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Abstract

Magnetically frustrated materials have raised considerable research interest due to
their tendency to exhibit a variety of exotic physical phenomena, such as spin-ice and
spin-liquid states. In these systems, magnetic moments cannot minimise their inter-
action energies with all neighbouring spins simultaneously. Local ordering principles
can then often take hold, stabilising a degenerate network of magnetic configurations,
from which novel non-conventional magnetism emerges. Since the lattice geometry
is a primary source of the frustration in these systems, studying the lattice dynamics
directly is a useful way to gain insight about the environment that supports these
novel frustrated spin states.

The aim of my thesis is to investigate the lattice dynamics of different magnetically
frustrated materials to help improving our understanding of the exotic magnetic states
they support. The main experimental work was performed using a Fourier transform
infrared spectrometer in reflectance mode in combination with a He-flow cryostat to
cool the samples down to temperatures approaching ∼ 10 K. My investigations cover
phonon spectra in the (far-) infrared regime (spectral range: 25 cm−1 to 14000 cm−1)
in three groups of materials.

These include langasite La3Ga5SiO14 which was studied to characterise a low-
frequency phonon arising at ∼ 40 cm−1 for E‖c polarisation. In this system, the
La ions form a distorted kagome network. Frustration comes into play by replac-
ing La with magnetic rare-earth ions (R3Ga5SiO14 where R = rare-earth element).
A softening of the low-frequency phonon with reduced temperature and increased
substituted ion’s atomic number is observed, indicating a possible instability of the
langasite structure at low temperatures. Calculating the dielectric function high-
lights this low-frequency phonon as the main contribution of the langasite’s large
static permittivity, ε(0) ∼ 100.

Francisite Cu3Bi(SeO3)2O2Cl is characterised by a structural phase transition at
115 K that makes this material a rare example of a soft-mode driven antiferroelectric.
My studies focused on investigating signatures of a close lying ferroelectric phase that
represents a polarisation of the antiferroelectric sublattices. A polar soft mode was
identified in the infrared regime, its dynamics studied and connected to the lattice
dynamics. Francisite is another distorted kagome system that features frustrated
Cu2+ spins. The consequences of polar soft modes in close proximity to spin wave
excitations are also investigated.

The pyrochlore lattice of corner-sharing tetrahedra is the prototype of a three di-
mensional frustrated system. Rare-earth pyrochlores, R2B2O7, are a hot topic in
condensed matter research with Ho2Ti2O7, for example, shown to exhibit novel spin-
ice properties. On the other hand, the ground state of Tb2Ti2O7 has remained a
puzzle for sometime, with many experimental signatures pointing towards a spin-
liquid state. Thus, I have used infrared spectroscopy to study the lattice dynamics
of Tb2Ti2O7 single crystals in comparison with a Tb2Sn2O7 powder pellet and the
spin ice Ho2Ti2O7 single crystal. A unique splitting of phonons can be observed in
Tb2Ti2O7 providing evidence of a lattice distortion that breaks fundamental symme-
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tries related to the magnetism. This observation supports the theory that Tb2Ti2O7

features a novel vibronic spin-liquid ground state.
Together, these studies highlight how the lattice and its dynamics can influence

the environments that host frustrated spin systems producing unexpected behaviour.
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Kurzfassung

Magnetisch frustrierte Materialien neigen zur Bildung von außergewöhnlichen physika-
lischen Effekten wie Spin-Eis und Spin-Flüssigkeit Zuständen und haben damit die
Aufmerksamkeit der Forschung auf sich gezogen. In diesen Systemen ist es den mag-
netischen Momenten nicht möglich die Wechselwirkungsenergie mit allen benach-
barten Spins gleichzeitig zu minimieren. Lokale Ordnungsprinzipien greifen dabei
und können ein entartetes Netzwerk von magnetischen Anordnungen stabilisieren,
aus dem neuartige unkonventionelle magnetische Effekte entstehen. In diesen Sys-
temen ist die Geometrie des Gitters die Hauptursache der Frustration. Daher ist es
sinnvoll die Gitterdynamik direkt zu untersuchen, um Einblick in die Umgebungen
zu bekommen, die diese frustrierten Spin-Zustände bilden.

Das Ziel meiner Arbeit ist es die Gitterdynamik verschiedener magnetisch frus-
trierter Materialien zu untersuchen, um ein besseres Verständnis für die exotischen
magnetischen Zustände zu entwickeln, die in diesen Materialien entstehen können.
Der Großteil der Experimente wurde mit einem Fourier Transformation Infrarot-
Spektrometer in Reflexionsanordnung in Kombination mit einem He-Fluss Kryo-
stat durchgeführt, um die Proben während der Messungen auf Temperaturen von
annähernd 10 K zu kühlen. Meine Untersuchungen beinhalten Phononenspektren
von drei Materialgruppen im (fern-) infraroten Spektralbereich (zwischen 25 cm−1

und 14000 cm−1).
Eines dieser Materialien ist der Langasit La3Ga5SiO14, welcher untersucht wurde,

um ein niederfrequentes Phonon zu charakterisieren, das bei ∼ 40 cm−1 in E‖c Polar-
isation zu sehen ist. Die La Ionen bilden in diesem System ein verzerrtes Kagome-
Gitter. Werden die Lanthan Ionen durch magnetische Ionen der Seltenen Erden
ersetzt (R3Ga5SiO14, mit R = Element der Seltenen Erden), entstehen frustrierte
Netzwerke. Die Frequenz des niederfrequenten Phonons wird geringer, je niedriger
die Probentemperatur bzw. je größer die Kernladungszahl des eingesetzten Ions ist.
Dies deutet auf eine Instabilität des Langasit-Gitters bei niedrigen Temperaturen hin.
Berechnungen der dielektrischen Funktion zeigen, dass dieses niederfrequente Phonon
den Hauptbeitrag zu der üblicherweise hohen statischen Permittivität (ε(0) ∼ 100)
liefert.

Francisit Cu3Bi(SeO3)2O2Cl ist durch einen strukturellen Phasenübergang bei 115 K
charakterisiert, der dieses Material zu einem seltenen Beispiel eines Soft-Mode getriebe-
nen Antiferroelektrikums macht. Meine Arbeit fokussiert sich auf Anzeichen einer
angrenzenden ferroelektrischen Phase, die der Polarisation der antiferroelektrischen
Untergitter entspricht. Im infraroten Spektralbereich konnte eine polare Soft-Mode
identifiziert werden. Ihre Dynamik wurde untersucht und mit der Gitterdynamik
in Verbindung gebracht. Francisit ist ein weiteres frustriertes System mit einem
Kagome Gitter, das die frustrierten Cu2+ Spins beinhaltet. Des Weiteren werden
die Konsequenzen der in der Nähe zu Spin-Wellen Anregungen liegenden Soft-Mode
untersucht.

Das Pyrochlor Gitter, bestehend aus Tetraedern mit gemeinsamen Eckpunkten,
ist das einfachste Modell eines dreidimensionalen frustrierten Systems. Seltenerd-
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Pyrochlore R2B2O7 zählen zu den aktuellen Themen der Forschung im Bereich der
kondensierten Materie, da beispielsweise in Ho2Ti2O7 neuartige Spin-Eis Zustände zu
sehen sind. Andererseits gibt der Grundzustand von Tb2Ti2O7 noch immer Rätsel
auf, da es einige experimentelle Anzeichen für einen Spin-Flüssigkeit Zustand gibt.
Daher habe ich die Gitterdynamik von Tb2Ti2O7 mit Infrarot-Spektroskopie unter-
sucht und die Resultate mit denen eines Tb2Sn2O7 Pulverpellets und eines Ho2Ti2O7

Spin-Eis Einkristalls verglichen. Die Phononen in Tb2Ti2O7 zeigen eine einzigartige
Spaltung und beweisen damit eine Gitterverzerrung, die fundamentale Symmetrien
des Magnetismus bricht. Diese Beobachtung unterstützt die Theorie, dass Tb2Ti2O7

einen neuartigen vibronischen Spin-Flüssigkeit Grundzustand besitzt.
Zusammenfassend hebt meine Arbeit hervor, wie das Gitter und seine Dynamik die

Umgebungen von frustrierten Spinsystemen beeinflussen, was zu außergewöhnlichem
Verhalten führt.
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List of abbreviations

AF antiferromagnetic

AFE antiferroelectric

BMS beam splitter
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DLaTGS deuterated L-alanine doped triglycine sulfate

DTGS deuterated triglycine sulfate
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FIR far infrared
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FTIR Fourier transform infrared
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1
Introduction

This chapter introduces the basic concepts of frustrated magnetism. A selection
of consequences is discussed as a motivation for research in this fascinating field of
physics. Later sections cover the outline of my thesis and the scientific outcome of
my work.
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1.3.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Presentation of my work at international conferences and
meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Co-supervised students’ works . . . . . . . . . . . . . . . . 8
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1.1 Motivation

1.1 Motivation

As a PhD-candidate, usually you can not be happy, when the term ‘frustration’ draws
a red line throughout your studies. For me this was a bit different, as I investigated
the exotic physics of magnetically frustrated materials with a focus on their lattice
dynamics1. In physics we speak about magnetically frustrated systems when their
microscopic magnetic moments (the so called spins) cannot minimise their interac-
tions with all of their nearest neighboured spins simultaneously [1]. This leads to
magnetic networks that can stabilise into a variety of highly degenerated ground
states [2, 3]. Famous examples include states like spin glass [4], spin ice [5] and spin
liquid phases [6]. In my thesis, only systems with geometric magnetic frustration are
covered, i.e. the effects of frustration occur because of lattice properties [7]. Sym-
metric and competing interactions of ferro- and antiferromagnetic bonds are another
origin of frustration [7].

The simplest picture of a frustrated system is the arrangement of three Ising spins
on the corners of a triangle [8] as plotted in Figure 1.1. These spins S are aligned
parallel to one axis and can be ether in the state ‘up’ or ‘down’. In this so called
Ising model, we want to minimise the energy, expressed by the Hamiltonian H

H = −
∑
〈i,j〉

Jij Si · Sj. (1.1)

Here Si and Sj represent the spins on the lattice with positions i and j, respectively.
Jij is the exchange energy between these spins Si and Sj. For simplification, this
property vanishes, when the positions i and j are not nearest neighbours, thus there
is no interaction between next nearest neighbours. The sign of Jij 6= 0 corresponds to
the type of magnetic interaction. Positive Jij represents a ferromagnetic interaction,
while Jij < 0 represents an antiferromagnetic interaction. Starting with the ferro-
magnetic case, in this configuration all spins are parallel, in Figure 1.1(a) I choose
them as ‘up’. One can see that the ferromagnetic interaction energy JF is the same
for each pair of spins, because the nearest neighbour is always pointing in the same
direction (for simplification, the indices i, j of Jij are neglected from now on). Thus,
the system is not frustrated.

Now let us have a look at the antiferromagnetic (AF) case. Here the interaction
HAF reaches its minimum for nearest neighboured spins in antiparallel configuration.
In Figure 1.1(b), the spins on the baseline of the triangle are placed first. While
the left one is ‘up’, the right one is ‘down’. These two spins are antiparallel, thus
minimising HAF . But how do we place the third spin on the top of the triangle?
Independent of its direction, this spin is parallel to one of the two neighbours, such
that the magnetic Hamiltonian is in fact maximised. The system is frustrated [7].
Both directions of the third spin are energetically equivalent, thus the degeneracy of
frustrated states is clearly observed in this basic example. One possible realisation is
a 120◦ arrangement of Ising axes with double degeneracy depending on the rotation
direction [9, 10].

1Read carefully. It is not written that I was never frustrated.
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1 Introduction

Two-dimensional frustrated networks can often occur in layered materials, with
examples including the honeycomb [11–14] or kagome lattices [15–19], as plotted in
Figure 1.2. The prototype in three dimensions is the pyrochlore lattice, a system of
corner-sharing tetrahedra [20–23]. Materials with kagome and pyrochlore lattices in
particular were studied during the course of my thesis.

(a)	  Ferromagne,c	  	   (b)	  An,ferromagne,c	  	  

JF	  

JF	  

JF	  

JAF	  

?	  

Si	   Si	  Sj	   Sj	  

Figure 1.1: Possible arrangements of three spins located on the corners of a
triangle for ferromagnetic (a) and antiferromagnetic (b) interactions.

(a)	  honeycomb	   (b)	  kagome	  	  

Figure 1.2: The two-dimensional honeycomb (a) and kagome (b) lattice.

The degeneracy of the magnetic ground state in frustrated magnets is a result of
local organising principles, that allow a huge number of possible spin arrangements.
This leads to the creation of novel phases such as spin-ice and spin-liquid states. For
example, in each tetrahedron of a spin-ice pyrochlore lattice, two of the corner-placed
spins must point towards the center and two in the other direction [5] as plotted in
Figure 1.3(a). Now, many arrangements are possible that fulfil this ordering rule. One
of the most exotic phenomena of frustrated magnetism can be achieved by flipping
a single connecting spin of two tetrahedra within a spin ice. This 3-in/1-out spin
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1.2 About this thesis

situation for a tetrahedron (and 1-in/3-out for its neighboured one, see Figure 1.3(b))
yields effective magnetic net charges, i.e. magnetic monopoles [24–27].

(a)	   (b)	  

spin	  flip	  

Figure 1.3: (a) Tetrahedra in spin-ice with a 2-in/2-out local organising prin-
ciple and (b) after flipping the connecting spin to a 3-in/1-out and 1-in/3-out
local organising principle, such that magnetic charges are created.

These systems can be difficult to probe since there is no macroscopic magnetic
order to couple to with, for example, optical radiation. Moreover there is growing
evidence that spin-lattice effects can play an important role in a number of intriguing
frustrated systems. Thus, my thesis aims to study the phonon spectra in a number
of frustrated materials to better understand their dielectric properties and the lattice
environment from which the frustration emerges.

1.2 About this thesis

This thesis was performed under the supervision of Prof. Andrei Pimenov and Dr. Evan
Constable at the Institute of Solid State Physics at TU Wien in the years 2017 to
2021. The experiments were performed in laboratories of the Solid State Spectroscopy
Group at TU Wien. Data from additional experiments, performed by collaborators,
is marked in the text.

This work was financially supported by the Austrian Science Fund (FWF) projects
“Voltage” and “Solids4Fun”, a Doctoral School I was associated to.

Chapter 1 covers a short introduction to geometric magnetic frustration, along with
a brief description of the structure of my thesis and the scientific outcome of my PhD
studies.

The theoretical methods implemented in my work, are summarised in Chapter 2.
An overview of the basic concepts of phonons (lattice vibrations) and connected phe-
nomena is presented. Two spectroscopic methods (Fourier transform infrared spec-
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1 Introduction

troscopy and Quasi-optical THz-spectroscopy) were used for the main experimental
measurements of my work. These setups are described in Chapter 3 together with the
static measurement system, necessary for data acquisition at very low frequencies.
The working principle of each of the systems is introduced and the data acquisition
and analysis processes are described in detail.

Following these introductory chapters, the experimental results will be presented.
Three different groups of materials were studied, each of them presented in its own
chapter. In general, the structure of these individual results chapters is identical.
They start each with an introduction of the investigated material and the specific
data analysis process, then cover the results and finish with a discussion.

In Chapter 4, the low frequency phonons of langasite La3Ga5SiO14 are studied.
The influence of the replacement of lanthanum with different rare-earth elements is
studied, as well as the temperature dependence of the dielectric function along dif-
ferent crystallographic directions. An anomalous soft mode indicates a structural
instability in langasite with its frequency lying in close vicinity to the rare-earth ion’s
crystal electric field levels. Thus, the possibility for how the phonon dynamics might
influence the magnetism of theses systems, is also explored. Chapter 5 covers the
investigation of francisite Cu3Bi(SeO3)2O2Cl, a rare example of a material with an
antiferroelectric and antiferromagnetic phase. The focus lies on the characterisation
of a soft-mode driven structural phase transition in this compound and the related
lattice dynamics. As francisite is also antiferroelectric with frustrated spins, the ques-
tion is raised how do the lattice and spin waves interact, and how do they influence
the magnetic Hamiltonian of the system. As mentioned in the motivation, the py-
rochlore lattice is the textbook example for a frustrated network in three dimensions.
Chapter 6 focusses on phonon spectroscopy of a number of members from this group
of materials. First, the spin ice Ho2Ti2O7 is studied. A comparison with Tb2Ti2O7

is performed to help understand broken lattice symmetries that drive the peculiar
magnetic ground state properties of this compound.

Finally, Chapter 7 summarises my work and connects the results of the three
investigated materials. An outlook to potential future experiments and ideas for the
next steps to be taken in order to continue to advance the research started in this
thesis is given.

Appendix A provides further infrared spectra of the investigated materials and lists
the phonon frequencies and related peak properties.

1.3 Scientific outcome

The results of my studies were prepared for publication in scientific journals. Inter-
national conferences were visited to present the latest results of the investigations.
The details are listed below.

