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Kurzfassung
Diese Arbeit beschäftigt sich mit der magneto-optischen Untersuchung von
HgTe/CdHgTe-Quantentöpfen im Sub-Terahertz-Frequenzbereich. HgTe-Quantentöpfe
sind einzigartige Beispiele für zweidimensionale Systeme, in denen, abhängig von deren
Dicke, viele exotische Eigenschaften auftreten, die auf sich auf die invertierte Band-
struktur von reinem HgTe zurückführen lassen.

Als primäres experimentelles Werkzeug wurden Transmissionsexperimente in einem
Mach-Zehnder Interferometer mit einer kontrollierten Polarisation des Lichts durchge-
führt. Dieser Ansatz ermöglichte es uns, in den untersuchten Proben die Reaktion des
zweidimensionalen Elektronengases auf die angelegten elektromagnetischen Felder sys-
tematisch zu beobachten, während das Fermi-Niveau im System durch Top-Gating
verschoben wurde. Mit Hilfe der Drude-Theorie und optischer Übertragungsmatrizen
wurde ein Modell entworfen, um die Zyklotronresonanzen in dreidimensionalen topol-
ogischen Isolatoren auf HgTe-Basis und halbmetallischen HgTe-Proben zu analysieren.

Eine Untersuchung der Superradianz-Effekte in einem dreidimensionalen topologis-
chen Isolator hat gezeigt, dass die Superradianz mit dem elektrodynamischen Ansatz
erklärt werden kann und somit ein rein klassischer Effekt ist. Dieses experimentelle
Verfahren erlaubt die Trennung der Energieverluste im System in intrinsische- und
Strahlungsbeiträge.

Des Weiteren wird in dieser Arbeit ein Verfahren zur experimentellen Vermessung
der Bandstruktur durch die Analyse der Zyklotronresonanz vorgestellt. Mit unserem
Ansatz können die Elektronen- und Lochdispersionsbeziehungen anhand der Eigen-
schaften der Ladungsträger im System, wie Zyklotronmasse und Ladungsträgerkonzen-
tration, rekonstruiert werden.

In einem dreidimensionalen topologischen Isolator wurde die Detektion separater
Resonanzmoden, entsprechend den Oberflächenzuständen an zwei gegenüberliegenden
Filmgrenzflächen, dem Volumenleitungsband und dem Valenzband, durch das Top-
Gating ermöglicht. Unter Berücksichtigung der durch das Gate-Potential erzeugten
Asymmetrie, stimmt die experimentelle Bandstruktur ziemlich gut mit den Vorhersagen
des k · p-Modells überein.

Ein ähnliches Verfahren wurde für halbmetallische HgTe-Quantentöpfe angewandt.
Eine detaillierte vergleichende Analyse der experimentellen Bandstrukturen mit the-
oretischen Berechnungen zeigt eine sehr gute Übereinstimmung. Dies beinhaltet als
zentrale Ergebnisse die direkte Bestätigung der Elektronen- und Lochbandüberlap-
pung, die Ermittlung der effektiven Masse der Löcher und der Nachweis des zweiten
Leitungsunterbandes. Die Ergebnisse werden durch die Analyse der Shubnikov-de-
Haas-Schwingungen in der Kapazität bekräftigt, welche bestätigen, dass, aufgrund von
Masseninversion und Strukturinversionsasymmetrien, eine anomale zweifache Loch-
Tal-Degeneration beobachtet werden kann.
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Außerdem befasst sich die Dissertation auch mit den Fortschritten beim 3D-Druck als
eine Möglichkeit, neuartige optische Terahertz-Komponenten zu entwerfen und zu pro-
totypisieren. Insbesondere wird eine neue Art der Berechnung, des Designs und der Her-
stellung einer Wellenplatte untersucht, die einen einfallenden Strahl phasenmoduliert,
um ein vordefiniertes Intensitätsprofil auf einer entfernten Bildebene zu erzeugen. Die
erzielten Ergebnisse zeigen eine gute Übereinstimmung mit theoretischen Vorhersagen.
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Abstract
This thesis is mainly devoted to the magneto-optical spectroscopic study of
HgTe/CdHgTe quantum wells in the sub-terahertz frequency range. HgTe quantum wells
are unique examples of two-dimensional systems, in which many exotic thickness-
dependent properties arise due to the inverted band structure of bulk HgTe.

A Mach-Zehnder interferometer implementing controlled polarization of the light
was used as the primary experimental tool for transmission experiments. This approach
allowed us to systematically observe the response of the two-dimensional electron gas
in the studied samples to the applied electromagnetic fields, while the Fermi level in the
system was shifted by top-gating. With the help of Drude theory and optical transfer-
matrices, a model of the investigated samples was designed in order to analyze the cy-
clotron resonances in HgTe-based three-dimensional topological insulators and semi-
metallic HgTe samples.

An investigation of the superradiance effects in a three-dimensional topological in-
sulator has shown that the superradiance can be explained using the electrodynamic
approach and is therefore a fully classical effect. This experimental procedure allows
the separation of energy losses in the system into distinct intrinsic and radiation contri-
butions.

Furthermore, this work demonstrates a procedure for experimental mapping of the
band structure from the analysis of the cyclotron resonance. Within our approach, the
acquired properties of the charge carriers in the system, such as cyclotron mass and
carrier concentration, allowed the reconstruction of the electron- and hole-dispersion
relations. In a three-dimensional topological insulator, top gating allowed the detection
of separate resonance modes corresponding to the surface states at two opposite film
interfaces, the bulk conduction band, and the valence band. Considering the effect of
the asymmetric gating potential, the experimental band structure agrees reasonably well
with the predictions of the k · p model.

A similar procedure was utilized for semi-metallic HgTe quantum wells. Detailed
comparative analysis of experimental band structures with theoretical calculations
demonstrates a very good agreement. In detail, the main findings are a direct proof
of the electron- and hole-band overlap, the effective mass of holes, and the detection of
the second conduction subband. The results are strongly supported by the analysis of
Shubnikov-de Haas oscillations in capacitance, which confirm that an anomalous two-
fold hole-valley degeneracy is observed due to bulk inversion and structure-inversion
asymmetries.

In addition, the thesis also covers advances in 3D-printing as a way to design and
prototype novel terahertz optical components. In particular, a new way of calculating,
designing, and fabricating a waveplate that phase-modulates an incident beam to create
a predefined intensity profile on a distant image plane is investigated. The results of this
show good agreement with theoretical predictions.

iv



Contents

1 Introduction 1

2 Propagation of Electromagnetic Radiation Through Matter 5
2.1 Transfer-Matrix Formalism . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Stratified Medium . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Dielectric Slab . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Metallic Film . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Transmission Through an Insulating Slab and a Metallic Film . 11

2.2 Submillimeter Continuous-Wave Spectroscopy . . . . . . . . . . . . . 13

2.2.1 Mach-Zehnder Interferometer . . . . . . . . . . . . . . . . . . 14

2.3 3D-Printed Wave Plates . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Electron Dynamics in a Two-Dimensional Crystal 25
3.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Two-Dimensional Electron Gas . . . . . . . . . . . . . . . . . 26

3.2 The Semiclassical Model . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Bloch Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Validity of the Semiclassical Model . . . . . . . . . . . . . . . 31

3.2.3 The Effective Cyclotron Mass . . . . . . . . . . . . . . . . . . 33

3.3 Landau Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Mercury Telluride 43
4.1 The Inverted Band Structure of HgTe . . . . . . . . . . . . . . . . . . . 44

4.2 Strained HgTe Films . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Experimental Investigation of HgTe Samples 51
5.1 Cyclotron Resonance Experiments . . . . . . . . . . . . . . . . . . . . 51

5.2 The Drude Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



6 Superradiance in HgTe 61
6.1 Superradiant Decay and the Drude Model . . . . . . . . . . . . . . . . 61
6.2 Superradiance in a HgTe-Based TI . . . . . . . . . . . . . . . . . . . . 64
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Band Structure Mapping of 2D Crystals 69
7.1 HgTe-Based Topological Insulator . . . . . . . . . . . . . . . . . . . . 70

7.1.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 74
7.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Semimetallic HgTe Samples . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 86
7.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Conclusion 97

9 Acknowledgments 99

Bibliography 103

vi



1. Introduction

This thesis was written in the midst of a global pandemic. These uncertain times brought
us into realization of how much we depend and rely on the modern-age technology,
and, perhaps, that we are becoming even more addicted to it. The latest products of the
technological revolution, such as artificial intelligence, advancements in gene editing
and synthetic biology, nanotechnology, internet of things, digital learning and commu-
nication platforms, 3D printing, have played a major role in controlling the spread of
the virus and keeping us physically and mentally sound [1]. The current health crisis
certainly affected the global social and economic trends. However, as Hans Rosling
describes in his book Factfulness [2], even the most rational and informed among us
usually think worse of the world than it actually is. Before this year, we were in fact the
closest to ending world hunger and poverty that we have ever been and we are statis-
tically healthier and safer than ever. For that, we have to thank our constant strive for
social, political and technological advancement.

Realizing the importance of the technological innovation for our everyday life allows
us to draw in to the topic at hand. Every since the first transistor was discovered in the
mid-20th Century, semiconductors have been in the spotlight for the microelectronic
industry. The latter field presents one of the main driving forces of the technological
revolution. The great advances in electronics and computer science were propelled for-
ward by the outcome of the research on semiconductors. And we are not done yet. This
race for further improvement, constant lowering of production costs, miniaturization is
without a finish line and it strongly relies on novel discoveries in the field of semicon-
ductors.

Semiconductors, and other solids as well, can be well described by the electronic
band theory. The electronic band structure of a solid is the quantum mechanical solu-
tion for the allowed and forbidden electronic energy levels in the periodic crystal lattice.
The band structure is a very important fingerprint of a solid since it can be used to ex-
plain many physical properties, such as electrical and optical conductivity, and it there-
fore presents a crucial part in the framework of understanding electronic components.
In case the sample has an exposed surface, the standard technique of angle-resolved
photoemission spectroscopy (ARPES) [3] presents an established way to obtain the
necessary information. However, in several cases, especially in two-dimensional (2D)
hetero-structures, several buffer and capping layers prevent collecting the data from the
photo-emitted electrons, thus, making the approach with ARPES highly limited.

In condensed matter physics, topology became quite a hot topic in the recent times.
In fact, it all began when the quantum hall effect was recognized as the first topological
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state in matter [4, 5]. This occurred a few years after its discovery in a semiconductor
by von Klitzing in 1980 [6]. Later, already in the current century, a new topological
state, namely the quantum spin hall effect, was proposed [7] and later observed [8]
in HgTe quantum wells, i.e, a hetero-structure of semiconducting layers. The effect
arises since heavy mercury atoms cause strong spin-orbit interaction, which in turn re-
sults in an unique band reordering in bulk HgTe. While bulk HgTe is known for its
zero-gap semimetallic band structure, HgTe/CdHgTe quantum wells showed multiple
exotic thickness-dependent properties. Some states found in these systems are the 2D
semi-metallic state [9], the Dirac-fermion system [10, 11], and the topological insulator
state [12], in which the bulk insulator is accompanied by conducting surface states. In
these configurations, the spin-orbit interaction results in locking between the electron
spin and momentum, which raised a lot of interest from the spintronic community due
to the possibility of application in means of data transfer and storage. These systems
also became a popular playground for scientists in search of the Majorana fermions.

While the semiconductor scientific community has been active for more than 200
years, a relatively new field of terahertz technology emerged in the last couple of
decades. Terahertz, or submillimiter radiation, represents the electromagnetic spectrum
between the visible or infrared and the microwave region, therefore between the pho-
tonics and electronics. The terahertz region is also referred to as the "terahertz gap" due
to the long lasting lack of sources and detectors. Both other ends of the spectrum were
subject to a long history of research and developments. In the recent years, however, in-
novation brought us to new discoveries of possible ways of generation and detection of
terahertz radiation. Terahertz spectroscopy became a very powerful and promising tool
in science, industry, biology, medicine, in the security sector and in many other fields.
This frequency range still presents one of the least explored electromagnetic regions
and due to the great potential of its application, there is a high demand for elements that
manipulate the propagation of the terahertz electromagnetic beams.

The aim of this work is to present a merger of both fields presented above. A
spectroscopic study of HgTe/CdHgTe quantum wells in the sub-terahertz range of
40− 1100 GHz. The thesis is structured as follows.

For a successful interpretations of a spectroscopic study, a theoretical framework,
describing the interaction of matter with electromagnetic radiation, is required. We will
show in Chapter 2 that the fundamental tool to achieve that is Maxwell’s theory, which
allows us to formulate a set of matrices that describe the propagation of electromag-
netic radiation through various stratified media. Afterwards, we will present the Mach-
Zehnder interferometer, which served as the main experimental tool for the magneto-
optic experiments. The interferometric setup allows measuring the complex transmis-
sion of a continuous radiation through the sample. At the end of Chapter 2, we will
briefly demonstrate that the advances in three-dimensional (3D) printing allow to design
and fabricate novel components for the emerging field of terahertz technology.

Using epitaxial growth methods, semiconductor hetero-structures can be fabricated
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Chapter 1. Introduction

with an atomic size accuracy. Combining layers of different materials can result in a
potential well, which hosts the electrons in a very narrow 2D region, which is also
known as a 2D electron gas. Chapter 3 will be devoted to the classical, semiclassical
and quantum mechanical descriptions of the electron dynamics in a 2D quantum well.

Chapter 4 will describe how the interplay of the band inversion in bulk HgTe and
strain induced by the hetero-structure of the investigated samples, i.e., HgTe/CdHgTe
quantum wells, results in various striking phenomena. Furthermore, the exact structure
of the investigates samples will be presented, specifically, two HgTe-based topological
insulators and two semi-metallic systems.

The theoretical framework from the beginning of this thesis can be successfully ap-
plied to extract electronic properties of the investigated systems. In Chapter 5, the analy-
sis of spectroscopic data will be presented. In fact, the purity of the investigated samples
allows to observe cyclotron resonances of the active holes and electrons. The analy-
sis of the response to electromagnetic fields gives us a direct access to the fundamental
properties of the charge carriers. An investigation of the superradiance effects in a three-
dimensional topological insulator will be presented in Chapter 6. Supperadiance occurs
when several emitters couple to radiate coherently, and in turn increase the energy loss
rate of the system. Chapter 7 demonstrates a procedure for experimental mapping of
the band structure from the analysis of the cyclotron resonance in the case of a topo-
logical insulator and two semi-metals. The comparison of the experimentally obtained
band structures with the corresponding theoretical prediction, calculated by E. G. Novik
in terms of the k · p theory, demonstrates that our approach is especially useful for 2D
materials.
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2. Propagation of Electromagnetic
Radiation Through Matter

With the use of spectroscopy, we investigate the interaction between matter and electro-
magnetic radiation. For a successful analysis, it is required to develop a suitable theoret-
ical model, which then allows characterizing the investigated material. The beginning of
this chapter will briefly demonstrate Maxwell’s theory, the fundamental tool to describe
the propagation of electromagnetic radiation. After that, we will start to draw closer
to the subject of this thesis and focus only on transmission and reflection of electro-
magnetic radiation when it encounters borders between many different optical media,
or more specifically, stratified media. As will be shown later in this thesis, an insulat-
ing slab with a metallic film on top serves as a quite exact model of the experimentally
investigated samples. Accordingly, the propagation of light through such a model will
be presented in terms of 4 × 4 transfer-matrix formalism. This will finally allow us to
obtain theoretical formulas for complex transmission. These will be used to interpret
the experimental results measured by the Mach-Zehnder interferometer, i.e., the main
experimental tool in this work, which will be presented in the second section of this
chapter. We will present various measuring configurations of the Mach-Zehnder inter-
ferometer setup and explain how it allows measuring even the complex transmission
through an investigated sample. The last section of this chapter will be focused on 3D
printed beam shaping elements. This demonstration serves the reader as a convenient
way to familiarize with the behavior of submillimmeter radiation in practice.

2.1 Transfer-Matrix Formalism

The electromagnetic field is represented by two vectors, the electric vector E and the
magnetic induction B. When considering the electromagnetic field in matter it is neces-
sary to include an additional set of vectors: the electric displacement D and the magnetic
vector H. The relations between these quantities are governed by the Maxwell’s Equa-
tions [13]:

∇×H = j +
∂D

∂t
, (2.1)

∇× E = −∂B
∂t
. (2.2)
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2.1. Transfer-Matrix Formalism

The behavior of matter under the influence of the electromagnetic field is presented by
the constitutive relations:

j = σE, (2.3)

D = εε0E, (2.4)

B = µµ0H. (2.5)

Here, σ is the electrical conductivity, j is the electric current density, ε is the (relative)
permittivity, and µ is the (relative) magnetic permeability. The constants ε0 = 1/µ0c

2
0

and µ0 = 4π · 10−7 H/m are the vacuum permittivity and the vacuum permeability,
respectively, where c0 is the speed of light in vacuum. Eq. (2.3) is the vector form of
Ohm’s law. In this thesis only non-magnetic materials will be discussed, therefore we
define µ = 1. Conducting matter, such as metals or semiconductors, are characterized by
σ 6= 0. The usual distinction between metals and semiconductors is that the conductivity
of metals decreases with temperature, while for the semiconductors, σ tends to increase
with temperature. However, this characterization is often faulty and unreliable. The σ of
insulating matter (dielectrics) is negligibly small. Metals, insulators and semiconductors
will be described in terms of their band structure later in Chapter 3. The conductivity
σ and permittivity ε generally depend on the frequency of the applied fields. Moreover,
under the influence of dynamic fields, materials often have a delayed response, which
is given by complex values of σ and ε. Considering σ, the imaginary part results in a
delayed current, while for a complex ε, the real part is related to the energy stored in the
material and the imaginary part is related to various processes that dissipate energy. Def-
initions above are valid only for matter for which the physical properties are constant. It
is crucial, however, to describe what happens when the properties change in space. On
the boundary between two media, where n12 corresponds to the normal that points from
the first to the second media, the conditions that are significant for our approach are the
following:

n12 × (E2 − E1) = 0, (2.6)

stating that the tangential component of the electric vector is continuous across the
boundary, and

n12 × (H2 −H1) = j, (2.7)

meaning that the tangential component of the magnetic vector changes if there are cur-
rents present on the boundary between the two media. The simplest solutions for all
electromagnetic vectors, E,D,H,B, can be found in the form of plane waves:

A(r, t) = A0e
i(kr−ωt), (2.8)

where A0 is some complex amplitude, k = ω
c
k̂ is the wave vector pointing in the direc-

tion of propagation, ω = 2πν is the angular frequency of the radiation, ν is its frequency,
and finally c represents the speed of light in matter. In correlation with the speed of light
in vacuum c0, speed in matter reads c = c0/n with n =

√
εµ being the refractive index.
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Chapter 2. Propagation of Electromagnetic Radiation Through Matter

By the use of Eqs. (2.1) and (2.2), it can be seen that in isotropic dielectrics with
σ = 0 (j = 0) the E, H and k form a set of three orthogonal vectors. If we set k =
k(z) (the wave propagates along the z-axis in the Cartesian system), the wave is said
to be linearly polarized if the electric (or magnetic) field is confined to a plane parallel
to the z-axis or that the phase difference between Ex and Ey is a multiple of π. If
Ey/Ex = ±i, the wave is circularly polarized. Here, plus and minus indicate left- and
right-handed circularity, respectively. Other forms, more complicated ratios of Ey/Ex,
are characterized as elliptically polarized.

2.1.1 Stratified Medium

Let us draw closer to the problem at hand, which is the interaction of the electromagnetic
field with an investigated material or structure, which is assumed to be stratified in the
z-direction. That means that its optical properties do not change in any direction within
the plane perpendicular to z, or, in simpler terms:

ε = ε(z). (2.9)

This approach is very useful for the physics of multilayered structures, where the sam-
ple structure is combined of thin plane-parallel layers. These layers are here assumed
to be infinite in the xy-plane. As we will see later in Chapter 4, such structures can
be produced by the molecular-beam epitaxy technique, which allows very precise de-
position or materials, even single-atom layers. Next, we consider a linearly-polarized
electric field as a sum of left- and right-traveling waves, which are propagating in the
z-direction:

Ex(z) = E+ + E− = E+
0 e

+ikz + E−0 e
−ikz (2.10)

For convenience, we have omitted the time-dependent factors. According to Eqs. (2.6)
and (2.7), in dielectric media, both electric E and magnetic field H have to be continuous
across the interface of two media, thus making it convenient to describe the field as the
vector (E(z), H(z)). According to Eq. (2.1):

Hy(z) =
1

η

(
E+ − E−

)
(2.11)

where η =
√

µ0µ
ε0ε

represents the characteristic impedance of the medium. One can
conveniently write: (

Ex
Hy

)
= A(η)

(
E+

E−

)
, (2.12)

where the transformation matrix and its inverse are:
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2.1. Transfer-Matrix Formalism

A(η) =

(
1 1
1
η
− 1
η

)
, A(η)−1 =

1

2

(
1 η
1 −η

)
. (2.13)

These 2× 2 matrices correspond to a linearly-polarized wave in the x-plane. Since any
arbitrary elliptically polarized wave can be described in a basis with two orthogonal
linearly-polarized waves, it is in fact more convenient to work with (Ex, Ey, Hx, Hy)
and (E+

x , E
+
y , E

−
x , E

−
y ). In this case, we redefine A(η) as:

A(η) =


1 0 1 0
0 1 0 1
0 − 1

η
0 1

η
1
η

0 − 1
η

0

 , A(η)−1 =
1

2


1 0 0 η
0 1 −η 0
1 0 0 −η
0 1 η 0

 . (2.14)

As we will see below, this comes especially handy when we deal with metallic films in
magnetic field.

2.1.2 Dielectric Slab

First, let’s consider what happens when E propagates through a dielectric media (σ = 0)
with a (complex) permittivity ε1 and a length of L (see Fig. 2.1):

E+
x (L)

E+
y (L)

E−x (L)
E−y (L)

 =


eikL 0 0 0

0 eikL 0 0
0 0 e−ikL 0
0 0 0 e−ikL



E+
x (0)

E+
y (0)

E−x (0)
E−y (0)

 = MIS


E+
x (0)

E+
y (0)

E−x (0)
E−y (0)

 . (2.15)

ε1

z

x

y

z=0 z=L

Figure 2.1: Schematics of an insulating slab.

