
in external magnetic fields along the a axis. The magnetic phase transition occurs at
B = 4.5 T and the phase with P‖c is stabilized down to the lowest temperatures [67].
No change in structural, magnetic or electric properties was found for magnetic fields
along the b axis. Such behaviour can be well explained assuming cycloidal ordering of
Mn spins at low temperatures for Eu1−xYxMnO3 with high yttrium content. In the
absence of external magnetic fields, the spins are located in the ab crystallographic
plane and cause electric polarization P‖a via inverse Dzyaloshinskii-Moriya interaction.
Application of magnetic field B‖c only stabilizes this structure as it can obtain some
conical component along c axis and gain Zeeman energy. Consistently, the phase with
the spin cycloid in the bc plane and electric polarization P‖c is suppressed. On the
other hand, an external magnetic field B‖a favours bc orientation of the spin cycloid
and results in a flop of electric polarization from P‖a to P‖c axis. The opposite picture
in other orthorhombic manganites can be probably attributed to the complex interaction
between Mn spins and rare earth 4f -moments.

5.4 Summary

Such favourable properties of Eu1−xYxMnO3 compounds as the absence of rare earth
magnetism and the possibility to tune Mn-O-Mn bond angle via yttrium doping with
weak, if any, effects of disorder have made these materials attractive for the research
in many areas. Comparison of the electromagnons in the Eu:Y and Y:Lu systems was
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performed in [63]. Ferroelectric phases in Eu:Y manganites were further investigated in
the intermediate [68] and even strong pulsed [69] magnetic fields. The details of shifting
of both infrared and Raman active phonons with the yttrium doping can be found
in [70]. The effects of the spin-phonon coupling resulting in the shifts of some phonons
below magnetic transition temperature were observed in [25, 71] and the comparison
of these spin-phonon coupling effects in Eu1−xYxMnO3 and in pure manganites as Gd,
Dy and TbMnO3 is published in the work [72]. The spectral weight transfer from the
lower lying phonon mode to the electromagnons, similar to that observed in GdMnO3

and discussed in the previous chapter is reported in [65]. The quantitative analysis of
the spectral weight including electromagnons and 8 lowest phonons was carried out in
Ref. [64]. It was shown that the electromagnons are gaining their spectral weight not
only from the lowest lying phonon, but from other phonons as well. Within experimental
accuracy the total spectral weight is conserved. The comprehensive overview of spin-
phonon and electromagnon-phonon couplings can be found in the thesis [73].
In the scope of this work the most important result in Eu1−xYxMnO3 is that magne-

toelectric effects and electromagnons are observed in the full doping range 0 ≤ x ≤ 0.5.
This excludes the influence of the rare earth magnetism as a basic mechanism for the
magnetoelectric effects in rare earth multiferroic manganites. Rare earth ions still de-
termine such details like the orientation of Mn spin cycloid at low temperatures and
magnetic field induced phase transitions.
Although there are many experimental evidences that the magnetic structure in

Eu1−xYxMnO3 is a spin cycloid at low temperature, no direct confirmation from the
neutron scattering experiments is known to date. The reason for this is strong ab-
sorption of neutrons by Europium, with the absorption coefficient over 50 cm−1 for
Eu0.5Y0.5MnO3 in the range of wavelengths 2 − 5 Å [61]. Such experimental data are
available for TbMnO3. Another pure manganite, DyMnO3 has shown enhanced fer-
roelectric properties and also is interesting to investigate in the scope of the possible
influence of rare earth magnetism. These two compounds are discussed in the next two
chapters of the present work.

84



6 DyMnO3: electromagnon as a soft

mode

Dysprosium manganite is one of the few rare earth manganites which exhibits incommen-
surate spin ordering at low temperatures. According to the phase diagram in Fig. 1.11
the Mn-O-Mn angle for DyMnO3 lies on the lower side of incommensurate compounds,
but well within its bounds. This makes the sinusoidal and cycloidal magnetic phases
much more robust against external magnetic fields and favourably distinguishes DyMnO3

from GdMnO3 where the magnetic history can play a role at low temperatures. Being
a pure compound results in a better reproducibility among different samples but Dy
brings some drawbacks too. It has quite large magnetic moment and Dy ordering at low
temperatures (around 5 K) may interfere with magnetic structure of Mn ions. However,
interesting sinusoidal and cycloidal orderings arise well above this temperature which,
together with the results on Eu1−xYxMnO3, indicates that the magnetoelectric phenom-
ena are primarily driven by Mn spins. The large neutron absorption cross section of Dy
(over 20 cm−1 for λneutron = 2−5 Å [61]) makes it difficult to investigate the spin struc-
ture of DyMnO3 by neutron diffraction but there are other techniques [21, 74] that can
indirectly probe magnetic structure of the material.

6.1 THz excitations in zero magnetic field

This compound belongs to the most studied multiferroic manganites with orthorhombic
structure. Below the Néel phase transition at T = 39 K DyMnO3 first possesses an
incommensurate magnetic order with the modulation wave vector k = 0.36 along the
b axis [20, 21, 74]. Due to the big absorption cross section of Dy there is no neutron
scattering data available for this material. However, analogously to TbMnO3, one can
assume that Mn spins form a collinear sinusoidally modulated structure in this temper-
ature range. Below T = 19 K the spontaneous static electric polarization arises parallel
to the c axis [20, 75, 76]. As has been proven both theoretically and experimentally,
cycloidal spin structure breaks the spatial and time inversion symmetry thus assisting
the occurrence of ferroelectricity. Therefore, it is naturally to assume that the magnetic
order turns into the spin cycloid with the manganese spins rotating in the crystallo-
graphic bc plane. The wave vector at these temperatures slightly increases up to the
value of k = 0.385 remaining incommensurate [21, 74]. Finally, at T = 5 K another
magnetic transition is observed which is characterized by the commensurate ordering of
the Dy sublattice with the wave vector k = 0.5 along the b axis [77].
Figure 6.1 shows temperature dependence of the dielectric permittivity of DyMnO3
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at two different frequencies. All above mentioned magnetic phase transitions, which are
indicated by dashed lines, can be detected in the dielectric constant. This immediately
suggests rather strong magneto-electric interaction in this material. It is noticeable
that the phase transition anomalies are much more pronounced at low (3 cm−1) rather
then at high (21 cm−1) frequency. Assuming that the reason for these peculiarities in
the dielectric constant is some quasi-particle excitation at some frequency, it can be
concluded that the stronger mode should be between 3 cm−1 and 21 cm−1. Indeed,
as is seen in Fig. 6.2 one of such excitations, termed electromagnon [16] exist around
16 cm−1.

Similar to such multiferroics like GdMnO3 or TbMnO3, DyMnO3 shows a series of
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panel - imaginary part. Symbols - experiments, lines - Lorentzian fits. Large symbols have been
obtained from the analysis of the transmittance only.

electro-active excitations at finite frequencies, which basically consists of two modes at
2 and 5.5 meV (16 and 48 cm−1), respectively [60, 78]. This is demonstrated in Fig. 6.2
which shows terahertz spectra of DyMnO3 at different temperatures for e‖a axis. In the
paramagnetic phase (T > 39 K) only a broad relaxator-like absorption plateau is seen
in the spectra. It is most likely due to short-range spin fluctuations which are precursor
of the transition to the spin-ordered state. A significant magnetoelectric contribution
(electromagnon) appears in DyMnO3 below TN = 39 K and at low frequencies. Below
the transition to the spiral phase this contribution narrows showing an eigenfrequency
around 16 cm−1. The dielectric strength of the electromagnon in DyMnO3 decreases
below the Dy-ordering at T = 5 K and the mode at 16 cm−1 becomes again broad. The
spontaneous electric polarization also decreases upon ordering of Dy spins [20]. The
explanation of these effects was found in Ref. [79]. Above the ordering temperature
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Dy magnetic moments follow Mn spins and form cycloid with the same wave vector
as Mn spins. One can say that the spin cycloid is substantially “enhanced” due to
additional Dy moments. This leads to enlarged static electric polarization and more
pronounced electromagnon in THz spectra. Below T = 5 K the modulation wave vector
of Mn spins stays incommensurate at k = 0.385 but Dy spins order commensurate with
k = 0.5. The average contribution of Dy moments to Mn spin cycloid is zero now and
these enhancement effects disappear. It is also possible to destroy the commensurate
Dy order by applying external magnetic field. These aspects will be discussed in the
next section.