1.3.1 List of publications

Publications directly related to my thesis:
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1.3 Scientific outcome

1. L. Bergen, L. Weymann, J. Wettstein, A. M. Kuzmenko, A. A. Mukhin, B.
V. Mill, A. Pimenov, and E. Constable:
“Lattice contributions to the anisotropic dielectric response of rare-earth langa-
sites.”
Physical Review B. 104, 024106 (2021)

2. L. Weymann, L. Bergen, T. Kain, A. Pimenov, A. Shuvaev, E. Constable, D.
Szaller, B. V. Mill, A. M. Kuzmenko, V. Y. Ivanov, N. V. Kostyuchenko, A. I.
Popov, A. K. Zvezdin, A. Pimenov, A. A. Mukhin and M. Mostovoy:
“Unusual magnetoelectric effect in paramagnetic rare-earth langasite.”
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2
Methods

This chapter presents the basic methods and underlying physics covered in my thesis.
First the concept of the Lorentzian oscillator is explained, a model used to describe
the lattice dynamics of solids. The second part gives an overview on phonons, the
quantum mechanical approach to lattice vibrations, including its supporting theories.
Finally, a more applied topic is shown concerning soft-modes. This kind of vibration
indicates a structural instability of the lattice.
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2.1 Lorentz-oscillator model

2.1 Lorentz-oscillator model

The concept of a Lorentzian oscillator is named after the mathematical model of the
Dutch physicist Hendrik Antoon Lorentz (*1853 - †1928). The model describes the
movement of an electron in an insulator [28], bound to an atomic core with a spring
(spring constant C). The electron harmonically oscillates at a resonance frequency
ωe =

√
C/m, assuming it has a mass m. A damping constant γ is added, thus the

equation of motion is given in the one dimensional case as [29]

m
d2x

dt2
+mγ

dx

dt
+mω2

ex = F (x), (2.1)

with F being an external force acting on the mass at the position x. An electric field
with an amplitude E0 oscillating at frequency ω, e.g. created between two ions of
different charge, results in a force on the electron [28],

F = e0E0e
−iωt, (2.2)

with the electron’s charge e0. In this case Eq. (2.1) can be rewritten as

m
d2x

dt2
+mγ

dx

dt
+mω2

ex = e0E0e
−iωt. (2.3)

Looking for plane wave solutions, one can then insert the substitution

x = x0e
−iωt, (2.4)

yielding, after cancelling the common term e−iωt,

− ω2mx0 − imωγx0 +mω2
ex0 = e0E0, (2.5)

x0(−ω2 − iωγ + ω2
e) = e0E0/m, (2.6)

x0 =
e0/m

ω2
e − ω2 − iωγ

E0. (2.7)

The dielectric polarisation, P , is given as

P (t) = e0nx(t), (2.8)

with density n, but also as
P (t) = ε0χeE, (2.9)

with the vacuum permittivity ε0. The two expressions of P are set equal, thus the
dielectric susceptibility, χe, can be expressed by

χe(ω) =
ne0

ε0

x0

E0

=
ne2

0

ε0m︸︷︷︸
ω2
p

1

ω2
e − ω2 − iωγ

, (2.10)
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2 Methods

with the pre-factor labelled as ω2
p, the so called plasma frequency. Now the suscepti-

bility is connected to the dielectric function via [29]

ε(ω) = 1 + χ(ω) = 1 + χc(ω) + χe(ω). (2.11)

The property χc(ω) includes effects of core electrons [29]. Defining the high-frequency
dielectric permittivity as

ε∞ = 1 + χc(ω), (2.12)

gives the dielectric function [29]

ε(ω) = ε∞ +
ω2
p

ω2
e − ω2 − iωγ

. (2.13)

The effects of dense matter (local field correction: the polarisation of the medium
itself has to be taken account) [29] can be included by subtracting the term [30]

Em =
4π

3
P, (2.14)

from the applied electric field. After some calculation, see reference [29] (page 49) we
arrive at

ε(ω) = ε∞ +
ω2
p

ω2
0 − ω2 − iωγ

, (2.15)

with

ω2
0 = ω2

e −
1

3
ω2
p. (2.16)

The complex dielectric function (ε = ε1 + iε2) consists of a real (ε1) and an imaginary
component (ε2). These functions can be obtained from Eq. (2.15). Both the nomina-
tor and denominator of the the second term have to be multiplied with the complex
conjugate of the denominator. Then, after splitting into the real and imaginary
components we get:

ε1(ω) = ε∞ +
ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + ω2γ2

, (2.17)

ε2(ω) =
ω2
pωγ

(ω2
0 − ω2)2 + ω2γ2

. (2.18)

A few more properties related to the Lorentzian oscillator include:

• ε∞ = ε(∞): the high frequency permittivity

• ∆ε = ω2
p/ω

2
0: dielectric contribution

• SW = ω2
p: spectral weight

• ε(0) = ε∞ + ∆ε: static permittivity.
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2.1 Lorentz-oscillator model

Knowledge about the dielectric function provides all the information needed to cal-
culate the complex refractive index N via [29]

N = n+ ik =
√
ε, (2.19)

with n being the real part of the refractive index and k the extinction coefficient.

The normal incidence reflectance R is given by [29]

R =

∣∣∣∣∣1−N1 +N

∣∣∣∣∣
2

(2.20)

and connected to the reflectivity r = ρeiϕ via R = rr∗ [31]. The optical conductivity,
σ = σ1 + iσ2, of the material is connected to the dielectric function via [29]

σ =
iω

4π
(1− ε). (2.21)

Its real and imaginary parts are then given by2:

σ1 = ε2
ω

4π
and σ2 = (1− ε1)

ω

4π
. (2.22)

Example of a Lorentzian oscillator

The following example presents the typical behaviour of the dielectric function and
the reflectance in the presence of a Lorentzian oscillator and is plotted in Figure 2.1.
Here, the values are given in wavenumber units of cm−1 (this is just frequency divided
by the vacuum speed of light). The values chosen are:

ω0 = 400 cm−1,

ωp = 600 cm−1,

γ = 30 cm−1,

ε∞ = 3.

2Inserting σ = σ1 + iσ2 and ε = ε1 + iε2 in Eq. (2.21) gives

σ1 + iσ2 =
iω

4π
(1− ε1 − iε2),

σ1 + iσ2 = ε2
ω

4π
+ i(1− ε1)

ω

4π
.

This equation has to be valid for its real and imaginary part. Giving Eq. (2.22):

σ1 = ε2
ω

4π

and
σ2 = (1− ε1)

ω

4π
.
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2 Methods

The dielectric contribution of this oscillator can now be calculated according the
definition above, giving ∆ε = 6002/4002 = 2.25 and a static permittivity of ε(0) =
2.25 + 3 = 5.25. In the plot, these properties are highlighted by the dashed lines.
The maximum of ε2 occurs in close proximity to the resonance frequency3, ω0.
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Figure 2.1: Dielectric function (a) and reflectance (b) of a Lorentzian oscillator.
In (a) the dashed lines represent the value of ε∞ (lower line) and ε(0) (upper
line), ∆ε is the difference of these two lines.

2.2 Phonons

Phonons are the quantum mechanical representations of lattice vibrations. Classi-
cally, phonons are the normal modes of the crystal lattice, described by the wave
vector k and the frequency ωk. Two polarisations are possible, longitudinal (parallel
to k) and transverse (perpendicular to k). Seen as quantum mechanical quasi parti-
cles, phonons have integer spin, thus they follow Bose-Einstein statistics. In thermal

3A second order Taylor series expansion of Eq. (2.18) at the position ω − ω0 yields

ω0 + γ2/(8ω0)

as the maximum frequency, when γ << ω0.
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2.2 Phonons

equilibrium at a temperature T , the number of phonons N at a frequency ω is given
by the Planck distribution,

N =
1

e~ω/kBT − 1
, (2.23)

with the Boltzmann constant kB. Assuming harmonic oscillations of the vibrations,
a phonon’s energy eigenstates are quantized, thus the energy of the nth level is

Ek,n = ~ωk

(
n+

1

2

)
. (2.24)

The phonon’s momentum is p = ~k.

2.2.1 Dispersion relation of phonons

To obtain the classical dispersion relation (the connection between ωk and k), the
textbook example of a lattice with two different ions (masses) in the unit cell is
chosen [29, 31]. In Figure 2.2, a one dimensional diatomic chain is presented. Here,
two types of ions (masses M and m) are arranged, such that two nearest neighbours
are always of the other type. In undisplaced positions, the lattice parameter a gives
the distance between two ions of same type.

yp-‐1	   yp	   yp+1	  

xp	   xp+1	  

a	  

a	  

M	   M	   M	  m	   m	  

Figure 2.2: Model of a diatomic chain with a lattice parameter a. Atoms of
mass M (blue circles) are at the y-positions, the atoms of mass m (green) are
at the x-positions.

Hook’s law
F = Cd, (2.25)

describes a force F , required to move a spring with spring constant, C, to a displace-
ment, d, from equilibrium. Each atom in the chain is connected to the neighbouring
atoms of different type by two identical springs. Thus, for the atom at position xp the
forces are C(yp − xp), in the right direction and C(xp − yp−1) in the other direction,
yielding the following equation of motion

m
d2xp
dt2

= C(yp + yp−1 − 2xp), (2.26)
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and for the ion at position yp

M
d2yp
dt2

= C(xp+1 + xp − 2yp). (2.27)

The substitutions
xp = xeikape−iωt and yp = yeikape−iωt, (2.28)

give, after some calculation4, the dispersion relation for a diatomic chain [29],

ω± =

[
C
M +m

Mm
± C

√(M +m

Mm

)2

− 4

Mm
sin2(ka/2)

]1/2

. (2.29)

Thus, for any k, two solutions (branches) for ω can be obtained (see Figure 2.3), one
with a positive sign in Eq. (2.29), ω+, and one with the negative sign, ω− [29, 31].

4 One inserts the substitution into Eq. (2.26) and (2.27). This gives, after cancelling the common
factor e−iωt,

−ω2mxeikap = Cy(eikap + eika(p−1))− 2Cxeikap,

−ω2Myeikap = Cx(eika(p+1) + eikap)− 2Cyeikap.

Both equations are divided with the factor eikap, yielding

(−ω2m+ 2C)x− C(1 + e−ika)y = 0,

(−ω2M + 2C)y − C(1 + eika)x = 0.

The upper of those two equations is solved for x:

x =
C(1 + e−ika)

−ω2m+ 2C
y.

This expression for x is then inserted into the equation above, leading, after multiplication with
the denominator of x, to

(−ω2m+ 2C)(−ω2M + 2C)− C2(1 + e−ika)(1 + eika) = 0,

ω4 − ω2M2C − ω2m2C + 4C2 − C2(1 + eika + e−ika︸ ︷︷ ︸
2 cos(ka)

+1) = 0,

ω4 − ω22C
M +m

Mm
+

2C2

Mm
(1− cos(ka))︸ ︷︷ ︸

2 sin2(ka/2)

= 0,

ω4 − ω22C
M +m

Mm
+

4C2

Mm
sin2(ka/2) = 0,

ω2
± = C

M +m

Mm
± C

√(M +m

Mm

)2
− 4

Mm
sin2(ka/2)

and finally the dispersion relation Eq. (2.29),

ω± =

[
C
M +m

Mm
± C

√(M +m

Mm

)2
− 4

Mm
sin2(ka/2)

]1/2
.
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2.2 Phonons

• ω+: Optical branch. The typical frequency is in the order of the infrared regime
of light. Thus interaction of light (photons) is allowed by conservation laws. If
such a mode interacts with a photon, it is called optically active. The maximum
of the dispersion relation occurs at k = 0, the minimum occurs at k = ±π/a,
which is the Brillouin zone boundary. Thus the maximum of ω+ can easily be
calculated as

ω+0 = ω+(0) =

√
2C
(M +m

Mm

)
. (2.30)

Nearest neighboured atoms move in opposite directions.

• ω−: Acoustic branch. This branch is characterised with ω = 0 for k = 0, and a
maximum at the zone boundaries. All atoms in the chain move along the same
direction.

In total, 3l branches exist in a three-dimensional lattice with l atoms in the primitive
cell, 3 acoustic and 3l-3 optical [31]. Including the polarisation of the modes, four
types of modes can be distinguished:

• longitudinal optical modes (LO),

• transverse optical modes (TO),

• longitudinal acoustic modes (LA),

• transverse acoustic modes (TA).

- /a 0 /a
k

Optical
Acoustic

Figure 2.3: Dispersion of the diatomic chain (Eq. (2.29) and Eq. (2.30)), show-
ing the two phonon branches in the first Brillouin zone.

16



2 Methods

2.2.2 Interaction of phonons with electromagnetic waves

Including the effects of a local electric field E, acting like an external force [28], into
the equations of motion of the phonons (Eq. (2.26) and Eq. (2.27)) gives [29]

m
d2xp
dt2

= C(yp + yp−1 − 2xp) + eZE, (2.31)

M
d2yp
dt2

= C(xp+1 + xp − 2yp)− eZE, (2.32)

with eZ , the effective charge (Born charge) [29, 32] of the ion. One can then neglect
the position indices (p) in the equations above by assuming that the wavelength of
the lattice is much smaller than that of the electromagnetic wave [29] and rewrite the
equations as,

d2x

dt2
= C(2y − 2x)/m+ eZE/m, (2.33)

d2y

dt2
= C(2x− 2y)/M − eZE/M. (2.34)

The difference between these two equations is expressed as

d2x

dt2
− d2y

dt2
= −2C(x− y)

( 1

m
+

1

M

)
+ eZE

( 1

m
+

1

M

)
. (2.35)

The property s is defined as s = x− y and the reduced mass, µ, as

1

µ
=

1

m
+

1

M
. (2.36)

Only optical modes can interact with electromagnetic waves. Thus, the expression
of the frequency ω+ at k = 0 (Eq. (2.30)) is used to calculate the spring constant
C = ω2

+0µ/2. Now Eq. (2.35) becomes

µ
d2s

dt2
= −µω2

+0s+ eZE, (2.37)

giving the equation of motion describing the movement of the lattice with an applied
electric filed.

2.2.3 Dielectric function of phonons

The equation of motion, Eq. (2.37), is identical to Eq. (2.1) without damping (only
using different labels). Damping is included to take care of scattering events such as
from impurities. Thus the dielectric function is obtained by following the procedure
described in Section 2.1:

ε(ω) = ε∞ +
ω2
p

ω2
T − ω2 − iωγ

. (2.38)
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2.3 Phonons as an indicator of structural stability: soft modes

Now ε∞ includes the additional effects from valence electrons and the independent
phonon polarisations with ωT being the transverse optical frequency [29]. Longitudi-
nal modes come into play, as one can write Eq. (2.38) with a common denominator

ε(ω) = ε∞
ω2
p/ε∞ + ω2

T − ω2 − iωγ
ω2
T − ω2 − iωγ

, (2.39)

ε(ω) = ε∞
ω2
L − ω2 − iωγ
ω2
T − ω2 − iωγ

, (2.40)

with ω2
L = ω2

p/ε∞ + ω2
T being the longitudinal frequency.

A model with multiple phonon modes is realised by first setting up the equation
of motion (Eq. (2.1)) for any individual vibration. Since the polarisation is then the
sum of the polarisations of each single mode, the dielectric function becomes the sum
of Lorentzian oscillators [29],

ε(ω) = ε∞ +
∑
i

ω2
p,i

ω2
i − ω2 − iωγi

. (2.41)

Now, ωp,i represents the plasma frequency of the ith mode, ωi is its transverse fre-
quency and γi is the damping constant.

2.3 Phonons as an indicator of structural stability:

soft modes

The absence of lattice vibrations at non-real frequencies indicates a structure that
should be stable against distortions [33]. However, if a mode is softening (its fre-
quency shifts towards zero) this can represent a lattice instability [34]. Soft modes
are therefore a well established indicator for a structural phase transition and are
observed in a variety of materials [35–42].

2.3.1 Ferroelectric phase

Historically, a connection between zero frequency modes and ferroelectric (FE) tran-
sitions was proposed by Cochran [34]. The phenomenology of the ferroelectric phase
(e.g. hysteresis loop of the polarisation, as shown in Figure 2.4) was first observed
in Rochelle salt one hundred years ago [43]. Note that the ‘ferro’ in ferroelectric is
given due to the analogous behaviour of the magnetic structure in a ferromagnetic
compound, there is no need for iron in the crystal.

Cochran’s work deals with the connection between the dielectric function and the
lattice vibrations in crystals [45]. In his model, the force on an ion of type i with
charge qi = e0Zi (in harmonic approximation), due to short range restoring forces, is
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Figure 2.4: Ferroelectric hysteresis loop of a PMN-PT-BT actuator (data
from [44]). One can see the similarity to the hysteresis of the magnetisation
of a ferromagnetic material.

expressed as

Fi = −
∑
j

Rijxj, (2.42)

with displacement, x, and force constants Rij. The second force acting on the ions is
the Coulomb force,

Fi,C = e0ZiE = qiE. (2.43)

E represents the effective electric field, as defined on page 11. The equation of motion
is now

mi
d2x

dt2
= −

∑
j

Rijxj + qiE. (2.44)

The substitutions
xi = Xie

iωt and E = E0e
iωt, (2.45)

yield

−miω
2Xi = −

∑
j

RijXj + qiE0, (2.46)

ω2 =
(∑

j

RijXj − qiE0

)
/(miXi). (2.47)

Anharmonic effects in the lattice vibrations lead to a linear temperature dependency
of Rij and other properties in the electric field. This leads to Cochran’s law5 [34],

ω2 = A(T − TC), (2.48)

5I give a very naive derivation of Cochran’s law. A more detailed expression of the Coulomb force
was used in his publications [34, 46, 47], as expressions for the transverse optical frequency are
taken from e.g. reference [48].
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2.3 Phonons as an indicator of structural stability: soft modes

an approximation limited to T ∼ TC . One additional consideration is that the
wavevector q approaches zero [34]. This corresponds to the wavelength being large
compared to the size of the crystal’s unit cell. The main result of Cochran’s law is
that the transverse optical frequency approaches zero at the critical temperature TC .