Let us remember here that k = k(ε1). We can describe the propagation in the basis
of (Ex, Ey, Hx, Hy) by using the appropriate transformation matrices A(η):
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Chapter 2. Propagation of Electromagnetic Radiation Through Matter


Ex(L)
Ey(L)
Hx(L)
Hy(L)

 = A(η1)MISA
−1(η1)


Ex(0)
Ey(0)
Hx(0)
Hy(0)

 = M ′
IS


Ex(0)
Ey(0)
Hx(0)
Hy(0)

 , (2.16)

where η1 =
√

µ0
ε0ε1

. For the propagation matrix through an insulating slab we obtain the
following result:

M ′
IS =


cos(kL) 0 0 iη1 sin(kL)

0 cos(kL) −iη1 sin(kL) 0
0 − i

η1
sin(kL) cos(kL) 0

i
η1

sin(kL) 0 0 cos(kL)

 . (2.17)

2.1.3 Metallic Film

In a metallic medium, free electrons respond to the applied field which results in a
non-zero j (for details, see Chapter 3). Assuming the field in a form of a plane wave,
combining Eqs. (2.1), (2.3) and (2.4) shows that a metal medium can be presented as a
dielectric medium with an effective dielectric permittivity:

ε′ = ε+
i

ε0ω
σ ≈ i

ε0ω
σ. (2.18)

Above, we have assumed that in metals σ/ε0ω � ε. This is a valid assumption at low
operating experimental frequency ranges [14] (0.1 − 1 THz in this thesis) since the
frequency is much lower than the plasma frequency and the energy of the radiation is
too weak to excite interband transitions. Under these conditions, ε can be estimated
to have the same order of magnitude as for dielectrics. For example, the free electron
model for metals [15], which is a good model for most metals, estimates ε = 1. The
material we investigate in this work is HgTe, which, as will be described below, has
both, insulating and metallic characteristics. Its static dielectric constant is for example
ε(ω = 0) = 21. On the other side, conductivity of metals at low frequencies is usually of
the order of 105 (Ωm)−1, which gives at ω = 1 THz a striking σ/ε0ω ≈ 104 thus proving
that ε′ = i

ω
σ is true even for bad metals. Due to the imaginary ε′, the traveling wave is

damped while it propagates through the metallic medium. Introducing a complex k into
the wave equation and using the relation n =

√
ε =

√
σ/2ε0ω(1 + i) = n′(1 + i) gives:

E = E0e
− ω
c0
n′k̂r

e
i( ω
c0
n′k̂r−ωt)

. (2.19)
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2.1. Transfer-Matrix Formalism

The metallic film with a thickness of d is assumed to be very thin, much thinner then the
skin depth of the material:

d� c0

√
2ε0
ωσ

. (2.20)

Usually the skin depth is a couple of µm, while the thickest metallic layer in the samples
under consideration in this thesis is 80 nm. Since also the wavelenght of the radiation
is much larger that the thickness of the film, in this case not only the damping part
in Eq. (2.19) is negligible, but the electric field inside the film can be assumed to be
uniform, or in mathematical terms: E(d) ∼ E(0). Let us write the integral form of the
Ampére’s law (Eq. (2.1)): ∮

Hdl =

∫∫
jdA = σEld. (2.21)

With the help of Fig. 2.2, we can establish the next relations:

Hx(d) = Hx(0) + σyyEyd+ σyxExd, (2.22)

Hy(d) = Hy(0)− σxxExd− σxyEyd. (2.23)

Here we have assumed that the conductivity σ is a tensor. This is in correlation with

Figure 2.2: Illustration of a thin metallic film with a thickness of d in the presence of
electromagnetic fields. According to Ohm’s law, electric field in the xy-plane results in a
current j, which is related to the magnetic field on both sides of the film with Ampére’s
law (Eq. (2.1)). For simplicity, the magnetic field is considered only in the x-axis.

the Drude model, described in Chapter 3, which is used to describe the conductivity of

10



Chapter 2. Propagation of Electromagnetic Radiation Through Matter

a metal in electromagnetic fields. Accordingly, for an isotropic material, the following
relations are true when the external magnetic field is perpendicular to the film (Faraday
geometry): σxx = σyy and σxy = −σyx. We can see that in the case the off-diagonal
terms of σ are not zero, two initially orthogonal waves start to mix. This effect is known
as the Faraday effect or Faraday rotation. Using Eqs. (2.22) and (2.23), we can construct
the following propagation matrix for a thin conducting film:

Ex(d)
Ey(d)
Hx(d)
Hy(d)

 =


1 0 0 0
0 1 0 0

−σxyd σxxd 1 0
−σxxd −σxyd 0 1



Ex(0)
Ey(0)
Hx(0)
Hy(0)

 = M ′
MF


Ex(0)
Ey(0)
Hx(0)
Hy(0)

 (2.24)

As a necessary condition for our approach, we have assumed the film to be very thin.
Accordingly, we will avoid operating with a conductivity tensor in three dimensions. In
the text ahead we will assign σ to the surface (or 2D) conductivity, thus setting σd →
σ2D → σ. In such case:

MMF =A−1(η)M ′
MFA(η) = A−1(η)


1 0 0 0
0 1 0 0
−σxy σxx 1 0
−σxx −σxy 0 1

A(η) =

=
η

2


−ησxx + 2 −ησxy −ησxx −ησxy
ησxy −ησxx + 2 ησxy −ησxx
ησxx ησxy ησxx + 2 ησxy
−ησxy ησxx −ησxy ησxx + 2

 .

(2.25)

2.1.4 Transmission Through an Insulating Slab and a Metallic Film

The quantity we measure with the experimental procedure described below is the com-
plex transmission through the sample of interest. Therefore, we are required to obtain
the transmission formulas for the transfer matrices from the previous sections. It is very
convenient to use transfer matrices to analyze the propagation of electromagnetic waves
through a stratified medium. A system of various layers of materials can be simply rep-
resented as a system matrix, which is a product of all individual layer matrices. We first
return to the basis of waves of electric field, propagating in left and right directions. Due
to the off-diagonal terms in the transfer matrix for a metallic film, we are required to use
a set of two orthogonal linearly-polarized waves. For a system transfer matrix M we can
write: 

E+
x (d)

E+
y (d)

E−x (d)
E−y (d)

 = M


E+
x (0)

E+
y (0)

E−x (0)
E−y (0)

 . (2.26)
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2.1. Transfer-Matrix Formalism

To obtain the complex transmission coefficients for an incident wave, linearly polarized
in the x-direction, we can write: 

tp
tc
0
0

 = M


1
0
rp
rc

 , (2.27)

which present a system of four linear equations with four unknown variables tp, tc, rp,
and rc, corresponding to the complex parallel and crossed transmission and reflection
coefficients, respectively. If the external media is characterized by η, the solution of the
system for tp (obviously tc = 0) of an insulating slab from Eq. (2.17), where M =
A−1(η)M ′

ISA(η), is as follows:

tp =
2iηη1

2iηη1 cos(kL) + (η2 + η21) sin(kL)
. (2.28)

For the metallic film, we already acknowledged the characteristic impedance of the outer
medium, therefore M = MMF and it follows that:

tp =
2ησxx + 4

η2σ2
xx + η2σ2

xy + 4ησxx + 4
,

tc =
2ησxy

η2σ2
xx + η2σ2

xy + 4ησxx + 4
.

(2.29)

The samples that are investigated in this thesis (see Chapter 4 for details) can be ap-
proximated with a structure of a dielectric slab and a thin conducting film surrounded
by free space with the corresponding impedance of η0 =

√
µ0/ε0. One can obtain an

analytical solution for a corresponding transfer matrix M = A−1(η0)M
′
MFM

′
ISA(η0).

For a system, where an insulating slab has a permittivity of ε1 and length of L, we obtain
the following formulas for transmission:

tp =
2axx

a2xx + a2xy
, tc =

2axy
a2xx + a2xy

, (2.30)

with:
axx = (1 + σxxη0)(cos β − 1

√
ε1

sin β) + cos β − i
√
ε1 sin β,

axy = σxyη0(cos β − 1
√
ε1

sin β),

where β =
√
ε1

ω
c0
L, the ω we know from before as the angular frequency of the incident

radiation, and σxx, σxy are the components of the conductivity tensor of the metallic
film.
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Figure 2.3: Illustration of the Mach-Zehnder interferometer for THz experiments. The
elements of the inteferometer are the following: (1) Source of radiation (Backward wave
oscillator), (2,6,8,12,13,16) Dielectric lenses for focusing and collimination of the THz
beam, (4) modulation chopper, (3,5,14,15) wire-grid polarizers, (9) helium-cooled mag-
net, (7) the investigated sample, (10) the movable mirror, (17) the detector, and (11) the
modulation mirror. See text for details.

2.2 Submillimeter Continuous-Wave Spectroscopy

The main source of experimental data in this thesis is the submillimeter continuous-
wave spectroscopy, or more specifically the Mach-Zehnder interferometer [16,17]. This
device allowed to measure the amplitude and phase shift of the transmitted radiation
through a sample with controlled polarization [18, 19] The operating frequency range,
i.e, submillimeter or terahertz (THz) range, occupies the region between microwaves and
infrared light in the electromagnetic spectrum. Its commonly regarded band of frequen-
cies is between 0.3 to 3 THz, however, these boundaries are often subject to variation.
The THz radiation can be guided in similar ways as in optical setups, however, the corre-
sponding longer wavelengths require lenses, used for collimation and focusing the THz
beams, that are made from specific dielectric materials, which have appropriate THz ab-
sorption and THz-refractive indices. Some of these materials are polytetrafluoroethylene
(PTFE), high-density polyethylene (HDPE), polypropylene (PP) [20,21]. Some are even
3D-printable, such as polystyrene or polylactide [22], but more about that in Section 2.3.
It is interesting to note that these lenses are not transparent to the naked eye. Since THz
range borders to the microwave region, the wavelengths of THz beams can take values
up to a couple of millimeters. Accordingly, the measured samples, optical windows, and
optical channels have to have appropriate sizes to avoid the diffraction limit. Below, the
main experimental tool, the Mach-Zehnder Interferometer, will be explained in detail.
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2.2. Submillimeter Continuous-Wave Spectroscopy

2.2.1 Mach-Zehnder Interferometer

An interferometer is a widely used experimental tool in various fields of science in which
electromagnetic waves are superimposed. The measured result of this interference is
used to extract valuable information about the paths of the beams or their characteristics.
The illustration of the interferometer used in this thesis is sketched in Fig. 2.3. We shall
now describe its elements, starting from the generation of radiation and all the way to
its detection. The enumeration of elements in the text corresponds to the enumeration in
Fig. 2.3.

The radiation used in our interferometer was produced by backward wave oscillators
(BWOs) – compact, powerful, and tunable monochromatic generators (see Fig. 2.4(a)).
Their design and principle of operation were developed in the 1960s [23]. Using heat,
electrons are emitted from the cathode and are accelerated by a high electric field (up
to 6 kV) through vacuum towards the anode. External magnetic field helps keeping the
electronic beam collimated while they fly over an electrode with a comb-like structure.
Since they experience a periodically varying potential, the electrons periodically group
in bunches, which results in a backward traveling electromagnetic wave, which comes
out of the device through a waveguide. The frequency and the power of the emitted radi-
ation are determined by the accelerating voltage U . While the frequency approximately
scales as a square root of the applied voltage, the output power produces a very compli-
cated spectrum. The output frequency range is dependent on the design of each specific
BWO, accordingly, in the experimental setup described below, several BWOs were used
to cover the region between 38 GHz to 1.1 THz (see Fig. 2.4(b)).

Let us return to the Mach-Zehnder interferometer seen in Fig. 2.3. The radiation
produced by the BWO (1), which is assumed to have a Gaussian transverse profile,
is first collimated by a lens (2). After, the beam passes through two rotatable wire-
grid polarizers (3,5), each consisting of an array of parallel metallic wires. These only
allow the transmission of radiation with an electric field vector perpendicular to the
direction of the wires and reflect all radiation with the electric field vector parallel to the
wires. The first polarizer sets the polarization of the beam, while the second polarizer
(beam-splitter) is used to split the beam into two orthogonal beams. The beams are
directed through the "reference arm" and the "sample arm" of the interferometer. The
intensities of the beams in both arms are adjusted by the first polarizer. In both beam
paths, lenses (6,8,12,13) are used to focus the beams to a tight spot and convert them
back to collimated ones. The investigated sample is placed into the focus of the sample
arm, while the reference arm remains empty. The set of lenses (12,13) in the reference
arm serve to ensure that the sample and the reference beam have an identical phase shift
due to the optical thickness of the lenses.

The sample (7) is placed in a magneto-optic cryostat (9), which allows cooling the
sample down to 1.8 K by pumping the sample chamber with liquid helium. A split-
coil superconducting magnet can provide a magnetic field up to ±7 T parallel (Faraday
geometry) or perpendicular (Voigt geometry) to the k-vector of the THz radiation.
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Chapter 2. Propagation of Electromagnetic Radiation Through Matter

(a)

(b)

Figure 2.4: (a) Illustration of the BWO’s principle of work. The heating (1) causes the
electrons to emit from the cathode (2). The electrons travel towards the anode (4) and
are collimated by the magnetic field (5). The electronic beam (3) get modulated by the
periodic structure (6), which results in an electromagnetic wave (7) that is finally guided
outside by the waveguide (8). (b) The operating frequency range of the available BWOs.
Figure taken from Ref. [24].

In both arms of the interferometer, there is a mirror, reflecting the corresponding
beam by 90o. The mirror (10) in the sample arm is put on a motorized translation stage,
which allows movement in a range of 10 mm. In the reference arm, the position of the
mirror (11) modulates with a low frequency of 28 Hz. As will be discussed ahead, the
movable mirrors allow performing sensitive phase measurements.

Both beams are joined with the beam-splitter (14), which is rotated by 90o in respect
to the first beam-splitter, i.e., the reference beam passes through and the sample beam is
reflected. After, an additional analyzing polarizer (15) is used to interfere the two beams,
merging them into a linearly-polarized beam, which is focused (16) into a liquid helium-
cooled bolometer (17) with a high-frequency cut-off filter of 3 THz. The silicon plate
in the bolometer is cooled to 4.2 T, where it has a very high temperature coefficient
α = 1

R
dR
dT

. The device is very sensitive to heating due to incoming radiation, which
results in a change of resistance ∆R = αR∆T . Since at low temperatures the change
of resistance is mostly due to the heating of electrons, the time constant of the device is
very short (∼ms).

The interferometer can be used in several modes of operation, depending on what
information about the sample one needs to extract. Transmission measurement mode,
presented in Fig. 2.5(a), uses only the sample arm, and the reference beam is blocked.
A modulation chopper (4) is inserted after the first lens (2), which periodically blocks
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2.2. Submillimeter Continuous-Wave Spectroscopy

Transmission Measurement Mode

Phase Measurement Mode

(a)

(b)

Figure 2.5: Illustration of the two measurement modes of the Mach-Zehnder interferom-
eter. (a) Transmission measurement mode uses only the sample arm and the (b) phase
measurement mode requires both, the sample and reference arm. See Fig. 2.3 and text for
details.

the beam and therefore modulates the beam with a specific modulation frequency. The
chopper includes a photo-sensor which produces an electric signal every time the beam
is blocked by a blade of the chopper. These signal pulses are used as a reference signal
for the lock-in detection system, which isolates the measured intensity of the beam from
the noisy background, drastically increasing the signal-to-noise ratio.

To acquire the experimental data, it is necessary to measure the transmitted radiation
intensity twice, once with the sample (Isample(ω)) and once without (Iref (ω)). The ratio
of the measured intensities gives the squared absolute value of the complex transmission
amplitude:

|t2(ω)| = Isample(ω)

Iref (ω)
. (2.31)

The other, phase measurement mode (Fig. 2.5(b)), requires that both, the reference and
the sample beam, are opened and the chopper is removed. The reference beam is mod-
ulated by the oscillating mirror and the phase difference between the beams can be ad-
justed by the moving mirror in the sample arm of the interferometer. The intensity of the
radiation at the bolometer can be written as the time average of the complex Poynting
vector [25]:

I =< S >=< E×H∗ >=
1

2η
|E|2. (2.32)

We have assumed that the electromagnetic vectors have plane-wave forms (see

16



Chapter 2. Propagation of Electromagnetic Radiation Through Matter

Eq. (2.8)). The intensity of the interference between the sample beam with
Esame

i(ϕsam−ωt) and the reference beam with Erefei(ϕref−ωt) can be written as:

I(t) =
1

2η0

∣∣Esamei(ϕsam−ωt) + Erefe
i(ϕref−ωt)

∣∣2 (2.33)

Taking the time average gives us:

I =
1

2η0

(
|Esam|2 + |Eref |2 + 2EsamEref cos(ϕsam − ϕref )

)
∝

∝ const.+ EsamEref cos(ϕsam − ϕref ).
(2.34)

Above, only the interference term is not constant. If the modulation mirror oscillates
with an amplitude δl and frequency Ω, it causes a phase modulation δϕ = δϕ0 cos(Ωt)
of the reference beam, where δϕ0 = 2πδl

λ
. We can set ∆ϕ = ϕsam − 2π

λ
d− 2π

λ
∆l as the

"static" phase difference between the two arms of the interferometer, which includes: a)
the difference between the paths the light travels in both arms due to the displacement of
the moving mirror by ∆l, b) the optical thickness of the sample ϕsamλ/c = nd, where
n is the sample’s refractive index and d is its thickness, and c) the gained phase in the
reference beam on the same distance as the thickness of the sample d. The modulation
δϕ is set to be small, therefore, with a help of certain trigonometric identities, we can
write:

I ∝ EsamEref cos(ϕsam − ϕref ) = EsamEref cos(δϕ+ ∆ϕ) =

= EsamEref (cos(∆ϕ) cos(δϕ)− sin(∆ϕ) sin(δϕ)) ≈

≈ EsamEref

(
const.− δϕ0

4
cos(∆ϕ) cos(2Ωt)− δϕ0 sin(∆ϕ) cos(Ωt)

)
.

(2.35)

A digital unit measures the detected signal on the bolometer as a function of time and
tries to minimize the amplitude of the first harmonic component (cos(Ωt)) in the equa-
tion above. To ensure sin(∆ϕ) = 0, the movable mirror has to move to either positive
or negative ∆l so that ∆ϕ = 2πN , where the integer N is the interference order. In
principal, any N suffice, but only the zeroth order is wavelength independent. To acquire
the phase of the transmission, one first measures the mirror position for the zeroth order
without the sample ∆l0. Assuming that the refractive index n is constant in the operat-
ing frequency range, this "calibration" measurement could be used for any wavelength.
However, in practice this condition is not enough. The ∆l0 needs to be measured for
each selected frequency due to the standing waves between the elements of the quasi-
optical setup, which modify the phase of light in each arm of the interferometer. After
acquiring the ∆l0(λ), the sample is inserted with the help of a sliding sample holder and
the mirror position is measured as a function of a required variable, such as magnetic
field, temperature, or gate. The phase shift of the transmitted radiation is then calculated
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2.2. Submillimeter Continuous-Wave Spectroscopy

CPM

Figure 2.6: Illustration of the transmission measurement mode with circularly-polarized
radiation which is achieved by the addition of the circular polarization mirror (CPM) into
the optical path. See also Fig. 2.3 and text for details.

as:
ϕ = 2π(∆lsam −∆l0 + d)/λ. (2.36)

The second harmonic in Eq. (2.35) becomes maximal when the first harmonic is zero.
The measured amplitude of the second harmonic is proportional to Esam, which allows
obtaining the complex transmission of the sample t(ω) = cEsame

iϕ, where c is some
constant. To acquire the scaling parameter c, results from the transmission measurement
mode can be used as will be demonstrated later in Chapter 5.

In the phase measurement mode, shown in Fig. 2.5(b), the interferometer allows two
measuring geometries: parallel and crossed. In parallel geometry, the polarizer (3) sets
the ratio between the amplitudes of the beams in the sample and the reference arm. The
second beam splitter (14) has to be rotated by 90◦ with respect to the first beam splitter
(5). The analyzing polarizer (15) interferes the beams from both arms of the interfer-
ometer and the resulting linearly-polarized beam is detected by the detector. Effectively
we measure the complex transmission through the sample parallel to the polarization of
beam incident on the sample. In the second, crossed geometry, the previous setup is par-
tially reconfigured. The second beam splitter (14) is set to be parallel to the first beam
splitter (5). An additional polarizer is positioned between elements (13) and (14) which
rotates the polarization of the reference beam so that at least part of the beam transmits
through the beam splitter (14) and interferes with the sample beam. This mode is called
crossed, since only the polarization, perpendicular to the polarization of the beam inci-
dent on the sample, is interfered with the reference beam and measured by the detector.

Several experiments in this thesis were also conducted with the use of a circularly-
polarized beam. For a circularly-polarized beam Ey/Ex = ±i, where the k-vector of
the beam is pointed along the z-axis. Since the BWO’s output radiation is originally
linearly polarized, one component of E needs to be phase-shifted by half of the wave-
length in comparison to the other component along the orthogonal axis. This is achieved
by adding a circular polarization mirror in the interferometer as seen in Fig. 2.6. This
element is composed of two parallel wire-grid polarizers with an adjustable distance
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between them. The metallic arrays of the polarizers are set to be perpendicular to each
other, which ensures that both components of the incoming beam are reflected. If the
metallic arrays are pointed along 0 and 90◦, the linear polarization of the incoming
beam needs to be pointed along ±45◦ in order to ensure that the components of E
along the directions of both metallic arrays are equal. The polarization of the incoming
beam is adjusted by an additional polarizer in front of the circular polarization mirror.
A circularly-polarized wave is then achieved, if the distance between the wire grids in
the circular polarization mirror equals (M + 1/2)λ, for some integer M . In order to
guide the circularly-polarized beam to the detector, the beam splitter (14) needs to be
replaced with a metallic mirror. It should be clear that with the addition of the circular
polarization mirror only the transmission measurement mode is possible.

2.3 3D-Printed Wave Plates

In analogy to the situation in optics, elements to manipulate the intensity and shape of a
beam are of crucial importance. An efficient way to design such elements is to combine
the holographic principles with computer-supported calculations of the beam propaga-
tion [26–30]. Such an approach allows not only to manipulate a beam but moreover to
generate pictures of real and imaginary objects on short timescales. Recently, optical
meta-surfaces [31–34] added several interesting new ideas to the field, especially ways
to miniaturize the optical units.

Alternatively, optical elements for picture generation may be produced based on
phase control of light only. Such elements are often called phase holograms and they
manipulate the incident wave by coordinate-dependent phase changes [35–39]. Well-
known examples of phase holograms are dielectric Fresnel lenses or dielectric diffrac-
tion gratings. All such elements can be designed for frequencies as low as THz because
the underlying Maxwell equations of light do not contain the wavelength as a parameter.

The goal of this section is to demonstrate that a very practical way to produce such
phase holograms is to work with a commercially available 3D-printer. Additive man-
ufacturing with 3D-printers has gained significant attention in recent years due to its
versatility, accessibility, and generally because it presents a quick, easy-to-use, and cost-
efficient technique to fabricate complex and high-precision structures. The layer height
resolution of 3D-printers (∼ 0.1 mm) and high transparency of the polymers used in
3D-printers [22] are ideally suited for printing devices that manipulate electromagnetic
radiation in the THz region. Recent examples of 3D printed THz elements are diffraction
gratings, lenses, optical waveguides, prisms, etc. [40–47]. Here we make a significant
further step in the field of THz imaging by designing and 3D-printing dielectric plates
which are able to reproduce the picture of an arbitrary object.

In our proof-of-principle demonstration, we modulate the phase profile of an incident
asymmetric Gaussian beam with a wavelength of λ0 = 2.14 mm (ν = 140 GHz) at
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Figure 2.7: (a,b) The target intensity profiles used in present experiments. (c,d) Calcu-
lated intensity profiles at zi = 50 mm after the first iteration step of the GS algorithm as
compared to the result of the last (e,f) iteration step, respectively. (g,h) Calculated phase
modulation profiles at z0 = 0 mm. The frames are cropped to 50× 50 cm2 size for better
comparison with the experiment. (i,j) Algorithm error (mean square deviation from the
target profile) as a function of the iteration number.

z0 = 0 mm with initially uniform zero phase profile (plane wave) in order to produce
two distinct target intensity profiles (Fig. 2.7(a,b)) at the image plane at zi = 50 mm,
where the z-axis represents the optical axis. These two target profiles in the shape of a
cross and of our university logo were represented on a Cartesian grid in a circular shape
with a diameter of 53 mm. Equally spaced grid points were used with a nearest-neighbor
distance of 0.53 mm. The incident beam was measured by scanning its intensity in the
empty channel (see Fig. 2.8(b)) and was found to have a slightly asymmetric Gaussian
profile with the widths of 13.4 and 16.6 mm along the x′ and y′ axes, respectively,
which are rotated by 0.10 rad with respect to the x and y-axis of the optical system.
These parameters were then used for calculating the profile of the phase plates explained
below.