The electromagnon at 16 cm−1 explains anomalies in the dielectric constant measured
at 3 cm−1. The changes of dielectric constant at 21 cm−1 are partially due to electro-
magnon at 16 cm−1 which is still close enough to the frequency of this experiment and
partially due to the higher electromagnon at 48 cm−1. One can see the onset of this high
frequency electromagnon at the highest possible frequencies of our experimental setup.
The data for a broader frequency range were published by Kida et al [78] using time do-
main spectroscopy. Their results basically agree with the data presented above showing
both a strong excitation around 16 cm−1 and a second weaker mode around 48 cm−1.
Both excitations have been demonstrated to interact with the electric component of the
radiation.

In contrast to TbMnO3 and GdMnO3 no additional excitations at low frequencies can

88



6.2 Electromagnons in external magnetic fields

be observed. The spectra in Fig. 6.2 start at 8 cm−1 and there is a possibility that some
excitation still exists below this frequency. In attempt to detect this mode experiments
in the frequency range below 8 cm−1 have been performed. The transmittance spectra
are shown in Fig. 6.3. Symbols represent experimental data and lines are fits with
Lorentzian oscillators using the same parameters as in Fig. 6.2 (e.g. the same parameters
as used to fit data at higher frequencies). The agreement between experimental data
and fits is good at higher temperature T = 30 K (upper left panel in Fig. 6.3), in the
sinusoidal phase. At lower temperatures T = 20 (upper right) and 10 K (lower left
panel), just above and in the cycloidal phase, respectively, the fits predict too high
transmittance evidencing some additional absorption in the sample at these frequencies.
At T = 5 K (lower right panel), below Dy ordering temperature, there is again a rather
good agreement between experiment and fits in the lower part of the spectrum, but
experiment shows increased absorption at the higher frequencies. These results suggest
that there could be a low frequency electromagnon between 2 cm−1 and 8 cm−1. It should
be noted, however, that the sample used in these experiments was quite thin for this
frequency range: the thickness d = 0.26 mm was smaller then the typical wavelength
of the radiation inside the sample λ ≃ 0.4 mm. The parameters extracted from the
fits of experimental transmittance are prone to a larger error under such conditions.
Measurements on thicker samples are needed to draw a more definitive conclusion.

To summarize, Dy manganite shows a behaviour typical for other frustrated man-
ganites with cycloidal spin structure at low temperatures. THz spectra reveal a broad
relaxator absorption in the sinusoidal phase which transforms in the cycloidal phase into
a strong well-defined quasi-particle modes at 16 and 48 cm−1, termed electromagnons.
These excitations are only seen for polarizations with the electric field of THz radiation
along the crystallographic a axis, e‖a. There is an indication that a satellite of the lower
frequency electromagnon exists between 2 and 8 cm−1.

6.2 Electromagnons in external magnetic fields

In dysprosium manganite, the ferroelectricity is driven by magnetic ordering of the Mn
sublattice, therefore it is important to investigate its properties in external magnetic
fields. As with other manganites with incommensurate magnetic order, the direction of
field plays an important role in case of DyMnO3. Application of magnetic field up to
14 T along c axis does not result in any significant changes in dielectric or magnetic
properties [20]. This is contrast to other multiferroics like GdMnO3 or TbMnO3 which
show magnetic phase transition to the canted antiferromagnetic order. The difference
can be easily explained considering the position of these manganites on the phase dia-
gram Fig. 1.11. GdMnO3 lies on the boundary between A-type antiferromagnetic and
incommensurate cycloidal orderings. A magnetic field along the c axis favours canting
of spins in this direction and stabilizes canted A-type ordering. It is thus naturally that
Gd manganite has the smallest critical field in the c direction and the canted phase can
be stabilized even in zero magnetic field. TbMnO3 is in the middle of incommensurate
region and requires magnetic fields of the order of 10 T to switch into antiferromagnetic
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phase. DyMnO3 is situated on the other side of the region with cycloidal ordering, close
to “up-up-down-down” antiferromagnetic ordering. One can expect that in order to
reach magnetic phase transition fields even larger then in TbMnO3 are required.

Due to this stability of magnetic structure the magnetoelectric contribution in this
compound cannot be suppressed by external magnetic fields along the c axis. Electric
and magnetic properties of DyMnO3 in magnetic fields along a and b axes have some
interesting trends and will be discussed in the next two subsections.

6.2.1 Magnetic field along the a axis

In this part the changes of dielectric properties both in THz and low-frequency parts
of the spectra in external magnetic fields along the a axis will be discussed. Figure 6.5
shows magnetic field dependencies of the complex dielectric constant at 3 cm−1 and
various temperatures. The low temperature data sets clearly show a magnetic phase
transition around B = 5 T. This transition is accompanied by the flop of spontaneous
electric polarization from c to the a axis [20]. The cause of this flop seems to be the
change of Mn spin cycloid orientation [20, 74]. Manganese spins flip from the bc to the
ab plane. As the ferroelectricity is caused by this particular center-inversion breaking
magnetic ordering, the electric polarization follows the spin cycloid across this transition.
The higher temperature magnetic field scans do not show the aforementioned phase
transition. This is in accordance with the phase diagram in the left panel of Fig. 6.4,
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due to limited magnetic fields available in our experimental setup.
More insight in what happens with the dielectric properties of DyMnO3 in external

magnetic field is provided by the spectra. Figure 6.6 shows the THz spectra of the low
frequency electromagnon in DyMnO3 at T = 10 K. At this temperature the Mn spins are
magnetically ordered into the spin cycloid with Dy moments following them [74]. This
phase is indicated as bc cycloid in the phase diagram shown in the left panel of Fig. 6.4.
The spectra in Fig. 6.6 clearly demonstrate that in external magnetic fields B‖a the
electromagnon shifts to lower frequencies and gains an intensity. This behaviour reveals
already at this point a close similarity to classical soft modes. The same suggestion
was also made in Ref. [74]. The authors of this paper support this idea by the fact
that both bc and ab Mn spin cycloids have the same modulation wave vector across this
phase transition. Thus, both spin configurations are “similar” in some sense and have
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almost identical energy. In this case the spin cycloid is almost free to rotate around
b axis in the vicinity of the phase transition and acquires the soft mode. In order to
investigate this scenario in more details, the quantitative analysis of the electromagnon
using the Lorentz oscillator model and dielectric measurements at kHz frequencies were
performed.