A Curie-Weiss relation in the ferroelectric phase is given by [38]

ε(0) =
C

T − TC
+ ε∞, (2.49)

with C being the Curie constant. In a diatomic lattice, this can be derived (for details
see references [34, 46]) from the Lyddane-Sachs-Teller relation [49],

ε(0)

ε∞
=
ω2
L

ω2
T

. (2.50)

This equation states that ε(0) −→∞ for ωT −→ 0. If the phase transition is of second
order, the soft mode always softens completely, while for a first order transition this
is possible, but not necessary [50].

Cochran claimed further that a spontaneous polarisation (“polarisation catastro-
phe”) can arise without a complete loss of stability, corresponding to a transition to
another phase [34]. While there is no need for an external electric field to observe
spontaneous polarisation, applying one can reverse the direction of the polarisation.
This can be seen in the polarisation hysteresis loop [44], Figure 2.4. The shape of the
hysteresis loop can provide information about the size of the sample’s ferroelectric
domain walls [51]. Two types of FE transitions can be distinguished: displacive (at
TC , a soft mode can propagate through the crystal) and order-disorder (the amplitude
of the soft mode moves between the wells of the ordered and disordered state, the
soft mode itself is non-propagating, thus no phonon corresponds to that mode) [31].
The polarisation is the order parameter of the transition.

Broken symmetries cause structural transitions. This can be observed in the lat-
tice dynamics. Thus, I look for a mode softening to identify signatures of possible
transitions.

2.3.2 Landau theory of phase transitions

The concept of an order parameter η leads straight to Landau’s theory on second
order phase transitions. Lev Landau [52–54] considered that the free energy F can
be expressed as a power series of the order parameter for temperatures close to the
critical temperature of the transition, typically written in the form

F (T, η) = F0 + α(T − TC)η2 +
β

2
η4, (2.51)

with the (positive) material constants α and β. Odd powers of η can be neglected due
to symmetry considerations. A linear term has to be included in the case of external
fields. Figure 2.5(a) shows this approximation for three different temperatures. The
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parabolic term is dominant for T > TC , while at the critical temperature the first
term vanishes, resulting in a much broader minimum. Thus, the relaxation time is
larger for this potential. Below TC the sign of the quadratic term changes, leading
to a function with two minima. This picture describes only displacive transitions
well, for order-disorder type an asymmetric function of the T < TC free energy is
necessary [31].

A further condition is that η vanishes in the high temperature phase. This can be
verified easily by calculating the minimum in free energy via

∂F

∂η
= (α(T − TC) + βη2)2η = 0, (2.52)

such that,

η =

√
−α
β

(T − TC). (2.53)

The expression for η in Eq. (2.53) gives real values only for T < TC , the low-
temperature state. Thus, it follows that only η = 0 is a minimum of the free energy
in the high temperature state.

In general, this model can be easily adapted for first-order phase transitions. In this
case, β in Eq. (2.51) has to be negative and a term with sixth order of η added [31, 50].

One can see in Figure 2.5(b) that this model gives an accurate description of the
ferroelectric phase transition. In the paraelectric state, the order parameter polarisa-
tion vanishes. The spontaneous polarisation is only seen in the low temperature case.
This model can also be used to characterise the antiferroelectric phase transition,
that will be covered in more detail in Section 5.3.3. There, another order parameter
will be introduced.

0
order parameter 

0

F-
F 0

T>TC

T=TC

T<TC

(a)

TC

Temperature

0

(b)

TC T

Figure 2.5: Landau free energy as a function of the order parameter η (a) and
the order parameter η as a function of temperature (b).
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3
Experimental methods

An overview of the experiments implemented in my thesis is presented in this chapter.
It focuses on Fourier transform infrared spectroscopy, as this type of spectrometer
was mainly used. An introduction to quasi-optical THz spectroscopy and static
measurement systems follows. The working principle of each of the experiments is
described as well as the data acquisition and analysis process. The last section gives
a comparison of the spectral working range of the different experimental setups and
an introduction to the various units used in spectroscopy is provided.
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3.1 Fourier transform infrared spectroscopy

3.1 Fourier transform infrared spectroscopy

Large parts of the data presented in this thesis were obtained using a non dispersive
spectroscopy method known as Fourier Transform InfraRed spectroscopy (FTIR).
The experiments have been performed using a Bruker 80v Vertex FTIR spectrometer
(a picture is shown in Figure 3.1).

Figure 3.1: Photo of the FTIR spectrometer used throughout my thesis.

3.1.1 Basic concept

The most important component of an FTIR spectrometer is the interferometer. In our
case, a so called Michelson interferometer is built into the spectrometer. Historically
this arrangement is well known as it was a central part of the Michelson-Morley
experiment to prove the Ether theory [55, 56]. It consists of a semitransparent mirror
(the beam splitter, BMS) that splits the beam of an incident radiation source, guiding
half the radiation to a static mirror and the other half to a moving mirror (see detailed
sketch in Figure 3.2). Both mirrors reflect the light back to the beam splitter, where
the two half-beams merge and interfere. In the case of monochromatic radiation with
a wavelength λ, one can easily estimate that constructive interference occurs when the
difference, x, in the optical path between the beam splitter and each of the mirrors is
an integer (n) multiple of the wavelength, nλ. Since light has to travel from the BMS
to the mirror and back to the BMS, x is always twice as large as the movement of
the mirror, d, from the zero position, where both interferometer arms have the same
length (the point of Zero Path Difference (ZPD)). This is the intensity maximum.
The intensity minimum occurs for x = (n+ 0.5) · λ. A measurement of the intensity
as a function of x is called an interferogram. In the model case for monochromatic
radiation, the interferogram is described by

I(x) =
1

2
· I0(ν̄)[1 + cos(2πν̄x)], (3.1)
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source

static mirror

movable mirror

beam splitter

sample

detector

d

Figure 3.2: Beam path of an FTIR spectrometer with a Michelson interfero-
meter for transmission measurements (details see text above).

with I(x) being the resulting signal as a function of the path difference and I0(ν̄)
the radiation from the source. The property ν̄ is the wavenumber, ν̄ = 1/λ. For
spectroscopic purposes, only the modulated part is relevant, hence the DC-part of
the signal can be neglected [57]. Additionally, the wavenumber dependent efficiency of
the optical elements, the detector and amplifier, must be included into the calculation
(for details see [58]), so that the equation above can be rewritten as

S(x) = B(ν̄) cos(2πν̄x). (3.2)

Now, S(x) is the detected signal and B(ν̄) represents the real intensity including all
characteristics of the spectrometer components. In practical application for broad-
band spectroscopy, we employ polychromatic radiation. Here the resulting interfero-
gram is more complex. The detected signal then becomes the sum of all single wave
intensities, for continuous sources this is given by the integral [58]

S(x) =

∫ ∞
−∞

B(ν̄) cos(2πν̄x) dν̄. (3.3)

This equation shows that the connection between S(x) and B(ν̄) is a Fourier cosine
transform (the reason why this setup is called FTIR). The expression for B(ν̄) as a
function of the detector signal S(x) is then given by the re-transform

B(ν̄) =

∫ ∞
−∞

S(x) cos(2πν̄x) dx. (3.4)

Now the spectrum can be obtained from the measured detector signal. Since, in
practice, the mirror retardation is limited to travel a finite distance in reality, a so
called boxcar truncation function, D(x), is included to compensate. This gives (see
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3.1 Fourier transform infrared spectroscopy

reference [58] for more details)

B(ν̄) =

∫ ∞
−∞

S(x)D(x) cos(2πν̄x) dx. (3.5)

The movement of the mirror is always symmetric around the point of zero path
difference. Scans can be performed independent of the direction of movement. Ad-
ditionally, the resolution of the setup (∆ν̄) is coupled to the maximum retardation,
dmax, via [58]

1

∆ν̄
= dmax = xmax/2. (3.6)

Therefore, the resolution can be improved by extending the mirror retardation.
The radiation from a HeNe laser is also directed through the interferometer, coin-

cident with the broadband radiation. Its signal is known to be monochromatic with
a wavelength of 632.8 nm in the visible range (along with some weaker transitions,
that can be neglected here). As described above, monochromatic radiation leads to a
cosine signal after passing through the interferometer. By counting the minima in the
laser signal as a function of the mirror motion, the mirror position can be determined
(Eq. (3.2)) with a high accuracy, since the wavelength of the laser is known precisely.
An FTIR spectrometer guides the radiation to a sample after passing it through the
interferometer (see Figure 3.3).

①

②

①

①

③

④

⑤

⑥

⑦

⑧

⑨

Figure 3.3: Beam path of the FTIR spectrometer with the Michelson interfer-
ometer used in this thesis. The components are labelled as 1© sources (from
left to right: NIR, MIR, FIR/THz), 2© aperture, 3© beam splitter, 4© static
mirror, 5© movable mirror, 6© polariser, 7© sample (the area in the darker
blue is the sample compartment), 8© slot for internal detector, 9© bolometer
detector.

The radiation interacts with the sample in two ways, reflection and transmission.
The spectral response of the sample is encoded into the interferogram. Finally, the
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3 Experimental methods

reflected (or transmitted) beam is directed on to a detector and measured as a function
of the moving mirror position. The data presented in this thesis has been obtained
primarily in reflectivity mode. To ensure a near normal incidence (angle of incidence
< 10◦) an optical configuration shown in Figure 3.4 is used.

sample	   sample	  

Figure 3.4: Beam path of transmission (left) and reflectivity (right) arrange-
ments around the sample.

3.1.2 Components of the setup

In this section the different components of the FTIR spectrometer are described.
Many of the components in an FTIR setup are optimised for specific bands in the
electromagnetic spectrum. This requires the use of multiple sources, beam-splitters
and detectors to cover a broad spectral width for experiments. Thus, measurements
have to be performed in different settings covering individual working ranges:

• near infrared (NIR): 8500 - 14000 cm−1,
• mid infrared (MIR): 600 - 7500 cm−1,
• far infrared (FIR): 40 - 650 cm−1,
• terahertz (THz): 20 - 50 cm−1.

A different combination of the components is necessary for each of these settings.
These settings are named for their ranges across the electromagnetic spectrum, but
they do not necessarily overlap with them exactly.

• Lightsources: Typically broadband sources are build within the experimental
setup. For the visible and NIR settings, a tungsten lamp is used. A globar is
used for the MIR setting. This is a SiC rod, heated to 1500 ◦C, emitting black
body radiation [57]. For the FIR and THz settings we use a high pressure Hg
lamp source.

• Detectors: A Si-diode detector is used in the visible and NIR regime. Here the
incoming radiation creates electron-hole pairs in the semiconducting Si. The
resulting photo-currents are measured as proportional to the radiation intensity.
No external cooling is necessary. In the MIR range we use a DLaTGS (deuter-
ated L-alanine doped triglycine sulfate) detector, while in the FIR range we use
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3.1 Fourier transform infrared spectroscopy

a DTGS (deuterated triglycine sulfate) detector for quick room temperature
test scans. The relevant principle of both detectors is the pyroelectric effect
i.e. the incident radiation results in a change in temperature of the detector
element that creates an electrical polarisation, generating a detectable electric
current [57]. Both detectors operate without the need for active cooling.

A liquid nitrogen (LN2) cooled MCT-Detector (Mercury Cadmium Telluride
(HgCdTe)) is used when more sensitivity is needed in the MIR range. Similar
to the Si-Diode, the MCT detector directly converts the incident radiation into
a detectable current.

In the FIR and THz ranges, a Si-Bolometer is used. An absorbing element
(Silicon based) is connected to a thermal reservoir, filled with liquid helium
(LHe, the LHe vessel is partially surrounded by a second vessel filled with LN2,
to limit the LHe evaporation). The incident radiation raises the temperature
of the absorbing element relative to the reservoir. The change in temperature
results in a change in the resistivity of the detector element, which is detected as
a change in the electrical current across the element [59]. The response time of
the detector depends on the ratio of the heat capacity of the absorbing element
and the thermal conductance between the absorbing element and the reservoir.

• Beam splitter (BMS): Here a CaF2 crystal is used for the NIR setting. KBr is
used for the MIR setting and Mylar of different thickness is used for the FIR
and THz settings.

A polariser can be placed close to the sample to control the polarisation of the
radiation incident on the sample (see Figure 3.3). An overview of the different com-
ponents used in the FTIR spectrometer is given in Table 3.1. Figure 3.5 shows an
overview of the working ranges of the different spectrometer settings.

Setting Range (cm−1) Source BMS Detector Polariser
NIR 8500-14000 W-Lamp CaF2 Si-Diode Polymer Film

MIR 600-7500 Globar KBr
MCT

ZnSe
(DLaTGS)

FIR 40-650 Hg-Lamp
Mylar Si-Bolometer

Polypropylene
Multilayer (DTGS)

THz 20-50 Hg-Lamp Mylar 50µm Si-Bolometer Polypropylene

Table 3.1: Overview of the different FTIR spectrometer settings.

To perform measurements at lower temperatures, samples can be mounted in a He-
flow cryostat. A picture is presented in Figure 3.6. Here, the mounts have two holes
of the same diameter, such that the sample and gold-reference can be measured under
identical conditions (see Figure 3.6). A step-motor is used to move the mount between
the different positions. The cryostat is positioned in the spectrometer in place of
the sample mount, only re-alignment of the mirrors in the sample compartment is
necessary. At 10 K, the lowest stable temperature is reached. Due to the limitations
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Figure 3.5: Effective bandwidth of the different spectral settings. A
Pr3Ga5SiO14 crystal was measured in all the different settings between 0 cm−1

and 14 000 cm−1. Two measurements under identical conditions have been per-
formed for all settings. In this plot the ratio of these two measurements is
shown. The area in the background represents the working range of the indi-
vidual setting. The gap between the MIR and NIR settings (from 7500 cm−1 to
8500 cm−1) can be filled with a measurement in an additional setting, named
NMIR, covering the area between 3000 cm−1 and 11000 cm−1. This is a com-
bination of the NIR and MIR settings, using the MIR detectors and the NIR
source and BMS. This setting was not used within the studies of my thesis.

of the cryostat windows (high transmittance is necessary) the spectral bands achiev-
able at low temperatures are limited to the range of the FIR and THz settings.

3.1.3 Data acquisition

Our FTIR measurements aim to determine the absolute reflectance of the investigated
sample. In the first step, the sample is fixed to the backside of a mount. This consists
of a plate masked with abrasive SiC paper on the front side and a hole at the height
of the beam. The sample has to be larger than the diameter of the hole and mounted
in a way that it completely covers the hole. The mount is then inserted in the sample
compartment of the spectrometer so that the abrasive paper side is illuminated by
the radiation. This paper disperses light that would be reflected from surfaces other
than the sample. Now the mirrors are aligned to maximise the reflected signal. Then
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Figure 3.6: Picture of the cryostat (left) and the sample mount used within
the cryostat (right). The Pr3Ga5SiO14 sample is fixed in the upper position of
the mount, the gold mirror is in the lower position. The diameter of both holes
is ∼ 4 mm each.

the spectrometer is evacuated (typically to ∼ 2 mbar), to reduce residual absorption
from water molecules in the air.

The measurement process itself consists typically of 200 scans. Each one corre-
sponds with the creation of an interferogram by one scan of the mirror. These interfer-
ograms are averaged, such that the resulting final interferogram is then Fourier trans-
formed by the OPUS software to produce the spectrum (for more details see [60]). To
ensure the uncertainty in the measurement is sufficiently low (a noise limit of ∼ 3 % is
chosen, as shown in Figure 3.5), two full measurements are performed under identical
conditions and their ratio is calculated. If this condition is not fulfilled, realignment
or changes in the setup (e.g. a higher number of scans) are necessary. After this,
the sample is removed and replaced by a highly reflective gold mirror to produce a
reference data set. Now it is crucial to avoid any changes in the beam path of the
experiment (this means no realignment) to perform a measurement under the exact
same conditions (details see Figure 3.7).

In general the reflectance R is defined by the ratio of light reflected by the sample
(Bsa(ν̄)) to that of the incident light (Bin(ν̄)). The gold mirror is highly reflective
(more than 97 % [61]), so that for the reference spectrum one can assume

BAu(ν̄) = Bin(ν̄). (3.7)

Thus, the reflectance is given by the ratio of the sample spectrum and that of the
gold-reference:

R(ν̄) =
Bsa(ν̄)

Bin(ν̄)

∣∣∣∣
BAu(ν̄)=Bin(ν̄)

=
Bsa(ν̄)

BAu(ν̄)
. (3.8)

The last step is to check the confidence limits. Here intervals with high noise due to
weak signal intensity are omitted (Figure 3.8). For scans in different optical regimes
with different settings, this procedure has to be repeated using the different settings
of Table 3.1.
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Figure 3.7: Example of a data set in the FIR regime. For both the sample and
the reference, the FTIR measurement results in an independent interferogram
(top). The frequency spectrum (bottom, here as a function of the wavenumber)
is obtained after Fourier transform. The values for the path difference, signal
and intensity are taken from an original data set and represent internal units
of the Bruker spectrometer. The strong oscillations in the spectra are due to
internal reflections in the beam splitter.
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Figure 3.8: Calculation of the reflectance in the FIR region of the Pr3Ga5SiO14

sample used in Figure 3.7 by dividing the sample spectrum with the gold ref-
erence. One can see that the oscillations of the beam splitter vanish. The grey
range (less than ∼ 40 cm−1 and above ∼ 650 cm−1) shows the area where the
data of this setting should not be used due to a low signal to noise ratio.
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3.1.4 Kramers-Kronig analysis

In the following, the procedure for calculating the dielectric function ε(ν̄) from the
available R(ν̄) data is described. The procedure uses linear response theory to formu-
late the Kramers-Kronig (KK) relations [62, 63]. These famous relations connect the
real part of a complex function with the imaginary one. In the first step, the general
equations will be derived following the example of references [28, 29, 64, 65]. The KK-
analysis is one of the standard methods for calculating the dielectric function from
reflectance measurements and is applied to a broad range of materials e.g. [66–77].