The required phase deformation of the collimated incident beam at z0 was calculated
using the Gerchberg-Saxton (GS) iterative algorithm [48]. This algorithm determines
the phase of the optical wave function in the imaging system, whose intensity in the
diffraction and the image plane of the system are known. The method typically assumes
a Fourier Transform relation between the optical fields on both planes. Therefore, in
order to move the image plane from far-field to a finite distance from the diffraction
plane we considered a propagation function that linked the optical fields on both planes
based on the Huygens principle. In this spirit the wavefront on the diffraction plane at z0,
Ed, was represented as point emitters of spherical wavelets with respective coordinates
(x, y), amplitude A(x,y) and phase angle ϕ(x,y). The optical field on the image plane, Ei,
was then calculated by summing up all contributions from every point emitter on (x, y)
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for every point (x′, y′) of the grid on the distant image plane as:

Ed
(x,y) (x′, y′) =

A(x,y)

r(x,y),(x′,y′)
e−ikr(x,y),(x′,y′)+iϕ(x,y) ,

Ei
(x′,y′) =

∑
(x,y)

Ed
(x,y) (x′, y′) [1 + cos (Ω)] , (2.37)

where r represents the vector between the two points on different planes, k is the wave
vector and Ω is the angle between the normal of the diffraction plane and the vector
r. Eq. (2.37) corresponds to the Fresnel-Kirchhoff diffraction formula [49]. Due to the
loss of the amplitude information of the optical field profiles during the GS algorithm,
the pre-factors in Eq. (2.37) were left out. Note also that the part in square brackets
represents the Fresnel inclination factor.

As the GS algorithm utilizes a subsequent back and forth propagation of the beam,
the roles of the image and diffraction planes at zi and z0, respectively, were interchanged
in Eq. (2.37). We note that the reverse propagation requires the change of the sign in the
exponent in Eq. (2.37).

Fig. 2.7(c,d) shows the calculated intensity profiles in the image plane for two tar-
gets after the first iteration step of the algorithm. Compared to the results after the final
convergence of the algorithm (Fig. 2.7(e,f)), which is caused by the calculated beam
phase deformation shown in Fig. 2.7(g,h) as grayscales, it can be seen that already the
first iteration step produces reasonable intensity profiles. It should be noted here that the
loss of the 4-fold symmetry of the phase profile in Fig. 2.7(g) is caused by the incident
beam with a rotated asymmetric Gaussian shape described above. The calculated mean
square deviations, shown in Fig. 2.7(i,j), demonstrate that final convergence of the GS
algorithm is reached after about ∼ 100 iterations which take about 4 hours of computer
time on a commercial laptop. Analyzing the evolution of the errors with increasing iter-
ation steps, we note that the relative improvement is rather small. This fact is due to a
large amount of zero intensity points in the target, which masks the advancement of the
image.

Based on the calculated phase profiles shown in Fig. 2.7(g,h) as grayscales, two opti-
cal elements (presented in Fig. 2.8(c)), corresponding to the two targets, were modeled
by using the formula z(x,y) = ϕ(x,y)λ0/[(Re(n)− 1)2π] to calculate the thickness of the
optical elements at transverse positions (x, y) in order to achieve the correct phase-shift
profile. The refractive index n = 1.52+0.05i of polylactide (PLA) - the plastic filament
of the commercial additive 3D-printer - was measured in a separate experiment at the
operating wavelength. This material was used to print the elements using a commer-
cially available 3D-printer with a nozzle diameter of 0.4 mm and spatial resolution of
0.1 mm. We calculated that in the case of the printed phase plates the complex refractive
index n would lead to about 6 % of absorption and in addition 5 % of reflection at 140
GHz.
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Figure 2.8: (a) Experimental intensity profiles of the optical field produced by an incident
THz beam that was phase modulated by the two printed elements. The images appeared
the sharpest at z = 57 mm. (b) Scheme of the optical setup used for measuring the
intensity profiles of the field behind the printed phase plates that were fabricated according
to the computer models shown in (c).

The printed elements were positioned into the path of the 140 GHz beam at the z0-
value of the optical system as shown in Fig. 2.8(b). The incident beam was produced
by an IMPATT diode with 30 mW power. The transverse intensity profile of the phase-
modulated optical field behind the phase plates was then measured using a pyroelectric
detector on a translator in the xy-plane with a scanning resolution of 0.5 mm and scan-
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Chapter 2. Propagation of Electromagnetic Radiation Through Matter

ning region size of 50 × 50 mm2. A sufficient signal-to-noise ratio was achieved by
the implementation of a lock-in detection system. A sequence of intensity profiles was
measured at various positions around the set image plane position zi. In Fig. 2.8(a) we
present the measured intensity profiles at three different positions z. We found that the
sharpest images, which were the closest to the simulated profiles in Fig. 2.7(e,f), were
located at z = 57 mm, slightly deviating from the expected distance of 50 mm. Simulta-
neously, the effective shape size of the images is also increased compared to respective
target images shown in Fig. 2.7(e,f) by approximately 10 %.

In order to find the reason for the variation of image size, we investigated the influ-
ence of the phase distribution of the incident beam. Indeed, in the real experiment, the
phase profile of the beam deviates from an ideal plane wave and is better approximated
with a spherical beam with a large but yet unknown curvature R. Assuming a finite
wavefront radius for the phase part of the optical field of the Gaussian incident beam
causes a displacement of the image plane at which the shape of the intensity profile
appears the sharpest. In addition, the size of the image increases proportionally to the
change in the optimal distance (see Fig. 2.9(b,c)).
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Figure 2.9: (a) Simulated intensity profiles of the optical wave function at the image
plane, where the wavelength was set to 1.8 and 2.5 mm, respectively, and the incident
beam was modulated by the waveplate in Fig. 2.7(g), optimized for λ = 2.14 mm. (b,c)
Position and size of the image as a function of the wavefront curvature (R−1) of the
incident beam including the values from Fig. 2.7, where R =∞. Points mark the results
from the simulations, the solid black line represents the thin lens formula with a focus set
at zi = 50 mm.
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2.3. 3D-Printed Wave Plates

For each value of R a set of intensity profiles at various positions z with a step
size of ∆z = 1 mm was simulated. From it, we were able to select the position z, at
which the shape in the simulated intensity profile appeared focused, for each value of R
(see Fig. 2.9(b)). Fig. 2.9 also shows that the dependence of image plane position on R
coincides with the simple thin lens equation with the focus of zi (depicted in black), in
particular in the linear regime of the equation ( R

z0
� 1). Effective sizes of the sharpest

shapes in respect with R, shown in Fig. 2.9(c), follow the same trend as their positions.
This may be expected as a result of linear dependence between the image plane position
of the sharpest image and its position on the optical axis. For R = 500 mm we see
in Fig. 2.9(b) that the sharpest image appears at z = 56 mm, relatively close to the
position of the sharpest measured image in Fig. 2.8(a). In addition, the effective size
of the sharpest image for R = 500 mm is comparable to the measured one and thus
shows that an uncollimated beam with a similar curvature explains well the mismatch of
the theoretical prediction and the experimental results, despite our optimization of the
optical system.

We also investigated the effect of varying the wavelength of the incoming beam,
while keeping the phase plate fixed to the one producing the cross-shaped intensity pat-
tern (see Fig. 2.7(g)). Simulated intensity profiles at the image plane z0 for two wave-
lengths around the value λ0 are shown in Fig. 2.9(a). After comparing these results to
Fig. 2.7(e) we conclude that a noticeable change of wavelength still produces intensity
profiles that preserve the basic shape of the target yet it also shows that a specific spectral
width of the radiation would influence the sharpness of the image.

We also mention parenthetically that we improved the propagation function in
Eq. (2.37) by better taking into account the finite thickness of the phase plate. Instead
of an instant change of the propagation phase (as for a waveplate with zero thickness),
a finite height has been added to each emitter of the source plane with a value cor-
responding to the actual thickness at a point (x,y). This improvement slightly corrected
the simulated intensity profiles when compared to real results, yet the changes are barely
seen directly and are therefore not shown here.
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3. Electron Dynamics in a Two-
Dimensional Crystal

Using precise epitaxial growth methods, semiconductor hetero-structures can be fab-
ricated with few nanometer-thin layers. Combining layers of various materials with
different electronic structures, bandgaps, and lattice constants can result in a potential
well, which hosts electrons in a very narrow region in the direction perpendicular to the
growth direction. The latter is often referred to as a two-dimensional electron gas.

In the following chapters, we will experimentally observe how the investigated sam-
ples, i.e., strained HgTe films, respond to applied magnetic and electric fields. These
samples can be modeled as a system consisting of an insulating slab with a metallic
film on top. In the previous chapter, we have formulated relations between the complex
transmission of such a model and the 2D conductivity of the 2D metallic film. In this
chapter, we will dive through the theoretical picture of a 2D crystal in electromagnetic
fields, which will in turn allow us to connect the fundamental properties of the electronic
configuration with the conductivity of the system.

We will begin with a fully classical description of an electron in a magnetic and
electric field, which, in fact, does not quantitatively describe a realistic situation. The
shortcoming of a fully classical approach will be corrected by applying a semiclassical
model, which effectively includes the effect of the crystal structure. The latter will be
followed up by a fully quantum mechanical description of electrons in magnetic fields,
which will later in this thesis allow us to experimentally probe the concentrations of the
active charge carriers.

3.1 The Drude Model

Three years after J.J. Thompson discovered the electron in 1897, P. Drude presented a
theory of metallic conduction, which is still used today as a practical way to describe
certain metallic compounds. Drude applied the kinetic theory of gases to metals, treating
the mobile valence electrons (conduction electrons) as billiard balls, while the positive
metallic ions play the role of immobile positive particles [14, 50]. Between collisions,
the electron-electron and electron-ion interactions are neglected. These are known as
the independent electron and the free electron approximations, respectively. Therefore,
in the presence of electromagnetic fields, each electron with a mass of m and charge
e behaves according to Newton’s laws. The Drude model very loosely describes the
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3.1. The Drude Model

details of the collision events of an electron. All collisions are described by a single
relaxation time τ which represents the average traveling time of an electron between
scattering events, regardless of whether the scattering occurs on the underlying lattice,
other electrons, the impurities, or a combination of all of the above. The equation of
motion of a classically treated electron in a magnetic field B and electric field E is
therefore as follows [14]:

m
dv

dt
= −e(E + v ×B)− mv

τ
(3.1)

On the right side of the equation, the first term represents the Lorentz force and the
second is the damping term. The equation above can provide solutions for many systems
with various forms of external conditions.

3.1.1 Two-Dimensional Electron Gas

Let us consider a specific situation in which the electrons are bound to two dimensions
(xy-plane), with a constant magnetic field B pointing in the z-direction. A plane elec-
tromagnetic wave with an angular frequency ω propagates parallel to B, which is also
known as the Faraday geometry. As presented in Section 2, an electromagnetic wave re-
sults in an oscillating Eext = Eext(x, y)e−iωt in the xy-plane. The wavelength λ of such
wave is assumed to be much larger than the electronic mean free path, so the resulting
force is uniform in space. This is surely the case when investigating metallic compounds
with submillimeter radiation. From the experimental results gathered in this thesis, one
can estimate that λ is larger by an order of ∼ 1020. Maxwell’s theory shows that E has
to be accompanied by a perpendicular oscillating magnetic field. The magnetic contri-
bution of the electromagnetic wave can be ignored due to two reasons: a) In realistic
condition the amplitude of the magnetic field of an electromagnetic wave is negligible
compared to B., and b) The forces resulting from the oscillating magnetic field are by
the factor of v/c smaller than the electric forces. These conditions are specifically se-
lected since they effectively represent the experimental work described in detail below.
The total electric field is E = Eext +Eint, where Eint is the electric field induced by all
other electrons, which also oscillates harmonically and, thus, E = E(x, y)e−iωt.

The solution for the differential equation Eq. (3.1) can be found by setting v =
v(x, y)e−iωt, where v(x, y) is a constant complex vector. We obtain:

(
1

τ
− iω)v(x, y)− e

m
v(x, y)×B =

e

m
E(x, y). (3.2)

Without losing the generality, we can choose that E = E(x). We can represent v as
a combination of two orthogonal projections on the axes parallel and perpendicular to
E(x) (see Fig. 3.1):

v(x, y) = vx + vy. (3.3)
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Chapter 3. Electron Dynamics in a Two-Dimensional Crystal

Figure 3.1: An illustration of the 2D system with E, B and v.

This allows to obtain the following system of linear equations:

(
1

τ
− iω)vx − Ωcvy =

e

m
E,

(
1

τ
− iω)vy + Ωcvx = 0,

(3.4)

where:
Ωc =

eB

m
(3.5)

is the cyclotron frequency, i.e., the angular frequency of revolution of a free electron in
magnetic field. If n2D electrons per unit area move with a velocity of v, they represent
a flow of charge described by the vector of current density j2D = −en2Dv, which is, in
this specific case, defined in two dimensions. The reader should note here that in a metal
the electrons always move in various directions with various velocities and thus v is,
in this case, the average electronic velocity. If the electric field is absent, all directions
are equally probable and v and j equal zero. Let us continue by expressing the relation
between two orthogonal projections of j in respect to E:

jx = σxxE; σxx = σ0
1− iωτ

(1− iωτ)2 + (Ωcτ)2
;

jy = σxyE; σxy = σ0
Ωcτ

(1− iωτ)2 + (Ωcτ)2
.

(3.6)

Here, σ0 = ne2τ/m represents the Drude DC conductivity in the absence of the mag-
netic field. With a simple derivation, one can generalize the above expressions with the
help of the 2D conductivity tensor σ̂:

j = σ̂E =

(
σxx σxy
−σxy σxx

)(
Ex
Ey

)
. (3.7)

The equation above, without the specific form of the conductivity tensor, is also known
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3.2. The Semiclassical Model

as the vector notation of Ohm’s law, which we met already in Chapter 2 (Eq. (2.3)). The
structure of the conductivity tensor with identical diagonal components and opposite
off-diagonal components comes from the rotational invariance of the system. The off-
diagonal components are also responsible for the well known Hall effect [51], a current
flows as a consequence of two orthogonal vectors: the electric and magnetic field.

Additional information can be extracted from σxy. Assuming that the directions of
fields and currents are known, it is possible to obtain the sign of the active charge carrier
e. And surprisingly, in some compounds, such as Be, Mg, or Al, the charge carriers turn
out to have a charge opposite to that of an electron. The latter certainly does not fit in the
current description of an electrically neutral metal, i.e., a sea of conducting negatively
charged electrons, on top of immobile ions. However, the explanation can be found if
we disregard the free-electron approximation and, instead, look for a solution with the
quantum mechanical description of solids. It shows, in fact, that the charge of an electron
remains the same. However, the effective mass is not anymore limited to only positive
values. This will be tackled in the following chapter.

3.2 The Semiclassical Model

The semiclassical model joins the classical Drude approach we described in Section 3.1
with the quantum mechanic description of electrons as Bloch states. In this model, the
interaction of the electrons with the external fields is treated classically, while the in-
teraction with the periodic field of the ions is treated quantum mechanically. While the
classical approach was described above, the Bloch theory needs to be briefly presented
in order to obtain the right tools that will allow us to continue with the semiclassical
model.

3.2.1 Bloch Theory

Before we dive into the quantum mechanical addition to our model, let us quickly sum-
marize the main results of the Bloch theory [14], which is the central approach to de-
scribe electrons in solids. It states that in a periodic potential U(r), such as the one
caused by the crystal lattice, the solutions to the Schrödinger equation are found in a
form of plane waves modulated by a periodic function. These wave functions are called
Bloch states and have a mathematical form of:

ψlk(r) = eikrulk(r); ulk(r + R) = ulk(r). (3.8)

Here, the wave function ψ(r) describes an electron with a band index l and a Bloch
wavevector k; and ulk(r) is a corresponding periodic function with the same periodicity
R as the crystal lattice. For each l, the Bloch vectors k are restricted to the first Brillouin
zone (BZ), the Wigner-Seitz primitive cell in the reciprocal lattice. Inserting the Bloch

28



Chapter 3. Electron Dynamics in a Two-Dimensional Crystal

states into a time-independent Schrödinger equation gives:

Ĥψlk(r) =

(
−~2

2m
∆2 + U(r)

)
ψlk(r) = εlkψlk(r),

Ĥulk(r) =

(
~2

2m
(−i∆ + k)2 + U(r)

)
ulk(r) = εlkulk(r).

(3.9)

This provides the basic concept of an electronic band structure; the eigenvalues εlk repre-
sent the electronic levels or energy bands in a crystal structures, which are characterized
by two quantum numbers: the Bloch wave vector k and the band index l. In fact, the
electronic levels depend continuously on the parameter k, therefore εlk = εl(k) and
have the property or periodicity in the reciprocal lattice: εlk(k + K) = εlk(k).
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Figure 3.2: Band structure of silicon. Left: The first Brillouin zone of silicon with a
diamond structure. Right: Result of the band structure calculation [52]. The figures are
based on Refs. [53, 54].

Real compounds have typically several electrons per unit cell. According to the Pauli
exclusion principle, since electrons are fermions (particles with a half-integer spin),
there can only be one electron per quantum state. The number of quantum states is
infinite but discrete. Although we have said that the energy levels continuously depend
on k, for a finite crystal there is only a finite number of available k-vectors for each
band. This follows from the fact that each particle occupies a volume of ∆k = (2π)d/V
in the reciprocal k-space, where d corresponds to the space dimensionality of the system
and V is the volume of a lattice primitive cell. The second discrete quantum number is
the band index l, which is an infinite set of discrete values. Additionally, the spin of the
electron serves occasionally as the third quantum number. Assuming a spin-degenerate
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3.2. The Semiclassical Model

electronic band, each state can be occupied by two electrons, one with a spin up and
one with a spin down. The ground state of the many-body system is obtained by filling
states with the lowest possible energy. The last occupied level with the highest energy
is referred to as the Fermi level (or Fermi energy) εF . The latter holds true for a zero
temperature system. When we are dealing with finite temperatures, the distribution of
electrons over energy levels in a system is described by the Fermi-Dirac function:

f0(k) =
1

1 + e
εl(k)−µ
kbT

, (3.10)

where kb is the Boltzmann constant, T the absolute temperature and µ is the chemi-
cal potential. In the limit of near to zero temperatures, the distribution function can be
approximated by the Heaviside function and εF = µ(T = 0). With the help of the
Fermi-Dirac function, we can obtain the density of electrons in an energy band l in two
ways:

nl =
N

V
=

∫ ∞
0

gl(ε)f0(ε)dε =

∫
l,BZ

Dlf0(k)
dk

(2π)d
, (3.11)

where gn(ε) represents the density of states (DOS) of the band l, i.e., the number of
states which may be occupied in a certain energy interval in this band. Degeneracy
Dl = DsDv corresponds to the spin (s) and/or valley (v) degeneracy factor of the band.
Valley degeneracy comes from the fact that multiple equivalent constant energy surfaces
can be found in the first BZ and for a spin degenerate band Ds = 2.

Bloch’s theory introduced the wavevector k, which should not be confused with the
wavevector kS in the Sommerfeld model (free electron model), where the electron mo-
mentum equals p = ~kS . Bloch wavefunctions are not eigenstates of the momentum
operator p̂:

p̂ψnk(r) =
~
i
∇ψnk(r) =

~
i
∇(eikrunk(r)) 6= ~kψnk(r). (3.12)

Instead, ~k is the crystal momentum. The evolution of the electrons momentum is gov-
erned by all forces on the electron, while the electron’s crystal momentum is given by all
external forces, except the periodic field of the lattice. In fact, the Block state represents
a wavepacket, which is a superposition of a set of plane waves for which it is possible
to obtain the average velocity in a particular energy level l as:

vl(k) =
1

~
∂εl(k)

∂k
. (3.13)

While one should always be aware of what k and v truly represent, we will, from this
point on, sometimes refer to the group velocity of the wavepacket simply as the electron
velocity. The external force on an electron wavepacket with k equals F = ~k̇, which
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Chapter 3. Electron Dynamics in a Two-Dimensional Crystal

allows us to write:

v̇l(k) =
1

~
∂2εl(k)

∂k∂t
=

1

~
∂2εl(k)

∂k2
k̇ =

F

m∗
, (3.14)

where
1

m∗
=

1

~2
∂2εl(k)

∂k2
, (3.15)

is the effective mass, which is a tensor for anisotropic bands. We will see how useful
this becomes at the end of this chapter.

From this point on and throughout this thesis, we will assume we are in the limit
of very low temperatures. In this case, the Fermi-Dirac function becomes a Heaviside
function and the current density equals:

j = −enlvl = − eDl

~(2π)d

∫
εl(k)≤εf

dk
∂(εl(k))

∂k
. (3.16)

This equation is of particular importance since it shows that the position of the Fermi
energy is crucial for the optical and electrical properties of a crystal [14]. If the Fermi
energy is within a band or several bands, the energy of the electrons around the Fermi
level can be increased with external fields due to the vacant states nearby. In this case,
the crystal is a conductor. If we are dealing purely with only occupied and empty bands
and the Fermi energy is located in a bandgap between the top filled band (the valence
band) and the next vacant band (the conduction band), the material is an insulator or a
semiconductor, depending on the size of the bandgap. Although the distinction between
insulators and semiconductors is somewhat blurry, the common understanding is that
due to the smaller bandgap in the case of semiconductors (see Fig. 3.2 for example),
the "conducting" state can be conveniently reached. Changing the position of the Fermi
level can be achieved by altering the density of electrons externally by gating or photo-
illumination [55]. It can be also achieved internally by doping the crystal with other
atoms in fabrication. Consequently, the versatility and adaptability have made semicon-
ductors crucial for the industry of electronics.

3.2.2 Validity of the Semiclassical Model

To join the quantum mechanical arguments and the classical treatment of the electron
in external fields, both, the position of the electron r and its momentum ~k need to be
accurately specified, without the violation of the uncertainty principle ∆r∆k > 1.

Bloch wave functions are plane waves modulated by a periodic function and are char-
acterized with a definite value of a k-vector. The characteristic coordinate r, however, is
not fully defined. This has to be corrected in order to evaluate the uncertainty of position
∆r. The latter can be achieved if we consider a wave packet of Bloch electrons [14,56],
where we sum up Bloch waves over a small interval ∆k compared to the dimensions
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3.2. The Semiclassical Model

of the BZ. The spread of the wave packet corresponds to the ∆r and has to be smaller
than the mean free path r0 of the corresponding electrons for an accurate assessment of
r. Since the typical k is of the order of the inverse lattice constant 1/a, we obtain with
the help of the uncertainty principle:

1

a
∼ k > ∆k >

1

∆r
>

1

r0
. (3.17)

From here it follows that the position of the wave packet can be defined accurately
if r0 > ∆r and more importantly r0 � a. It is obvious to claim, that the response of
the electrons to the external fields can be described classically if the applied electric or
magnetic fields vary very slowly in comparison to the spread of the wave packet and
consequently even slower compared to the lattice constant. Fig. 3.3 shows a schematic
presentation of the conditions that need to be satisfied in order for the semiclassical
model to be valid.