The spectra in Fig. 6.6 were fitted with one Lorentz oscillator corresponding to the
low frequency electromagnon seen around 16 cm−1 and the second oscillator to account
for the second high frequency electromagnon seen as an increase of dielectric absorption
at the highest frequencies in the lower panel of Fig. 6.6. The parameters obtained are
dielectric contribution ∆ε, resonance frequency ω and damping γ. It is clear that the
parameters of the high frequency electromagnon can not be reliably obtained from our
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experimental data and it was included in the fit to better describe the high frequency
region of the spectra. Figure 6.7 shows the obtained magnetic field dependence of
the dielectric parameters. Red circles represent the field dependence of the dielectric
contribution ∆ε of the low-frequency electromagnon showing an increase by more than
a factor of two as approaching the phase transition to the ab-oriented spiral. The
dielectric contribution closely correlates with the decrease of the resonance frequency,

which is demonstrated by plotting ∆ε · ω(0)2

ω(B)2
(green squares). This plot corresponds

directly to the Lyddane-Sachs-Teller (LST) relation and reflects the conservation of the
spectral weight of the electromagnon in external fields parallel to the a axis.

Another manifestation of a soft mode is an increase of the static electric susceptibility
at low frequencies. In our case it is the dielectric constant along the same a axis where
the electromagnon is seen. In order to investigate this aspect, dielectric measurements
in a parallel plate capacitor geometry at kHz frequencies were performed. As the THz
setup requires the a axis laying in the plane of the sample and dielectric measurements
need the a axis perpendicular to the plane of the sample, the experiments had to be done
on different samples. Solid black lines in Fig. 6.7 show the field dependence of the static
dielectric constant in DyMnO3 as measured at 10 kHz. Here the contribution from the
higher frequency processes (ε∞ = 25) which is given by electronic transition, phonons,
and a second electromagnon [78] was subtracted. We observe a close correlation between
static and dynamic properties in spite of more than seven orders of magnitude difference
in frequency. According to the sum rules this result demonstrates that for the geometry
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B‖a the changes in static properties are nearly completely governed by the softening of
the electromagnon and no other contributions exist between kHz and THz frequencies.
As is already mentioned above, the softening of the electromagnon in external fields

can be qualitatively understood taking into account the switching of the orientation of
the spin cycloid. Similar to many other structural transitions the effective stiffness of
the cycloid probably tends to zero on the phase border between the bc and ab cycloids,
and as the result the electromagnon becomes the soft mode for this magnetic phase
transition. The unresolved question is: why the spectral weight of the electromagnon is
conserved during the softening of the eigenfrequency? In case of classical softening of the
lattice vibration one normally argues that the spectral weight of the soft mode is directly
connected to the total number of electrons in the material. In agreement with the charge
conservation a constant spectral weight may be expected for soft phonons. In case of a
magnetic cycloid the electromagnon gains the spectral weight as a result of a complex
interplay of various mechanisms. Therefore, we cannot use the conservation of the
magnetic moment as an argument. However, the measurements at lower temperatures,
where Dy moments gain their own propagation vector could provide another point of
view of the problem.
Figure 6.8 shows THz spectra of Dysprosium manganite at T = 3 K and magnetic

fields along the a axis. The shift of the electromagnon eigenfrequency to lower fre-
quencies and increase of its strength are much more pronounced at this temperature in
comparison to T = 10 K (Fig. 6.6). Moreover there is a change of the electromagnon
from a broad overdamped mode at B = 0 T to the strong well-defined oscillator at
B = 7 T. Such an essential change can be however well understood by considering the
behaviour of Dy magnetic moments. As was already mentioned, Dy spins follow Mn
cycloid at intermediate temperatures 5 < T < 19 K. At lower temperatures they are
arranged with their own commensurate propagation vector k = 0.5. Due to this decou-
pling of Dy moments from the Mn spin cycloid the enhancement effects coming from
Dy spins vanish and the electromagnon is only seen as a suppressed overdamped mode.
However, this antiferromagnetic ordering of Dy subsystem can be suppressed in mag-
netic fields along a axis [74]. It is noticeable that this suppression takes place at much
lower magnetic fields of about 1.5 T than the flop of Mn spin cycloid from bc to ab plane
at 5 T. Therefore already in the magnetic field of 3 T (red symbols and line in Fig. 6.8)
electromagnon is seen as a well-defined oscillator and closely resembles the spectra at
10 K without magnetic field (cyan symbols and line in Fig. 6.2). In other words, it is
possible to destroy antiferromagnetic ordering of Dy spins either by temperature or by
external magnetic field along the a axis with the same manifestations in the dielectric
properties of DyMnO3. Such a universal behaviour supports the proposed scenario of
the influence of Dy spins on the electromagnon in THz region and static spontaneous
polarization. While rare earth atoms are not the cause of the peculiar magnetic struc-
ture and associated dielectric properties of DyMnO3 at low temperatures, they seem to
play a significant role in this compound.
In higher magnetic fields, up to 7 T in our experimental setup which roughly cor-

responds to the critical field of transition from the bc spin cycloid to the ab cycloid,
electromagnon shifts further towards lower frequencies and gains in intensity. This is
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Figure 6.8: Evolution of the electromagnon in DyMnO3 at low temperatures. Frequency dependence
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DyMnO3 along the a axis for different external magnetic fields B‖a at T = 3 K. There is a qualitative
change of electromagnon from the broad overdamped mode at B = 0 T to a well-defined oscillator for
B ≥ 3 T.

similar to a behaviour of electromagnon at higher temperatures and still supports the
assumption that electromagnon is a soft mode of the magnetic phase transition from
the bc to the ab phase. This phase transition can be initiated not only by magnetic
field along the a axis but along the b axis also. Measurements in the last geometry
can provide more data to understand the problem and will be discussed in the next
subsection.

6.2.2 Magnetic field along the b axis

We turn now to the experimental geometry in which the transition from the bc to the ab
cycloid is achieved by magnetic fields along the b axis. Figure 6.9 shows dependencies
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of dielectric constant along the a axis on magnetic fields along b axis at T = 6 K and
different frequencies in the THz range. Transition from the phase with spin cycloid in
the bc plane to the phase with cycloid in the ab plane is clearly visible and takes place
at substantially lower fields of around 3 T, compared to data for magnetic fields along
the a direction (Fig. 6.5). The temperature of the experiment at T = 6.1 K is just
above the ordering of Dy subsystem at T = 5 K so no or only negligible effects due to
Dy moments are expected.
Figure 6.10 reveals the terahertz spectra of the electromagnon in this geometry. Sim-

ilar to the data in Fig. 6.6, these results show an increase of the electromagnon intensity
in external magnetic fields. However, already the comparison of the spectra at 6 T (green
diamonds and line) and at 2 T (red squares and line) suggests that the increase of the
mode intensity is not directly correlated with the decrease of the resonance frequency.
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Even without exact analysis of the fits one can see that the maxima in ε2 for 2 T and
6 T roughly coincide in spite of different intensities. In order to draw more quantitative
conclusions, the same fit procedure as for data for B‖a was used.