In a linear and isotropic medium, the most general connection between a stimulus f
(e.g. electric field E) and the response X (e.g. displacement field D) with the response
function G (e.g. dielectric function ε) is given by [28]

X(r, t) =

∫
d3r′

∫ ∞
−∞

dt′ G(r, r′, t, t′) f(r′, t′). (3.9)

The following assumptions can be made for simplification [28]:

• Spacial locality: X(r, t) depends on f(r′, t′) only if r = r′, so that the response
function can be rewritten as G(r, r′, t, t′) = G(t, t′) · δ(r− r′). Execution of the
spacial integration in Eq. (3.9) leads to∫

d3r′ δ(r− r′) f(r′, t′) = f(r, t′). (3.10)

• Relative time: The absolute time t is not important, only the time difference
t− t′. So G(t, t′) = G(t− t′) and Eq. (3.9) can be modified to

X(r, t) =

∫ ∞
−∞

dt′ G(t− t′) f(r, t′). (3.11)

• Causality: The response X(r, t) cannot be influenced by a future stimulus f(r, t′)
with t′ > t. So G(t− t′) = 0 for t < t′.

The KK algorithm works in frequency space with ω = ω1 + iω2 being a com-
plex number. A Fourier transform converts the spacial dependency to the frequency
domain and is defined as [28]

X(r, ω) =

∫ ∞
−∞

dtX(r, t)eiωt, (3.12)

f(r, ω) =

∫ ∞
−∞

dt f(r, t)eiωt, (3.13)

G(ω) =

∫ ∞
−∞

dt G(t− t′)eiω(t−t′). (3.14)
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From Eq. (3.14) one can see that [64]

G∗(ω) = G(−ω), (3.15)

and further that G1(ω), the real part of G(ω) must be an even function in ω, while
the imaginary part, G2(ω), is odd:

G1(−ω) = G1(ω) and G2(−ω) = −G2(ω). (3.16)

Inserting the expression for X(r, t) of Eq. (3.11) into Eq. (3.12) leads to

X(r, ω) =

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ G(t− t′) f(r, t′)eiωt, (3.17)

=

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ G(t− t′) f(r, t′)eiωt eiωt
′
e−iωt

′︸ ︷︷ ︸
=1

, (3.18)

=

∫ ∞
−∞

dt′ f(r, t′)

∫ ∞
−∞

dt G(t− t′) eiω(t−t′)︸ ︷︷ ︸
=G(ω)

eiωt
′
, (3.19)

= G(ω)

∫ ∞
−∞

dt′ f(r, t′)eiωt
′

︸ ︷︷ ︸
=f(r,ω)

, (3.20)

and finally to the following linear equation between stimulus and response in the
frequency domain

X(r, ω) = G(ω) f(r, ω). (3.21)

To deal with the issue of integrating across the pole at ω′ = (ω, 0) we implement
Cauchy’s integral theorem [78] of the form:∮

Γ

dω′
G(ω′)

ω′ − ω
= 0, (3.22)

with Γ being an arbitrary closed curve in the upper-half plane in the complex ω′

space [29].

For the derivation of the KK equations, usually the contour plotted in Figure 3.9
is chosen [28, 64]. This curve consists of 4 segments. Part 1© is along the real axis
from −∞ to (ω − a). Part 2© is represented by an infinitesimal semicircle in the
upper-half plane with radius a around the pole at ω′ = (ω, 0). Part 3© is along the
positive real axis running from (ω + a) to +∞. Part 4© closes the contour, it is also
a semicircle in the upper-half plane, but with a radius of infinity. Now the contour
integral in Eq. (3.22) can be split into 4 integrals along the 4 parts of Γ:

∫
1©
dω′

G(ω′)

ω′ − ω
+

∫
2©
dω′

G(ω′)

ω′ − ω
+

∫
3©
dω′

G(ω′)

ω′ − ω
+

∫
4©
dω′

G(ω′)

ω′ − ω
= 0. (3.23)
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Figure 3.9: Plot of the integration path Γ (red dashed line) composited out of
the four segments 1© to 4© in the complex ω′-space.

• Part 4©: Since [29]
G(ω′)→ 0 for |ω′| → ∞, (3.24)

with at least a 1/ω′ dependence,

G(ω′)

ω′ − ω
, (3.25)

has to vanish assuming an infinitely large radius of the integral.

• Part 2©: The function G(ω′) is constant for all ω′ along 2©, when the radius
of the infinitesimal semicircle a → 0, it can be approximated6 as G(ω) [29].
Curve 2© will be described with ω′ = ω + a · eiα. Here α represents the angle
between the actual radius vector and the positive real ω′ axis, running from π
to 0. Furthermore dω′ = iα a · eiαdα and 1/(ω′ − ω) = 1/(a · eiα). Calculating
the integral now leads to [29]∫

2©
dω′

G(ω′)

ω′ − ω
=

∫ 0

π

dα G(ω)
i a eiα

a eiα
= iG(ω)α

0∣∣
π

= −iπG(ω). (3.26)

• Part 1© and 3©: The integrals along the real ω′ axis for a→ 0 are given as:∫
1©
dω′

G(ω′)

ω′ − ω
+

∫
3©
dω′

G(ω′)

ω′ − ω
= lim

a→0

∫ ω−a

−∞
dω′

G(ω′)

ω′ − ω
+ lim

a→0

∫ ∞
ω+a

dω′
G(ω′)

ω′ − ω
.

(3.27)
Now the limits of the right side of Eq. (3.27) are grouped together, and one can

6The mathematically clean way is to calculate the residuum [64].
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see that this is equal to Couchy’s principal value P of the integral [64],

lim
a→0

[ ∫ ω−a

−∞
dω′

G(ω′)

ω′ − ω
+

∫ ∞
ω+a

dω′
G(ω′)

ω′ − ω

]
= P

∫ ∞
−∞

dω′
G(ω′)

ω′ − ω
. (3.28)

Summing up the remaining results of all segments gives:

− iπG(ω) + P
∫ ∞
−∞

dω′
G(ω′)

ω′ − ω
= 0, (3.29)

and after rearrangement,

G(ω) =
1

iπ
P
∫ ∞
−∞

dω′
G(ω′)

ω′ − ω
. (3.30)

Now inserting G(ω) = G1(ω) + iG2(ω) into Eq. (3.30) and multiplying with i gives

iG1(ω)−G2(ω) =
1

π
P
∫ ∞
−∞

dω′
G1(ω′)

ω′ − ω
+
i

π
P
∫ ∞
−∞

dω′
G2(ω′)

ω′ − ω
. (3.31)

This equation must be valid for its real and imaginary part simultaneously, finally
leading to the Kramers-Kronig relations,

G1(ω) =
1

π
P
∫ ∞
−∞

dω′
G2(ω′)

ω′ − ω
, (3.32)

and

G2(ω) = − 1

π
P
∫ ∞
−∞

dω′
G1(ω′)

ω′ − ω
. (3.33)

A first modification is to remove the (non-existing) negative frequencies from the
integration limits by multiplying the numerator and denominator in both equations
with (ω′ + ω) and splitting the integrals up into two parts with ω′ and ω in the
numerator respectively [29]:

G1(ω) =
1

π
P
∫ ∞
−∞

dω′
ω′G2(ω′)

ω′2 − ω2
+
ω

π
P
∫ ∞
−∞

dω′
G2(ω′)

ω′2 − ω2︸ ︷︷ ︸
=0

, (3.34)

G2(ω) = − 1

π
P
∫ ∞
−∞

dω′
ω′G1(ω′)

ω′2 − ω2︸ ︷︷ ︸
=0

−ω
π
P
∫ ∞
−∞

dω′
G1(ω′)

ω′2 − ω2
. (3.35)

As mentioned before (Eq. (3.16)), G1(ω) is an even function in frequency and G2(ω)
is odd. This argument cancels out the second integral in Eq. (3.34) and the first one
in Eq. (3.35) (ω′G1(ω′) is odd), since a symmetric integration of an odd integrand is
equal to 0. Integrating an even function (here the nominators ω′G2(ω′) and G1(ω′))
in the range (-∞,0) is equal to integrating over the range (0,∞). Thus the Kramers-
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Kronig relations are given by

G1(ω) =
2

π
P
∫ ∞

0

dω′
ω′G2(ω′)

ω′2 − ω2
, (3.36)

G2(ω) = −2ω

π
P
∫ ∞

0

dω′
G1(ω′)

ω′2 − ω2
. (3.37)

These equations show the KK relations in their general form. To proceed further
with analysing the reflectance data, a specialised form in R(ω) is needed. Remember
that R(ω) = r(ω)r(ω)∗ with

r(ω) = ρ(ω)eiϕ(ω), (3.38)

so ρ(ω) =
√
R(ω). Now applying the logarithm on the equation above, the complex

property is split, and the real and imaginary parts are separated:

ln r(ω) = ln ρ(ω) + iϕ(ω). (3.39)

The reflectivity, r (and so ln r), fulfils all requirements (e.g. causality and r∗(ω) =
−r(ω)) made for G(ω) so far [28], so that inserting it into the general KK-relations
(Eq. (3.36) and Eq. (3.37)) yields the KK-relations for reflectivity and phase:

ln ρ(ω) =
2

π
P
∫ ∞

0

dω′
ω′ϕ(ω′)

ω′2 − ω2
, (3.40)

ϕ(ω) = −2ω

π
P
∫ ∞

0

dω′
ln ρ(ω′)

ω′2 − ω2
. (3.41)

Additionally, one improvement can be made by first setting [28, 77]

P
∫ ∞

0

dω′
1

ω′2 − ω2
= 0, (3.42)

so that
2ω

π
ln ρ(ω)P

∫ ∞
0

dω′
1

ω′2 − ω2
, (3.43)

which is also cancelled out, can be added to the right side of Eq. (3.41). Now the
phase is given by

ϕ(ω) =
2ω

π
P
∫ ∞

0

dω′
ln ρ(ω)− ln ρ(ω′)

ω′2 − ω2
. (3.44)

Since
ln ρ(ω) = ln

√
R(ω) = lnR(ω)/2, (3.45)

the phase equation above can be rewritten as

ϕ(ω) = −ω
π
P
∫ ∞

0

dω′
lnR(ω′)− lnR(ω)

ω′2 − ω2
. (3.46)
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3.1 Fourier transform infrared spectroscopy

This equation for ϕ now has two advantages [77]:

• Constant errors of R(ω) are cancelled out and do not influence the phase any
more.

• For ω′ = ω both numerator and denominator become 0. According to the rule
of de l’Hospital it can be shown7, that there is no divergence any more, such
that the pole is removed and Couchy’s principal value, P , is not necessary any
more.

Hence, the phase, ϕ(ω), can easily be calculated by solving the integral [77, 79]

ϕ(ω) = −ω
π

∫ ∞
0

dω′
lnR(ω′)− lnR(ω)

ω′2 − ω2
. (3.47)

Now the real and imaginary part of the refractive index can be calculated8 [79] as:

n(ω) =
1−R(ω)

1 +R(ω)− 2
√
R(ω) cosϕ(ω)

, (3.48)

k(ω) =
2
√
R(ω) sinϕ(ω)

1 +R(ω)− 2
√
R(ω) cosϕ(ω)

. (3.49)

7

d

dω′
[ln(R(ω′)− ln(R(ω))]

d

dω′
[ω′2 − ω2]

∣∣
ω′=ω

=

1

R(ω′)

dR(ω′)

dω′

2ω′
∣∣

ω′=ω

8Assuming [79]

r =
N − 1

N + 1
,

we find the following expression for the refractive index

N =
1 + r

1− r
,

with
r = ρeiϕ = ρ(cosϕ+ i sinϕ) = ρc+ iρs.

Inserting the expression for r into the equation above yields (in step one both nominater and
denominator are multiplied with the complex conjungate of the denominator to remove the
imaginary part),

N =
1 + ρc+ iρs

1− ρc− iρs
=

(1 + ρc+ iρs) · (1− ρc+ iρs)

(1− ρc)2 + ρ2s2
=

1 + ρc+ iρs− ρc− ρ2c2 − iρ2cs+ iρs+ iρ2cs− ρ2s2

1− 2ρc+ ρ2c2 + ρ2s2
.

Using cos2 + sin2 = 1 this gives

1− ρ2 + i2ρs

1− 2ρc+ ρ2
=

1− ρ2

1− 2ρc+ ρ2
+ i

2ρs

1− 2ρc+ ρ2
= n+ ik = N.

The expression has to be valid for its real and imaginary part, resulting with R = rr∗ = ρ2 in
Eq. (3.48) and (3.49).
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Finally the real and imaginary part of the dielectric function can be calculated
using the refractive index via ε(ω) = N(ω)2 so that9 [79]:

ε1(ω) = n(ω)2 − k(ω)2, (3.50)

ε2(ω) = 2n(ω)k(ω). (3.51)

In this derivation, the frequency ω was used. The linear relation ν̄ = ω/(2πc)
between frequency and wavenumber states that all equations can be used without
further changes when using wavenumbers. In general, with Eq. (3.47), one can calcu-
late the phase and therefore the dielectric function for any wavenumber. Things get
complicated as the integration runs from 0 to infinity and the measurement of R(ν̄) is
of course finite in the frequency domain. The FTIR spectrometer used in this thesis
can provide data roughly in a range between 25 cm−1 and 14000 cm−1. Therefore,
approximations are necessary to deal with this algorithm (see details in the results
chapters). Now, the integration limit is set to a finite number ν̄max so that

ϕ(ν̄) = − ν̄
π

∫ ν̄max

0

dν̄ ′
lnR(ν̄ ′)− lnR(ν̄)

ν̄ ′2 − ν̄2
, (3.52)

with a value chosen to be 15000 cm−1 for the investigated materials. This value
is above any interesting observable feature and typically in a range of constant re-
flectance.

Due to misalignment or non perfect sample / reference surfaces, a complete spec-
trum can be erroneously offset. Wrong ε(0) values are an indicator for this behaviour.
Measurements performed in the cryostat especially tend to feature this effect. In this
case the reflectance data must be rescaled with a constant scaling factor, so that the
correct value for the dielectric function can be achieved. For more details on this
aspect, see the results chapters.

3.2 Quasi-optical THz-spectroscopy

This THz setup is used to investigate samples in the spectral ranges below the lower
detection frequency limit of the FTIR spectrometer. In contrast, experiments here are
performed in transmission. A speciality of this self-constructed spectrometer is the
possibility of phase sensitive measurements. In this spectral regime optical elements,
such as lenses, are made out of materials such as polyethylene.

9All functions depend on the frequency (not written):

ε = ε1 + iε2 = N2 = (n+ ik)2 = n2 − k2 + i2nk.

The expression has to be valid for its real and imaginary part, resulting in Eq. (3.50) and (3.51),

ε1 = n2 − k2 and ε2 = 2nk.
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3.2 Quasi-optical THz-spectroscopy

3.2.1 Mach-Zehnder interferometer

The main part of this experimental setup is a Mach-Zehnder interferometer [80, 81].
The beam path is shown in Figure 3.10. Backward wave oscillators (BWO, Fig-
ure 3.11) are used as monochromatic radiation sources, that can be approximated
as point-like sources [82, 83]. Backward wave oscillators consist of a vacuum tube,
with a voltage of a few kV applied between anode and cathode. Thus, electrons are
emitted from the cathode and form a beam by interacting with an external magnetic
field that guides them over a slow wave structure (grid). Radiation is created due
to the interaction of the electron beam with the periodic electric field of this grid
structure. The direction of the emitted radiation is opposite to the electron beam.
Thus, these sources are called backward wave oscillators. Backward wave oscillators
are frequency tunable across a limited range by sweeping the applied voltage, so the
speed of the electrons can be changed. In total ten separate BWO devices are neces-
sary to cover the total frequency range between 39 GHz and 1080 GHz. Two of them
(BWO 530 and BWO 800) are chosen for experiments presented is this thesis (see
Figure 3.11).

In the setup, a lens is first used to tailor the beam shape from diverging to paral-
lel. The beam is then guided to an attenuator, to reduce the intensity if necessary.
Four different settings are possible between 1 % and 30 % transmission (and without
attenuation). A wire grid polariser is used as a beam splitter, dividing the radiation
into a sample and reference arm. The polariser reflects radiation with its electric
field parallel to the grid and passes radiation with a polarisation perpendicular to
the grid. Thus, the polarisation of the reference arm is shifted by 90◦ relative to the
sample arm. To obtain the same intensity in both arms, another polariser is put in
front of the beam splitter and rotated until the signals are the same.

An Oxford Instruments cryomagnet is located in the sample arm. This allows mea-
surements to be performed in a temperature range between 2 K and room temperature
with the addition of magnetic fields up to 7 T. The cryomagnet’s inner windows are
made out of ∼ 50µm thick Polypropylene, while the outer ones are made of My-
lar, both materials that are highly transparent in the frequency range of the BWO
sources. The sample is located in the middle of the magnet on a horizontally move-
able mount with two mounting positions. The second position of the sample mount
remains empty and is used for calibration scans (see Figure 3.11). Two lenses are
placed before and after the cryomagnet to focus the beam onto the sample and defo-
cus afterwards. The last device in the sample arm is an electrically movable mirror,
necessary for phase sensitive measurements (see Section 3.2.2).