To summarize, in the semiclassical model, applying external fields results in ordinary
classical forces in the equation of motion of the wave packet. While the external fields
are treated classically, the potential of the crystal lattice with a lattice constant smaller
than the spread of the wavepacket is considered quantum mechanically.

x

Wavelenght of the exernal field

Spread of the wave packet

a

Figure 3.3: Scheme of the system for which the semiclassical approach is valid. The
applied field varies slowly over the spread of the Bloch wave packet, where the latter is
much larger than the lattice constant a.

The semiclassical model can now be used to determine the evolution of the posi-
tion r and wavevector k of an electron (wave packet) in external electric and magnetic
field. Here, we assume that the band structure of the compound is known. Each electron
is characterized with a position r, wavevector k and a band index l. The equations of
motion that determine the time evolution of the position and wavevector are the follow-
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ing [14]:

ṙ = vl(k) =
1

~
∂εl(k)

∂k
(3.18)

~k̇ = −e (E + vl(k)×B) (3.19)

It is important to mention some additional assumptions or restrictions of the system,
specifically in connection to the amplitudes of the applied fields. In the semiclassical
model, the band index is a constant of motion, therefore the model ignores interband
transitions. The energy of the electrons, when fields are applied, should not raise above
the energetic limits of the corresponding band. In fact, these two conditions must be
satisfied [14]:

eEa� εgap(k)2

εF
, (3.20)

~Ωc �
εgap(k)2

εF
, (3.21)

where εgap(k) is the size of the energy gap between εl(k) and the nearest band εl±1(k)
at a specific k, and Ωc is the cyclotron frequency, which is going to be described in the
sections below. In practice, the first condition is quite difficult to break, while the second
has to be generally treated a bit more carefully. Additionally, it should be pointed out
that the angular frequency ω of the electromagnetic radiation must satisfy:

~ω � εgap, (3.22)

otherwise, single-photon excitation could cause an interband transition.
In connection with the Drude picture above, it is beneficial to discuss the collisions in

the Bloch theory. The solutions of the Schrödinger equation within the Bloch theory are
stationary waves in the presence of the periodic potential of the ions. We cannot assign
the fixed periodic lattice of ions to be the source of scattering, since the electron-ion in-
teraction has been fully introduced in the Bloch theory. In a model of a perfectly periodic
crystal, the velocity of electrons persists forever, resulting in a metallic crystal having
an infinite conductivity. However, that is surely not the case in nature. Every crystal
has imperfections, such as impurities, defects, thermal vibration of ions (phonons), etc.
And these perturbations of the periodicity are the source of the electronic scattering,
introduced in Sec. 3.1 as the electronic relaxation time τ .

3.2.3 The Effective Cyclotron Mass

In this section, we are going to describe what happens with electrons in an electronic
band, when a constant magnetic field is applied. We will discover soon the importance of
the crystal structure on the effective outcome of the electron parameters, to be specific,
the electron effective mass. The following serves as a crucial part of the technique to
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3.2. The Semiclassical Model

experimentally obtain the band structures of 2D films, as will be shown later in this
thesis. Let us begin by considering the semiclassical equations in an uniform magnetic
field:

~k̇ = −e(vl(k)×B), (3.23)

ṙ = vl(k) =
1

~
∂εl(k)

∂k
. (3.24)

One can notice that the component of k along the direction of the applied magnetic field
B is a constant in time. Moreover, these equations show that in the reciprocal space,
electrons move in orbits, similar to what we discovered in Section 3.1 in real space.
However, here, the orbits are constrained to the intersection of the surface defined by
the εl(k) and the plane perpendicular to the magnetic field as seen in Fig. 3.4. It can be
easily seen in the equations above, that the direction of orbiting is fully determined by
the gradient of εl(k) in the k-space. We will continue by exploring a very crucial and
important consequence of this relation.

(a)

kb

kaka

Δ

ε εΔΔε

kx

ky

(b)

Figure 3.4: (a) Orbit of motion in k-space at some value of kz , defined by the intersection
between the surface of constant energy ε and a plane perpendicular to the applied field B.
The direction of motion is determined by the gradient of εn(k). In this specific case the
states inside the enclosure have lower energy that the states outside of the object. (b) The
intersection from (a) in kxky-plane with the addition of the orbit corresponding to ε+∆ε.
See text for details.

Let us investigate the time an electron needs to travel around a certain part of an orbit
at a constant values of energy ε and kz, where the latter corresponds to the component of
the wavevector k in the direction of the applied magnetic field. We are also considering a
single electronic band, therefore we are able the omit the band index l. The time needed
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to span a part of the orbit between ka and kb equals:

tab =

∫ kb

ka

dk

|k̇|
=

~2

eB

∫ kb

ka

dk

|(∂ε/∂k)⊥|
, (3.25)

where we used the relations Eqs. (3.23) and (3.24) in order to rewrite k̇, and (∂ε/∂k)⊥
is the component of the gradient perpendicular to the applied field. We define a vector
∆(k), which is perpendicular to the orbit and connects the point k with the other orbit
corresponding to the energy ε + ∆ε (see Fig. 3.4(b)). At small values of ∆ε, we can
write:

∆ε =

∣∣∣∣( ∂ε∂k
)
⊥

∣∣∣∣∆(k), (3.26)

where the absolute value of the gradient comes from the fact that (∂ε/∂k)⊥ and ∆(k)
are parallel. Rewriting Eq. (3.25) results in:

tab =
~2

eB

1

∆ε

∫ kb

ka

∆(k)dk. (3.27)

Here, it should be noted that in terms of full generalization, the electronic orbits in
k-space can in some cases be open curves (not closed orbits). This happens when a
Fermi surface connects with a Fermi surface from the neighboring BZ. However, such
situations are out of scope for this work and an avid reader can find more information in
Ref. [14]. In the case of closed orbits, however, k can perform a full revolution around
the orbit, for which ka = kb. The integral in Eq. (3.27) gives the area between the orbits
at energies ε and ε+ ∆ε (gray area in 3.4(b)). Moreover, if we set ∆ε→ 0 and define A
as the area in k-space enclosed by the orbit of constant energy ε at some kz, we obtain
for the time period of the orbit:

T =
~2

eB

∂A(ε, kz)

∂ε
. (3.28)

Let us continue by rewriting Eq. (3.23) with the help of the v = ṙ = dr/dt and
k̇ = dk/dt:

~dk = −e(dr×B). (3.29)

This relation in fact shows us that the orbit in real space is similar to the one in k-space,
only rotated by 90◦ in the plane perpendicular to B and scaled by ~/eB. This result
benefits us greatly, since it confirms that the time period of an orbit is the same in real
space and allows us to use the classical result of an orbiting electron in magnetic field
from Eq. (3.5):

T =
2π

Ωc

=
2πm

eB
(3.30)
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and finally defining the effective cyclotron mass:

mc(ε, kz) =
~2

2π

∂A(ε, kz)

∂ε
. (3.31)

The latter result serves as the quantum mechanical addition to the Drude model
(Eq. (3.6)), incorporating the effects of the periodic lattice of the ions through the ef-
fective cyclotron mass, which can strongly diverge from the electron rest mass me. In
two dimensions, the same conclusion can be obtained by a stricter derivation with the
use of the Boltzmann transport equation, which describes the statistical behavior of the
system in the state out of equilibrium [57]. Besides, this approach shows that express-
ing the conductivity as Eq. (3.6) is only valid if one assumes rotational symmetry of
the band structure. Therefore, at some fixed kz, the energy ε(kx, ky) = ε(k), where
k =

√
k2x + k2y . Since for ε(k) the velocity v is always parallel to k and, according to

Eq. (3.23), k̇ is perpendicular to k, this condition results in circular cyclotron orbits in
both, real space and k-space.

One of the impressive consequences of Eq. (3.31) is the fact that effective cyclotron
mass is not limited to having only positive values. A negative gradient ∂A/∂E gives
a negative effective cyclotron mass. This results in an orbital motion in the opposite
direction, compared to a positive effective mass with the same absolute value, and, ef-
fectively, giving an impression of a "positively" charged carrier or hole, i.e., a carrier
that behaves like an electron, but has an opposite charge.

Holes are broadly used "fictitious" particles in solid state physics. The main idea
comes from the fact that a fully occupied band carries no current. If one separates the
band into two sections:

0 = (−e)
∫

Full Band
D

dk

(2π)d
v(k) =

= (−e)
∫

Section 1
D

dk

(2π)d
v(k) + (−e)

∫
Section 2

D
dk

(2π)d
v(k),

(3.32)

one can write for the current density of a partially occupied band:

j = (−e)
∫

Occupied
D

dk

(2π)d
v(k) = (+e)

∫
Unoccupied

D
dk

(2π)d
v(k). (3.33)

The latter shows that the current produced by electrons that occupy a set of levels in a
band is exactly the same as the current produced if the unoccupied set of levels were
occupied with holes (particles with +e). The benefit is found in the sense that whenever
it is more convenient, one can consider that the transport is carried out by the positive
holes instead of the electrons.
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Chapter 3. Electron Dynamics in a Two-Dimensional Crystal

3.3 Landau Quantization

The present chapter started with a fully classical description, which was followed by
some quantum mechanical corrections using the semiclassical model. It is therefore
reasonable that the last section of this chapter focuses on a fully quantum mechani-
cal approach to describe electrons in a magnetic field. It turns out that the resulting
formulations can be used to recover carrier concentrations from the detected quantum
oscillations of the density of states, which will benefit us later in Chapter 7.

We begin by stating that we often investigate crystals that have either almost empty
or almost full bands. This means that the electronic states of interest often lie close to the
minima or maxima at k0 of the band dispersion, allowing us to do an expansion along
the x-axis using Taylor series:

ε(kx) = ε(k0x) +
~2

2m∗x
(kx − k0x)2. (3.34)

In the same manner, we can write the expansion along the direction of the remaining
axes. Here, the effective mass defined in Eq. (3.15) allowed us to conveniently include
the characteristics of the band. Note that a parabolical shape of the energy dispersion
results in a constant value of the effective mass and, in general terms, m∗ can be a tensor
due to an anisotropic E(k), yielding m∗x 6= m∗y 6= m∗z. Additionally, we see that in
Eq. (3.34), electrons are treated as if they were free1, however with an effective mass.
The Hamiltonian for electrons in some band can be written as:

Ĥ =

(
pxêx

(2m∗1)
1/2

+
pyêy

(2m∗2)
1/2

+
pzêz

(2m∗3)
1/2

)2

, (3.35)

where pi are momentum operators in the i = x, y, z-axis and the band structure con-
figuration in various directions has been implemented via the effective masses m∗1, m∗2
and m∗3. We have also set k0 = 0 for convenience. In the xy-plane the electrons are
confined to an area LxLy. Since the effects of the band structure have been included in
the Hamiltonian, a solution for ψ can be found in form of a plane wave. Similar to the
previous section, a constant magnetic field B is directed along the z-axis, which can be
expressed in terms of the magnetic vector potential as B = ∇×A, where we can choose
A = (0, Bx, 0). Since the Hamiltonian is gauge invariant, one of the ways to include
the effect of the field is using the Landau gauge, where p→ p+ eA, which gives:

H =

(
pxêx

(2m∗x)
1/2

+
(py + eBx)êy

(2m∗y)
1/2

+
pzêz

(2m∗z)
1/2

)2

. (3.36)

1Free in terms of the Sommerfeld free-electron model [14], where the energy dispersion equals ε(k) =
~2k2/2m.
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Since p̂y commutes with this Hamiltonian, it can be replaced by its eigenvalue ~ky and
it follows that:

H =

(
pxêx

(2m∗x)
1/2

+
(~ky + eBx)êy

(2m∗y)
1/2

+
pzêz

(2m∗z)
1/2

)2

=

=

(
p2x

2m∗x
+

(~ky + eBx)2

2m∗y

)
+

p2z
2m∗z

. (3.37)

The components in the brackets can be recognized as the Hamiltonian of the 1D har-
monic oscillator for which the Hamiltonian and its eigenvalues are:

HHO =
p2

2m
+

1

2
mω2x2, En = ~ω(l +

1

2
). (3.38)

It can be seen that we are actually dealing with an Hamiltonian of a harmonic oscillator
with the minimum of the potential shifted by x0 = ~ky/eB. Translating the harmonic
oscillator does not affect its eigenvalues, therefore the electronic energy levels of the
system are:

E(l, B, kz) =
p2z

2m∗z
+ ~ω(l +

1

2
), (3.39)

where l = 0, 1, 2, ... and ω = eB/(m∗xm
∗
y)

1/2. In fact, in this geometry
√
m∗xm

∗
y = mc

defined by Eq. (3.31), since A in the present case has a form of an ellipse. From here
it naturally follows that ω = Ωc. The available energy levels for an electron are fully
quantized in the plane perpendicular to the applied magnetic field and are known as
the Laundau levels (LL). Due to the confinement of space, ky can only take values of
ky = 2πN/Ly, whereN = 0, 1, 2, ..., Nmax. The maximum value of integerN is limited
by x0 ≤ Lx, which gives us the maximum number of states in a single LL:

Nmax =
LxLyeB

h
. (3.40)

If l LLs are filled, the 2D carrier density of the system equals:

n =
lDNmax

LxLy
= lD

eB

h
, (3.41)

where D represent the degeneracy of the electronic band in zero field. The eigenvalue
of pz is continuous (Ez = ~2k2z/2m∗z) if the system is unbounded in z-axis. In this work,
we are going to investigate 2D films, therefore the electronic systems are confined also
in the z-direction. In this case, the eigenvalues of pz become discrete. As will be seen
below, the spacing between these discrete energies Ez is much larger than ~ω.

In the derivation above, the directions x and y have no physical differences. The
derivation above can be easily accomplished by interchanging the two coordinates. It
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Chapter 3. Electron Dynamics in a Two-Dimensional Crystal

should come as no surprise that the allowed k-values are represented by closed orbits in
the k-space perpendicular to the applied field. Since the allowed k-space is quantized,
this results in a splitting of the Fermi Surface into Landau tubes and the allowed orbits
lie on the intersection of the tubes with a plane perpendicular to the field B. An example
of how a Fermi sphere splits into Landau Tubes is presented in Fig. 3.5.

Figure 3.5: An illustration of a Fermi sphere splitting into Landau tubes when magnetic
field in z-axis is applied.

Let us briefly consider the situation when the energy dispersion is not simply
parabolic, which is generally the case in real compounds. We have learned that the
Landau levels split the Fermi surface, whatever shape it may be. An arbitrarily shaped
electronic band, however, does not necessarily result in an equally spaced set of energy
levels as we have seen in a simple parabolic dispersion above. For a general solution we
can use the Onsager relation [58] that states that the area Al enclosed by the electron
orbit in k-space has to be quantized:

Al = (l + γ)
2πe

~
B. (3.42)

This relation is derived from the Bohr-Sommerfeld quantization, which states that for
l � 1 the orbit in real space must satisfy:

∮
pdr = h(l + γ), where p = ~k − eA is

the canonical momentum. The phase constant γ is equal 1
2

for free electron, however in
real metals it deviates from this value. Since the condition l � 1 needs to be satisfied,
γ can easily be neglected. Since there is a large filling of Landau levels, a small change
in B will change the number of occupied Landau levels by ∆l � 1. Moreover, a large
set of Landau tubes, with a very narrow spacing between them (~ω � εF ), effectively
map out the Fermi energy surface at zero magnetic field and therefore dE/dAl does not
depend on B. For example, imagine that in Fig. 3.5, the number of LL would be 100
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instead of 4. We can write:

dE

dl
=
dE

dAl

dAl
dl

=
dE

dAl

2πe

~
B =

e~
mc

B = ~ω, (3.43)

which in fact proves that with l� 1 the linear relation ω = Ωc = eB/mc is valid. Large
filling values l are achieved at small values of B, where the absolute limit of B fully
depends on the characteristics of the electronic band. If the maximal cross section of the
Fermi surface equals AF , then it follows that:

AF = Ai(B) = Ai−1(B
′). (3.44)

Eqs. (3.42) and (3.44) show that some Landau tube will directly overlap with AF each
time 1/B increases by ∆(1/B) = 2πe/~AF . For a 2D system, n2D = AF/(2π)2,
therefore we obtain:

∆(1/B) =
De

n2Dh
, (3.45)

where we added the degeneracyD of the electronic band in zero field. See that Eq. (3.45)
fully agrees with the result Eq. (3.41), where the dispersion is parabolic.

The DOS g(ε), presenting the number of states which may be occupied in an energy
interval, splits into multiple Dirac delta functions when the magnetic field is applied.
The positions of the Dirac delta function are defined by the allowed LLs of the system.
Let us imagine that we slowly change the magnitude of B. The sequential crossing of
Landau tubes with the Fermi surface results in a modulation of the DOS at the Fermi
level. It is important to mention that in realistic conditions LLs are in fact smeared in
energy. For example, in Fig. 3.6 a splitting of a constant g(ε) is illustrated. Some of the
reasons are the thermal broadening of the Fermi surface, defects in samples, scattering
of the particles, etc. We have discussed above that low magnetic fields are required
for the valid use of the semiclassical model since it introduces a high number of LL
below the Fermi energy. At low magnetic field limit, the distortion of the DOS results
in superimposed oscillations on top of the unperturbed DOS that have an amplitude
smaller than the DOS at the Fermi level (see Fig. 3.6(b)). This phenomenon is called the
Shubnikov–de Haas effect (SdH) [59]. Since most electrical properties depend on the
DOS, this can result in detectable oscillations with respect to 1/B with a frequency of

f =
n2Dh

De
. (3.46)

The "classical" electrical properties of the system remain almost the same in low mag-
netic fields. However, if a measuring technique allows a sufficient signal-to-noise ratio,
the density oscillations can also be detected. With the help of lock-in detectors, this can
often be the case in resistivity and capacitance studies through the electrical contacts
to the system, as will be presented in Sections 7.1 and 7.2. While the quantum part
of capacitance has a simple relation to the DOS: CQ = e2g(ε) [60], the derivation of
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Chapter 3. Electron Dynamics in a Two-Dimensional Crystal

Figure 3.6: Splitting of a constant DOS into smeared Landau levels. If the number of
filled LL is low (a), some energy regions have zero allowed electronic states. In the other
case, when multiple LL are filled (b), the smeared Landau peaks overlap, which results in
a harmonically oscillating DOS.

resistivity from DOS is certainly not as straightforward [61].
Nevertheless, one can analyse the field-dependence of both, capacitance or resistiv-

ity measurements of the sample, by applying the Lifshits-Kosevich model of i charge
carriers in the system [62] (as done previously in Refs. [63, 64]):

∆A

A0

=
∑
i

AiD(X)exp

(
−π
µqiB

)
cos

(
2πfi
B

+ φi

)
, (3.47)

whereA0 is the monotone part of capacitance or resistivityA. The oscillating part ∆A =
A−A0, D(X) = X/sinh(X) is the thermal damping factor, where X = 2π2kBT/~Ωc;
kB is the Boltzmann constant, Ωc is the cyclotron frequency, Ai and φi are some con-
stants and µqi = eτq/mc is the quantum mobility, where τq is the quantum single-particle
relaxation time, which determines the LL broadening and has no direct relation to τ (see
Refs. [65, 66] for details). Finally, the Lifshits-Kosevich formula can be used to extract
the carrier properties from the oscillation period as Eq. (3.46).
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4. Mercury Telluride

Mercury telluride (HgTe) has been known for decades for having a zero-gap semi-
metallic band structure. Many alloys can be formed from HgTe and other compounds
within the same columns of the periodic table. One example is the chemical compound
of HgTe and cadmium telluride (CdTe). The alloy CdxHg1−xTe has been for more
than sixty years one of the most crucial materials for the industry of infrared detec-
tors [67, 68]. Besides the optimal efficiency of detection, the most essential property of
this alloy is the adjustable bandgap. Due to the approximately 1.5 eV bandgap [69] in
bulk CdTe, the bandgap in CdxHg1−xTe can be tuned from −0.3 to 1.5 eV by varying
the composition ratio x. This allows the production of detectors for the regions between
short-wave infrared to very long-wave infrared radiation. We will soon discover that
the negative bandgap above is not a typo, but an indication of the inverted band struc-
ture, which made HgTe one of the most important compounds for the emerging field of
topology in condensed matter.

In 1980, von Klitzing discovered the quantum Hall effect (QHE) [6] in a high-
mobility 2D semiconductor at low temperatures. He showed that the Landau quanti-
zation (see Section 3.3) results in a vanishing longitudinal conductivity σxx and quanti-
zation of the Hall conductivity σxy to integer multiples of e2/h. It was later recognized
that this phenomenon of quantization can be characterized by an integer topological
invariant [4, 5]. The QHE became the first observed topological state. This marked a
very important historical point in the field of topology in condensed matter and drove
many researchers into the pursuit of other topological phases. In 2005, a new topologi-
cal state, a quantum spin Hall system, was proposed [7] and then observed in 2007 in a
HgTe quantum well [8]. In contrast to QHE, this state appears only without a magnetic
field and consists of two counter-propagating edge states with opposite spins, which
makes this very attractive for the field of spintronics. Moreover, if the HgTe quantum
well has the correct width (critical thickness), the band structure forms a Dirac cone,
i.e., a linear dispersion of the bands [10, 11], which results in unusual electrodynamic
properties [57,70,71]. HgTe quantum wells above the critical thickness represent unique
examples of 2D systems, in which electrons and holes coexist simultaneously, i.e., 2D
semimetals [9]. Finally and surely as much important, even wider quantum wells, well
above the critical thickness, have shown to be 3D topological insulators (TIs) [12]. A TI
is a state of matter in which the bulk of the material is insulating and the surfaces (or
edges in 2D) are conducting. The surface states in TIs have a non-degenerate Dirac-like
dispersion with electron spin locked to the direction of the momentum. The conducting
surfaces appear because there are always zero energy states on the border between two
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materials with different characteristic topological invariants. All these exotic properties
can be observed in HgTe quantum wells due to the unique inverted band structure of
bulk HgTe, which makes the compound topologically non-trivial. The field of topol-
ogy will not be further discussed in this thesis, an avid reader is invited to find further
information in Refs. [72–75].