Figure 6.11 presents the results of mode parameters extraction. Red circles represent
here the strength of the electromagnon which increases continuously in the whole range
of the magnetic fields investigated. Contrary to the results for the B‖a (Fig. 6.7), above
the transition to the ab cycloid at 2 T the mode contribution ∆ε deviates from the LST

prediction ∆ε · ω(0)2

ω(B)2
(green squares in Fig. 6.11). This reflects that the spectral weight

of the electromagnon is not conserved in external fields B‖b.
The dielectric permittivity of DyMnO3 along the a direction at 10 kHz was also

measured and is shown as a black line in Fig. 6.11. The most prominent is the peak
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at the phase transition from bc to ac cycloid at B = 2 T. Dielectric properties at THz
frequencies show no such peak which suggests that basic contribution to εstatic around
the phase transition comes from other processes. Further investigations of the origin of
this peak were made in Ref. [80] by Kagawa et al in which the dielectric contribution
of the domain walls in DyMnO3 have been studied. It has been shown that the peak in
the dielectric constant around bc-to-ab phase transition is due to domain wall relaxation
with characteristic frequency situated at radiowaves. Therefore close to B = 2 T the
main changes in the static permittivity are due to the motion of the domain walls.
Outside this region however, the overall increase of the static permittivity corresponds
well to the dielectric contribution of the electromagnon. Although the electromagnon
softens much weaker than in the B‖a geometry, its spectral weight still governs the
high field behaviour of the static permittivity. The spectral weight of the low frequency
electromagnon is not conserved in external magnetic fields B‖b and its conservation in
magnetic fields along a direction at temperatures T > 5 K seems at this point to be
more a coincidence rather than the manifestation of some underlying basic laws like
conservation of magnetic moments.

6.3 Summary

The terahertz spectra of Dysprosium manganite for e‖a polarization reveal two strong
excitations, called electromagnons, which appear together with the emergence of spon-
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6.3 Summary

taneous electric polarization along the crystallographic c axis. Although the neutron
scattering data are not available for this material, these two effects seem to be a mani-
festation of a peculiar magnetic ordering of the system. All experimental evidences and
results on similar rare earth manganites point towards cycloidal structure of manganese
spins at temperatures below 19 K. Magnetic fields along the c direction were not high
enough in experiments up to now to suppress the ferroelectricity in DyMnO3. On the
other hand, the magnetic fields along a or b crystallographic axes lead to a rotation
of the electric polarization from a to c axis. This can be well explained by the rota-
tion of the spin cycloid from bc to ab plane. However both electromagnons at 16 cm−1

and 48 cm−1 do not change their excitation condition and stay visible for THz electric
field e‖a upon this magnetic phase transition. This may suggest that the mechanisms
responsible for the spontaneous polarization and for the electromagnons are different.
There are some experimental evidences for additional absorption mode between 2 and
8 cm−1 which could be interpreted as a vibration mode of magnetic cycloid. But the
accuracy of present experiments is not enough to draw a definitive conclusion here.
As had been shown in Chapter 5 it is Mn spins which drive the ferroelectricity in

this class of manganites. In particular case of DyMnO3, the Dy moments play a role
and substantially enhance the spin cycloid until they order separately into antiferromag-
netic arrangement below T = 5 K. This transition is well seen in dielectric properties
as a decrease of the static electric polarization or overdamping of the low frequency
electromagnon. The antiferromagnetic ordering of Dy moments can be suppressed in
moderate magnetic fields B‖a that still below the transition to another orientation of
Mn spin cycloid. This results in an increase of electric polarization and it also brings
back the well-defined character of the low frequency electromagnon.
The behaviour of the electromagnon at 16 cm−1 in a broader range of magnetic fields

along a and b axes is similar to classical soft modes. The spectral weight of this electro-
magnon governs the static dielectric permittivity for the whole range of magnetic fields
B‖a and for magnetic fields B‖b except the vicinity of the phase transition at 2 T. This
analogy lacks however the underlying conservation law like the conservation of change
in the case of soft phonons, and the spectral weight of electromagnon is generally not
conserved.
The lack of detailed knowledge of magnetic structure of DyMnO3 does not allow the

construction of reliable theoretic models. The overall experimental results, on the other
side, closely resemble another rare earth manganite, TbMnO3. This last compound was
intensively studied including neutron scattering experiments and its magnetic structure
is well known. Therefore theoretical models suggested for TbMnO3 can also be applied
to Dysprosium manganite and the properties of TbMnO3 will be discussed in the next
chapter.
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7 TbMnO3: electromagnon

internals

Among magnetoelectric manganites TbMnO3 is probably one of the most intensively
studied by spectroscopic methods. In addition to results by dielectric [2, 20] and op-
tical [16] spectroscopies, the magnetic structure of this material is well known from
neutron scattering experiments [35, 81, 82]. Due to low absorption coefficient (less than
2 cm−1 for the neutron wavelength in the range of 2−5 Å [61]), inelastic neutron scatter-
ing data are available for TbMnO3 [43] which allow to compare characteristic frequencies
of spin excitations and of electromagnons.

7.1 Temperature dependence of excitations in zero

magnetic field

TbMnO3 orders antiferromagnetically at TN = 42 K with the magnetic moments of
Mn aligned along the b axis with an incommensurate sinusoidal modulation also along
the b axis [35, 81, 82]. Upon cooling a second transition into a spiral phase occurs
at TC = 28 K with a slightly different modulation vector [35]. The cycloidal spin
structure is oriented within the bc plane in this phase. This low temperature phase is
ferroelectric with the spontaneous polarization parallel to the c axis [2]. The symmetry
analysis [75, 83] confirms that static electric polarization along the c axis is allowed for
this spin arrangement. Finally, a phase transition at about 9 K is attributed to the
magnetic ordering of the Tb sublattice.

Figure 7.1 shows the temperature dependence of the dielectric permittivity of TbMnO3

for the ac electric field parallel to the a axis (e‖a). All magnetic transitions can be well
observed in the dielectric data. This demonstrates already in this stage the coupling
between magnetic and electric properties in TbMnO3. The real part of the dielectric
permittivity strongly increases with decreasing temperature which reflects the growth of
the magnetoelectric contribution. The initial increase of the imaginary part on cooling
is reversed below TC = 28 K. As can be seen in the spectra below, this reflects the
narrowing of the electromagnon. Below T = 10 K distinct structure is observed both
in ε1 and in ε2. This points towards an additional excitation with the energy around
10 cm−1 and with a temperature-dependent characteristic frequency.

The strong magnetoelectric modes are well seen in Figure 7.2, which shows the tera-
hertz spectra of TbMnO3 for ac-electric field parallel to a axis (e‖a). This is the axis
with substantial absorption at terahertz frequencies. Both other directions are nearly
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Figure 7.1: Temperature dependence of the terahertz dielectric constant of TbMnO3 along the a axis
in zero external magnetic field. Upper panel - real part, lower panel - imaginary part. Dashed lines
indicate the temperatures of magnetic phase transitions. PM - paramagnetic, IC-AFM - incommen-
surate antiferromagnetic (sinusoidal), spiral - spiral (cycloidal) phase, Tb-order - magnetic phase with
ordered Tb-sublattice.

transparent for terahertz radiation. For decreasing temperatures an over-damped exci-
tation starts to grow in the spectra for e‖a. In the real part of the dielectric permittivity
this excitation is seen as a broad step-like increase towards low frequencies which cor-
responds to a maximum in the imaginary part. This broad feature can be identified as
electromagnon. Especially in the spiral phase below 28 K the electromagnon narrows
and becomes a well-defined excitation close to 23 cm−1. The spectral weight of the elec-
tromagnon continues to increase upon cooling. In the spiral phase the electromagnon
splits into two modes at 18 cm−1 and at 23 cm−1. This splitting is well documented at
T = 2.5 K because both components of the electromagnon are narrow at low tempera-
tures.
Figure 7.3 shows the experimental transmittance of TbMnO3 for all possible geome-
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tries. All right and upper left panels of Fig. 7.3 have been obtained in geometries
where magnetically excited modes are observed. We assign these modes to antiferro-
magnetic resonances in TbMnO3. Due to the comparative weakness of these modes, the
transmittance is not far from unity even close to the resonance and the Fabry-Pérot
oscillations on the sample surfaces are clearly seen. On the contrary, the excitation ob-
served in the middle and lower left panels of Fig. 7.3 reveals much stronger absorption,
which is partly close to the sensitivity limit of our spectrometer. As has been dis-
cussed previously [16, 60], these modes are excited by the electric field and are termed
electromagnons.