An oscillating mirror is placed in the reference arm, providing modulation for lock-
in assisted detection. Two lenses are mounted with the same distance as those of the
sample arm in order to compensate the additional phase of the sample arm.

A second grid polariser is used to merge the two beams. There is a 90◦ difference
in the polarisation of the two beams due to the beam splitter. Therefore, a final
polariser is required to rotate both beams by 45◦ to bring them into antiparallel
orientation so that they can interfere correctly. Finally, the light is focussed on the
detector, which is a LHe cooled bolometer identical to the one described in the FTIR
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Figure 3.10: Beam path (top) and photo (bottom) of the Mach-Zehnder inter-
ferometer. The labels indicate: 1© source (BWO), 2© attenuator, 3© polariser,
4© beam splitter, 5© cryo-magnet, 6© sample, 7© stabilising mirror, 8© phase

modulating mirror, 9© wire-grid as merger, 10© polariser, 11© bolometer.
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Figure 3.11: From left to right: image of BWO; working ranges of the different
BWOs (the sources used for this thesis are highlighted in green); sample mount.
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3.2 Quasi-optical THz-spectroscopy

spectroscopy section (page 27).

3.2.2 Phase measurements and data processing

The signal detected in the bolometer is given by the interference of the sample and
reference arm beams:

I = |ÊS − ÊR|2 = |ES ei(ϕS+ωt) − ER ei(ϕR+ωt)|2, (3.53)

= E2
S + E2

R − ESER(ei(ϕS−ϕR) + e−i(ϕS−ϕR)), (3.54)

= E2
S + E2

R − 2ESER cos(ϕS − ϕR), (3.55)

with Ê being the complex electric field (with amplitude E and phase angle ϕ) and
the subscripts S and R representing the sample and reference arms, respectively.
The negative sign is due to the special choice of the angle of the last polariser before
the detector. E2

S and E2
R can be omitted, since the amplitudes are assumed to be

constant over time and thus are not detected by the bolometer. The detected signal
can now be described by

Idet = −2ESER cos(ϕS − ϕR︸ ︷︷ ︸
∆ϕ0

). (3.56)

The phase shift in the sample arm of the interferometer is given by

ϕS = ϕ0 + ϕt, (3.57)

where ϕt is the phase shift incurred by the sample and ϕ0 is the phase shift gained by
travelling along the other parts of the interferometer. The equation for the reference
arm is similar,

ϕR = ϕ0 +
2πω

c
d, (3.58)

with the second part describing the phase shift of radiation with frequency ω passing
through a slice of air with thickness d, equivalent to the thickness of the sample
(effectively an imaginary sample of the same thickness). Thus, the phase difference
between the two arms is given by

∆ϕ0 = ϕt −
2πω

c
d. (3.59)

Now, the two movable mirrors come into play, the phase modulating mirror in the
reference arm and a phase stabilizing mirror in the sample arm. The displacement,
∆l, of the motorised mirror in the sample arm leads to an additional phase change.
So the total phase shift of this half-beam is

ϕS = ϕ0 + ϕt −
2πω

c
∆l. (3.60)
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In order for the automatic phase stabilisation to work, an additional modulating mir-
ror is necessary as part of a lock-in amplifier detection system. This mirror oscillates
with a frequency Ω ∼ 28 Hz and an amplitude a. Thus the term

ϕΩ =
2πω

c
a cos(Ωt) = δ cos(Ωt), (3.61)

is included to the phase of the reference arm. So the phase difference between the
two arms is expressed by

ϕS − ϕR = ϕΩ + ϕt −
2πω

c
d− 2πω

c
∆l = ϕΩ + ∆ϕ. (3.62)

Inserting this into the expression for the detected intensity (Eq. (3.56)) gives

Idet = −2ESER cos(∆ϕ+ ϕΩ), (3.63)

= −2ESER(cos(∆ϕ) cos(ϕΩ)− sin(∆ϕ) sin(ϕΩ)), (3.64)

= −2ESER(cos(∆ϕ) cos(δ cos(Ωt))− sin(∆ϕ) sin(δ cos(Ωt))). (3.65)

Since | cos(Ωt)| is always smaller than one, a Taylor series expansion of Eq. (3.64)
can be made for small δ up to the quadratic term in ϕΩ. Thus,

Idet = −2ESER(cos(∆ϕ)− cos(∆ϕ)(ϕ2
Ω/2)− sin(∆ϕ)(ϕΩ)), (3.66)

and with
(cosx)2 = 1/2 (cos 2x+ 1), (3.67)

it follows, after filtering the constant terms out, that,

Idet = 2ESER cos(∆ϕ)δ2/4︸ ︷︷ ︸
A2

· cos(2Ωt) + 2ESER sin(∆ϕ)δ︸ ︷︷ ︸
A1

· cos(Ωt). (3.68)

The amplitude, A1, of the first harmonic depends on sin(∆ϕ), thus vanishing when
∆ϕ is a multiple of 2π (formally, ∆ϕ = πm, but other roots are unstable, thus the
mirror moves away from them)

∆ϕ = ϕt −
2πω

c
d− 2πω

c
∆l = 2πm, (3.69)

with the integer m representing the order of interference. For the zeroth order, the
phase is given by

ϕt =
2πω

c
(∆l + d). (3.70)

Therefore, the mirror moves to the closest even position, such that the detected
amplitude A1 is minimised. A calibration of the interferometer is necessary to account
for artefacts of the experiment (e.g. cryostat windows). So a measurement without
the sample is first conducted to obtain the mirror displacement ∆lcal, that would be
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zero in the ideal case. Subtracting ∆lcal from the displacement with sample ∆lS gives

ϕt =
2πω

c
(∆lS −∆lcal + d). (3.71)

The amplitude of the second harmonic, A2, already includes information about the
amplitude ES. Again, this property is monitored in the sample measurement (A2,S)
and in the calibration (A2,cal). Now, the transmission coefficient can easily be deter-
mined by its absolute value

|t| = ES
ES,cal

=
A2,S

A2,cal

, (3.72)

and the phase, ϕt (Eq. (3.71)), by

texp = |t| · eiϕt . (3.73)

The sample’s geometry is approximated as a plane parallel slab (without magnetic
excitations). To calculate the dielectric function, ε, out of the investigated transmit-
tance, we use [84]

ttheory =
(

cos(kd)− iζ + ζ−1

2
sin(kd)

)−1

, (3.74)

with k =
√
εω/c and ζ = 1/

√
ε including the complex ε. Now, comparing texp and

ttheory, one can obtain numerical values for the dielectric function. Since polarised
radiation is used, ε is given for a certain polarisation and frequency ω emitted by the
BWO.

3.3 Physical Properties Measurement System

The Physical Properties Measurement System (PPMS) from Quantum Design is a
commercial modular system with a large variety of different probes such as a torque
magnetometer and an electrometer. Measurements can be performed between 2 K and
room temperature, and additionally under magnetic fields up to 14 T. The dielectric
function can be obtained down to low frequencies (below 2 MHz) with capacitive
methods (e.g. an impedance analyser). The sample is approximated as a plane parallel
capacitor, by covering its two opposite surfaces with silver paste. Now, the impedance
analyser applies a voltage

U(t) = U0e
iωt, (3.75)

with amplitude U0 and frequency ω, on the silver paste contacts of the sample and
induces a current,

I(t) = Ieiωt, (3.76)
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between the contacts. Ohm’s law states

Z =
U0

I
. (3.77)

Thus, the impedance Z can be directly measured and the sample’s permittivity, ε(ω),
calculated via

ε(ω) =
d

ε0A

1

iωZ
, (3.78)

with ε0 being the vacuum permittivity. The property d is the thickness of the sample
and A is the area of the silver paste contacts.

3.4 Experimental spectral ranges and units

The previous sections show that the experimental techniques used in this thesis cover
a larger range of the electromagnetic spectrum. In total, four orders of magnitude in
wavenumbers (100 cm−1 to 104 cm−1) can be detected with the spectroscopic setups
and an additional 6 orders with the PPMS setup. An overview of the working ranges
is shown in Figure 3.12.

10 4 10 3 10 2 10 1 100 101 102 103 104

Wavenumber (cm 1)

PPMS

THz

FTIR

Figure 3.12: Overview of the spectroscopic ranges of the used experimen-
tal techniques: Fourier transform infrared spectroscopy - FTIR (30 cm−1 −
20000 cm−1), Quasi-optical THz-spectroscopy - THz (1 cm−1 − 36 cm−1) and
Physical Properties Measurement System - PPMS (below 0.0007 cm−1). PPMS
covers a much broader regime than shown in this picture, but the values are
treated like static properties, as the wavenumbers are small relative to the range
of THz and FTIR spectrometers.

Different combinations of these techniques have been used depending on the sam-
ple’s response in the infrared range. The merger of the data and the different data
processing methods are described in the individual results chapters covering the var-
ious materials studied.

Dynamic experiments detect the energy of the incoming radiation. Thus the mon-
itored energy of the photons can be expressed in different spectroscopic units. In

45



3.4 Experimental spectral ranges and units

general, the energy, E, and frequency, ν, of a photon are connected via

E = hν, (3.79)

with h being Planck’s constant. The frequency, ν, represents the number of oscilla-
tions of the electric field, E, per second. Thus, the basic unit is Hertz (1 Hz = 1 s−1).
For example many of the experiments performed in this thesis fall in the terahertz
(THz) range (1 THz = 1012 Hz).

Most of the numbers in this thesis are given in terms of the wavenumber, ν̄, typically
used in infrared spectroscopy. This is simply the inverse wavelength

ν̄ =
1

λ
=
ν

c
, (3.80)

with the typical unit being cm−1. Frequency is typically shown in GHz (equal to
109 Hz). These two units are easily convertible by multiplying the wavenumber in
cm−1 by a factor of ∼ 30 to obtain GHz (this factor comes from Eq. (3.80) and is just
the approximated value for the speed of light in cm GHz, c = 29.9792458 cm GHz).
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4
Low-frequency phonon
dynamics in rare-earth

langasites

This chapter covers the study of low-frequency phonons in langasite La3Ga5SiO14

and related rare-earth compounds. The class of materials is introduced, as well as
the data acquisition process. The first part of the results section covers the study
of an a-cut sample of La3Ga5SiO14, with a focus on the dynamics of an anomalous
low-frequency phonon for E‖c polarised light. This anomalous lattice mode is linked
to the high static permittivity in this system, ε(0) ∼ 100. These results are then
compared with rare-earth substituted langasites. A softening of this mode can be
observed by increasing the mass of the rare-earth ion or by lowering the temperature.
This leads to the suggestion that langasites are close to a structural instability. The
last section gives an overview of c-cut samples of the same materials.

Large parts of the results, as presented in this chapter, were published in an article
in Physical Review B [85]. A further contribution was made to reference [86].

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 The prototype langasite - La3Ga5SiO14 . . . . . . . . . . 53

4.3.1 E‖c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 E‖b* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Rare-earth substituted langasites . . . . . . . . . . . . . . 59

4.4.1 E‖c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 E‖b* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Isotropy of langasite c-cut samples . . . . . . . . . . . . . 65

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

47



4.1 Introduction

4.1 Introduction

The family of langasites (with general formula A3BC 3D2O14) has been studied inten-
sively since the 1980s [87]. A huge variety of isostructural compounds can be grown
by exchanging the cations on the A-, B-, C- and D-sites in the formula above [87–
92]. La3Ga5SiO14 (LGS) is considered to be the parent compound,10 even though
the isostructural Ca3Ga2Ge4O14 was discovered earlier [87]. In the early years after
its discovery, the piezoelectric behaviour of langasites attracted considerable research
interest, being studied intensively over the last 40 years [93–99]. Nowadays, possible
applications of these materials have been demonstrated in, for example, high temper-
ature acoustic wave devices [100–103] and high temperature nanobalances [104, 105].

The langasites belong to the P321 space group [87], connected to a Bravais lattice
with a primitive (P) unit cell. Crystals of this space group are characterised by a
c-axis with a threefold symmetry11 and two two-fold symmetry axes, perpendicular
to the c-axis. The P321 space group is non-polar12 and non-centrosymmetric.13

Figure 4.1 shows the structure of a langasite crystal consisting of two alternating
layers, ordered perpendicular to the c-axis. One layer is made out of La3+ decahedra
(A-sites) and Ga3+ octahedra (B -sites), the other layer consists of Ga3+ (C -sites)
and Si4+/Ga3+ tetrahedra (D-sites), oxygen is finally positioned at the corners of the
polyhedra [87, 107].

The application of an external mechanical force along the a crystallographic di-
rection leads to a distortion of the lattice involving the displacement of A-site ions
away from the center of their polyhedra, such that an electric dipole is created [110],
and the crystal becomes piezoelectric. The piezoelectric effect increases for larger
ionic radii of the A-site cations, because the A-site polyhedra expand as well (in the
a-direction), thus less force is necessary for a distortion of the lattice [96].

Iron langasites (A3BFe3D2O14) have attracted the interest of the research commu-
nity mainly due to their magnetoelectric and multiferroic properties [111–115]. In
examples such as Ba3NbFe3Si2O14, the spin 5/2 iron ions feature a magnetic mo-
ment [111]. The Fe3+ ions form an array of isolated triangles in the ab-plane situated
in the layer composed of the C - and D-sites and interact antiferromagnetically [111].
This geometry leads to frustration (as already shown in Figure 1.1), although fur-
ther interactions with the Fe ions of other triangles yield a more complicated sys-
tem [10, 111].

These intertiangular interactions include those between the Fe ions imbedded on
separate triangles both within the ab plane and along the c axis (interlayer) [10].
Interestingly, the strongest of these intertriangular interactions occurs between Fe
ions along the c-axis but not directly parallel to it [10]. The chirality of the crystal
defines the stronger interaction [111]. All together, the sum of these interactions

10La3Ga5SiO14 is also responsible for the name langasite, as it is LANthanum GAllium SIlicaTE.
11n-fold symmetry axis: rotation by 360◦/n is the identity.
12A crystal is called polar if there exists a set of points (line, plane) such that each of these points

remains unmoved by any symmetry operation and can be used as an origin [106].
13No point X exists such that for every atom at position r with respect to X, an atom of the same

type is placed at -r.
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4 Low-frequency phonon dynamics in rare-earth langasites

Figure 4.1: The langasite structure. In the upper plot, the orange La3+ ions
form the kagome network. The lower plot shows the layered structure of lan-
gasites. A legend to the right shows the polyhedra of the individual ion sites
along their Wycoff positions. Oxygen ions are located at the corner sites of
the polyhedra, but excluded in this figure. The graphic was generated using
the Vesta software package [108] and crystalline information from [109]. Figure
adapted from Reference [85].

forces the spins to arrange themselves in 120◦ steps within the triangle (the direction
of the 120◦ rotation states the chirality within the triangle), with a helical modulation
between layers along the c-axis through the crystal [10].

Recently, in our research group, we have investigated the magnetoelectric effect of a
diluted rare-earth langasite [86]. In rare-earth langasites of the type R3Ga5SiO14, the
effects of magnetic frustration result from the arrangement of magnetic rare-earth
cations R (situated on the A-sites) in a distorted kagome-like network in the ab-
plane [19], see Figure 4.1. In these systems, magnetic ordering is not observed even
at very low temperatures, despite strong magnetic interactions [19]. Inelastic neutron
scattering experiments performed on Nd3Ga5SiO14 indeed show signatures of spin-
liquid behaviour, such as the lack of long-range ordering down to temperatures in
the mK regime [116] and a coorperative paramagnetic behaviour [117, 118]. In other
studies, crystal electric field effects of the rare-earth ions are taken account, such
that single ion quantum processes are proposed as the origin of the novel magnetic
behaviour of this system [119].

Besides the prototype compound LGS, three more langasites were studied in the
course of my thesis. These crystals differ by the replacement of the La3+ ions with
other rare-earth elements. A full replacement of La with Nd and Pr is possible,
leading to Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) crystals. In the case of Ho,
a complete substitution is not possible, most probably due to the large difference
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4.2 Data processing

in their ionic radii (La 103 pm and Ho 90 pm [120]). Thus, only diluted samples of
the type (HoxLa1−x)3Ga5SiO14 can be grown, with x = 0.015 ± 0.002. A picture of
the four a-cut crystals is shown in Figure 4.2. Here, one can nicely see the different
colors of the four samples. The langasite samples studied were typically rectangular
plates with edges of ∼ 7 mm and a thickness of ∼ 1 mm. While LGS crystals are
commercially available, the other samples were grown using the Czochralski method
by collaborators from the Moscow State University (HoLGS and NGS) and from the
Moscow Power Engineering Institute (PGS). Crystals of the c-cut type were studied
for LGS, HoLGS and NGS.

The cut of a crystal gains information about the axes lying in the surface plane. For
a-cut langasite samples these are the b* and c crystallographic directions. Figure 4.1
shows that the b axis is not perpendicular to the a axis. Thus, the b* direction is the
projection of the b axis to the plane perpendicular to the a axis. The c-cut crystals
cover the a and b (as well as a* and b*) axes and are isotropic. Thus, my studies
focus on the a-cut samples, that cover all possible information about the lattice. An
additional check of the isotropy of the c-cut crystals is performed.

Figure 4.2: Photo of the four langasite a-cut crystals. Silver tape used for
mounting is attached to the edges of the samples. From left to right: LGS,
HoLGS, NGS, PGS.

4.2 Data processing

The LGS a-cut sample was first measured in the FTIR spectrometer under room
temperature conditions, without the cryostat, for both polarisations (E‖b* and E‖c).
Here the different settings of the spectrometer (Section 3.1.2) were used to obtain
data between ∼ 25 cm−1 and 14000 cm−1. The reflectance, obtained in the THz and
MIR settings, was rescaled before merging, such that a smooth overlap between the
data of neighboured settings can be achieved. The steps in the reflectance of the
neighboured spectral ranges are due to misalignment. Now, by rescaling individual
reflectance spectra we can reduce the uncertainties of the global measurement.