4.1 The Inverted Band Structure of HgTe

Similar to other II-VI1 and III-V compounds, mercury (group II) and tellurium (group
VI) form HgTe in a zinc-blende (sphalerite) structure [76]. This compound forms due
to the bonding between mercury’s two valence electrons from the subshell 6s and tel-
lurium’s six valence electrons from the subshells 5s and partially filled subshell 5p.
Consequently a sp3 state forms, where one valence electron is in the s state and three of
them in the p state. In this family of semiconductors, it is common that in the vicinity
of the Fermi energy, the band structure consists of a conduction band Γ6 and a valence
band Γ8, separated by a non-zero bandgap. With the increasing atomic number of the
constituent atoms, the bandgap between the bands starts to decrease, and in the case of
HgTe, it even becomes negative. Let us explain what a negative bandgap actually repre-
sents. Due to relatively large nuclear charges of mercury and tellurium atoms, relativistic
effects need to be considered in the total Hamiltonian for an accurate calculation of the
band structure [76, 77]. The effect of the relativistic corrections, including the Darwin
correction (HD), relativistic mass velocity correction (HR), and the spin-orbit operator
(HSO), can be seen in Fig. 4.1, where the evolution of bands of HgTe and CdTe at the
Γ-point is compared. Darwin correction corresponds to the interaction of the s electrons
with the nucleus and the relativistic mass velocity term is the correction to the kinetic
energy operator due to an increase in the mass of the particle with its velocity. These two
terms shift the energy positions of the electronic bands. While the Darwin term has a
similar effect on both compounds, it can be seen that due to the different nuclear charges
of Hg and Cd, the relativistic mass velocity correction is much stronger for HgTe and re-
sults in lowering the Γ6 band close to the Γ8 band. Lastly, the spin-orbit interaction splits
the degenerate p-states of the Te atoms into two Γ8 subbands and one Γ7 band. In the
case of CdTe, the total splitting forms a heavy- and a light-hole Γ8 subband and an elec-
tronic Γ6 band. This represents a conventional semiconductor band structure, i.e., Γ6 is
the first conduction band and the Γ8 subbands are the valence bands. In the case of HgTe,
the Γ8 band is lifted above the Γ6 band. Γ6 becomes a completely filled second valence
band, the heavy-hole subband of Γ8 becomes the first valence band and the light-hole
Γ8 subband now becomes the first conduction band. As a result of the relativistic correc-
tions, HgTe is characterized by an inverted band structure (see Fig. 4.2 left), compared
to the normal band ordering in CdTe. Since the light- and heavy-holes subbands are de-

1Group in the Mendeleev’s periodic table of elements.
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Figure 4.1: An illustration of the impact of the relativistic corrections on the band struc-
tures of CdTe (left) and HgTe (right) at the Γ-point. The unperturbed bands are modified
by the Darwin correction (HD), relativistic mass velocity correction (HR), and lastly the
spin-orbit interaction (HSO). Since Hg is much heavier than Cd, the mass velocity correc-
tion leads to an inverted band structure in HgTe. Data for the figure was taken from [76].
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generate at the center of the BZ, this represents a zero-gap semiconductor (sometimes
also referred to as a semi-metal) [76, 77]. The inverted band structure makes the HgTe
topologically non-trivial, making the compound an outstanding playground of various
exotic phenomena.

4.2 Strained HgTe Films

The unstrained single-crystalline mercury telluride (HgTe) is a gapless semimetal with
the conduction and valence bands formed by Γ8 bands. If grown in the form of a thin film
sandwiched between two thick layers of Cd0.7Hg0.3Te, HgTe is subject to a tensile strain
due to lattice mismatch between HgTe and CdTe [79]. This strain lifts the degeneracy
of Γ8 at the Γ-point and opens up a bandgap between the light- and heavy-hole Γ8

subbands [12, 79]. As seen in Fig. 4.2, the band structure of bulk Cd0.7Hg0.3Te shows
a conventional band structure with a gap of around 1 eV between the upper Γ6 and
lower light-hole Γ8 subband. The band profile of the resulting quantum well is strongly
dependent on the thickness of the HgTe layer (see Fig. 4.3). The narrower the quantum
well, the stronger is the confinement strength. The evolution of the subband order in
respect to the varying HgTe layer thickness is presented in Fig. 4.3(a). Subbands Ei and
Hi are the result of the confinement quantization and originate from Γ6 and Γ8 bands,
respectively (see Fig. 4.3(b)). Thicker HgTe layers are characterized by the same band
inversion as the bulk HgTe. H1, originating from Γ8, is above the E1, which comes
from the Γ6 band. On the other side, for very thin samples, the quantum well adopts
the normal band ordering, where E1 becomes the first conduction band and H1 the
first valence band. Quantum wells below the critical thickness of 6.3 nm are therefore
topologically trivial, while thicker samples have the topologically non-trivial inverted
band structure.

When the quantum well has exactly the critical thickness, the bandgap collapses and a
zero gap-state is formed, resulting in a 2D electron gas with a Dirac cone dispersion [10,
11, 80]. Compared to graphene [81], which is characterized by a fourfold degenerate
Dirac cone, the Dirac cone in HgTe is double degenerate, making HgTe therefore even
more attractive.

Let us return to the samples with thickness above the critical value. Due to the in-
verted band structure inside the quantum well, the topological invariant changes on
the borders between HgTe and Cd0.7Hg0.3Te, as shown in Fig. 4.3(b). This results in
topologically protected zero-energy states on the interface surfaces and the so-called TI
phase. If the Fermi level is in between the E1 and H1 subband, the bulk HgTe is insu-
lating, however, its surfaces are conducting. It should be noted, that since the surface
states arise in about 10-20 nm thick layer close to the boundary, a fully insulating bulk
is only expected in quantum wells with thicknesses above∼ 50 nm. While it may sound
conflicting, a 2D film of HgTe can actually be a 3D TI. The dimensionality of the HgTe
film is characterized by the obvious number quantization of the electronic bands due to
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Figure 4.3: Subband ordering in the HgTe/CdHgTe quantum wells in respect to the thick-
ness of the HgTe layer. E subbands originate from the bulk Γ6 band and H from the bulk
Γ8 band. (a) The energy of the subbands at the γ-point in respect to the quantum well
width. Colors indicate conducting (pink) or valence (blue) behavior. (b) The quantum
well in the normal regime (d < dc) and the inverted band structure regime (d > dc),
where, due to the inversion of the bands, surface states appear at the interface. Data for
figures taken from Refs. [10, 11].

the confinement in the z-axis, while the 3D TI is characterized by conducting states on
the borders of the confinement.

4.3 Sample Preparation

The HgTe/CdHgTe samples, experimentally studied in the chapter ahead, have been
grown by molecular-beam epitaxy (MBE) on a GaAs substrate with a lateral size of
5 × 5 mm [82–86]. The hetero-structure of the sample is sketched in Fig. 4.4(a). The
dielectric constant of the approximately 0.5 mm-thick substrate is εGaAs = 12.75 in the
whole frequency range of the study. Between the layered structure and the GaAs sub-
strate a 5-6µm thick CdTe buffer layer was placed, whose lattice fully relaxes due to
its thickness. The CdHgTe/HgTe/CdHgTe layers above the CdTe buffer layer adopt the
underlying CdTe lattice constant, resulting in a tensile strain in the HgTe film due to
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Figure 4.4: (a) Cross-section of the hetero-structured HgTe/CdHgTe samples. The sur-
face states are indicated with bright red. (b) Illustration of the top of the sample with a
cross-shaped gate, which allowed simultaneous magneto-optic experiments and transport
measurements through the indium contacts (white dots).

the lattice constant mismatch of about 0.3%. The strain results in the opening of the
topological bandgap as discussed in the previous chapter. This sandwich structure en-
sures that the lattice variation is not abrupt, in turn reducing the influence of dislocations
and allowing very high electron mobilities. The analysis of the cyclotron resonance cor-
responding to the upper surface state of the 80-nm sample (Section 7.1) revealed the
mobility to be up to µ = eτ/mc = 5 · 105 cm2/Vs, which is the current record value
for a 3D TI [84]. To produce the semitransparent gate electrode, the film was covered
on top by a multi-layer insulator of SiO2/Si3N4 and a semitransparent metallic Ti-Au
layer. The top-gate electrode allows to control the total charge density and therefore
the variation of the Fermi energy in the system [19, 80, 85]. Due to the low mobility of
carriers in the Ti-Au layer, the gate showed no measurable magnetic field or radiation
frequency dependence [57]. The shape of the gate electrode (see Fig. 4.4(b)) allowed a
fully covered center of the sample for THz transmission measurements and four con-
tacts at the corners of the sample to acquire simultaneous information about the electri-
cal conductivity in the system (see Fig. 5.2). The samples in this study had substrates
with orientations (013) and (100) 2. Thermodynamic analysis showed that during the
MBE growth of CdHgTe, evaporated Te2 molecules reach the surface of the sample and
can either form CdHgTe or a polycrystalline Te. Formation of the latter form degrades
the purity of the CdHgTe layer. However, if the substrate has steps as in the case of the
(013) surface, crystallization of tellurium is less probable, resulting in a reduced number
of defects and improved quality of the hetero-structure [82, 87]. Samples with a (013)
substrate can therefore be of better quality than the ones with (100) surface orientation,
on the other hand, (100) substrate does not break the symmetry of the HgTe layer and
allows investigation of the purer HgTe form besides an easier theoretical approach for

2This Miller index of the substrate is parallel to the normal of the plane.
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calculating its band structure.
In this study, four samples of HgTe/CdHgTe quantum wells were investigated. Two

semi-metallic samples with 14.1- and 22-nm thick HgTe layers and a (013) surface ori-
entation and two 3D TIs with 80-mn-thick strained HgTe layers with a (100) substrate.
A study of the superradiance effect in a strained 80-nm-HgTe sample will be presented
in Chapter 6. In Chapter 7, we will describe a procedure for directly obtaining the band
structure of a 2D thin film, specifically, band structures of the 14.1-, 22-, and 80-nm
samples.
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5. Experimental Investigation of HgTe
Samples

Chapter 3 was devoted to the response of a 2D electron gas when it is subject to applied
electromagnetic fields. We have discussed the semiclassical behavior of electrons in
their characteristic band structure and, as well, the quantization of the system when, at
very low temperatures, higher magnetic fields are applied. This should serve as a very
good indication that experiments with electromagnetic fields present a very powerful
tool for understanding the electronic structure of a studied system. In this thesis, we
predominately focus on 2D systems, therefore, we surely only graze the surface of all
the possibilities of how various systems respond to applied electromagnetic fields [14,
88–90].

In the present study, we focus on magneto-optics. There is an endless selection of
published studies, which have shown the success of magneto-optical experiments when
investigating the charge dynamics in metals and semiconductors. It should be stressed
that measurements of magneto-transport serve as a very powerful tool, however, opti-
cal experiments have the advantage of being contact-free and provide a very accurate
assessment of the charge carrier masses via the cyclotron resonance studies. As will be
discussed in Chapter 7, measurement of the field-dependent cyclotron frequency gives
direct relation to the band structure of the studied material. Recently, several magneto-
optical experiments in the THz range were successfully applied to graphene [91, 92],
topologically insulating Bi2Se3 [93,94], and, most importantly, HgTe/CdHgTe quantum
wells [69, 83, 95–97].

In this section, we will briefly describe the sequential order of performed magneto-
optic measurements on HgTe quantum well samples and later go through the process of
the analysis of the transmission spectra, which were acquired while the following pa-
rameters were varied: gate voltage, external magnetic field, and frequency of radiation.
The variation of gate voltage allowed changing the total charge density in the sample,
therefore moving the Fermi energy from the valence to the conduction states.

5.1 Cyclotron Resonance Experiments

Magneto-optical transmission experiments were carried out in the Mach-Zehnder inter-
ferometer (Section 2.2.1) using several BWO sources, which cover various frequency
regions between 40 − 1000 GHz (see Fig. 2.4). The sample was mounted on a sample

51



5.1. Cyclotron Resonance Experiments
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Figure 5.1: Frequency dependent intensity of transmission of the 80-nm HgTe film in
zero magnetic field and at T = 1.8 K. Open black circles - experiment, blue curve - fit
using transmission formulas and the Drude model. Substrate parameters are: thickness
d = 0.608 mm, refractive index n = 3.57.

holder (Fig. 5.2(a)) and inserted into the cryostat, where it was cooled to 1.8 K. Trans-
mission experiments were carried with a split-coil superconducting magnet that pro-
vided an external magnetic field up to 7 T in the Faraday geometry; i.e., a magnetic field
was applied along the propagation direction of the radiation (see Fig. 5.5). The experi-
mental procedure was as follows. A BWO source was selected and adjusted in the optical
setup shown in Fig. 2.3. This was followed by a frequency-dependent transmission mea-
surement of the sample (at zero gate voltage and zero magnetic field) which showed pro-
nounced Fabry-Perot interference [98] due to the reflections within the substrate. These
measurements were performed in the transmission measuring mode and with linearly-
polarized light in the parallel geometry of the interferometer. For each BWO, the mea-
surement was repeated with the empty channel (without the sample) in order to obtain
the absolute unit of the amplitude: |tp(ν)| = tsample/tref. These measurements will be la-
beled as "frequency scans". In Fig. 5.1 the spectrum of the 80-nm sample (Section 7.1)
measured by three different BWO sources is plotted. It clearly demonstrates the multiple
reflections within the GaAs substrate with a thickness of d = 0.608 mm. We can also
notice a slight decrease of amplitude at lower frequencies, which is related to the relax-
ation rate τ of the charge carriers in the system. From the acquired frequency spectrum,
a set of frequencies νj is selected for detailed magneto-optic measurements. The pro-
cess of selection is strongly affected by the transmission amplitude. If the transmission
is high, the detected signal is stronger and, therefore, a higher signal-to-noise ratio is
assured. Moreover, the additional aim was to find frequencies that most uniformly cover
the whole range of our spectrometer.

The setup presented in Fig. 5.2(b) allowed us to measure 4-point resistivity in the
xx-configuration. Right before or right after running the field-dependent transmission
scan at zero gate voltage, a gate-dependent measurement of 4-point resistivity was per-
formed in order to evaluate the electronic state of the sample with respect to the position
of the charge neutrality point - resistivity reaches its maximum due to the equal den-
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Figure 5.2: (a) The sample mounted on the sample holder. (b) A schematic of the elec-
trical circuits connected to the sample with silver paste. With the use of two isolated
frequency lock-in detection systems this setup allowed simultaneous measurements of
the 4-point resistance (V) and capacitance (A).
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Figure 5.3: Gate-dependence of the 4-point resistance in the xx-configuration in case of
the 22-nm sample from Section 7.2. The position of the maximum resistance at around
−7 V marks the charge neutrality point (CNP).

sities of electrons and holes. The aim was to ensure that the sample was in the same
electronic state when zero gate voltage measurements were performed with different
BWO sources. Fig. 5.3 shows how the gate successfully altered the charge density in
the 22-nm sample from Section 7.2. Generally, the position of the neutrality point was
observed to be dependent on the history of the applied gate voltage in a specific cooling
cycle. Warming the sample to ∼ 150 K and back to 1.8 K returned the position of the
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5.1. Cyclotron Resonance Experiments

charge neutrality point to the initial value.
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Figure 5.4: Field dependency of the parallel and crossed transmission through the 80-
nm-HgTe sample, which is in detailed discussed in Chapter 6. The frequency of incident
radiation was 208 GHz and the gate of the sample was set to 0 V. (a,c) Absolute value and
phase of the transmission in the parallel geometry. (b,d) Absolute value and phase of the
transmission in the crossed geometry. Orange circles - experimental data, solid blue lines
- fits using the transmission formulas and the Drude model as described in text.

After the frequency scans, the frequency was fixed at each of the selected values
νj . For each νj , the field-dependent transmission through the sample was measured at
different gate voltages. The polarization of the radiation incident on the sample was
either linear or circular. We will label these measurements as the "field scans".
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Chapter 5. Experimental Investigation of HgTe Samples

Figure 5.5: Illustration of the magneto-optical experiment with circularly-polarized radi-
ation.

In case that the linear polarization of radiation was picked for fixed-frequency field
scans, the complex transmission was measured in both, parallel and crossed geometry.
In order to obtain the fully complex transmission, the measurements were performed
in the phase measurement mode of the interferometer. A typical example of the mea-
sured data of an HgTe film is shown in Fig. 5.4. The two symmetrical minima in the
absolute parallel transmission (Fig. 5.4(a)) and maxima in absolute crossed transmis-
sion (Fig. 5.4(b)) correspond to the cyclotron resonances of the charge carriers in the
HgTe film. The resonances reach their extreme values when the cyclotron resonance
(Eq. (3.5)) condition is satisfied and ω = eB/mc, where ω = 2πν and the frequency of
the radiation is ν = 208 GHz. The resonances reach their extreme at around ±0.16 T,
which gives mc = 0.022 me. Here, me = 9.109 · 10−31 kg is the electron rest mass.
The absolute crossed transmission reaches zero at zero magnetic field, increases until
the cyclotron resonance condition is satisfied, and then decreases to zero again. This
suggests that at the resonance frequency the polarization of the radiation is rotated. The
phase (Fig. 5.4(c,d)) of the measured complex transmission in both geometries shows
that the optical thickness of the sample changes. While the change of parallel transmis-
sion phase is relatively small, the "crossed" phase changes drastically. An abrupt change
of the "crossed" phase at zero magnetic field indicated that the crossed signal changes its
sign. In fact, we can conclude that not only the polarization of the incident beam rotates,
the beam also obtains an elliptical character.

The main drawback of measurements with linear polarization is the following. With
the fixed frequency, the elements of the quasi-optical setup need to be optimized in
either linear or crossed geometry. After, the field scan is measured for each value of the
selected gate voltage range. The setup is then rearranged into the other geometry (linear
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5.2. The Drude Analysis

or crossed) and the measurements are repeated. The parallel and crossed field scans at a
specific gate voltage are usually measured with large time delays (hours or sometimes
even days) and even in different cooling cycles. This does not necessarily ensure the
exact same state of the sample.

This problem is averted with the use of the much simpler experimental procedure
with the circularly-polarized beam (see Fig. 5.5), which is carried out with the Mach-
Zehnder interferometer in the transmission measuring mode and set in the configuration
shown in Fig. 2.6. Here, only one field scan at each state of the sample is necessary. The
additional advantage of geometry with circularly-polarized radiation is the clear separa-
tion of the electron and hole resonances as they are observed for positive and negative
external magnetic fields, as will be shown in the section ahead. It should be noted that
the circular polarization gives only limited information about the complex transmission
of the system. As we will see below, it provides enough data to obtain properties of
the charge carriers in the system. However, if the study requires a detailed analysis of
the Hall conductivity, data obtained from circularly-polarized transmission does not suf-
fice. In this case, parallel and crossed geometry are crucial, since they provide the full
complex transmission of the system.

5.2 The Drude Analysis

The analysis of the magneto-optical data obtained from the interferometer was done
with the help of the Drude model (Section 3.1), which previously provided a great tool to
obtain the required information about the investigated system [18,57,69,97,99,100]. The
HgTe samples were composed of a layered structure on a dielectric GaAs substrate (see
Fig. 4.4(a)). In the layered structure, only the HgTe layer and the gate have a metallic
character. The section containing conducting layers is less than 0.5 · 10−3 mm thick,
while the thickness of the substrate is around 0.5 mm. Since the shortest achievable
wavelength in our spectrometer is around 0.3 mm, in terms of the available resolution
and maximal energy of the radiation, the sample can be efficiently represented as an
isotropic dielectric slab with a metallic infinitely-thin film on top. An analytic solution
for the complex transmission in terms of tp and tc through such system was presented
with Eq. (2.30). Let us rewrite the result and remember the definitions of the parameters:

tp =
2axx

a2xx + a2xy
, tc =

2axy
a2xx + a2xy

, (5.1)

with:
axx = (1 + σxxη0)(cos β − 1

√
εGaAs

sin β) + cos β − i
√
εGaAs sin β,

axy = σxyη0(cos β − 1
√
εGaAs

sin β),
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Chapter 5. Experimental Investigation of HgTe Samples

β =
√
εGaAs

ω

c0
L,

where L is the substrate thickness, εGaAs = 12.75 (Section 4.3), η0 is the impedance of
free space and ω = 2πν is the angular frequency, with ν being the frequency of the
incident radiation. The components of the 2D conductivity tensor σ are calculated in
terms of the Drude model, as defined in Eq. (3.6) (see also Eq. (3.7)). The conductivity
of the system involving multiple charge carriers i can be written as:

σxx =
∑
i

σxx,i + σGate

σxy =
∑
i

σxy,i,
(5.2)

where σGate corresponds to the gate conductivity, which is field- and frequency-
independent and σxx,i, σxy,i correspond to each individual charge carrier i, where

σxxi = σ0,i
1− iωτi

(1− iωτi)2 + (Ωc,iτi)2
;

σxy,i = σ0,i
Ωc,iτi

(1− iωτi)2 + (Ωc,iτi)2
;

Ωc,i =
eB

mi

; σ0,i =
nie

2τi
mi

.

(5.3)

Each carrier i is characterized by its effective cyclotron mass mi, scattering time τi and
2D charge density ni1. For a circularly-polarized wave, we can write t± = tp±itc, where
± denotes the clockwise or anticlockwise circularly-polarized wave. Similarly, circular
conductivity can be defined as: σ± = σxx ± iσxy. The circular transmission coefficient
can be finally written as:

t± =
2

a±
, (5.4)

where a± = axx±iaxy. In fact, it can be easily seen that t+ depends purely on σ+ and t−
depends purely on σ−, thus the cyclotron resonance can only be seen with either positive
or negative magnetic fields, depending on the "charge" of the carrier.

In case the circularly-polarized radiation is set for magneto-optic measurements,
we experimentally obtain: (a) the frequency scan |texp

p (ν)| at zero magnetic field,
zero gate voltage and measured by all selected BWOs, and (b) a set of field scans
Aj|texp

+,−(νj, B, Ug)|, where Ug is the applied gate voltage, νj are the selected frequencies
for field scans, and Aj is an unknown real constant. We begin the analysis by gathering
all the data at zero gate voltage. A Hooke-Jeeves algorithm [101] was used to minimize

1In terms of simplicity, we will, from here on, omit the c in mc and the 2D in n2D. However, the same
definitions still apply.
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Figure 5.6: Data analysis in order to obtain initial parameters of the 22-nm sample.
(Above) Frequency-dependent absolute transmission through the sample at zero mag-
netic field and zero gate voltage. Black points - experimental data, colored curve - fit
using the transmission formulas and the Drude model described in text. (Bottom) Field-
dependent absolute transmission at zero gate voltage for three frequencies of incident
radiation. Black points - experimental data, colored curves - fit using the Drude model
described in text. The absolute scales refer to the lowest curves, others are shifted for
clarity.

the following function:

f(Aj, σGate, CPar) = αν
∑
v

(|texp
p (ν)| − |tp(ν,B = 0, εGaAs, σGate, CPar, L)|)2

+
∑
j

∑
B

(Aj|texp
+,−(νj, B, Ug = 0)| − |t+,−(νj, B, εGaAs, σGate, CPar, L)|)2

(5.5)
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where CPar = ([m1, n1, τ1], [m2, n2, τ2], ...) is a list of carrier parameters; and L and
εGaAs are known. Here, αν adjusts the weight of the spectrum for the optimization pro-
cess and was usually set to 0.1. The optimization process finds the fitting parameters
Aj , σg(Ug = 0) and CPar(Ug = 0) for the sample at zero gate (Ug = 0). The result,
corresponding to the 22-nm-HgTe sample from Section 7.2, can be seen in Fig. 5.6.
Only a single resonance was observed, indicating a single active charge carrier. The
Drude formula confirms that the minimum of transmission is achieved when the cy-
clotron frequency matches the frequency of the incident radiation. The position of the
resonances therefore correspond to the m of the charge carrier, while the width and the
amplitude are related to the τ and n, respectively. However, due to the complexity of the
fitting function, an analytic relations are not available. When the frequency of radiation
matches the cyclotron frequency, one can imagine that in a coordinate system, which is
rotating around the same axis, this situation effectively resembles a metal and, thus, most
of the radiation is blocked. The drop of signal at lower frequencies is due to the Drude
resonance with the center at zero (due to zero magnetic field). The decrease of signal is
therefore related to the scattering rate τ . To obtain the fitting parameters from experi-
mental data acquired at non-zero value of gate, an additional analysis is performed. For
each frequency νj and each value Ug from the set of applied gate voltages, the following
function is minimized:

f(σGate(Ug), CPar(Ug, νj)) =∑
B

(Aj|texp
+,−(νj, B, Ug)| − |t+,−(νj, B, εGaAs, σGate(Ug), CPar(Ug), L)|)2, (5.6)

where the scaling coefficient Aj is now a fixed parameter, since it was obtained before.
Carrier parameters were set as free parameters, including the gate conductivity σg, which
is expected to change only slightly with the applied voltage. This process of analysis is
similar for experiments with linear polarization. The second sum in Eq. (5.5) is replaced
with two summations corresponding to parallel and crossed data, where the crossed
summation is weighted with αC . Since the measurements include phase, we require two
complex scaling coefficients Aj,p and Aj,c. Similar follows for Eq. (5.6). This process
allows us to obtain the Drude parameters of the active charge carriers in the system
CPar(νj, Ug), which are obtained at various values of the applied gate voltage Ug and the
frequencies of radiation νj .
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6. Superradiance in HgTe

The phenomenon of superradiance occurs when several emitters become coupled and,
as a consequence, they start to radiate coherently [102,103]. In such a case, the intensity
of the emitted radiation is strongly enhanced as it is scaled as a square of the number
of sources in contrast to simple proportionality without coherence. Superradiance was
first predicted theoretically by Dicke [102] for an ensemble of two-level atoms and has
been later on observed experimentally in various materials [104–106] and metamaterials
[107, 108], see Ref. [109] for a review.