As demonstrated in the middle and lower left panels of Fig. 7.3 and in the Fig. 7.2 the
electromagnon mode splits into two excitations, which is most clearly seen in the spectra
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at the temperatures below 4 K. Using direct analysis of the transmittance spectra in
combination with the temperature scans, the second weaker electromagnon at 18 cm−1

can be followed up to T = 20 K, i.e. deep into the cycloidal phase. We conclude that
this mode originally appears at zero frequencies and is probably the same as the low-
frequency mode observed close to 9 cm−1 in inelastic neutron scattering (INS) [43, 44].
These experiments revealed two basic magnetic excitations in TbMnO3 in the spiral
AFM phase at T = 17 K, at 9 cm−1 and at 20 cm−1. The latter excitation corresponds
well to the electromagnon seen in the terahertz spectra at 23 cm−1.
In inelastic neutron scattering experiments the magnetic excitations can be directly

addressed using polarized neutrons. An experimental difficulty that has to be overcome
in this case is the separation of the signals from the magnetic and nuclear channels.
The polarization analysis of the spectra allows to classify the observed magnetic exci-
tation depending on their polarization state. Although the excitation geometries in the
neutron scattering and in the terahertz absorption spectroscopy cannot be compared
directly, they both provide information about the motion of the magnetic moments of
each mode. Finally, the comparison of the eigenfrequencies from the INS and from ter-
ahertz experiments allows to draw conclusions about electric and magnetic character of
the excitations.
Full dispersion relations of the magnetic excitations can be obtained in inelastic neu-

tron scattering experiments. On the contrary, the optical experiments are in most cases
sensitive to the center of the Brillouin zone only. The reason for this fact is the mo-
mentum conservation in absorption processes and the negligibly small momentum of the
photon (h̄qph ≈ 0). Therefore, comparing the optical and INS results only the data at the
zone center should be taken into account. The situation becomes far more complicated
if the dynamic properties of the spiral magnets are considered. Firstly, the calculations
of the excitation conditions for the eigenmodes of the spin cycloid reveal that the center
of the crystallographic Brillouin zone is not excited in the optical experiments. Instead,
a magnon with a specific wavevector q = q0 can absorb the photon. Here q0 = 2π/λ0 is
the propagation vector of the spin cycloid and λ0 is the periodicity of the cycloid. The
apparent violation of the momentum conservation during the absorption of the photon
is recovered due to the correction equal to the reciprocal lattice vector of the cycloid.
In the presence of a periodic modulation Q = 2π/λ0 the umklapp processes with k0 = Q
become allowed and the momentum conservation during the absorption of a photon with
qph ≈ 0 can be fulfilled: qph ≈ Q − k0 = 0. Therefore, in the following the frequency
positions taken at the wavevector q = Q will be plotted to represent the INS data. The
coincidence of the frequencies from both experimental techniques supports this mode
assignment and is one of the main arguments in favour of the eigenmode scenario.
The systematics of the magnetic and magnetoelectric excitations in perovskite mul-

tiferroic manganites can be well illustrated using TbMnO3 as a typical example. The
map of these excitations is shown in Fig. 7.4 which summarizes the results of both the
inelastic neutron scattering (stars) and of the terahertz spectroscopy (circles, triangles,
squares). Because magnetic and electric activity cannot be separated in the INS ex-
periments, the same frequencies are plotted both in the upper and lower panel. In the
lower panel two observed electromagnons are indicated by solid circles and squares. In
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the spin spiral phase the electromagnon energies correspond to the excitation energies
of well defined quasi particles. In the collinear sinusoidal phase the electromagnons are
seen as broad over damped modes [60]. The energies as plotted for T > 27 K corre-
spond to the line width of these modes indicating that the damping strongly increases
towards the transitions into the paramagnetic phase. The frequencies of the observed
antiferromagnetic resonances in TbMnO3 are plotted in the upper panel of Fig. 7.4 as
closed symbols. In total, four such magnetic modes have been observed in the frequency
range of our experiment. Remarkably, both AFMR and electromagnons can still be
observed in the paramagnetic phase. This effect has been previously observed for other
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7.1 Temperature dependence of excitations in zero magnetic field

multiferroics [60] and should be probably attributed to magnetic fluctuations. The two
AFMR modes have frequencies very close to those of two electromagnons. In analogy to
electromagnons, these two modes are indicated by closed circles (high frequency mode,
excited by h‖b and h‖c) and closed squares (low frequency mode, excited by h‖b). An-
other AFMR mode at intermediate frequencies which is given by closed triangles can
be attributed to the phason mode of the magnetic bc-cycloid. This agrees with the
excitations conditions h‖a for this mode. The remaining magnetic mode around 5 cm−1

can be excited for h‖a. Based on the fact that this mode is observed mainly in the
Tb-ordered phase, it can be attributed to the excitation of the ordered Tb moments.
The most important conclusion that can be drawn from the analysis of the data pre-

sented in Fig. 7.4 is that for each electromagnon (lower panel) there exists an excitation
in the magnetic channel (upper panel) and this excitation is also seen in the INS data
corresponding to the magnetic zone center. Strictly speaking, the last conclusion can
be applied to the high-frequency electromagnon with some corrections only. The high-
frequency electromagnon also reveals a magnetic counterpart. However, the magnetic
excitation channel of this mode is seen as a zone boundary magnon in INS experiments
and was not observed in the optical spectra.
Classical modes of magnetically ordered structures are excited via the interaction

with the magnetic component of the electromagnetic field. In case of simple antifer-
romagnetic structures these are well known antiferromagnetic resonances which reveal
two eigenmodes [66, 84]. As the magnetic ordering in perovskite magnetoelectric man-
ganites is much more complex, additional complexity of the magnetic excitations in the
ordered state of the spiral magnets may be expected. Within calculations performed
in Refs. [38, 40, 50] two spin wave branches of the magnetic cycloid are obtained. One
branch represents the out-of-plane oscillations of antiferromagnetic moment and it cor-
responds to a minimum in the dispersion relations ω(k) at the cycloid wavevector k0.
This branch is doubly degenerate in the isotropic model. The other branch represents a
so called phason mode corresponding to a rotation of the spins within the plane of the
spiral and having a zero gap at k = 0 in the isotropic case.
With the presence of an anisotropy all three eigenfrequencies of the cycloidal spin

structure generally become different. The frequency of the phason mode becomes
nonzero and should be observed in the spectra of the magnetic excitations. Indeed,
the third mode of a magnetic origin has been detected in TbMnO3 both by terahertz
spectroscopy [85] and by inelastic neutron scattering [43, 44]. Unfortunately, the mode
assignment for the third mode and the eigenfrequencies in both experiments did not
agree. In the INS spectra a shoulder slightly above zero energy has been observed and
interpreted as a missing phason mode around ν ∼ 0.1 meV (0.8 cm−1). In the optical
experiments such low frequencies can not be investigated up to now and, therefore, di-
rect comparison of two experimental techniques is not available. On the contrary, in the
optical experiments a third magnetic mode has been observed in the frequency range
between both electromagnons (i.e. around 16 cm−1 (2 meV) at 17 K), shown as closed
triangles in the upper panel of Fig. 7.4. This mode revealed pure magnetic excitation
conditions which agreed with the predicted conditions (h‖a) for the phason mode of the
bc spin spiral [85]. Therefore, the mode close to 16 cm−1 has been suggested as a phason
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Figure 7.5: Dependence of dielectric properties of TbMnO3 upon magnetic field along a axis.

of the cycloidal structure. We note that the analysis of the INS spectra in the collinear
magnetic state [44] does reveal some additional feature close to 1.3 meV (2 cm−1) at
32 K. Extrapolated to the lower temperatures, this mode would correspond to 2 meV
(16 cm−1) at 17 K and to the magnetic mode of the terahertz spectroscopy. However,
this mode has been interpreted not as a phason but rather as further transverse magnon
branch of the collinear state. Therefore, the question of the observation and assignment
of the phason mode of the cycloidal structure still remains open.