It is necessary to fit the data and extrapolate for the frequencies below the detection
limit of the FTIR spectrometer. This is because data is needed from 0 cm−1 to
high frequencies to perform the Kramers-Kronig analysis. There are two options
available for this procedure. If the first excitation is at a wavenumber in the order of
∼ 100 cm−1, such that data is available down to a regime with constant reflectance,
the missing part can be approximated as constant in agreement with the lowest known
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4 Low-frequency phonon dynamics in rare-earth langasites

value. Alternatively, a more precise way is to approximate the low frequency trend
with a Lorentzian oscillator, fit to the lowest frequency phonon (see Section 2.2). The
software package RefFIT [121–123] is a nice tool for this kind of fits. One capability is
to fit the reflectance data with Lorentzian oscillators, such that the dielectric function
ε(ν̄) is expressed as a sum of Lorentzians:

ε(ν̄) = ε∞ +
∑
i

∆εiν̄
2
i

ν̄2
i − ν̄2 − iν̄γi

, (4.1)

with ε∞ being the high-frequency dielectric permittivity. The properties ν̄i, ∆εi and
γi are the resonance frequency (in wavenumbers), the dielectric contribution, and the
damping of the ith Lorentzian oscillator, respectively.

The provided model can be either expressed in terms of reflectance or, for example,
the dielectric function. It is crucial to incorporate as much of the data as possible,
to get a good low-frequency fit. Small excitations can be ignored in the first approx-
imation, since the focus is on the lowest frequency band. In the case where there
are phonons with frequencies close to the lower limit of the raw data (here internal
reflections of the beam splitter lead to fringes), one must be careful that the raw
data and the RefFIT model overlap well at the merging frequency. Otherwise discon-
tinuities can arise in the data and the proceeding data analysis can produce artefacts.

Fitting procedure for E‖c polarisation:
Unfortunately, the lower cut-off frequency of the raw data is close to the lowest fre-
quency phonon in the E‖c polarisation. Here, the slope in reflectance can lead to
very unstable fits, with inclusion or exclusion of a single data point leading to a big
difference in the resulting fit. Thus, a series of three fits is necessary to provide
accurate repeatable results.

1. The first step focuses on fitting well above 100 cm−1.

2. The second step takes the static permittivity, ε(0), into account giving the cor-
rect values for R(0) in the model. This value, εPP , was typically obtained by
conducting measurements in the PPMS. As the PPMS performs measurements
at frequencies (∼ 10 kHz) far below the detection limit of the FTIR spectrom-
eter, these data points can be approximated as static values. The imaginary
part of ε(0) is assumed to be negligible in the frequency range of the PPMS
measurements. I then calculate the reflectance using the dielectric function via
Eq. (2.20), neglecting the imaginary part, yielding

R(0) =

∣∣∣∣∣1−
√
εPP

1 +
√
εPP

∣∣∣∣∣
2

. (4.2)

This calculated R(0) is now included to the approximation. The RefFIT pack-
age is able to fit both, the FTIR reflectance and R(0), simultaneously. The
software aims to minimise χ2, the sum of squared differences between raw data
and fit for every data point. Now, the FTIR reflectance data contains ∼ 1000
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4.2 Data processing

data points, but R(0) only a single one. Thus, the fit is not affected. This can
be solved by weighting the individual χ2 of the two data sets. A ratio of 1:3000
for FTIR:R(0) gives accurate results for very low frequencies and remains the
fit unchanged above ∼ 150 cm−1.

3. Finally, it is then necessary to remove R(0) from the fitting routine to give
a smoother transition from fit to measured data for the third and final fit.
Typically, this final fit is now much more stable and is used below ∼ 32 cm−1.
At this frequency the fit and the raw data now overlap well.

Fitting procedure for E‖b* polarisation:
The E‖b* case, on the other hand, is easier. Here, the raw data is mostly flat below
60 cm−1. Thus, the RefFIT fitting is largely stable, without any further problems.
There is no need to include static permittivity results. Here, the standard RefFIT
model is used from 0 cm−1 to ∼ 50 cm−1.

Above ∼ 3000 cm−1 the quality of the spectrum decreases (independent from the
polarisation). No phonons were observed in this spectral region. The reflectance is
mostly flat. Thus, a constant was used as an approximation above 3000 cm−1.

The Kramers-Kronig (KK) analysis was then used to calculate the dielectric func-
tion, ε(ν̄) (for details see Section 3.1.4). The upper limit (ν̄max) of the phase integral
(Eq. (3.52)) was set to 15000 cm−1 for all langasite spectra, and the dielectric func-
tion was calculated between 0 cm−1 and 3000 cm−1. That function was then fitted
again using RefFIT and the results were compared with the previous fit to ensure the
quality of the KK analysis.

Significant parts of my studies were performed by cooling down the LGS crystal
in the cryostat, while scanning the reflectance along both crystallographic axes. In
total, the sample’s reflectance was studied at eight temperatures between 10 K and
300 K. Due to the limited working range of the cryostat, the data can only be ob-
tained in the THz and FIR settings of the FTIR spectrometer (between 25 cm−1 and
650 cm−1). For the E‖b* polarisation, the FIR setting was used exclusively. For E‖c,
both settings were used, with the data merged at overlapping data points around
∼ 45 cm−1. Since the cryostat data differs systematically from the spectra without
the cryostat, all spectra from one series are rescaled with a temperature-independent
factor, such that the two FIR measurements at room temperature (with and without
cryostat) overlap. To include the spectral weight of phonons above 600 cm−1, the
MIR data, obtained without using the cryostat, was added to the cryostat data. This
data has large influence only on the high-frequency permittivity, ε∞, and phonons
above 600 cm−1. Thus, the errors induced by the lack of low-temperature data do not
influence the model of the low-frequency phonons. The dynamics of the phonons cov-
ered exclusively with the MIR setting are not studied. The low- and high-frequency
approximations were performed in the same way as described above.

The rare-earth substituted a-cut langasites were also studied in general in the same
way, under identical experimental conditions. Thus, the data analysis process is valid
for these samples as well.
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4 Low-frequency phonon dynamics in rare-earth langasites

The c-cut crystals were given less focus, because an isotropic reflectance is expected
(identical to E‖b* of the a-cut sample). Scans were performed in the cryostat using
the THz and FIR settings at 10 K and 300 K only. However, no Kramers-Kronig
analysis was done for this group of samples, thus the fitting procedure was skipped
as well. The raw reflectance measurements of these samples are covered separately
in Section 4.5.

4.3 The prototype langasite - La3Ga5SiO14

4.3.1 E‖c
The characteristic reflectance spectrum of LGS (with E‖c polarisation in the FIR
regime of the FTIR spectrometer) is shown for three temperatures in Figure 4.3. At
room temperature a strong phonon is observable at ∼ 40 cm−1. This low frequency
phonon is observed to split into two phonons with decreasing temperature. Here,
the arrows labelled as P1 and P2 indicate this low-frequency phonon structure. The
inset highlights details of the temperature evolution of these two phonons. The full
broadband spectrum, covering the complete measured reflectance, is shown later in
Figure 4.9. In total, 17 phonons are observed using the FTIR spectrometer (counting
two for the low-frequency structure). A list, summarising all fitted frequencies is
given in the Appendix (Table A.1).
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Figure 4.3: Reflectance of pure langasite (LGS) for E‖c between 20 cm−1

and 600 cm−1. The four arrows indicate the positions of four lowest frequency
phonons. The inset shows a zoomed in section of the reflectance for the spectral
region covering the low-frequency phonon and a range of temperatures. Figure
adapted from Reference [85].

Two Lorentzians are necessary to provide a good fit of the low-frequency structure
at 10 K. When increasing the temperature, the frequency of P1 moves towards P2.
From the 200 K measurement on, it is not clear if the fit with one or two oscilla-
tors gives better agreement. However, all of the cryostat data was fitted using two
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4.3 The prototype langasite - La3Ga5SiO14

phonons. A comparison of fits using one and two oscillators is plotted in Figure 4.4.
This figure highlights the agreement between the two-phonon fits and the raw data at
∼ 30 cm−1. The data for static permittivity, included to the fit, was extracted from
Mill et al. [87].
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Figure 4.4: Comparison of raw reflectance with fits of LGS (E‖c). The data
points in faded colors represent the raw data from the FTIR measurement from
∼ 30 cm−1 on. Full lines are fits with two Lorentzian oscillators, as used for
the further data treatment. In comparison, dotted lines are fits with a single
phonon. The one-phonon fit seems to be the better choice only for the highest
temperature, 300 K. Figure adapted from Reference [85].

After performing the Kramers-Kronig analysis, the dielectric function was obtained
and is plotted in Figure 4.5. Here, it is clear that the spectra are dominated by the
influence of the low-frequency phonons. Spectra of the real part, ε1, show that the
main contribution to the large static permittivity, ε(0) ∼ 100, is a result of P1 and P2.
Other phonons seem to have only a minor influence. According to Mill et al. [87], ε(0)
increases for lowering temperature. Here, the same behaviour could be observed. In
ε2, the large peak due to the low-frequency phonon dominates the complete spectrum.
The maximum value is ∼ 270 and thus is 10 times larger than that of P3 and P4. At
lower temperatures, a sharpening of the phonons can be observed.

At 10 K, the maximum of P3 and P4 in ε2 is ∼ 25 and decreases for larger tempera-
tures. The resonance frequency of these excitations stays almost constant. Figure 4.6
showcases the fits of the P1 and P2 phonons in terms of ε2. Here, both phonons move
toward higher frequencies for increasing temperature. P1 shifts more rapidly, thus,
it seems that the two phonons merge.

An overview of the fitting parameters of the first four Lorentzian profiles as a
function of temperature is presented in Figure 4.7. Here, one can see the resonance
frequency, ν̄0, of the oscillators as well as their dielectric contribution, ∆ε (with
∆ε = ν̄2

P/ν̄
2
0). The primary contribution to the static permittivity comes from the
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4 Low-frequency phonon dynamics in rare-earth langasites

P1 and P2 phonons. All other contributions are in the range between ∆ε = 0 and
∆ε = 2. While the difference in spectral weight (SW = ∆ε · ν̄2

0) of both phonons, P1
and P2, decreases (and finally changes sign at 300 K), the sum of them (SWP1+SWP2)
remains constant (see inset of Figure 4.7).

Figure 4.7(b) shows, in more detail, the unique behaviour of the P1 mode. This
phonon softens (its frequency moves towards zero), while the frequencies of all other
modes remain almost constant. A soft mode often indicates a structural transition,
as described in Section 2.3.1. Here, I introduce Cochran’s law (Eq. (2.48)) connecting
the squared frequency of the soft mode with the critical temperature of a transition.
In the case of the LGS P1 phonon, this temperature was fitted to TC ∼ −740 K.
Here, the temperature is fitted to be negative. (The temperature dependency of the
squared frequency is presented in comparison with the other samples in Figure 4.11.)
Thus, a phase transition cannot be reached. The application of an electric field that
overcomes 740 times kB, the Bolzmann constant, would close this energy gap and
a transition is possible. A simple model14, assuming a cosine-like potential, expects
electric fields in the order of 109 V/m. The anomalous low frequency structure is seen
for E‖c polarisation. The displacement of the mass due to the oscillations leads to a
loss of the two-fold axes, perpendicular to the c-axis of the P321 space group. Thus,
the transition yields a P3 space group, that is a polar phase.

The full study of the static dielectric permittivity (ε(0)) of LGS is presented in
Section 4.4.1 in comparison with all langasites studied in the frame of my thesis.

14We assume a cosine-like potential, W ,

W = −W0 cos(2πx/a),

with, a ≈ 0.5 nm, being the lattice constant and x ≈ 0, being the position of the La3+ ion. Now,
the force, F , is defined as

F = −∂W
∂x

= −W0
2π

a
sin(2πx/a) ≈ −W0

(2π

a

)2
x.

The equation of motion is

−W0

(2π

a

)2
x = mẍ.

The substitution,
x = cos(ωt),

yields

ω2 =
W0

m

(2π

a

)2
.

Thus, with ω = 40 cm−1, m, the mass and Q, the charge of the La3+ ion, we get

W0 =
ω2ma2

(2π)2
∼ 0.5 eV.

Fmax = W0
2π

a
= ωm

a

2π
= EQ.

E = W0
2π

a

1

Q
=
ω2ma

2πQ
∼ 109 V/m.
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Figure 4.5: Dielectric function of pure langasite (LGS) E‖c, split into the real
part, ε1 (a), and the imaginary part, ε2 (b). In (b), the four arrows indicate the
fitted positions of the four phonons with the lowest four resonance frequencies.
Here, the spectra are dominated by the low-frequency structure of the P1 and
P2 modes. One can see the strong shift of P1 towards higher frequencies, while
P3 and P4 stay constant. Figure adapted from Reference [85].
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4.3.2 E‖b*

A higher number of phonons can be seen in the FIR regime for E‖b* polarised light,
as shown in Figure 4.8. In this range a total of 22 optical phonons could be detected.
Here, the reflectance spectra of LGS are plotted for three different temperatures
(10 K, 200 K and 300 K) between 50 cm−1 and 550 cm−1. All data was obtained using
the cryostat. A full broadband reflectance spectrum is shown later, in comparison
with the substituted langasites, in Figure 4.14(a).

For polarisation E‖b*, the complete phonon structure stays almost constant in
the investigated temperature regime between 10 K and room temperature (see Fig-
ure 4.8(a)). Only a weak phonon at ∼ 310 cm−1 is observed to vanish at higher
temperatures. Small shifts of the resonance frequency are also observed when chang-
ing temperature, similar to the E‖c phonons at frequencies above 100 cm−1 (Fig-
ure 4.8(c)). Typically, a broadening occurs at higher temperatures. The static per-
mittivity (see Figure 4.8(b)) remains rather constant, nevertheless a subtle trend to-
wards decreasing values can be seen when cooling down the sample. This behaviour
of ε(0) is in agreement with measurements of this property presented in reference [87].
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Figure 4.8: Reflectance (a) and dielectric function (b,c) of LGS for E‖b* at
different temperatures in the FIR range. Figure adapted from Reference [85].
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4 Low-frequency phonon dynamics in rare-earth langasites

In this direction, no low-frequency softening phonons can be seen. The lowest
phonon is situated around 90 cm−1.

In total, the reflectance study reveals 39 fitted phonons (17 for E‖c and 22 for
E‖b*). The number of optical active phonons can be theoretically achieved out of the
crystalline structure. Here the Bilbao Crystallographic Server [124, 125] was used to
calculate a total of 37 optical active modes for La3Ga5SiO14. The full representation
reads as follows:

Γ = 11A
(R)
1 + A

(A)
2 + 13A

(IR)
2 + E(A) + 24E(IR+R).

Here, the superscripts represent acoustic (A), Raman (R) and infrared (IR) active
modes. Information about the LGS crystallographic structure was taken from [109].
A detailed look at all listed resonance frequencies (Appendix A.1.1) shows that a
phonon is visible at ∼ 733 cm−1 for both polarisations. This mode seems to be de-
generate, appearing along both investigated crystallographic directions. The low-
frequency structure for E‖c is counted as two phonons (P1 and P2). The P1 mode
approaches P2 with increasing temperature. Thus, it is possible that one mode splits
into P1 and P2. The half Si / half Ga occupation of one site could cause a local
distortion of the A-sites in the crystal, leading to an additional mode.

4.4 Rare-earth substituted langasites

Three additional langasite a-cut samples of Nd3Ga5SiO14 (NGS), Pr3Ga5SiO14 (PGS)
and (HoxLa1−x)3Ga5SiO14 (HoLGS) are studied in the same way as LGS, in order
to investigate the influence of substituting the La ions with different rare-earth ele-
ments. The aim is to check whether the anomalous low frequency structure of the E‖c
polarisation can be observed in all substituted langasites and how the mode depends
on the rare-earth ion. The results are summarised in this section.

4.4.1 E‖c
The main goal of the measurements with E‖c polarisation was to investigate the
influence of rare-earth substitution on the low-frequency phonon. Figure 4.9 shows
the room temperature reflectance of all four langasites as a comparison. Here, one can
see, the anomalous low-frequency phonon structure exists in all investigated samples.
Thus, this low frequency phonon seems to be a general feature of the langasite family.

The langasite structure seems to be generally stable, with the rare-earth substitu-
tion leading only to minor differences in the reflectance between different samples.
The shape of the four curves is almost identical. Full spectra of the substituted
langasites are presented in Appendix A.1.2.

However, a closer look into the reflectance data reveals that the low-frequency
structure is shifted for the different samples. Plots of the dielectric function give a
clear proof that the maximum in ε2 of the anomalous mode (and so the resonance
frequency of that structure) depends on the material. The dielectric function is
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Figure 4.9: Room temperature reflectance of all four langasite samples for E‖c
polarisation. The spectra are conducted without the cryostat and are plotted
between 30 cm−1 and 1500 cm−1. Figure adapted from Reference [85].

plotted in Figure 4.10(a,b). All data shown here was obtained under atmospheric
conditions and was measured without the use of the cryostat. Fits were performed
using a single Lorentzian oscillator to model the anomalous low-frequency structure
in RefFIT. The modelled resonance frequencies are summarised in the Appendix
(Table A.1). HoLGS has, just like LGS, 17 optical phonons in the E‖c polarisation.
The other langasites, NGS and PGS, show an additional excitation at ∼ 135 cm−1,
as shown in the inset of Figure 4.10(b).