Recently, superradiant effects in two-dimensional electron gases (2DEGs) have been
brought into attention [110–116]. In the original Dicke model, the coherence is ob-
tained because single sources are within a distance smaller than the wavelength of the
radiation. An important difference especially compared to the case of the cyclotron res-
onance in 2DEGs is that the size limitation is lifted in the latter case. The resonance of
a single electron is excited coherently by an incident electromagnetic wave. Therefore,
independently of the sample size, they re-emit a coherent secondary wave. We recall
that the consideration of the secondary waves is a standard procedure to calculate the
interaction between electromagnetic waves and matter [117]. In addition to the radiative
losses, usual scattering processes, like impurity scattering, contribute to the lifetime of
the cyclotron resonance as already discussed in Section 3.1. In 2DEGs the effects of the
superradiance may be easily monitored experimentally, e.g. by varying the temperature
or gate voltage.

The results of this chapter have been published in Ref. [118].

6.1 Superradiant Decay and the Drude Model

As extensively discussed previously, the superradiance effects in 2DEGs may be well
explained via the classical picture [119–121]. Indeed, although the cyclotron resonance
is the transition between quantized Landau levels, for not too high fields a quasi-classical
approach is sufficient because several levels take part in the transition process (see Chap-
ter 3). In this case, the cyclotron resonance is scaled linearly with the magnetic field
regardless of the details of the band structure. In the following, we reproduce briefly the
main expressions describing the cyclotron resonance in 2DEGs including the effects of
the radiation losses (superradiance).

We consider a geometry with the external magnetic field and the propagation direc-
tion of the incident wave being perpendicular to the film surface. The film is assumed
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Figure 6.1: Radiation of a 2D electron gas. The electrons are driven by Eext. Two plane
electromagnetic waves (Eint) are therefore radiated in both directions parallel to the nor-
mal of the film.

to be thin compared to the radiation wavelength inside the sample and, finally, in this
section we neglect the effect of the substrate for simplicity. We note that explicitly in-
cluding the dielectric substrate into account [18, 55, 97] (as in Section 2) produces only
marginal changes in the spectra.

In order to explicitly include the radiation losses, the electric field inside the film
E must be connected to the fields of the electromagnetic waves outside the film. Very
similar to the procedure in Section 2.1.3, the thin film approximation considers the elec-
tric field as homogeneous across the sample. Inside the film the total electric field equals
E = Eext+Eint, where Eint is the field induced by the electrons, and Eext is the electric
field due to the (plane) linearly-polarized external electromagnetic wave. The electrons
are driven by Eext, thus radiating two plane electromagnetic waves in both directions
parallel to the normal of the film n̂ as shown in Fig. 6.1. From Eq. (2.2), we obtain the
following relations: Hl = η−10 (Eext − Eint) and Hr = η−10 (Eext + Eint). The bound-
ary condition for the magnetic fields in the case of thin conducting film is obtained via
Eq. (2.7), which leads to the following relation between the tangential magnetic fields
on the left and right sides of the film, respectively: n̂ × (Hr − Hl) = j2D = −nev.
The reader should note that the conductivity tensor σ, current density j2D and car-
rier density n are here two-dimensional. Combining both boundary conditions gives
−η−10 2Eint = nev, thus allowing to modify Eqs. (3.1) and (3.2) as a function of the
incident wave in the following way:

dv/dt+ (
1

τ
+

1

τSR
)v − e

m
v ×B =

e

m
Eexte

−iωt , (6.1)

where 1/τSR = ne2η0/2m now takes into account the radiation losses explicitly. Here,
we already know η0 as the impedance of the free space. Equation (6.1) demonstrates that
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Chapter 6. Superradiance in HgTe

the losses in a thin film can be represented as a sum of two contributions, given by the
transport and radiative lifetimes.

Similar to Section 5.2, where we have inserted the Drude model from Eq. (3.6) into
the transmission coefficients from Eq. (2.30), we can assume a single charge carrier and
set L = 0. After a usual algebra, we can write the following expressions for transmission
through the film in terms of the superradiant scattering time τSR:

tp = 1− i

τSR

ω + iΓ

(ω + iΓ)2 − Ω2
c

, (6.2)

tc =
1

τSR

Ωc

Ω2
c − (ω + iΓ)2

, (6.3)

where Γ = 1/τ + 1/τSR is the "total" scattering rate.
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Figure 6.2: Calculated amplitudes of parallel |tp| and crossed |tc| magneto-optical trans-
mission at ν = 208 GHz using Eqs. (6.2,6.3). The spectra corresponds to a thin film with
electronic carriers with the cyclotron mass m = 0.02me, scattering time τ = 2 · 10−12 s,
and with varied density as indicated. The apparent width of the cyclotron resonance is
determined by Γ = 1/τ + 1/τSR (see text). At low 2D densities n, the intrinsic scattering
1/τ determines the resonance width. By increasing the density the superradiant decay
becomes the dominating mechanism for the energy loss in the film.

Figure 6.2 shows the calculated parallel and crossed transmission spectra of a con-
ductive film with typical parameters (τ = 2 · 10−12 s, m = 0.02me) at the frequency
ν = 208 GHz and for varied electron densities. This frequency was taken to match that
of the experiments. It is clear that the denominators in Eq. (6.2) and Eq. (6.3) lead to
a resonance-like form of the transmission spectra at ω = Ωc and with the width de-
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6.2. Superradiance in a HgTe-Based TI

termined by τ and τSR. Here, the electron density n was the only varied parameter,
while others, including the scattering time τ , were fixed. With the help of green and
black arrows in Fig. 6.2, indicating the amplitude of inverse τSR and τ , we can see a
direct correlation between the width of the resonance with the "total" scattering rate Γ.
At low electron densities n the total scattering rate and, consequently, the resonance
width is characterized by intrinsic losses only. With increasing n, the energy loss of the
system becomes more and more dominated by radiative losses (see data correspond-
ing to n = 5 · 1011 cm−2 in Fig. 6.2). It is important to note that the radiative losses
1/τSR = ne2η0/2m do not add further free parameters to the experiment, because the
electron density and the cyclotron mass are independently determined via fitting the
transmission spectra as described in the next section.

6.2 Superradiance in a HgTe-Based TI

3D TIs represent a class of materials that are insulating in the bulk but reveal conducting
2D surface states [70, 73]. The surface states in TI have a non-degenerate Dirac-like
dispersion with electron spin locked to the direction of the momentum. In the 3D TIs
based on HgTe quantum wells, the inversion of the Γ6 and Γ8 bands in the dispersion of
the bulk HgTe leads to Dirac-like surface states at the interface. Applying strain with the
HgTe/CdHgTe structure forms an insulating gap [79, 122] (above 10 meV) between the
light-hole and heavy-hole Γ8 bands, making the strained HgTe a 3D TI. Since the Fermi
level of the ungated sample lies in the bulk bandgap between the light-hole conduction
and heavy-hole valence band, the electrodynamics of the system is governed only by a
2D surface states, with negligible effects from the bulk carriers at low-temperatures [79,
123]. The Dirac-point of the surface states is presumed to be located deep below the
heavy-hole band [97].

As described in Chapter 5, the experiments were carried out on a strained 80-nm-
thick HgTe sample, presented in Chapter 4, which was grown by molecular-beam epi-
taxy on a (100)-oriented GaAs substrate. The sample was investigated in a Mach-
Zehnder interferometer shown in Section 2.2.1, which allowed us to acquire the am-
plitude and the phase shift of the transmitted electromagnetic radiation in parallel and
crossed polarizer geometries. The experimental results in this work were obtained at a
fixed frequency of 208 GHz in sweeping magnetic fields. Additional information about
the charge carriers was also obtained from the frequency-dependent spectra in zero mag-
netic field. Transmission experiments were carried out at 1.8 K in a split-coil supercon-
ducting magnet that provided an external magnetic field up to 7 T in the Faraday geom-
etry; i.e., a magnetic field was applied along the propagation direction of the radiation.
The experiments and the analysis were performed as discussed in Chapter 5.

The implementation of the transparent metallic gate on top of the HgTe film enabled
us to systematically vary the 2D charge density in this system. The voltage applied to
the gate ranged between −2 V and +12 V and resulted in magneto-optical transmission
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Figure 6.3: Experimental amplitudes of parallel |tp| and crossed |tc| magneto-optical
transmission at ν = 208 GHz through HgTe film on a GaAs substrate and for different
gate voltages. Symbols: experimental data, lines: model fit using the Drude conductivity.
Black arrows and wB represent the apparent width of the resonance curves.

spectra shown in Fig. 6.3.
The magnetic field-dependence in the whole gate voltage range is dominated by a

strong cyclotron resonance of the Dirac-like surface electrons located in the bandgap
[18]. With increasing the gate voltage the response of such states becomes stronger, and
the resonance is getting broader. These spectra qualitatively resemble that in Fig. 6.2,
where the broadening is due to increased density only. In addition, for the gate voltage
range between 1.5 V and 9.0 V we observed the appearance of a second weaker signal
(see double resonance response at 5 V in Fig. 6.3) that corresponds to effective masses
of about 0.033 me. According to the band structure calculation for the 3D HgTe films
[97] (see also Section 7.1), we attribute this effect to the bulk conduction band. Indeed,
this effective mass agrees well with the cyclotron mass of thick unstrained HgTe films
[18,76] (m ≈ 0.03me). As the additional signal is weak, its properties do not affect the
present discussion.

The measured transmission spectra can be fitted well within a Drude model, as de-
scribed in Section 5.2. From the conductivity tensor, one can obtain an explicit analytical
formula for the transmission matrix for the case of a thin film on a substrate that accounts
for the Fabry-Pérot interferences in the substrate (see Section 5.2). For each applied gate
voltage we simultaneously fit the field dependencies of the amplitude and the phase shift
of both, parallel and crossed transmissions, where n, τ and m, characterized by the sur-
face states, were set as free fitting parameters.

The electrodynamic parameters of the surface charge carriers obtained from the fit-
ting of the magneto-optical data are shown in Fig. 6.4. As may be expected, the electron
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Figure 6.4: Parameters of the surface states obtained from fitting the experimental data
in Fig. 6.3. The effective mass m∗ (a), 2D density n (b), and the transport scattering
time constant τ (c) are plotted with respect to the applied gate voltage. (d) Solid cir-
cles: transport scattering rate 1/τ and radiative scattering rate obtained via 1/τSR =
ne2η0/(1 + nGaAs)m. Solid squares: "total" scattering rate Γ as compared to the scat-
tering rate calculated directly from the estimated widths wB of the resonances in Fig. 6.3
(solid triangles).

density of the surface states in Fig. 6.4(b) roughly linearly increases with the gate volt-
age. On the contrary, the cyclotron mass and the intrinsic scattering time τ show much
weaker changes. The surface cyclotron mass of about 0.027me is smaller but similar to
the bulk mass in HgTe [18]. This similarity is due to strong hybridization of the bulk
and surface states [79].

The intrinsic scattering time τ experiences a maximum as a function of the applied
gate voltage, which we attribute to the competition of two scattering mechanisms [124,
125]. At first, increasing applied gate voltage causes scattering to decrease (an increase
of τ ) due to the screening of impurities by higher electron density. The decrease of τ
at higher densities (gate voltage above 5 V), where the impurity scattering weakens, is
associated with the increasing scattering on the fluctuations of the quantum well width.
The resulting fluctuations of the bandgap create mass disorder for Dirac-like states in the
system. The material parameters in Fig. 6.4 (a-c) are sufficient to calculate the radiative
losses via 1/τSR = ne2η0/(1 + nGaAs)m, a modified version of the formula presented
in Section 6.1, which also considers the HgTe film being enclosed by vacuum on one
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side and the GaAs substrate with the refractive index of nGaAs = 3.57 on the other
side. The values thus obtained are plotted in Fig. 6.4 (d) as a function of the electron
density. We see that in the present experiment two regimes can be obtained using the
gate voltage, one being below n ≈ 3 · 1011 cm−2 with a comparable contribution from
both mechanisms to the system losses (τ−1 ∼ τ−1SR ) and the other at higher electron
densities, where the radiative losses are dominant τ−1 < τ−1SR .

We recall that the width of the resonance curves (Figs. 6.2, 6.3) depends upon the
total scattering rate Γ. This fact is confirmed in Fig. 6.4 (d) directly comparing the to-
tal scattering rate Γ (squares) with the width of the resonance ewB/m (triangles). We
note a good agreement between both data sets. These data demonstrate that internal
and radiative losses can be seen in the continuous-wave spectra directly. Finally, in the
present experiments, the obvious broadening of the observed cyclotron resonance curves
is purely due to the increase of the radiative losses.

6.3 Summary

Using THz magneto-spectroscopy we investigated the cyclotron resonance in a 3D TI
HgTe with conducting surface states. From the analysis of the complex transmission co-
efficients the radiative and transport lifetimes can be well separated in the continuous-
wave spectra. We have shown experimentally that at high carrier densities the super-
resonant radiation dominates the energy losses in the system and that it can be well ex-
plained via a classical electrodynamic picture. Within this approach, the coherent emis-
sion is established via the coherent interaction of the incident radiation with a thin-film
sample that is not sensitive to the details of the band structure. These results demonstrate
that the superradiance in semiconducting thin films should be interpreted as a fully clas-
sical effect.

67



6.3. Summary

68



7. Band Structure Mapping of 2D
Crystals

The electronic band structure provides an important fingerprint of a material in the recip-
rocal space. In case the surface of the sample is accessible experimentally, the standard
technique of angle-resolved photoemission spectroscopy (ARPES) [3] is an established
way to obtain the necessary information. However, in several cases, especially in 2D
hetero-structures, several buffer or capping layers prevent collecting the data from the
photo-emitted electrons. As possible alternative methods, the analysis of the cyclotron
mass [126–129] or density of states via capacitance experiments [85, 130] have been
suggested to recover the band dispersion, especially of 2D materials. In magneto-optical
experiments [83, 131–134] the relevant information is obtained comparing the theoreti-
cal predictions [77, 135] of the band structure with experimental data.

(a) (b)

Figure 7.1: Illustration of the orbiting electrons in the band structure of a 2D semicon-
ductor. The effective cyclotron mass of the electron at the Fermi level is related to the
area inside the orbit A as Eq. (7.1). States in a conduction band (a) orbit in the opposite
direction than states in a valence band (b) due to the different sign of dA/dE.

Within another approach, the band structure may be obtained from the analysis of
the cyclotron resonance frequencies that is especially useful for 2D materials. Indeed,
in two dimensions and in the quasi-classical approximation, the cyclotron frequency Ωc

may be written in terms of the cyclotron effective mass mc as in Eq. (3.31) (see also
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Chapter 3):

mc ≡
eB

Ωc

=
~2

2π

∂A

∂E

∣∣∣
E=EF

. (7.1)

The reader should be reminded that A is the area in the reciprocal space enclosed by the
contour of the constant energyE (see Fig. 7.1). As discussed in Section 3.3, an important
point is that the cyclotron frequency in Eq. (7.1) linearly depends on the external mag-
netic field independently of the form of dispersion relations, because the Fermi area is
field-independent in the quasi-classical approximation. This approximation is the main
assumption in the present experiments, i.e., transitions between several Landau levels
should take place simultaneously [80, 129]. This condition is certainly realized at lower
magnetic fields utilized in the present experiment.

In the general case, the relation between the area and the band structure may be
complicated. In such cases an additional input from the theory is indispensable. If a
2D crystal has a rotationally-symmetric electronic band, we obtain from Eq. (3.11) at
T = 0:

kf =

√
4πn

D
. (7.2)

As discussed in Chapter 3, the isotropic approximation can be applied leading to a sim-
ple relation between the Fermi-vector kF and the Fermi-area: A = πk2F . With this in
mind, Eq. (7.1) can be rewritten as:

∂E

∂k

∣∣∣
E=EF

=
~2kF
mc

, (7.3)

and, thus, can be directly integrated to obtain the experimental band structure E(k).
As we will see below, for the hole-like states, however, the isotropic approximation
breaks down, and additional information from the theory is necessary to obtain the
band structure. Possible approaches, in the present cases, are presented in Sections 7.1.1
and 7.2.1. The procedure illustrated above will be applied to a HgTe-based TI and two
semi-metallic HgTe samples in Sections 7.1 and 7.2, respectively.

The data from the following section has been published in Ref. [136]. The theoretical
band structures presented in Sections 7.1 and 7.2 were calculated within the k · p theory
by E. G. Novik.

7.1 HgTe-Based Topological Insulator

In this section, we apply the procedure sketched above to a 3D TI HgTe and compare
the results with the predictions of the k · p model. As described in detail in Chapter 4,
the unstrained single-crystalline mercury telluride (HgTe) is a gapless semimetal with
the conduction and valence bands formed by Γ8 bands. If grown in the form of a thin
film on a CdTe layer, HgTe is subject to a tensile strain due to lattice mismatch. As

70



Chapter 7. Band Structure Mapping of 2D Crystals

a consequence, the originally degenerate light and heavy Γ8 hole bands split at the Γ
point, thus forming a bulk insulator with a gap around ∼ 20 meV [79, 84] for a 80-nm-
HgTe film. Due to a band inversion between HgTe and CdHgTe, topologically protected
surface states arise in about 10-20 nm thick layer close to the boundary. HgTe films thus
form a strong 3D TI. According to band structure calculations, the conduction band of
an 80-nm-HgTe 3D TI is non-parabolical and it is quantized due to the confinement.
The valence band of the HgTe film reveals a deep minimum at the Γ point with four
shallow side maxima along the (±1,±1) directions (see Fig. 7.2). The minimum is
due to the mixing between light and heavy-hole states in the inverted band structure of
HgTe [97, 137].

As discussed in Chapter 5, the magneto-optical experiments were carried out on a
strained 80-nm-thick HgTe film grown by molecular-beam epitaxy on a (100)-oriented
GaAs substrate. The analysis of the cyclotron resonance corresponding to the upper sur-
face state revealed the mobility to be up to µ = eτ/m = 5 · 105 cm2/Vs. Due to the
fact that the gate only partially covers the sample, we were not able to fully rely on
the magneto-transport measurements. The ungated regions can significantly falsify the
transport response. However, at zero gate voltage, this effect is minimized, thus allow-
ing us to gather some additional information about the carriers in the system, as shown
below. The cyclotron resonance was investigated in a Mach-Zehnder interferometer ar-
rangement presented in Section 2.2.1. The data were obtained at several fixed frequen-
cies in sweeping magnetic fields. Additional information about the charge carriers in
the system was also obtained from the frequency-dependent spectra in zero magnetic
field. To unambiguously separate the resonances from the electron-like and hole-like
carriers, several experiments were conducted with circularly-polarized radiation. The
experiments were carried out at 1.8 K in a split-coil superconducting magnet that pro-
vided magnetic field up to ±7 T in the Faraday geometry. The measurements and the
analysis were performed as discussed in Chapter 5.

7.1.1 Theoretical Model

To acquire a more detailed insight into the band structure of the strained HgTe layer, the-
oretical calculations have been done using a multiband k · p model [138] which takes
into account the strong coupling between the lowest conduction and the highest valence
bands. The k · p model considers eight bands: two Γ6, two Γ7 and four Γ8 subbands.
Yet, considering the energy region of our interest, the contribution of the Γ7 subband is
below 1%. The calculations were done for a fully strained HgTe film with Cd0.7Hg0.3Te
barriers which is grown on a CdTe substrate. The strain due to the lattice mismatch be-
tween HgTe and CdTe of about 0.3% leads to an opening of a direct gap of ≈ 22 meV
(the indirect gap is about 10 − 15 meV) between the heavy-hole and light-hole bands
in the HgTe layer [79]. The strain effects are taken into consideration by applying a
formalism introduced by Bir and Pikus [139]. According to the previous studies of sim-
ilar structures [79, 131, 140], the crossing point of the surface states is located below
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7.1. HgTe-Based Topological Insulator

Figure 7.2: Theoretical band structure of a 3D TI HgTe. (a) The first valence band, the
surface band and the first conduction band of the 80-nm-thick HgTe layer at the charge
neutrality point ntot = 0, where the concentrations of electrons and holes equal ±1.2 ·
1011 cm−2. (b) Cross-section of data in panel (a) at EF = 0 meV. Blue - hole-like Fermi
surface (∂A/∂E < 0) from the islands in the (±1,±1) directions. Orange - electron-like
Fermi surface (∂A/∂E > 0) from the surface states.(c) Fermi surface of the hole-doped
sample where four islands are connected and lead to a different cyclotron picture: blue -
hole-like, violet - electron-like, orange - electron-like.

the bulk bandgap. Accordingly, a full-band envelope function approach [141] is used to
perform the self-consistent calculations of the Hartree potential. This procedure avoids
the separation of the occupied electron and hole states which is complicated for struc-
tures where both are occupied simultaneously. The calculations include the structure
inversion asymmetry (SIA) and, therefore, effectively reproduce the experimental effect
of the applied gate. The spatial distribution of charge can be calculated while the total
charge density is being varied. The Hartree potential determined by this spatial distri-
bution of charge (see Eq. (2) in Ref. [141]) splits the bulk and surface states and leads
to their realignment, resulting in significant band structure modifications (see Figs. 7.7
and 7.8, and the discussion below).

There is an ongoing debate in the literature about the influence of the interface
inversion asymmetry (IIA) [142] on the band structure of HgTe structures. Several
studies argue a sufficient effect of IIA in HgTe quantum wells grown on (013) sub-
strates [63, 143, 144]. Moreover, theoretical calculations in Ref. [142] predict a gap of
about 15 meV caused predominantly by IIA in (001) HgTe quantum wells of critical
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thicknesses. However, experimental data [11,80] do not confirm these predictions. Con-
sidering the complexity of the band structure of 80-nm HgTe layers and the missing
experimental evidence of the influence of the IIA, these terms are not included in the
calculations.

In an attempt to test further anisotropy terms in the Hamiltonian, the inclusion of the
bulk inversion asymmetry [145] (BIA) term in calculation of the band structure at the
charge neutrality point (ntot = 0) was studied. As demonstrated in Fig. 7.3, the inclusion
of this term strongly splits the valence bands and reduces the value of the gap. As the
latter even worsens the agreement between theory and experiment (see Fig. 7.7 below),
the BIA term was not used in the calculations of the band structure.

Figure 7.3: Band structure calculation at ntot = 0 along the (1,1) direction. The results of
the model used in the main text (black data) are compared to the calculated dispersion of
the model that includes the BIA term. Dashed lines show the position of the Fermi level
for the charge neutrality point. It can be seen that the influence of the BIA on the surface
and electron-like states is relatively small. On the other hand, BIA increases the energy of
the holes around valence band maxima.