7.2 Electric and magnetic excitations in external

magnetic field

We discuss now the behaviour of the electromagnons in TbMnO3 in external magnetic
fields parallel to the crystallographic a and b axes. We recall that the external fields
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Figure 7.6: Dielectric permittivity spectra of TbMnO3 in external magnetic field along a axis. Lines
are fits using Lorentzian line shape.

along the c axis suppress the electromagnons [16] and induce a canted antiferromagnetic
structure [20, 86]. In external magnetic fields along the a and b axes the magnetic cycloid
rotates from the bc plane towards the ac plane [87, 88]. Correspondingly, the electric
polarization rotates from P‖c axis to the P‖a axis [2, 20, 88]. Applying magnetic fields
µ0H > 5 T along the b axis allows for complete rotation of the cycloid plane. Along
the a axis fields of more than 10 T are necessary and only a tilting of the cycloid can
be achieved using our magnet (maximal field 8 T). In both cases and already for fields
above ≈ 2 T substantial changes in the spectral structure of the electromagnons can be
observed. For B‖a this is demonstrated in the magnetic field dependencies of dielectric
properties in Fig. 7.5. The feature at 1.5 T in the real part of dielectric constant in
the upper panel and step-like increase of the absorption in the lower panel for the high
frequency (35.3 cm−1) suggests the appearance of some additional mode in this range.
The field scan at low frequency (3 cm−1) shows a prominent increase of the dielectric
constant around 2 T. Together with the sum rule this also supports the emergence of
new absorption modes at higher frequencies.

The above assumptions are confirmed by the terahertz spectra shown in Fig. 7.6.
Instead of initially two electromagnons four new modes in high magnetic fields are
observed. The highest of these modes appears at the frequency around 35 cm−1 and
explains the high frequency field dependence in Fig. 7.5. The solid lines in Fig. 7.6 are
fits using the sum of four Lorentzians.

The magnetic field dependence of modes’ parameters is represented in the Fig. 7.7.
We attribute the appearance of these modes to the change of the excitation conditions
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of the magnetic cycloid due to tilting. From the simple arguments the rotation of
the magnetic cycloid from bc plane to the ac plane should simultaneously switch the
excitation conditions for the electromagnons from e‖a to e‖c. On the other hand, as
the magnetic fields along the a axis are not enough to fully rotate the cycloid to the ac
plane in our experiments, the cycloid stays at some intermediate tilted position. One
can expect that such a tilted cycloid possesses additional degrees of freedom compared
to pure bc or ac plane orientations. The new modes observed in high magnetic fields
are possibly the manifestations of these degrees of freedom.

The behaviour of TbMnO3 in external magnetic fields along the b axis is of a greater
interest. The most intriguing question here is whether the electromagnon follows the
magnetic cycloid and would be observed in the e‖c geometry or whether it would be
still excited for electric field along the a axis. The first case would support IDM model
of the electromagnon while the second case - Heisenberg model. In the IDM model, the
excitations of the spin cycloid must be coupled to its orientation. Most specifically, one
should expect the electric activity along the c axis if the spin cycloid is oriented in the
ab plane. However, such excitation conditions were not observed up to now [40, 85].
A possible reason for this fact is the weakness of the dielectric contribution of the spin
modes within the IDM mechanism. In order to resolve this experimental difficulty,
TbMnO3 seems to be an ideal candidate, because the magnetic cycloid can be fully
rotated between ab plane and bc plane in magnetic fields available in our cryostat. This
allows to investigate terahertz excitations in TbMnO3 with the fully tilted spin cycloid.
The experiment in this case should include investigations for different polarization of
radiation and possibly for samples cut along various crystallographic directions at the
magnetically induced rotation of the cycloid.
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We start with the geometry e‖a where the electromagnon is already present in zero
magnetic fields. The magnetic field dependencies of dielectric constant are shown in the
Fig. 7.8. The left dashed area represents the onset of spin cycloid rotation away from the
bc plane. The broad dashed area in the right side marks the region where the magnetic
cycloid locks to the ac plane. As is seen in the figure, the strongest changes occur
in the low frequency range (the black curve obtained at 10 cm−1). The frequencies
around 20 cm−1 are affected substantially less, whereas in the high frequency range
(30 cm−1) almost no changes can be observed at all. The increased dielectric constant
and absorption in the intermediate magnetic field range between two dashed regions
supports the above hypothesis that the tilted spin cycloid has some additional degrees
of freedom contributing to dielectric properties at low frequencies. Note that almost all
curves except the red one go back to the values in zero magnetic fields when the cycloid
is fully rotated to the ac plane.

The more detailed picture of the changes in the terahertz spectra in the high field
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phase provides Fig. 7.9. The lines in this figure are model fits using only two Lorentz
oscillators up to the fields of 5 T. Only the state with completely switched cycloid to the
ac plane requires one additional oscillator around 22 cm−1. The emergence of this mode
is the reason for the increase of the real part of dielectric constant at 20.7 cm−1 in the
Fig. 7.8. We note here the huge growth of lower frequency satellite of the electromagnon
in the intermediate field range. This is also seen in Fig. 7.10 which shows the field
dependencies of the resonance frequencies (lower panel) and strengths (upper panel)
of the fitted modes. The black curve in the upper panel closely resembles the field
dependence of dielectric constant at 10 cm−1 in the Fig. 7.8. This means that the
contribution to the dielectric constant from the lower frequency satellite dominates in
the lower part of terahertz spectra. The behaviour of TbMnO3 in the external magnetic
fields along b axis was also investigated by other experimental techniques. The inelastic
neutron scattering experiments [87] reveal complex changes in the magnetic modes and
complicated excitation conditions.

One quite important conclusion can be made already based on the experimental data
in the geometry e‖a. The strong overall dielectric absorption in this geometry stays
present even when the spin cycloid is completely rotated to the ac plane. This challenges
the IDM model of the electromagnon which directly relates the excitation condition to
the orientation of the magnetic cycloid. Within this model the rotation of the magnetic
cycloid from bc plane to the ac plane should simultaneously switch the excitation condi-
tions for the electromagnons from e‖a to e‖c. In order to check this prediction, a series
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of transmittance experiments for ac-electric fields along the c and b axes was carried
out [89].

Fig. 7.11 shows magnetic field dependencies of refraction index n and absorption co-
efficient κ for geometry with e‖b and h‖a. The data are given in the representation
n+ ıκ =

√
εµ because both electric and magnetic contributions are mixed in this exper-

imental geometry. Although no electromagnon is expected for the present polarization
(e‖b), the changes of the optical properties upon transition into the ac-cycloid phase at
7 T are clearly seen. The changes in the Fig. 7.11 can be easily explained by the emer-
gence of a new Lorentz-shaped mode around 20 cm−1. This assumption is confirmed by
the terahertz spectra shown below.