The fitting parameters of the low-frequency phonon were studied in more detail to
see the possible effects of the rare-earth substitution. Thus, the resonance frequency
(ν̄0), the dielectric response (∆ε) and the spectral weight (SW ) of the first model
oscillator are plotted as a function of the atomic number of the rare-earth element in
Figure 4.10(c-e). In the case of HoLGS, an effective atomic number is used, calculated
from the ratio of Ho and La in the crystal. The atomic number has no direct physical
property in the lattice, so the fitting parameters are also plotted as a function of the
atomic mass and the ionic radius. The errorbars represent the uncertainty assuming
a 5 % variation in reflectance.

The resonance frequency shifts linearly towards lower wavenumbers for increasing
atomic number (Figure 4.10(c)). Extrapolating for full Ho-substitution, the trendline
approaches a resonance frequency of ∼ 22 cm−1, roughly half of the value of the LGS
mode. This softening for smaller ionic radii could be the explanation for the instability
of HoLGS single crystals with higher amounts of Ho. Holmium has an ionic radius
of 90 pm, much smaller than all the other substitution rare-earth elements.

The dielectric contribution of the lowest oscillator has the opposite behaviour com-
pared to the resonance frequency (Figure 4.10(d)). It increases for larger atomic num-
bers. Both effects lead to constant values of the spectral weight of this Lorentzian
oscillator (Figure 4.10(e)).

Figure 4.11 shows the squared frequencies of the P1 mode. Linear fits are included
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Figure 4.10: Dielectric function of all four langasite samples for E‖c (a,b).
The inset in (b) highlights the additional weak excitation of NGS and PGS at
around 135 cm−1. Fitting parameters of the anomalous low-frequency phonon
structure including resonance frequency (c), dielectric contribution (d) and spec-
tral weight (e). Linear trend lines of these properties are plotted on top. Data
obtained at room temperature, the low-frequency structure is fitted using a
single oscillator only. Figure adapted from Reference [85].

to highlight the baseline interception point. This would correspond to a complete soft-
ening of the mode. Taking this assumption and applying Cochran’s law (Eq. (2.48))
we can approximate the critical temperature, TC , of a potential structural instability.
This temperature increases for increasing atomic number of the substituting ion. For
positive values of TC , a structural phase transition to a polar phase (space group
P3, as mentioned above) would be expected at that temperature. A linear fit of the
critical temperature as a function of the atomic number of the rare-earth ion gives
positive values for atomic numbers of 62 (Sm) and greater.

Some more information can be extracted from the dielectric permittivity curves,
as it is clearly visible that ε1(0), and so ε(0), are different for each individual sample.
Mill et al. [87] showed that static permittivity values are different for various members
of the langasite family.

Static permittivity can be extracted from reflectance using the RefFIT model.
Fits were performed for all four langasites using two oscillators for modelling the
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4.4 Rare-earth substituted langasites

Figure 4.11: Squared frequencies of P1 phonon of all four langasites. Linear
fits intercept the baseline at different temperatures (the 30 K data point of PGS
was excluded). Figure adapted from Reference [85].

low-frequency structure and the results are plotted individually in Figure 4.12. A
trend towards lower static permittivity for increasing temperature can be seen for
all samples. This figure further shows the good agreement between the measured
(fitted) FTIR spectral data and the static measurements performed with the PPMS.
The sum of the two phonons of the low-frequency structure is marked. Here one
can see that there is a temperature-independent contribution missing to match ε(0)
in each sample. Now, this is the sum of the dielectric contribution of all phonons
excluding the P1 and P2 phonons. Figure 4.7(a) shows that the dielectric contribution
of the LGS P3 and P4 phonons remains stable in the investigated temperature range.
Thus, the dielectric contribution is assumed to be temperature-independent for all
phonons except the low-frequency phonon structure. As our LGS sample was not
studied in the PPMS, ε(0) data was taken from [87]. These values are identical to
the data of the HoLGS sample (data from [126], see the LGS plot of Figure 4.12).
This is not unexpected, because the low Ho amount does not show large influence.
The static measurements of NGS and PGS have been performed by A. Kuzmenko at
the Moscow General Physics Institute.

The quasi-optical THz setup was used to study the phonon spectra at frequencies
below the detection limit of the FTIR spectrometer (from 8 cm−1 to 15 cm−1). Here,
the HoLGS crystal was exclusively probed in transmission along the E‖c polarisation.
The results gain details of the low-frequency shoulder of the P1 and P2 modes.
Figure 4.13(a) presents a transmission spectrum conducted at 2 K including a fit
with a Lorentzian profile. This fitted frequency is in close agreement with the FTIR
data (at 10 K).
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Figure 4.12: Comparison of static permittivity of the four langasites for E‖c
polarisation. The coloured errorbars represent the static permittivity obtained
using RefFIT with 5 % uncertainty in reflectance. The orange crosses represent
the dielectric contribution, ∆ε, of just the low-frequency anomalous structure.
Full blue lines represent the static permittivity measured in the PPMS. In the
case of LGS, PPMS data from HoLGS is plotted (taken from [126]) and the LGS
data is from Mill et al. [87]. Blue crosses on top of the NGS PPMS data show
additional measurements with the quasi-optical THz spectrometer at 3 cm−1.
Figure adapted from Reference [85].
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4.4 Rare-earth substituted langasites

Now, in this setup magnetic fields can be applied up to 7 T. The relative change in
transmission is presented in Figure 4.13(b). The figure shows that the transmission
increases with larger magnetic fields, but ends in saturation above ∼ 4 T. This field
strength is in the order of the saturation of the magnetic moments in HoLGS, as shown
in reference [86]. This behaviour could be a signature of a spin-lattice coupling. For
more details on this transmission measurements see references [85, 126].

Crystal electric field (CEF) levels are observed in close proximity to the P1 phonon
in NGS [127]. This leads to the suggestion that spin-lattice dynamics have to be in-
cluded in the discussions about the local environment of the magnetic ions. Interest-
ingly, a CEF level is also expected for HoLGS in proximity to the P1 mode [86]. Ho3+

ions are non-Kramers ions, oppositely to Nd3+, such that doublets are not protected.
Thus, a vibronic coupling is possible between the phonons and the CEF levels. A
more detailed report on the CEF levels in langasites including a deeper discussion is
presented in my paper, reference [85].

8 10 12 14
Wavenumber (cm 1)

10 2

10 1

Tr
an

sm
iss

io
n 

(0
T)

(a)
Fit

Raw data

8 10 12 14
Wavenumber (cm 1)

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Re

la
tiv

e 
tra

ns
m

iss
io

n (b)
7T
4T
3T
2T
1T
0T

Figure 4.13: Measurements of the HoLGS transmission (E‖c polarisation) per-
formed using the THz-spectrometer. (a) Comparison of raw transmission and
fit at 2 K, (b) relative change in transmission for different external magnetic
fields, H‖b*. Figure adapted from References [85] and [126].

4.4.2 E‖b*

This series of measurements focuses on the differences between the four materials.
Similar to the c-direction, the four samples show an almost identical reflectance curve
as plotted in Figure 4.14(a). The phonon frequencies are only slightly shifted. A shift
of spectral weight between the phonons can be observed.

The LGS and HoLGS crystal show one additional excitation, that can be seen
as a right shoulder of the 100 cm−1 phonon in Figure 4.14(b) (fitted resonance at
∼ 113 cm−1). This is exactly opposite to the other polarisation, where NGS and PGS
show one additional weak phonon. Thus, the sum of all observed phonons remains
constant for all four investigated langasites. A more detailed overview of the spectra
of the substituted langasites is given in Appendix A.1.2.
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Figure 4.14: (a) Broadband reflectance (between 50 cm−1 and 1500 cm−1) and
(b), imaginary part of the dielectric function (from 50 cm−1 to 550 cm−1) of the
four a-cut langasite samples obtained for E‖b* polarisation. The inset highlights
the area around 113 cm−1, the arrow indicates the additional peak of the LGS
and HoLGS sample in ε2. Figure adapted from Reference [85].

4.5 Isotropy of langasite c-cut samples

An overview of the studies of langasite c-cut samples will be presented in this sec-
tion. Here three langasites were studied, LGS, HoLGS and NGS. This type of cut
gives information about the a and b crystallographic directions (as well a* and b*).
These samples should be isotropic, according to their crystalline symmetry. Thus,
the reflectance should be identical for any arbitrary angle of polarisation.

A small survey of these crystals was performed to verify that rare-earth substitu-
tion does not lead to anisotropy of the two-fold symmetry axes. For this purpose,
scans were performed in the FIR and THz settings of the FTIR spectrometer while
varying the polarisation angle in steps of 15◦. This was done at two temperatures,
room temperature and 10 K. It was found that the detected reflectance is independent
of the polarisation angle, for each crystal at all temperatures. Figure 4.15 shows this
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for the example of the HoLGS c-cut crystal. Here, one can see that the data of the
different angles of polarisation overlap very nicely above 100 cm−1. The spectra be-
come noisier at lower frequencies, thus the different polarisations show small changes
in the reflectance. One additional feature can be seen at ∼ 420 cm−1. This wavenum-
ber region covers two close lying phonons at 300 K that seem to be identifiable as two
only at lower temperatures. Only the measurement at 90◦ shows the clear splitting
at all temperatures. This could be due to an anisotropy in the Ho stuffing within the
crystal.

As discussed above, the reflectance of this plane should be identical to the E‖b*-
results of the a-cut samples. Thus, in the figure, this measurement is added to those
of the c-cut spectra. The shape of the reflectance of both samples is generally similar.
Almost perfect overlap is achieved after rescaling the a-cut reflectance by a factor of
1.1. Thus, the isotropy of the samples can be verified as well as the correct sample
orientation. Interestingly, the ∼ 420 cm−1 result of the 90◦ scan is observable in the
E‖b* measurement.

4.6 Summary

The phonon spectra of La3Ga5SiO14 are studied in detail and compared with three
other isostructural materials of the langasite family. The reflectance was detected
with an FTIR spectrometer at various temperatures between 10 K and 300 K. Static
measurements were performed additionally using the PPMS setup. Spectra for E‖c
polarisation are dominated by an anomalously strong phonon at ∼ 40 cm−1. A weaker
excitation is observed close by, such that those phonons merge at higher temperatures
(∼ 100 K). Rare-earth substitution of La3+ ions leads only to minor changes in the
phonon spectra. The strongest effect can be seen in the low-energy phonon. Its
frequency decreases linearly with increasing atomic number of the substituting ion.
Together with the temperature-dependent softening of this mode, this effect gives
rise to an emerging lattice instability of the langasite structure. A transition from
the P321 space group to a close lying polar P3 phase is suggested for full softening
of this low-frequency phonon. Magneto-optical measurements on HoLGS (for E‖c)
show that the applied magnetic field effects the dynamics of the lowest frequency
mode. The close lying CEF levels indicate the possibility for novel spin-lattice effects
in this compound.
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Figure 4.15: The reflectance of a HoLGS c-cut crystal is plotted in steps of
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ally, the E‖b* reflectance of the HoLGS a-cut crystal is plotted for comparison
(dashed line) and rescaled by a factor of 1.1. The angles of polarisation are
given relative to the vertical position of the polariser.
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5
Soft-mode lattice dynamics in

francisite

This chapter covers THz and FIR studies on francisite (Cu3Bi(SeO3)2O2Cl). An
introduction describes francisite and its prominent properties. A description of the
data acquisition and analysis process then follows. Our studies on the soft-mode and
lattice dynamics are shown in the results section, along with a discussion. The short
summary section closes this chapter.

A draft manuscript based on this chapter is currently under preparation for publi-
cation [128]. Furthermore, two student projects ([129, 130]) were supervised, dealing
with spectra at room temperature and with preliminary FTIR studies on francisite
at low temperatures.
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5.1 Introduction and structural properties of francisite

5.1 Introduction and structural properties of

francisite

Francisite (Cu3Bi(SeO3)2O2Cl or CBSCl) is a material from the family of selenites,
named after Glyn Francis, who first identified this greenish material in the Iron
Monarch ore body in southern Australia [131]. Besides this parent compound, halogen
substituted isostructural francisites of type Cu3Bi(SeO3)2O2X with X=Br, I [132, 133]
can be grown artificially. Crystals can also be synthesised by replacing Bi with rare-
earth elements such as Er, Sm, Eu and Lu [134–136]. The sample investigated in
the course of my studies is a 1 mm thick single crystal of Cu3Bi(SeO3)2O2Cl, with
its primary face (5 mm×5 mm) normal to the ĉ-axis. It was grown using a chemical
vapour method, as described in [75].

CBSCl francisite is characterised by a structural transition at TS = 115 K [132]
from the orthorhombic Pmmn space group to the Pcmn space group [131]. Below
TS, a doubling of the unit cell with respect to the Pmmn phase is observed [132]. The
structure of the low-temperature Pcmn phase is plotted in Figure 5.1. In the high-
temperature phase, layers of a buckled kagome lattice, consisting of CuO4 plackets,
are stacked along the ĉ-axis and separated by SeO3 pyramids. The Bi and Cl atoms
are located inside the hexagonal arrangement of the Cu2+ ions [132]. These copper
ions occupy two different inequivalent sites, Cu1 and Cu2 [75]. The spin half magnetic
moments of the copper atoms dictate the magnetic properties [133]. Phonon studies of
this compound revealed anomalous soft-mode behaviour and were an early indicator
of the structural transition in CBSCl [75, 137].

An antiferromagnetic ordering transition is reported below a Néel temperature of
TN = 25 K [133]. The hexagonal arrangement of Cu sites, as metioned above, forms a
layered kagome-like lattice. Dzyaloshinsky-Moriya (details see [138, 139]) interactions
lift the frustration, and when introduced, correctly model the stable antiferromagnetic
ground state [140]. This is the origin of the frustrated magnetism in francisite [133],
since there is competition between ferro- and antiferromagnetic interactions of the
Cu1 and Cu2 ions [137, 141, 142]. A more detailed picture of francisite’s magnetic
behaviour is presented in e.g. [141]. Studies performed by inelastic neutron scattering
show that the anisotropy in the interaction energy has to be included to model the
spin dynamics correctly [132].

Early suggestions that the low temperature Pcmn phase could support an antifer-
roelectric state were first put forward in reference [143]. Indeed, our collaborators
from the University of Luxembourg recently identified a non-polar vibrational soft-
mode that drives the phase transition at 115 K [144]. In more detail, the authors
claim that CBSCl is a Kittel-like example of a displacive antiferroelectric. So far no
ferroelectric phase of CBSCl has been reported. However a neighbouring FE phase
is a necessary condition for an AFE state. This chapter describes an infrared study,
performed to investigate the potential of a close lying ferroelectric state in francisite.
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(a)	   (b)	  

(c)	   (d)	  

Cu1	  

Cu2	  

Bi	  

Se	  

Cl	  

O	  

Figure 5.1: The low temperature (Pcmn) crystalline structure of
Cu3Bi(SeO3)2O2Cl. The pictures are adapted from [132], using the VESTA
software [108] and crystalline information from reference [132].

5.2 Data treatment

Both the FTIR and the THz-spectrometers were used to study the CBSCl francisite
c-cut sample. Details of the experimental methods are presented in Chapter 3. The
infrared reflectance was detected at various temperatures between 10 K and 300 K
using the FIR setting of the FTIR spectrometer. Again, data was collected along
both crystallographic axes, â and b̂. Each measurement includes averaging of 100
scans, performed with a 2 mm aperture.

Backward wave oscillators BWO-530 and BWO-800 were used to detect the com-
plex transmission of the sample in two ranges of approximately 8 cm−1 to 16 cm−1

and 20 cm−1 to 28 cm−1. The sample was mounted on mylar foil and masked with a
4 mm aperture. A picture of this arrangement is shown in Figure 3.11. As described
above in Section 3.2.2, the dielectric function can be calculated from this data. This
function features a vanishing imaginary component ε2. However, a larger contribu-
tion can be observed at 10 K due to an antiferromagnetic excitation. The reflectance
R can easily be calculated using Eq. (2.20),

R =

∣∣∣∣∣1−
√
ε

1 +
√
ε

∣∣∣∣∣
2

. (5.1)

The RefFIT program [121] was used to merge the reflectance data of both experi-
ments. The reflectance from the FTIR spectroscopy is used in the range from 50 cm−1
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to 700 cm−1. All spectra show an artefact between 700 cm−1 and 750 cm−1 due to a
beam splitter minimum in this range. This problem is overcome differently for the
two polarisations. For the E‖â measurements, the data above 700 cm−1 could not
be used at all. However, a spectrum of the MIR setting (a room temperature test)
of the spectrometer is added to provide a good high-frequency approximation of the
francisite’s reflectance of this polarisation. In the other direction, only the reflectance
of the artefact was excluded from the fit, with the 750 cm−1 to 950 cm−1 FIR data
being included. Another minimum of the beam splitter requires omitting points be-
tween 838 cm−1 and 845 cm−1 as well. A comparison of the fit with the raw data is
presented in Figure 5.2 for both polarisations.

The FTIR reflectance is superimposed with fringes in the range below ∼ 400 cm−1.
This additional oscillating signal is an artefact due to internal reflections within the
thin sample. As a result, performing a Kramers-Kronig analysis of these spectra is
more difficult as the fringes in close proximity to phonon excitations can influence the
final result. Thus, the reflectance of the fit was used from 0 cm−1 to 15000 cm−1 to
calculate the dielectric function in the range from 0 cm−1 to 3000 cm−1 analytically.
For this, RefFIT is used to calculate the permittivity. A comparison of the dielectric
functions (using the fit and the KK-analysis) shows discrepancies below ∼ 1 % in
terms of resonance frequencies. Thus, for simplification, the permittivity determined
using the fitting model, is primarily used with the KK-analysis shown as an additional
check of the software. A comparison of both models is presented in Appendix A.2.2.