The plots of the surface band, the first valence band (H2), and the first conduction
band (H1) calculated using k · p model are shown in Fig. 7.2 for the case of the charge
neutrality point: the densities of holes and electrons are equal and the total charge density
equals ntot = 0. Here, all three bands are spin-degenerate. In this case, the Fermi energy
crosses the surface of valence bands thus forming four "islands" as shown in Fig. 7.2(b).

In the cyclotron signal, we expect an electron-like resonance due to the surface states
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7.1. HgTe-Based Topological Insulator

and a hole-like signal from the valence islands. After lowering the Fermi energy, the four
regions of the valence band connect forming a ring structure as shown in Fig. 7.2(c). In
this case, the fourfold "valley" degeneracy is lifted and each curve of the valence-band
ring corresponds to a separate cyclotron resonance: a hole-like signal from the outer
curve (blue) and an electron-like signal from the inner curve (violet). The latter effect is
due to a different sign of ∂A/∂E in Eq. (7.1) ; positive curvature - electrons, negative
curvature - holes. It should be noted that even in this case a separate surface resonance is
expected that remains electron-like. The island-ring transition is present even if we take
into account that the band structure deforms with varying density and that all bands are
spin-polarized due to broken symmetry. After the Fermi surface is determined from the
band structure calculations, the theoretical cyclotron mass can be calculated using the
definition in Eq. (7.1).

To obtain the density dependence of the cyclotron mass within the present theory the
effect of the applied gate was modeled by varying the total charge density in the system
from 6·1011 cm−2 (holes) to−6·1011 cm−2 (electrons) with the Fermi level reaching the
valence and conduction subbands, respectively. For each value of the ntot, the cyclotron
mass was calculated using Eq. (7.1) as a function of density within the corresponding
band.

Finally, the theoretical band structure confirms the rotational symmetry of both sur-
face states and bulk conduction subbands, thus justifying the use of Eqs. (7.2) and (7.3)
to connect the Fermi-vector and the cyclotron mass. On the other hand, the hole islands
do not show this isotropic behavior. Nevertheless, at lower hole concentration the islands
can be approximated as circles (see Fig. 7.2(b)) with an effective radius keff shifted by
k0 ≈ (±0.15,±0.15) nm−1 from the Γ-point. In this case k = keff in Eq. (7.3), where
keff is related to the Fermi-surface area of each of the four islands as A = πk2eff .
Of course, the exact relation between A and keff can be calculated from the theory.
We believe, however, that a reasonable picture of the band structure can be obtained
within an isotropic approximation as well. A direct comparison between theory and ex-
periment can be done using an approximation-independent plot of cyclotron masses vs.
density (see Fig. 7.6 below). This presentation is not sensitive to approximations done
in Eqs. (7.2) and (7.3).

7.1.2 Results and Discussion

Fig. 7.4 shows typical field-dependent transmission in the geometry with circularly-
polarized radiation. The advantage of this geometry is the clear separation of the elec-
tron (e) and hole (h) resonances as they are observed for positive and negative exter-
nal magnetic fields. The inset in Fig. 7.4 demonstrates linear field dependence of the
cyclotron resonance frequency (ω = 2πν) thus verifying the applicability of the quasi-
classical approximation in Eqs. (7.1) and (7.3). The data at the low frequency (142 GHz),
shown in Fig. 7.4(a), are most sensitive to the overall behavior of the charge carriers as,
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Figure 7.4: Cyclotron resonance with circularly-polarized light. (a-c) The intensity of
the transmitted radiation |t+|2 as a function of the external magnetic field for fixed fre-
quencies as indicated. Resonance features for positive and negative fields correspond to
electrons and holes, respectively. Points - experiment, solid lines - theoretical model based
on the transmission formulas and the Drude conductivity (see Section 5.2). The absolute
scales refer to the lowest curves, others are shifted for clarity. The inset (d) shows the
field dependence of the cyclotron resonance demonstrating linear behavior within the
quasi-classical approximation according to Eqs. (7.1) and (7.3). (e) The oscillating part
of the longitudinal resistivity at zero gate voltage. The experimental data (black circles)
were fitted by a single-carrier Lifshits-Kosevich model (Eq. (3.47)) (orange line).
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here, electrons and holes may be easily observed simultaneously and they indeed can
be well separated for Ug = −10 V curve. For large negative voltages, the Fermi energy
is situated in the valence band. The cyclotron signal from the hole-like carriers can be
observed in the gate voltage range from −10 V to 0 V. This correlates with the position
of the charge neutrality point that has been estimated from the resistivity measurements:
the longitudinal resistivity ρxx showed a maximum at around −3 V. With increasing
gate voltage the single resonance of the electrons reveals a distinct structure that is most
clearly seen in the data at 687 GHz, Fig. 7.4(c).

The transmission curves can be fitted well using the procedure presented in Sec-
tion 5.2 (solid lines in Fig. 7.4). From the analysis of the resonances in the transmission,
we obtain the 2D charge density, effective cyclotron mass, and the scattering time for
each separate carrier type. A gradual increase of density with increasing gate voltage
is expected for electrons. Similarly, the density of the hole-like carriers must be a de-
creasing function of the gate voltage. Therefore, in the analysis of the band structure,
only the resonances caused by carriers with monotonous gate-voltage dependence of the
charge density were taken into account. For completeness, the electrodynamic parame-
ters of the remaining resonances are given in the Supplemental Material of Ref. [136].
We believe that the majority of the additional peaks represents direct transitions be-
tween Landau levels and thus cannot be described via the quasi-classical approximation
using Eqs. (7.1) and (7.3). For example, carriers h1 and h3 in Fig. 7.4 showed a non-
monotonous gate-voltage dependence of density and were therefore not considered in
the band structure analysis. Nevertheless, we were able to recognize them at multiple
frequencies, showing a characteristic behavior of charged carriers in our model. Cur-
rently, the gate voltage dependence of the intensity of these modes cannot be used to
extract their density, since their behavior goes beyond the quasi-classical approach.

Fig. 7.5 shows the parameters of the cyclotron resonances that will be used to obtain
the band structure of the 3D TI. The charge density decreases with the gate voltage for
holes and increases for electrons. Both agree with the sign of the charge carriers obtained
directly from the spectra in Fig. 7.4.

Additional information about the carriers in the sample was gathered by four-point
longitudinal resistivity measurements at zero gate voltage, which displayed strong
Shubnikov-de Haas (SdH) oscillations (Section 3.3) as plotted against the reciprocal
magnetic field in Fig. 7.4(e). The Lifshits-Kosevich formula (Eq. (3.47)) can be used
to extract the carrier properties from the oscillation period. A model with a single car-
rier type fits the experimental data reasonably well (see orange curve in Fig. 7.4(e)).
The oscillation frequency f can be transformed into the carrier density by nSdH =
efD/h (Eq. (3.46)), where D represents the degeneracy of states. Assuming a double-
degenerate state (D = 2), we obtained nSdH = 0.98 · 1011 cm−2. As seen in Fig. 7.5(e),
nSdH

2
overlaps with the densities of carriers e1 and e2. As discussed below, these carriers

can be attributed to bottom and top surface states, respectively. Note that SdH oscilla-
tions are mostly sensitive to the carriers density n. In the present case, the magneto-

76



Chapter 7. Band Structure Mapping of 2D Crystals

0.02

0.025

0.03

0.035

0.04

e
1

e
2

e
3

e
4

Electrons

0.2

0.3

0.4

0.5
M

a
s
s
 m

 [
m

e
]

h
2

Holes

0

1

2

3

4

5

D
e

n
s
it
y
 n

 [
1

0
1
1
c
m

-2
]

h
2

-4 -2 0 2 4 6 8 10

Gate Voltage [V]

0

2

4

6

8

10

e
1

e
2

e
3

e
4

-10 -9 -8 -7 -6 -5

Gate Voltage [V]

4

5

6

7

8

9

S
c
a

tt
e

ri
n

g
 t

im
e

 
 [

p
s
]

h
2

0

1

2

3

e
1

e
2

e
3

e
4

SdH

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.5: Electrodynamic parameters of the cyclotron resonances in HgTe. (a-c) – hole-
like carriers, (d-f) – electron-like carriers. Only the most relevant resonances which may
be explained via quasi-classical picture are shown. Colored symbols are experimental
data from the fits of the spectra in Fig. 7.4. Black circle corresponds to the density nSdH

2
resulting from the SdH analysis from Fig. 7.4(e). The lines are guides to the eye.

transport signal does not show any clear indication of the presence of two carrier types
with different densities. In fact, Landau filling factors v = nSdH/(Bmine/h) at the min-
ima of ρxx seems to give odd values (v = 7, 9, 11, 13, 15), which is a characteristic
signature of a double-degenerate Dirac system [11, 81, 146].

To compare theory and experiment without using isotropic approximation, the cy-
clotron mass can be plotted directly as a function of the 2D density. This presentation
is given in Fig. 7.6, where the k · p predictions are shown with empty symbols and the
experimental results with full symbols.

The theoretical points were obtained for a discrete number of ntot as discussed in
Section 7.1.1. The scattering in the theoretical data comes from several effects: (i) nu-
merical integration of the areaA in Eq. (7.1) with a discrete number of k-points (ii) from
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Figure 7.6: Comparison of the cyclotron masses in strained HgTe with k · p model cal-
culations. Compared to Fig. 7.5 the cyclotron masses are plotted as a function of density.
This presentation allows the comparison with the theoretical model without integrating
Eq. (7.3). (a) hole-like carriers. (b) electron-like carriers. Full symbols - experimental
values, empty symbols - theory, BS - bottom surface states, TS - top surface states, C1,
C2 - spin-polarized bulk conduction bands, CNP - charge neutrality point.

the anti-crossings of the subbands, and (iii) from a finite value of the lateral lattice con-
stant (a = 1 nm) in the full-band envelope-function approach used for the self-consistent
calculations.

We note that the approximate density-independence of the majority of the observed
carriers in Fig. 7.6(a,b) suggests that the dispersion relations will have a parabolic-like
shape. Indeed, inserting E = ~2k2/2mc into Eq. (7.3) gives the momentum and density-
independent cyclotron massmc = eB/Ωc = const(n, kF ). However since hybridization
of multiple subbands takes place in the system, we do not expect a simple parabolic band
structure, but one with higher-order corrections.

Comparing the experimental points (solid symbols in Fig. 7.6(a)) with theoretical
predictions, we recognize the h2-carriers as the fingerprint of the first spin-polarized
valence band with four degenerate islands pockets in the band dispersion. Apparently,
within the gate voltage range of the present experiment, we did not reach the region of
the ring-like Fermi surface nor the rest of the valence subbands at lower energies. Most
likely, this is due to the flatness of the band structure at the transition point which leads to
small values of ∂EF/∂Ug. Experiments in quantizing magnetic fields previously showed
a transition line involving the hole Landau level in a 20 nm sample [147]. Nevertheless,
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our results exhibit the first detection of a hole-carrier in a 3D TI by quasi-classical cy-
clotron resonance analysis.

Experimental values show fairly flat behavior of the hole mass versus its density,
while the theoretical values are slightly increasing. The weak increase was as well ex-
perimentally and theoretically observed for much thinner samples (d ≤ 20 nm) [63].
Currently the reasons behind the mismatch between experiment and theory are not clear.
Two factors can impact the experimental values here: (i) the experimental data for holes
were obtained at high values of the gate, which leads to deformation of the band struc-
ture and (ii) due to relatively low hole density and high magnetic fields (∼ 1.5 T) we are
approaching the limit where transitions between single Landau levels start to dominate.

Fig. 7.6(b) shows the comparison of the cyclotron mass of the electron-like carriers
with model calculations. We start with the analysis of the theoretical mass-density rela-
tions of the surface states that are marked by TS (top surface) and BS (bottom surface).
The density of the TS states (yellow open squares) can be changed by applying the gate
voltage within the full range of Fig. 7.6(b). We observe approximate density indepen-
dence of the cyclotron mass for the top surface states supporting the parabolic-like form
of the surface band. We interpret the experimentally determined carriers e2 (yellow full
squares) as the top surface carriers as their parameters are close to the results of the
theory.

On the contrary, the theoretical model predicts only weak variation of the electron
density at the bottom surface as a function of doping (green open triangles, magnified
part of Fig. 7.6(b)), which is due to screening of the potential by the top surface (see
also Fig. 7.8). In the same mass range, we observe the carriers e1 (green full trian-
gles) that probably correspond to the electrons on the bottom surface. Looking back at
Fig. 7.5(d), we observe that the carriers e3 are possibly a continuation of e1. Therefore,
we interpret e3 as the bottom surface carriers as well. The gap between these two carri-
ers in Fig. 7.5(d) might be the result of a dominating cyclotron signal by the top surface
carriers e2 at the gate voltages between +1 and +7 V.

The k · p model predicts that the bottom of the bulk conduction band can be reached
at high electron densities. For such high voltages not only the top and bottom surfaces
are strongly split, but also the spin degeneracy of the conduction band is lifted (see
Fig. 7.7(c)). Thus the theory predicts two cyclotron resonances from the bulk conduction
band in the relevant doping range that are shown in Fig. 7.6(b) by open diamonds (C1)
and open circles (C2). Comparing these predictions with the experiment, we suggest
that carriers e4 correspond to bulk conduction electrons C1.

Finally, we note that within an alternative description the electron-like signals e3 and
e4 could be identified as C1 and C2, especially since they were observed simultaneously
as soon as the Fermi level in the system reached the conduction bands. However, this
interpretation provides a less convincing agreement between theory and experiment.

To access the experimental band structure of the HgTe film, the charge density of
electrons is transferred to the electron momentum using the relation Eq. (7.2). According
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Figure 7.7: Band structure of the 3D TI based on a strained HgTe along the (1,1) direction.
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1011 cm−2, (b) charge neutrality ntot = 0 and (c) electron doping ntot = −4 · 1011 cm−2.
Areas highlighted in yellow present the regions, where it is valid to compare experimental
results with theory.

to the identification of the carriers above, we assume single degeneracy (D = 1) for
all electron-like carriers. We classified h2 hole-carriers as fourfold valley degenerate
and spin-polarized hole-pockets states, thus taking D = 4. According to the model
calculations, the four local maxima of the valence band are expected at finite wavevector,
k0 ≈ (±0.15,±0.15) nm−1. The maximum of the experimental valence band has been
shifted by this value. As pointed out in Section 7.1.1, for hole-like carriers we calculate
the k-vector along the (1,1) direction as k = k0 ± keff with keff =

√
πn.

The band dispersion, calculated within the approximation above, is shown in Fig. 7.7
as solid symbols. Direct integration lacks in providing the absolute energy position of
the bands. Since we assume that the gate voltage defines a constant Fermi level in the
film, the bands are vertically aligned to each other by referring to the gate voltage at
which they were mutually detected.

In Fig. 7.7 we plot the theoretical band structure for three different doping ranges: (a)
hole-doped regime with ntot = +4 · 1011 cm−2, (b) undoped regime with ntot = 0, and
(c) electron-doped regime with ntot = −4 ·1011 cm−2. The external electric field created
by the applied gate drastically influences the energy spectrum, as seen in Fig. 7.7. This
variation of the band dispersion can be well understood taking into account the spatial
distribution of the probability density of different states and the spatial dependence of
the Hartree potential. These dependencies are shown in Fig. 7.8. The yellow, blue, and
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red curves show the Hartree potential for the same hole, neutral, and electron-dopings as
in Fig. 7.7(a-c). The solid and dashed violet lines represent the probability distribution
of the bottom (BS) and top (TS) surface states, respectively, at ntot = 0. While varying
ntot does alter the distribution functions, the positions of the distribution maxima remain
almost unchanged. Therefore, its clearly evident that Hartree potential influences the top
and bottom surfaces differently when ntot 6= 0. It is well seen, that at the position of the
BS the Hartree potential barely changes with ntot, a consequence of the screening by all
other carriers. This explains the weak gate dependence of the BS parameters in Fig. 7.6.

On the other hand, the TS experiences the strongest influence from the varying gate
potential being easily split from the BS and shifted in energy in the band diagram. The
latter is mostly evident at the positive gate voltages corresponding to electron-doping
with ntot = −4 · 1011 cm−2. The value of the Hartree potential at the position of the
TS is around −40 meV. This value directly corresponds to the shift of TS with respect
to the EF , when comparing the undoped and the electron-doped regime presented in
Fig. 7.7(b,c). Similar shifting occurs for the conduction and valence bands. However, the
shifting amplitudes are smaller since the maxima of the corresponding wavefunctions
lie in the bulk. The overlap between the bulk valence and TS wave functions leads to
multiple crossings and anticrossings of their dispersion curves.
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Figure 7.8: Hartree potential and spatial distribution of the wave functions for the top and
bottom surface states. Hartree potential (left axis) at neutral, electron and hole dopings
that is self-consistently determined as described in Section 7.1.1. The spatial probability
distribution (right axis) of the surface states at ntot = 0 is superimposed on the Hartree
potential.

The variation of the gate voltage leads to shifting of the characteristic band ener-
gies and to the splitting of the bands that were degenerate at ntot = 0. Therefore, the
comparison between experiment and theory is valid in the vicinity of EF only, with
EF = EF (ntot) being the Fermi level of the system. Three regions around Fermi energy
corresponding to electron-doping, hole-doping, and the charge neutrality are shown by
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7.1. HgTe-Based Topological Insulator

yellow shaded areas in Fig. 7.7(a-c) and they are defined by E = EF ± 7.5 meV. Also,
Ug = 0 V and the charge neutrality point do not coincide due to impurity doping - the
experimental charge neutrality was found at Ug = −3 V.

We start the discussion of the band structure with the region close to the charge neu-
trality point, shown in panel (b). Here, according to theory, the bands are spin-degenerate
and the size quantization of the valence and conduction bands is seen. As the Fermi en-
ergy lies in the vicinity of zero, the active states are expected to be the surface states
and the valence band holes. In the experiment, however, we have detected only the TS
states. These states are marked as e2 and their dispersion fits well to the theoretical pre-
dictions without additional free parameters. On the other hand, e1 and h2 appeared at
lower energies as the theory predicts.

In the hole-doped region, Fig. 7.7(a), we focus only on the data at lower energies.
Here both in the experiment and theory, we observe a clear splitting of the surface
bands. These results are denoted as TS and BS in the model and they correspond to
e2 and e1 carriers, respectively. The reasons behind the vertical misalignment between
the experimental and theoretical valence bands and the resulting increase of the indirect
bandgap remain unclear. Within our procedure the energy position of the h2 state cannot
be shifted as it is fixed by the values of the gate voltage. Here we would like to note that
the inclusion of the BIA terms in our theoretical model resulted in an increase of the
energy at which the valence holes appear and therefore an even greater mismatch with
the experiment (see Fig. 7.3).

In the predominantly electronic doping regime shown in Fig. 7.7(c), the e2 surface
band nicely overlaps with the theoretical top surface band, which is subject to hybridiza-
tion and crossings/anti-crossings with several valence subbands. As discussed above, we
attribute the carriers e3 (solid red circles) to the bottom surface band and the carriers e4
to one of the spin-polarized conduction bands (marked as C1).

To conclude, in addition to two spatially separated surface bands in Fig. 7.7, the bulk
valence, and conduction bands are accessed within the present experiment. Although
the band structure is strongly influenced by the gate voltage, we observe reasonable
coincidence between the k · p model and the cyclotron resonance data. We recall that
in the theoretical model all parameters are fixed by the known film structure and by the
doping level of the layers.

7.1.3 Summary

The study of the cyclotron resonances in the magneto-optical data allowed probing the
top and bottom surface states and separate modes that correspond to bulk conduction
and valence bands in a 3D TI based on HgTe. The quasi-classical approach is utilized
to recover the parameters of the charge carriers, which is approved by the linearity of
the cyclotron frequency in external magnetic fields. Within this approximation, the band
structure can be extracted from the gate dependence of the magneto-optical spectra.
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Considering the obvious effect of the asymmetric gating potential on the sample, the
experimental band structure agrees reasonably well with the predictions of the k · p
model, however, when the Fermi-level is shifted to the valence band, clear deviations
between theory and experiment are observed. All electronic charge carriers showed a
single degeneracy of states, while the spin-polarized hole states demonstrated a valley
degeneracy of four.

7.2 Semimetallic HgTe Samples

Let us recap what we have learned in Chapter 4. Quantum wells based on strained HgTe
films have been studied extensively in recent years due to the emergence of numerous
exotic properties. These arise due to the band inversion in bulk HgTe, where the Γ6 and
Γ8 bands shift positions in the energy spectrum. If a 3D HgTe bulk layer is grown on
a CdTe substrate, tensile strain due to lattice mismatch splits the originally degenerate
light and heavy Γ8 hole bands at the Γ point, thus forming a bulk insulator. Due to the
inverted bands at the interface between HgTe and CdTe, the topologically protected sur-
face states arise in about 10-20 nm thick layer close to the boundary. In the case the
thickness of the HgTe film is above ∼ 50 nm this results in a 3D TI. Thinner sam-
ples represent unique examples of 2D semi-metals, where electrons and holes coexist
simultaneously [9].

Several studies of HgTe samples with thicknesses between 8− 21 nm [63, 148–152]
concluded that while the measured properties of the conduction band agree well with
the theoretical models the valence band spectrum does not. The results have generally
shown the valence subbands being strongly anisotropic, forming four local maxima at
non-zero k-values, with an overlap of a few meV with the rotationally symmetric con-
duction subband. However, the mismatch between the experimental data, such as the
precise band overlap and hole effective mass, with their corresponding calculated values
indicated that the theoretical approach to this problem is not fully established. Moreover,
recent experiments on samples with (013) surface orientation [63] suggested a two-fold
valley degeneracy of the top valence subbands.

In this section, we investigate two HgTe thin films with thicknesses of 14.1 and 22 nm
by the analysis of the cyclotron resonance frequencies. The experimental data were mea-
sured with the Mach-Zehnder interferometer from Section 2.2.1. The HgTe films were
grown by molecular-beam epitaxy on a (013)-oriented substrate. Similar to Section 7.1,
applying the technique from the beginning of this chapter allowed us to directly obtain
the band structures of these 2D systems. The analysis of the SdH oscillations seen in
the capacitance of the samples gave additional insight into the properties of the charge
carriers in the system, specifically the experimental determination of the state degen-
eracies. With both experimental techniques, we were able to probe the top valence sub-
band states, the first conduction subband, and even the subsequent second conduction
subband. The experimental results of the cyclotron frequency analysis and magneto-
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transport measurements were compared with the k · p models for both samples and
gave generally a great overlap. Primarily, the experimentally suggested two-fold degen-
eracy of the holes agrees with the proposed theoretical model, in which the combination
of the BIA and the SIA leads to a C2-symmetry of the valence subband islands.

As presented in detail in Chapter 5, the data were obtained at several fixed frequen-
cies in sweeping magnetic fields. Additional information about the charge carriers in
the system was also obtained from the frequency-dependent spectra in the zero mag-
netic field. To distinguish the resonances from the electron-like and hole-like carriers,
most experiments were conducted with circularly-polarized radiation. The experiments
were carried out at 1.8 K in a split-coil superconducting magnet that provided an ex-
ternal magnetic field up to ±7 T in the Faraday geometry. The analysis of the obtained
experimental data was performed as described in Section 5.2.