Similar magnetic field dependencies of optical constants for geometry e‖c and h‖a
are shown in Fig. 7.12. The data are represented as refractive index n + ıκ =

√
εµ

again. The transition from bc plane to ab plane cycloid in the high magnetic fields is
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clearly seen. Already at this point it is clear that the observed changes are strongly
frequency dependent. Here the data at 4.7 cm−1 is influenced by a Tb-mode around
5 cm−1 [85] which disappears in the high-field phase with the ab plane cycloid. This leads
to a substantial decrease of the absorption (κ(4.7 cm−1)) and reveals a bit complicated
structure in refractive index below 10 cm−1. The changes observed at 4.7 cm−1 can be
well understood assuming a suppression of a Lorentzian mode situated between 5 and
6 cm−1. Three higher frequency scans in Fig. 7.11 show more systematics. Same as in
the geometry e‖b, h‖a, it can be reduced to a growth of the absorption mode around
20 cm−1. Indeed, strong additional absorption arises near the frequency ≃ 20 cm−1

and is substantially reduced above and below this frequency (28 cm−1 and 16 cm−1,
respectively). At the same time there is an increase of refractive index n below this
frequency and a decrease above 20 cm−1. This is a typical behaviour for a Lorentz
oscillator which appears close to 20 cm−1 simultaneously with the ab plane cycloid. In
order to justify this description, the spectra of TbMnO3 in the relevant frequency range
are considered.

Figure 7.13 shows the field dependent spectra for two different geometries of the ex-
periment. The thicknesses of the samples are similar for both orientations: 1.24 mm
(upper panel) and 1.33 mm (lower panel), respectively. The spectra in the lower panel
with e‖c and h‖a correspond well to the known results [40, 85] and show a mode at
about 21 cm−1. Based on the weakness of this mode, both in Ref. [40] and in Ref. [85]
it has been concluded that the mode around 21 cm−1 is of purely magnetic origin and
represent an antiferromagnetic resonance of the magnetic cycloid. Indeed, the strength
of this mode (∆ε ∼ 0.05, assuming electric origin) is extremely weak compared to elec-
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tromagnon observed for e‖a (∆ε ∼ 2) [16, 60]. The mode in Fig. 7.13 is observed for
the ab plane cycloid and within h‖a excitation conditions. Tracing this mode back into
the bc-oriented cycloid, it can be expected to originate from the excitation conditions
h‖c. (This corresponds simply to the interchanging of the a axis and c axis). In-
deed, an AFMR mode excited for h‖c of the similar strength has been observed around
21 cm−1 [85]. As all changes detected along the c axis as function of magnetic field are
extremely weak the obvious conclusion is that the mode at 20 cm−1 is of pure magnetic
origin with excitation condition h‖a.
A careful comparison of both panels in Fig. 7.13 reveals interesting difference between

the two excitation conditions. The strength of the mode in the geometry where e‖b
is roughly the half of that where e‖c. This strongly suggests that for the geometry
in which e‖c the electric dipole contribution is indeed measurable and represent the
previously unobserved e‖c counterpart of the electromagnon. These results agree well
with the original explanation of the electromagnons as electrically active eigenmodes of
the cycloidal structure [38, 60].
In order to make the discussion quantitative, the experimental spectra in the upper

panel of Fig. 7.13 were fitted with magnetic Lorentz oscillator. If now the parameters of
the mode from the geometry with e‖b are taken and the expected transmittance spectra
for the geometry e‖c is plotted the absorption value which is too weak compared to
the experiment is obtained (the “µ only” curve in the lower panel of Fig. 7.13). The
only possible explanation is that this mode has distinct non-zero electric contribution
along the c axis. The actual fit for this geometry was obtained by taking parameters
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of the magnetic oscillator from e‖b geometry and adding an electric oscillator with the
same resonance frequency ν0 = 20.7 cm−1 and line width γ = 4.9 cm−1 as the magnetic
one. The reasoning behind this assumption is that both contributions are electric and
magnetic parts of the same oscillating mode of the spin cycloid. The strengths of both
components is given by ∆µ = 0.0038 and ∆ε = 0.05, respectively. A weak narrow mode
seen close to 22 cm−1 for e‖b, h‖a geometry is possibly due to impurities in the sample.
The strength of this mode is at least an order of magnitude smaller than the strength
of the broad mode and doesn’t change the overall picture.

The mode intensity for the “main” e‖a electromagnon (∆εa ≃ 2 [16]) is about 40
times stronger than electric contribution along the c axis (∆εc ≃ 0.05) observed in the
present experiment. The large electromagnon absorption along a axis was a challeng-
ing question in explaining its origin. The relatively weak static electric polarization
doesn’t fit well with the large dielectric absorption of electromagnon if both are caused
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7.3 Summary

by Dzyaloshinskii-Moriya interaction [40]. On the contrary, the Heisenberg exchange
mechanism [40, 50, 90] seems to explain well the intensities of at least the high-frequency
electromagnons. In this model the edge-zone magnon couples to alternating orthorhom-
bic distortions at oxygen sites via symmetric Heisenberg exchange interaction. This leads
to the coupling of the zone edge magnon to homogeneous electric fields along the a axis.
As the symmetric interaction is much stronger than the relativistic DM coupling the
hybridized electromagnon has enough strength to explain the experimental intensities
for e‖a. Much weaker [40] DM component cannot be seen in this experimental geometry
because of the dominance of the intensity induced by the Heisenberg exchange coupling.
On the contrary, rotating the magnetic cycloid towards the ab plane, both contributions
can be well separated experimentally. The Heisenberg exchange part remains oriented
along the a axis, as confirmed by different experimental groups [40, 65, 78, 85]. The
weak DM electromagnon rotates with the cycloid and can be clearly observed in the
present experiment as electric contribution along the c axis.

Finally, we recall that at T = 10 K four magnetic modes have been identified in our
experiments (Fig. 7.3). Three of them are probably the eigenmodes of the spin cycloid
and correspond to distinct features in inelastic neutron scattering data [43, 44, 85].
Accepting this picture, the magnetic modes can be described as: i) phason mode of the
cycloid for h‖a and at 18 cm−1 [85]; this mode is seen as a weak contribution for B = 0
curve in the upper panel of Fig. 7.13, and ii)+iii) two transverse eigenmodes of the
cycloid with h‖bc excitation conditions and at 13 cm−1 and 22 cm−1, respectively. After
the rotation of the spin cycloid by the external field, the two latter modes are expected
to switch their excitation condition from h‖c axis to the h‖a axis in full agreement
with the present results. One remaining question is: why only one mode in the high-
field phase is observed? The probable reason is that one of two modes is too weak
and is not seen in the spectra. This argument is supported by recent inelastic neutron
scattering experiments [87]. In these experiments the modes of the ab plane spin cycloid
have been investigated. Although this ab plane orientation has been achieved using
an external magnetic field along the a-axis, the comparison to the present results is
still very instructive. It has been observed that the excitations of the ab cycloid are
dominated by a strong mode at 2.25 meV [87]. This frequency corresponds well to the
excitation at 21 cm−1, seen in Fig. 7.13.