7.2.1 Theoretical Model

Similarly to Section 7.1.1, the band structure of the strained HgTe QWs has been cal-
culated using eight-band k · p model in an envelope function approach [138], which
includes the coupling between the lowest conduction band Γ6 and the topmost valence
bands Γ8 and Γ7. Assuming that HgTe QWs are grown on a CdTe substrate, strain effects
due to the lattice mismatch between HgTe and CdTe were taken into account applying
the Bir-Pikus formalism [139]. A method of generalization of the k · p model for struc-
tures grown on high-index-planes [153] has been used to include additional terms, which
are responsible for coupling of states for the (013) growth direction of the QWs, into the
Hamiltonian.

The band structure calculations have been done taking into account the SIA and BIA.
In accordance with Section 7.1.1, IIA was not included in this model. Whereas in the
experiment carrier density in the QW is tuned by the gate voltage, in the model, the
variation of the doping in the top barrier is assumed, while the doping in the barrier on
the substrate side is taken to be constant. Asymmetric barrier doping results in the asym-
metric distribution of the Hartree potential, which has been determined self-consistently
by solving the eigenvalue problem and Poisson equation for the 2D charge carriers in
the QW [138]. BIA of the zinc-blende crystal structure gives rise to the Dresselhaus
spin-orbit interaction. Here, BIA terms linear in momentum for the valence bands Γ8

and Γ7 and the terms quadratic in momentum originating from the coupling between the
conduction and valence bands [154] were taken into account. The interplay of the SIA
and BIA terms results in an anisotropy of the spin splitting, i.e. the spin splitting depends
on the direction of the in-plane momentum [155], which contributes to the anisotropy of
the energy dispersion.

To obtain the density dependence of the cyclotron mass within the present theory the
effect of the applied gate was modeled by varying the total charge density in the system
from 5 · 1011 cm−2 (holes) to −12 · 1011 cm−2 (electrons). For each value of the ntot
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Figure 7.9: Theoretical contour plot of the first valence subband of a 22-nm-HgTe quan-
tum well at ntot = 0, calculated in terms of Section 7.2.1. Black markers indicate that
close to the valence subband maxima, the Fermi surface can be approximated by circles,
which are shifted from k = (0, 0).

the cyclotron mass was calculated using Eq. (7.1) as a function of density within the
corresponding bands.

In correlation with the theoretical studies of the 80-nm sample in Section 7.1.1, the
theory confirms the rotational symmetry of conduction subbands H1 and E2 in the en-
ergy region of interest, justifying the use of Eqs. (7.2) and (7.3). On the other hand, the
valence bands show strongly anisotropic behavior, see Fig. 7.9, demonstrating two pro-
nounced maxima ("islands") in the first valence subband H2. At low hole concentrations,
the Fermi surfaces of the islands can be approximated by circles with an effective radius
keff shifted by k0 = (0.17, 0.17) nm−1 from the Γ-point. Then k = keff in Eq. (7.3)
is related to the Fermi-surface area of each of the two islands as A = πk2eff . We would
like to stress that a direct comparison between theory and experiment can be done using
a plot of cyclotron masses vs. density (see Fig. 7.15 below) which is independent on the
approximations done in Eqs. (7.2) and (7.3).
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Figure 7.10: Cyclotron resonance with circularly-polarized light. The intensity of the
transmitted radiation |t+|2 through the 22-nm (a,b) and the 14.1-nm sample (c,d) as a
function of the external magnetic field for fixed frequencies as indicated. Resonance fea-
tures for positive and negative fields correspond to holes and electrons, respectively. Black
points - experiment, solid lines - theoretical model based on Drude conductivity, see Sec-
tion 5.2. The absolute scales refer to the lowest curves, others are shifted for clarity.

7.2.2 Results and Discussion

Fig. 7.10 shows several spectra of field-dependent transmission in the geometry with
circularly-polarized radiation for both samples under investigation. Below ∼ 6 V we
observed a hole cyclotron resonance (h1) at several operating frequencies for both sam-
ples. In the entire region of the applied gate voltage, we have observed an electronic
cyclotron resonance which we recognized as being a result of the carrier e1. In the case
of the 22-nm sample, at higher frequencies (698 and 966 GHz), which provide a higher
resolution of the cyclotron mass, we have observed an appearance of an additional con-
tribution above Ug > 9V , which we identified as carrier e2.

Here, we would like to note that several transmission spectra showed additional con-
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Figure 7.11: Electrodynamic parameters of the cyclotron resonances in 22-nm-HgTe
sample. Colored symbols are experimental data from the fits of the spectra in Fig. 7.10.
Black empty symbols correspond to the carrier concentration resulting from the SdH
analysis from Fig. 7.14. The inset (e) shows the field dependence of the cyclotron res-
onance demonstrating linear behavior within the quasi-classical approximation according
to Eqs. (7.1) and (7.3).

tributions in positive fields (see for example Fig. 7.10(b) at∼ 0.1 T). We recognize these
as mirror peaks of the e1 cyclotron resonance, a consequence of non-ideally circularly-
polarized incident radiation. Additionally, several anti-symmetrical mirrored peaks were
observed (see Fig. 7.10(d) between ±0.5 T), for which the source is still unclear.

The transmission curves can be fitted well using the procedure presented in Sec-
tion 5.2 (solid lines in Fig. 7.10). From the analysis of the resonances in the transmis-
sion, we obtain the 2D charge density n, effective cyclotron mass m, and the scattering
time τ for each separate carrier. In quasi-classical physics, it is expected that the elec-
tron density increases with increasing gate voltage. Similarly, the density of the hole-like
carriers must be a decreasing function of the gate voltage.

Figs. 7.11 and 7.12 show the parameters of the cyclotron resonances at some of
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Figure 7.12: Electrodynamic parameters of the cyclotron resonances in 14.1-nm-HgTe
sample. Colored symbols are experimental data from the fits of the spectra in Fig. 7.10.
Black empty symbols correspond to the carrier concentration resulting from the SdH
analysis from Fig. 7.14. The inset (e) shows the field dependence of the cyclotron res-
onance demonstrating linear behavior within the quasi-classical approximation according
to Eqs. (7.1) and (7.3).

the operating frequencies of radiation for both samples, respectively. Data obtained at
various frequencies overlap well in the case of electrons. On the other hand, holes are
characterized by heavier masses, lower carrier density, and mobility. These factors re-
sult in much weaker cyclotron signatures in the transmission spectra. The analysis of
the hole cyclotron resonances becomes affected by the noise level, time-related drifts,
and other artifacts, resulting in larger fitting errors. We would also like to note that due
to low hole densities and high resonant magnetic fields transitions between single Lan-
dau levels may hinder the measured resonances. Nevertheless, as seen in Fig. 7.11(e)
and Fig. 7.12(e), all carriers demonstrated a linear behavior of the cyclotron frequency
(ω = 2πν) in respect to the resonance field (Bres = mω/e), satisfying the quasi-
classical approach in Eq. (7.1). Fig. 7.11(a) and Fig. 7.12(a) show a gradual increase
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of the effective mass of e1 above ∼ −5 V. At lower voltages, the mass increases with
decreasing gate until it stabilizes at around−8 V for both samples. The effective mass of
carrier e2 decreases with gate, while the mass of h1 is approximately constant for both
samples (Fig. 7.11(c) and Fig. 7.12(c)). The charge density generally decreases with the
gate voltage for holes and increases for electrons. Both agree with the sign of the charge
carriers obtained directly from the spectra in Fig. 7.10.

Electron mobilities µ = eτ/m of the carriers e1 are plotted in Fig. 7.13 for both
samples. The small increase of mobility below −8 V can be attributed to the appear-
ance of holes in the system since the impurity scattering of electrons is screened by the
holes [148, 149]. The mobility increases up to around 0 V for the 22-nm sample and
around 5 V for the 14.1-nm sample due to the increase in density of the carriers. We
attribute the following decrease in mobility above 0 V of the 22-nm sample to the inter-
band scattering due to the appearance of carrier e2. Similar behavior is observed for the
thinner sample, suggesting that an additional band was near, but was not reached due to
the safety limitation of the applied gave voltage. The fact that all three parameters of e1
almost stabilize below −8 V suggests a substantial decrease of ∂EF/∂Ug. We assume
this to be a consequence of the Fermi level entering the flat valence band with a high
density of states. Additionally, at high amplitudes of gate voltage, the effect of the gating
potential on the electronic state of the sample can become saturated.
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Figure 7.13: Mobility of carriers e1 for both samples.

Additional information about the carriers in the sample was obtained by capacitance
measurements (see Fig. 5.2), which displayed strong SdH oscillations as plotted against
the reciprocal magnetic field in Fig. 7.14.

As seen in Fig. 7.14(a,c), the spectra of the 22-nm sample revealed that when the gate
voltage value is between −10 and −6 V, two modes are present; a high-frequency mode
Λ1 with νSdH ∼ 7.5 T and a low-frequency mode Λ2 with νSdH ∼ 1 T. With increasing
gate the amplitude and frequency of the latter mode start to drastically increase (note
the 10× scaling in Fig. 7.14(a)), fully overshadowing mode Λ1 above Ug > −6 V. At
Ug > 6 V we observe an appearance of another low-frequency mode Λ3, which is well
evident in data at Ug = 12 V in Fig. 7.14(a).
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Figure 7.14: SdH oscillations of the capacitance. The SdH oscillations for the 22-nm
(a) and 14.1-nm sample (b) detected at various values of the applied gate voltage. The
absolute scales refer to the lowest curves, others are shifted for clarity. The experimental
data (black data points) were fitted by a multi-carrier Lifshits-Kosevich model Section 3.3
(colored curves). Note vertical scaling of ×10 of data at lower gate voltages. (c) and (d)
show the magnitude of the fast Fourier transformation (FFT) of the data from (a) and
(b), respectively. The labels correspond to modes obtained with the Lifshits-Kosevich
analysis.

Similar behavior is observed for the 14.1-nm sample, Fig. 7.14(b), however, with a
few key differences; (i) the low-frequency mode Λ2 was detected only above −8 V and
(ii) the frequency of the mode Λ3, detected at higher gate voltages, was only slightly
lower than the frequency of mode Λ2, resulting in a "beating" phenomenon as seen at
Ug = 10 V in Fig. 7.14(b).

Fig. 7.14(a,b) also show that the Lifshits-Kosevich model with multiple carriers
(Eq. (3.47)) can be applied to the experimental data. As described in Section 3.3, it
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allows us to obtain the charge density of the carriers responsible for the oscillatory be-
havior. As seen in Fig. 7.11(b,d) and Fig. 7.12(b,d), if we acknowledge theoretically
acquired D, we find a nice overlap of densities obtained from two different techniques,
magneto-optic spectroscopy and SdH analysis. For the 22-nm sample, Λ1 corresponds to
the hole carrier h1 with D = 2, while the carrier densities from Λ2 and Λ3 modes over-
lap perfectly with carriers e1 with D = 2 and e2 with D = 1. Similarly, the Λ1 mode of
the 14.1-nm sample corresponds to h1 and Λ2 to e1. Moreover, mode Λ3 indicated spin-
splitting of the interface state, which was not detected by the mass-sensitive cyclotron
resonance analysis. In this case, it is suitable to sum the densities corresponding to Λ2

and Λ3 and compare it to n of e1. Due to the relatively small difference between Λ2 and
Λ3, the outcome is the same. We would like to acknowledge that the SdH analysis of the
Λ1 modes provided carrier densities of h1 that decrease with the increasing gate voltage
much slower than expected (with the slope of about 0.015 · 1015 m−2/V). As suspected
above, this is due to the decreased ∂EF/∂Ug. The capacitance study did not show any
splitting of the e1-state in the case of the 22-nm sample. Although the exact reasons are
unknown, the following artifacts could be considered: a) sample quality, b) temperature
not optimal for the study of quantum effects, and c) mode Λ3 hindering the transparency
of data.

To compare theory and experiment without using isotropic approximation, the cy-
clotron mass can be plotted directly as a function of the 2D density. This presentation
is given in Fig. 7.15, where the k · p predictions are shown with empty symbols and
the experimental results with full symbols. This representation of data has an additional
advantage. Since the measurements took place in different cooling cycles, we cannot
rely on the gate voltage representing a good absolute metric of the electronic state of the
samples. Moreover, we observed that applying high gate voltages (above 10 V) to the
sample lead to the saturation of the total charge density and resulted in a shift of gate
value at which the charge neutrality point was observed, i.e., the previous correspon-
dence between the applied gate voltage and the electronic state of the sample becomes
obsolete.

The theoretical points were obtained for a discrete number of ntot as discussed in
Section 7.2.1. The scattering in the theoretical data comes from the numerical integration
of the area A in Eq. (7.1) with a discrete number of k-points.

Fig. 7.15(a,b) shows experimental and theoretical data corresponding to the electron-
like carriers in both samples. The comparison between the experimental points with
theory allows us to recognize e1-carrier as the fingerprint of the first conduction H1
band. The k · p theory predicted two spin-split states H11 and H12, which should not
be interpreted in terms of spin up and spin down, but as chiral spin-splitting [156].
For both samples, the splitting becomes stronger at lower densities. There, the mass of
H11 shows signs of divergence, while the mass corresponding to the H12 subband stays
at lower values and, in the case of the 14.1-nm sample, it even drastically decreases.
This behavior, which was observed previously [156], is linked with splitting due to the
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Figure 7.15: Comparison of the experimentally acquired data with the k · p model cal-
culations. Compared to Fig. 7.11 and Fig. 7.12, the cyclotron masses are plotted as a
function of density. (a) electron-like carriers and (c) hole-like carriers corresponding to
the 22-nm sample. (b) electron-like carriers and (d) hole-like carriers detected in the 14.1-
nm sample. Full symbols - experimental values, empty symbols - theory.

inversion asymmetry at small k-values (see, for example, Fig. 7.16 for the case of the
14.1-nm sample). Since the precision of the cyclotron resonance experiments did not
allow to observe the two spin-split H1 states separately, the values of density n, in case
of the carrier e1, were divided by 2. The latter is also supported by the fact that at low
concentrations, e1 data seems to match with the mean value of H11 and H12. It should be
noted here that the theoretical spin-splitting of the H1 subband at higher densities agrees
with the conclusion of the SdH analysis of the 14.1-nm sample above. In the case of the
22-nm sample, the plotted data strongly suggests that the carrier e2, which was observed
at high gate voltages, is linked with the second spin-polarized conduction band E21. As
shown in Fig. 7.15(c,d), the h1-carriers correspond to the first valence bands (H21) in
the systems, i.e., the spin-polarized hole band with the C2-symmetrical island pockets in
the (kx, ky)-plane of the band structure. Similar to previous results [63], the theoretical
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Figure 7.16: A magnified look at the k · p predictions of the band structure for the 14.1-
nm sample. Data corresponds to the total density of ntot = −5 ·1011 cm−2 with the Fermi
level as indicated. In this specific case the structure is symmetric. However, splitting due
to the BIA terms results in a minimum of H11 at small non-zero k-value. Since the slope
of H11 changes sign at a finite k-value, a divergence of mass is expected.

hole mass slightly decreases with the carrier concentration. This trend is supported by
the scattering of the experimental points for the 22-nm sample, however, data of the
thinner sample do not provide the accuracy for such a conclusion. The reasons behind
the experimental errors for holes were already discussed above.

To access the experimental band structure of the HgTe film, we employ the procedure
presented at the beginning of this chapter, specifically Eqs. (7.1) to (7.3). According to
the identification of the carriers above, we assume spin degeneracy (D = 2) for e1
for both samples and double valley degeneracy (D = 2) for the h1 with the two local
maxima of the valence band expected at k0 ≈ (±0.17,±0.17) nm−1. The maximum
of the experimental valence band has been shifted by this value. As pointed out in Sec-
tion 7.2.1, for hole-like carriers we calculate the k-vector along the (1,1) direction as
k = k0 ± keff with keff =

√
2πn. In the case of the 22-nm sample, the carrier e2 was

assumed to be spin-polarized with D = 1. The band dispersions, calculated within the
approximation above, are shown in Fig. 7.17 as solid black symbols. Direct integration
lacks in providing the absolute energy position of the bands. Since we assume that the
gate voltage defines a constant Fermi level in the film, the bands are vertically aligned
to each other by referring to the gate voltage at which they were mutually detected.

As the Fermi energy lies in the vicinity of zero, the active states are expected to be
from the spin-split H1 subband and the valence band holes from the H21 subband. As
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Figure 7.17: Comparison of the experimentally acquired band structures with the k · p
model calculations. Band structures of both samples along (1,1) direction corresponding
to ntot = 5 ·1011 cm−2. Symbols - experimental data obtained from cyclotron mass, solid
lines are predictions of the k · p model.

seen for both samples, this was also experimentally observed. In our study, the detected
carriers e1 belong to the first conduction band and the h1-carriers mark the first valence
band, in correlation to the conclusions of mass-density analysis above. Concerning only
the 22-nm sample, the e2-carrier was observed at energies in correlation to the theoreti-
cal prediction of the E21 band. The reader should note that the theoretical band structures
in Fig. 7.17 are calculated at ntot = 5 · 1011 cm−2, corresponding to the Fermi energy of
∼ 30 meV. A much higher charge density is required to move the Fermi energy into the
E2 subbands. In these conditions, the E2 subbands are subject to a stronger splitting due
to the asymmetrical structure, similar to the situation in Section 7.1. The detection of a
single spin-polarized E2 subband is therefore reasonable.

Our study shows that the cyclotron resonance experiments can be efficiently used to
directly obtain the band structures of semi-metallic HgTe films. We have experimen-
tally observed the first valence subband, first conduction subband, and also the second
conduction subband. The results produce a great overlap with the corresponding k · p
theory. Furthermore, our work shows that the semi-metallic character of the HgTe sam-
ples is experimentally supported by an approximately ∼ 10 meV overlap between the
first conduction and first valence subbands in both samples.
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7.2.3 Summary

We described the study of the cyclotron resonances in two HgTe samples with thick-
nesses of 14.1 and 22 nm in the sub-THz frequency range. The quasi-classical approach
is utilized to recover the parameters of the charge carriers, which is approved by the
linearity of the cyclotron frequency in external magnetic fields. With the help of k · p
models of the electronic configurations of both samples, we were able to recognize sev-
eral cyclotron resonance modes as fingerprints of the first valence band, first conduction
band, and in the case of the 22 nm sample also the second conduction band. The outcome
of the cyclotron resonance analysis was also strongly supported by the SdH analysis of
the field-dependent capacitance measurements. Experimentally obtained band structure
showed an overlap of 10 meV between the first conduction and first valence band, in
turn confirming the existence of the semi-metallic state in both samples. Furthermore,
the comparison between cyclotron resonance and SdH analysis confirmed the anoma-
lous two-fold valley degeneracy of the first hole-like valence band.
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8. Conclusion

In this thesis, a sub-terahertz spectroscopic study of HgTe/CdHgTe quantum wells is
presented. At low temperatures, the samples were inserted into an optical cryostat and
investigated using a Mach-Zehnder interferometer with an implemented controlled po-
larization of radiation. This experimental setup enabled measuring the amplitude and
phase of the complex transmission through the investigated samples. The experimental
setup was also equipped with a superconducting magnet, which provided fields up to
±7 T parallel to the k-vector of radiation (Faraday geometry). Magneto-optic experi-
ments were conducted with either linearly- or circularly-polarized radiation, while the
Fermi-level in the samples was shifted by top-gating.

A theoretical framework was established in order to extract material properties from
the results of the spectroscopic study. The structure of the HgTe/CdHgTe quantum wells
can be modeled by an insulating slab with an infinitely-thin metallic film on top. We
have shown that by using Maxwell’s theory, we can formulate a 4×4 propagation matrix
that described the interaction between such structure and electromagnetic fields. This al-
lowed us to obtain a set of formulas that describe the complex transmission through the
studied sample. The resulting formulas depended on various material properties, with
the most crucial being the two-dimensional conductivity of the metallic film. A quasi-
classical approach that combined the Drude and Bloch theories, was utilized to obtain
the conductivity of a two-dimensional crystal. Inserting the latter into the transmission
formulas enabled a direct connection between the transmission spectra and the funda-
mental properties of the charge carriers in the system.

The model described above allowed us to analyze the cyclotron resonances that were
observed in the magneto-optic transmission spectra. We were able to recover the cy-
clotron effective mass, two-dimensional density, and the scattering rate of positive and
negative charge carriers, which belonged to various subbands in the investigated sam-
ples.

This approach allowed us to investigate the phenomenon of superradiance in a three-
dimensional topological insulator. The analysis of the complex transmission coefficients
showed that the radiative and transport lifetimes can be well separated in the continuous-
wave spectra. When the gating shifts the Fermi level where carriers have high densities,
the super-resonant radiation dominates the energy losses in the system. We have con-
cluded that the superradiance in semiconductors can be well explained via a classical
electrodynamic picture, where the coherent emission is established via the coherent in-
teraction of the incident radiation with a thin-film sample. This superradiance study
showed not to be dependent on the details of the band structure of the sample.
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The cyclotron resonances in another HgTe-based three-dimensional topological in-
sulator were investigated. In addition to the resonances from the top and bottom surface
states, separate modes are observed that correspond to bulk conduction and valence
bands. We have shown by the linearity of the cyclotron frequency in external magnetic
fields that the quasi-classical approach is allowed to recover the charge carriers in these
systems. The quasi-classical approach gives a direct relation between the carrier prop-
erties and the band structure of a two-dimensional crystal as long as the rotational sym-
metry of the band structure is ensured. Within this approximation, the band structure
can be extracted from the gate dependence of the magneto-optical spectra. Considering
the obvious effect of the asymmetric gating potential on the sample, the experimental
band structure agrees reasonably well with the predictions of the k · p model. Espe-
cially for the case when the Fermi-level is shifted to the valence band, clear deviations
between theory and experiment are observed. Although the quasi-classical assumption
approached the limit of its validity in the case of holes, the valence band was observed
to be at lower energies than predicted, which may suggest that a further improvement of
the theoretical picture is required.

A similar approach to recover the band structure was applied to two semi-metallic
HgTe samples with thicknesses of 14.1 and 22 nm. The comparison between k · p mod-
els of the electronic configurations of both samples and their corresponding experimen-
tal band structures enabled us to recognize several cyclotron resonance modes as fin-
gerprints of the first valence band, first conduction band, and, in the case of the 22-nm
sample, also the second conduction band. An overlap of about 10 meV between the first
conduction and first valence band was experimentally observed, in turn confirming the
existence of the semi-metallic states in both samples. Shubnikov-de Haas oscillations in
quantum capacitance were analyzed with the help of the Lifshits-Kosevich model. The
carrier concentrations, obtained from the frequency of the observed modes, strongly
supported the magneto-optical data and in turn enabled to recover the degeneracy of the
probed electronic states. The outcome confirmed the anomalous two-fold valley degen-
eracy of the first hole-like valence band. The k · p model predicted strong splitting of
the first-conduction band due to the BIA and Rashba effects, which is especially obvious
at lower concentrations. There, one subband showed a divergence of the effective mass,
while the mass corresponding to the other subband decreased drastically. Splitting of
the first conduction band was not observed in the spectroscopic approach and was only
confirmed for one sample at high densities by the Shubnikov-de Haas analysis. The rea-
sons behind this mismatch are still unclear, it should be noted, however, that low carrier
concentrations hinder the accuracy of both experimental approaches.

In addition, the thesis demonstrated that versatile wave plates for terahertz-beam
shaping can be very easily produced with a commercially available 3D printer. Specifi-
cally, we showed how dielectric phase plates can modulate an incoming Gaussian beam
in such a way that it produces an arbitrary image on the detector plane. These results
are expected to facilitate THz imaging on all levels where customized and cost-efficient
beam shaping solutions are required.
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