7.3 Summary

In TbMnO3, the closest agreement between the experimental data and theoretical mod-
els exists concerning the explanation of the high-frequency electromagnon. It is now
widely accepted that this electromagnon represents a zone boundary magnon which
becomes optically active within the Heisenberg exchange model of the magnetoelectric
coupling. The possibility to excite the zone boundary magnon is due to the fact that
the Mn-O-Mn bonds alternate within the crystallographic ab plane thus allowing for an
additional modulation within the unit cell. Again, the details of this bonds arrange-
ment allow the electric excitation of this magnon for ac electric fields parallel to the
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7 TbMnO3: electromagnon internals

crystallographic a axis.
In addition to the high-frequency electromagnon a second electromagnon of the com-

parable strength exists at frequencies between 10 cm−1 and 30 cm−1. Within a Heisen-
berg exchange model a possible explanation for this electromagnon is the anisotropy and
anharmonicity of the magnetic cycloid. The fine structure of the low-frequency electro-
magnon should most probably be attributed to the eigenmodes of the cycloidal spin
structure. The basic argument in favour of this conclusion is the close coincidence of
the resonance frequencies observed by the inelastic neutron scattering and in terahertz
absorption experiments.
Performing a detailed polarization analysis of the electric and magnetic excitations

in TbMnO3 in the high-field phase where spin cycloid rotates from bc- to ab-plane,
the eigenmodes of the magnetic cycloid can be also seen separately from the strong
electromagnon. The observed excitation at 21 cm−1 can not be described by purely
magnetic contribution as was suggested previously. We argue that this excitation is
the missing electro-active mode of the spin cycloid. The weakness of this mode is in
agreement with the inverse Dzyaloshinskii-Moriya model. The dielectric contribution of
this mode is about 40 times weaker than of the electromagnon.
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8 Conclusions and outlook

This work presents the results of the spectroscopic study of rare earth manganites
RMnO3 (R = Gd, Dy, Tb, Eu1−xYx) in the frequency range 2-40 cm−1. The focus
is on the multiferroic materials with coexisting ferroelectric and antiferromagnetic or-
der parameters. The nonconductive materials with strong magnetoelectric coupling are
interesting both for applications in memory cells or spin current polarizers and for the
fundamental research of the mechanisms of the magnetoelectric interaction.
The existence of the improper ferroelectricity below 20 K in the multiferroic mangan-

ites is due to the cycloidal spin ordering, which breaks the spatial inversion symmetry.
The magnetic origin of the ferroelectricity is responsible for the strong magnetoelectric
coupling. Immediate consequence of this coupling is the possibility to control static elec-
tric polarization via external magnetic field. From the spectroscopic point of view the
strong coupling is manifested by the existence of electromagnons – spin waves excited
by an electric component of light. The electromagnons were first discovered in GdMnO3

and TbMnO3 around 20 cm−1 and they were observed in all materials, studied in this
thesis.
An exact analytical solution of the Landau-Lifshitz equations, obtained for a cycloidal

antiferromagnet, builds a theoretical ground for the analysis of the experimental results.
Due to the complicated nature of the frustrated magnetic ground state, the inelastic
neutron scattering data are hard or even impossible to directly compare with the re-
sults of the optical spectroscopy. The spin-waves solution is the bridge between these
two experimental methods, and a semi-quantitative agreement is achieved, despite the
known oversimplifications of the model Hamiltonian. Two most important mechanisms
of the magnetoelectric coupling, the so-called inverse Dzyaloshinskii-Moriya (IDM) in-
teraction and the model based on the symmetric Heisenberg exchange (HE) striction,
are introduced in a perturbative manner. The qualitative conclusions regarding both
static and dynamic electric properties are given, and they are in a good agreement with
the experiment.
In GdMnO3, apart from the earlier found electromagnon at 20 cm−1, the far infrared

measurements have revealed another strong excitation at 75 cm−1. This mode is ex-
cited by an electric component of the electromagnetic radiation and it is sensitive to the
magnetic structure. Due to similarities to the low-frequency electromagnon, this mode
is termed high-frequency electromagnon. Its observation in GdMnO3 makes this ma-
terial very similar to other multiferroic manganites, although only small static electric
polarization is observed in the intermediate temperature range. It is possible that the
strongly competitive A-type antiferromagnetic order prevents the development of the
long range cycloidal ordering.
The spectroscopic study of Eu1−xYxMnO3 compounds has helped to establish the role
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8 Conclusions and outlook

of the rare earth’s moments in the multiferroic properties. The Y3+ ion is diamagnetic
and Eu3+ possess only weak Van Vleck paramagnetism. The observation of the electro-
magnons in these materials has showed that it is the Mn subsystem that is primarily
responsible for both magnetic and magnetoelectric properties in rare earth manganites.
The study of the electromagnons in DyMnO3 in external magnetic fields has further

clarified the interplay between manganese and rare earth spins. Depending on the Dy
ordering, the electromagnons and static electric polarization can be either enhanced
or suppressed. Even more importantly, the excitation conditions of electromagnons in
external magnetic fields were shown to substantially differ from the behavior of static
electric polarization. While the polarization flops in magnetic fields B‖a and B‖b, the
electromagnon always remains visible for the polarization with electric field along the
crystallographic a axis (Pbnm setting).
The Terbium manganite is the most studied material in the whole series. The extensive

comparison of the magnetic and electric excitations, reported in the present thesis, with
the inelastic neutron scattering data and theoretical model has left no doubt that the
electromagnon is an electrically excited spin wave. Like in DyMnO3, the low frequency
electromagnon does not change its excitation conditions upon the flop of the static
electric polarization in external magnetic fields. This observation together with the
large experimental spectral weight still need a consistent theoretical explanation. On
the other hand, the detailed measurements on samples with different orientations have
allowed to detect a weak electric contribution along the c axis at 21 cm−1, in a state
with the ab spin cycloid. This is a first direct observation of a dynamic counterpart of
the IDM interaction which is responsible for the static electric polarization.
In summary, the inverse Dzyaloshinskii-Moriya interaction is capable to describe both

the emergence and the flop of the static electric polarization. The weak electro-active
excitation in the high-field phase of TbMnO3 at 21 cm−1 also stems from this type of
relativistic coupling. The model based on the symmetric Heisenberg exchange striction
is successful in explaining the high frequency electromagnon. The excitation conditions
and the spectral weight are also well understood within this model. In order to provide
an explanation for the low frequency electromagnon, a magnetic anisotropy and higher
harmonics of the spin cycloid within Heisenberg exchange model have been suggested.
However, these attempts are still unable to describe the frequency and the spectral
weight of the low-frequency electromagnon in the whole series of rare earth manganites.
Further theoretical efforts are required in this direction. On the experimental side, the
detection of the dynamic magnetoelectric susceptibility predicted for the IDM based
electromagnon remains an interesting and challenging task.
Since the discovery of electromagnons in GdMnO3 and TbMnO3, these excitations

were detected in many other multiferroics as well. For example, in the family of rare
earth manganites RMn2O5, both the static electric polarization and the electromagnons
seem to emerge from the symmetric HE interaction. The systematic comparison of the
amplitude of the static polarization with the spectral weight of the electromagnon will
provide a good test of the theory. The iso-structural materials RFeMnO5, where Mn3+

is substituted by Fe3+, show much higher magnetic transition temperatures, paving the
promising way to increase the number of room-temperature multiferroics. Spectroscopic

120



study of these materials will certainly help to better understand and improve their
magnetoelectric properties. The preliminary results of the submillimeter spectroscopy
of Samarium ferroborate SmFe3(BO3)4 show the existence of an extremely low-lying
(< 1 cm−1) excitation, which is both magnetically and electrically active. Further
theoretical and experimental study will help to establish the underlying mechanism of
magnetoelectric coupling in these iron based multiferroics.
In general, materials with magnetoelectric coupling do not only reveal a new intrigu-

ing physics but they also supply new ideas for applications especially in the field of
microelectronics. Therefore, this field of research will continue its rapid development in
a foreseeable future.
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