No phonons could be observed at frequencies above ∼ 950 cm−1. Thus, the broad-
band spectra, obtained at room temperature do not show any further information.
Since the THz-spectrometer was used as well, data of the THz setting of the FTIR
spectrometer was not necessary for a good low-frequency approximation of the data.

Static permittivity of the â-axis was obtained using the PPMS and an Alpha-A
analyser via capacitive measurements.

5.3 Results

5.3.1 Reflectance and dielectric function

The first spectroscopic studies on francisite were performed by Miller et al. [75] for
CBSCl and Wang et al. [145] for CBSBr in the FIR and THz range. However, detailed
report on the low-frequency lattice dynamics across the phase transition is still lack-
ing, although these works did contribute to a better understanding of the francisite
structure. Therefore, my studies focus on these low-frequency lattice dynamics, with
particular attention on a polar soft mode. Submillimeter THz spectroscopy opens
the door to better resolve the dynamics of the lowest frequency phonons.

Figure 5.2 gives an overview of the measured reflectance. Here, the raw data is
compared to the fits. The reflectance is shown for four characteristic temperatures.
These include 10 K and 300 K (the experimental limits of the setup), as well as 100 K
and 120 K (just below and above TS). In general, the reflectance is in nice agreement
with the data from Miller et al. [75]. A few weak excitations could not be modelled

72
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with stable fits. However, the predicted additional phonons are detected in the low-
temperature phase arising around the temperature of the structural phase transition.
A detailed list of the phonon frequencies and further fitting parameters is given in
Appendix A.2.1.
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Figure 5.2: Far infrared reflectance of CBSCl in the range from 10 cm−1 to
900 cm−1. The E‖â polarisation is shown in (a), with E‖b̂ shown in (b). Solid
lines represent the fit, single points show the raw data from both experiments.
Below 30 cm−1 the data was obtained using THz-spectroscopy, above 50 cm−1

FTIR spectroscopy is used.

This work aims to highlight the role of the lattice dynamics in the sub-THz regime
across the structural phase transition. Therefore, a more detailed picture of the
results is given in Figure 5.3, covering the range below 120 cm−1. The zoomed-in
reflectance is shown in Figures 5.3(a) and (d).

The dielectric function can provide a more clear picture of the lattice dynamics,
as shown in Figure 5.3(b,c,e,f). The real and imaginary parts of both polarisations
are shown here in the zoomed range below 120 cm−1 (full spectra are shown in Ap-
pendix A.2.2). Figures 5.3(b) and (e) show ε1, the real component of the dielectric
function. From this, the values for static permittivity (ε(0)) can be extracted. The
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E‖b̂ polarisation shows an increase of this property for lowering temperature. The
main contribution to static permittivity for E‖â is the lowest frequency phonon.
Here, a more interesting temperature dependency is observed. When cooling down
from room temperature to TS, ε(0) almost doubles. At temperatures below TS, it then
decreases rapidly again (see Figure 5.4(c)). The imaginary part of the dielectric func-
tion gives information about the phonon frequencies and is plotted in Figures 5.3(c)
and (f). Both polarisations are characterised by anomalous low-frequency phonons
occurring at ∼ 45 cm−1. These phonons are labelled as ν̄F for E‖â and ν̄0 for E‖b̂,
respectively. A strong softening can be observed for both excitations with decreas-
ing temperature. While ν̄0 softens monotonically for lower temperatures, ν̄F reaches
its minimum frequency at TS, it then hardens for temperatures below TS. Also the
second lowest phonon (labelled as ν̄a1 and ν̄b1, respectively) is seen to occur at a sim-
ilar frequency (∼ 75 cm−1 at 10 K) in both directions. While for E‖b̂ the frequency
stays stable, a softening can be seen for E‖â with increasing temperature towards TS.
Finally this oscillator cannot be resolved above 80 K.

5.3.2 Fits

The fitting parameters, including the wavenumber ν̄, damping constant γ and result-
ing dielectric contribution ∆ε, are plotted as a function of temperature in Figure 5.4.
The resonance frequencies are summarised in Figures 5.4(a) and (d). Here, it is clear
that the dynamics of the ν̄F and ν̄0 modes are, in comparison with the other phonons,
unique. Only those two phonons show a change of more than 5 % in frequency.

The damping of ν̄F , denoted as γF (Figure 5.4(b)), also shows a unique behaviour.
Below ∼ 40 K it stays constant at ∼ 2 cm−1. From here on, the damping constant
increases by a factor ∼ 7 while temperature approaches TS. In the high temperature
phase, γF remains almost constant. A similar behaviour can be seen for ν̄0 (see
Figure 5.4(e)). Here again, the damping increases strongly between 40 K and TS,
although the final jump is much weaker.

Figures 5.4(c) and (f) deal with the static permittivity, ε(0). According to Eq. (2.41)
this is the sum of all the oscillator’s dielectric contributions plus ε∞, the high fre-
quency permittivity:

ε(0) = ε∞ +
∑
i

ν̄2
p,i

ν̄2
i

= ε∞ +
∑
i

∆εi. (5.2)

In both polarisations, the main contribution comes from the lowest frequency os-
cillator. Along the â-axis, ∆εF has its minimum at the base temperature. It then
strongly increases by a factor larger than 6 to reach its maximum at TS. From here,
it then decreases for higher temperatures. The total static permittivity appears to
be shifted by a constant value above the contribution from this single phonon contri-
bution. This is a result of the small and mostly independent contributions from all
other oscillators. The property εa(0) was measured additionally with the PPMS.
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Figure 5.3: Far infrared reflectance and complex permittivity of CBSCl in the
range below 120 cm−1 as a function of temperature. Full lines represent the fits,
single data points show the experimental measurements. The left column shows
these properties for E‖â and the right one for E‖b̂. (a) and (d) show reflectance
data, (b) and (e) the real part of the dielectric function, ε1. Note that in (b)
the maximum of the static permittivity is at 120 K, close to the temperature
of the structural phase transition, TS = 115 K. The imaginary part, ε2, of the
dielectric function is presented in (c) and (f). The labels indicate the low-
frequency phonons found in each polarisation.
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Figure 5.4: Fitted properties of the CBSCl oscillators as a function of temper-
ature (left column (a-c): E‖â, right column (d-f): E‖b̂). The dynamics of ν̄F
and ν̄0 are highlighted in blue. The softening of these lowest frequency modes in
comparison to the other stable modes can be seen in (a) and (d), respectively.
The damping constant γ of the oscillators is shown in (b) and (e). The dielectric
contribution and static permittivity are plotted in (c) and (f).
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5 Soft-mode lattice dynamics in francisite

In the PPMS, scans were performed at two frequencies (1 kHz and 100 kHz) and result
in values almost identical to the data extracted from the phonon spectra indicating
that no further dielectric contributions exist below the lattice dynamics.

For E‖b̂ the shape of the lowest oscillator’s dielectric contribution, ∆ε0, differs to
the other phonons, which also are mostly constant. ∆ε0 shows a mostly monotonic
decrease reaching half of the 10 K value at room temperature. The extracted static
permittivity follows this trend.

5.3.3 Antiferroelectricity

Previously, I mentioned that the structural transition in CBSCl highlights a rare
example of a fully displacive transition, as reported in reference [144]. In this sec-
tion a brief review on antiferroelectricity will be given, which is necessary for the
understanding of the further discussion of my results.

Charles Kittel formulated one of the first concepts of antiferroelectric (AFE) crys-
tals [146]. According to his theory there have to be two sublattices (A and B) of
spontaneous antiparallel polarisation P , such that the net polarisation is equal to
zero. Then the local forces on the sublattices can be expressed by [146]:

FA = E + β1PA − β2PB, (5.3)

FB = E + β1PB − β2PA, (5.4)

with E representing an external electric field and β the so called Lorentz constants.
Furthermore, the Helmholtz free energy, F , can be written as [146]

F (PA, PB, T ) = F0 + f(P 2
A + P 2

B) + gPAPB + h(P 4
A + P 4

B). (5.5)

The functions f, g, h depend on temperature. Again, the polarisation is the order
parameter, in analogy to FE.

Antiferroelectricity is a controversial topic, as e.g. Scott [147] discussed: “And
in general one cannot characterize a crystal at one temperature as antiferroelectric
by any set of experimental measurements at that temperature. The opinion of this
reviewer is that antiferroelectricity is an ill defined, almost useless concept.” One of
the reasons was the lack of an order parameter and of clear symmetry criteria defining
this phase [148]. At this time only a set of experimental signatures defines this phase.
One of these signatures is a characteristic double hysteresis loop [148–151], as shown
in Figure 5.5.

Lines and Glass defined an antiferroelectric system as [153] “that fraction of an-
tipolar systems which exhibits large dielectric anomalies near the Curie temperature
[...] and which can be transformed to an induced ferroelectric phase by application of
an electric field.” This already states that a FE phase is close by, that is exclusively
field induced. But here again, the definition is based on experimental signatures.

In a theory by Tolédano and Guennou [148] one condition for the transition from
paraelectric to AFE state is that “a set of crystallographic sites undergo a symmetry
lowering that results in the emergence of polar sites and give rise to a local polariza-
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Figure 5.5: Antiferroelectric double hysteresis loop of PbZrO3, data from ref-
erence [152].

tion.” This already defines a local mechanism of symmetry breaking and corresponds
with the emergence of polar sites. A second criterion of these authors states for the
macroscopic symmetry: “the AFE space-group has a symmorphic polar subgroup co-
inciding with the local symmetry of emerging polar sites.” This is the first formulation
of local and macroscopic symmetry conditions for the AFE transition.

In their theory, the Landau potential is a function of the AFE order parameter
η (which covers structural effects) and the polarisation P as a second, field-induced
order parameter [148],

φ(η, P, T ) = φ0(T ) +
α

2
η2 +

β

4
η4 +

γ

6
η6 +

P 2

2χ0

+
δ

2
η2P 2 − EP, (5.6)

with α = A(T−TS). All other material constants remain independent of temperature.
This theory now includes the coupling effects between the AFE order parameter η
and the field-induced order parameter P .

One of the first materials where antiferroelectric signatures were observed was
PbZrO3 which was intensively studied over the last 70 years [154–159]. Possible
applications of AFE materials are liquid crystal displays [160–162] and energy storage
devices [163–165]. In the last decades many AFE transitions were reported showing
signatures of both order-disorder and displacive behaviour [166–169]. While examples
of pure order-disorder transitions have been studied [170–172], clear evidence of purely
displacive antiferroelectric systems has been missing. Recently the orthorhombic
francisite (Cu3Bi(SeO3)2O2Cl) was identified as the first soft-mode driven displacive
antiferroelectric [144].

5.3.4 Ferroelectric signature of a soft mode

Now, the concept of antiferroelectricity (AFE) was introduced and here I mentioned
that a close by lying ferroelectric (FE) phase is a necessary condition for an AFE
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5 Soft-mode lattice dynamics in francisite

state. Cochran’s law, Eq. (2.48), states that the frequency of the FE soft mode is
proportional to the difference of temperature T and the Curie temperature TC . In
this section, I will show a verification of how the ν̄F soft mode found in francisite
represents a close lying ferroelectric transition. The linear fits of

ν̄2 = A(T − TC), (5.7)

were performed for both the ν̄F (representing a ferroelectric phase) and ν̄AF (repre-
senting the soft mode of the AFE transition) mode, with A and TC the parameters
to be fit individually at low and high-temperatures across the phase transition. The
ν̄AF data has been obtained using Raman spectroscopy and inelastic X-ray scattering
techniques and was extracted from reference [144]. Figure 5.6 shows both data sets
as a function of temperature. The fit of the AFE mode crosses the baseline at 112 K,
close to TS = 115 K. This corresponds with the minimum of ν̄AF being approaching
zero. The infrared FE mode softens considerably less. The fit of the high- frequency
part intercepts the baseline at −59 K. This is far below any transition temperature,
but is reminiscent of the inverse magnetic susceptibility following the Curie-Weiss
law in an antiferromagnet.
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Figure 5.6: Analysis of the squared frequency for the ν̄F and ν̄AF modes. Data
for ν̄AF excitation is extracted from reference [144]. The dashed lines represent
linear fits using Eq. (5.7).

In the chapter on langasites (page 55), a model is introduced that approximates
the electric field strength, E, necessary to overcome an energy gap. Here,

E = W0
2π

a

1

Q
, (5.8)

with W0, the energy gap (59 K times kB), a lattice parameter a ∼ 0.6 nm, and Q,
twice the elementary charge (charge of the frustrated Cu2+ ions). This leads to electric
fields in the order of 3*107 V/m to reach a positive critical temperature and additional

79



5.3 Results

∼ 6*107 V/m to pass the structural transition at TS. These values of electric fields
are far above the realisation limits of the PPMS. The AFE mode is located on the
boundary of the Brillouin zone [144], while ν̄F represents a zone-center mode.

5.3.5 Sublattice polarisation

In this section, I want to explore a model using the ν̄F and ν̄AF dynamics to ex-
tract a possible sublattice polarisation that characterises the antiferroelectric (AFE)
phase. A model, comparing the polarisation in the ferro- and antiferroelectric phase,
is presented in Figure 5.7.

T	  <	  TS	  
	  

Pcmn	  
T	  >	  TS	  

	  

Pmmn	  

(a)	   (b)	  

E	   E	   E	   E	  PA	  

PA	  

PA	   PA	  

PB	   PA	  

PA	  

PB	  c	  

a	  

FE	   AFE	   FE	   AFE	  

Figure 5.7: Picture of the local depolarising fields, PA and PB, of the ν̄F and
ν̄AF phonon. The low-temperature phase is plotted in (a), the high-temperature
phase in (b). The red circles represent the Cu ions.

From Section 2.3.1 we know that ν̄2
F , the soft mode of the FE transition, has to

be proportional to the sum of short range restoring forces R0 and the local Coulomb
forces. Thus, I start with adapting Eq. (2.47),

ν̄2 ∝
(∑

j

RijXj − qiE0

)
/(miXi), (5.9)

and replace the electric field with the depolarising field P0 = εE0 of the phonon.
Now, the substitutions,

R0 =
∑
j

RijXj/(miXi) and P = qiP0/(miXiε), (5.10)

yield
ν̄2 ∝ R0 − P. (5.11)
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5 Soft-mode lattice dynamics in francisite

In the ferroelectric domain, only the PA field plays a role, thus

ν̄2
F ∝ R0 − PA. (5.12)

The ν̄AF mode is identified at the boundary of the Brillouin zone. It depends now on
both fields, PA and PB and can be described by a molecular field, η, such that,

ν̄2
AF ∝ R0 − η. (5.13)

Both modes, ν̄F and ν̄AF , represent the movement of the same ions, just in a different
phase. Thus, I assumed (due to the symmetry) R0 to be equal for both structures.
The ratio of these properties can now be easily calculated via

ν̄2
F

ν̄2
AF

∝ R0 − PA
R0 − η

, (5.14)

which is plotted in Figure 5.8(a). In the paraelectric phase (T > TS), the ratio
becomes ν̄2

F/ν̄
2
AF ≈ 2 and in the low temperature phase, ν̄2

F/ν̄
2
AF ≈ 3. At TS, the

divergence at the critical temperature can be described by ν̄AF approaching 0, such
that

η → R0

∣∣
T→TS

. (5.15)

The shape of this ratio as a function of temperature looks like the Greek letter λ and
indicates a 2nd order transition as one might expect for the susceptibility. Thus, this
ratio is somehow connected to the order parameter of the transition. The difference
between the squared frequencies is given by,

ν̄2
F − ν̄2

AF = R0 − PA −R0 + η = η − PA. (5.16)

Figure 5.8(b) shows this difference as a function of temperature. A constant value
can be observed above TS and an increase for temperatures below TS. The shape
of these data points looks as one expect for the order parameter (see Figure 2.5(b))
when adding a constant underground. Thus, the low-temperature data was fitted
with the function

η − PA = a
√
TS − T + b, (5.17)

(with a and b being fitting parameters) that is plotted on top of the measured data
points. A good agreement can be seen. This is a further hint that η is the order
parameter of this transition.

Now, I assume
η = PA + PB, (5.18)

such that,
ν̄2
F − ν̄2

AF = η − PA = PA + PB − PA = PB. (5.19)

Now, the ratio is identical to a single depolarising field and we can learn about the
change in the sublattice polarisation. It is constant in the high-temperature phase
and increases for temperatures below the transition. Unfortunately, values of ν̄2

AF
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Figure 5.8: Analysis of squared frequency for ν̄F and ν̄AF modes. Data for
ν̄2
AF -excitation extracted from [144]. (a) The ratio ν̄2

F/ν̄
2
AF . Dashed orange

lines represent the low and high temperature approximation. (b) The difference
between the squared frequencies, ν̄2

F−ν̄2
AF . The dashed curve is a fit, ∼

√
TS − T

below TS and constant above TS.

could not be extracted below 30 K, such that the temperature is probably too high
to observe a stabilisation of the sub lattice polarisation.

While this simple model contains a general hand-waving argument, it is nice to
see that with a few simple assumptions the experimental data reveals some deeper
concepts about the nature of AFE transitions.

5.3.6 Spin-lattice effects in b̂-direction

A side remark on the b̂-direction is necessary, although the AFE behaviour occurs
along the â-direction. Figures 5.3(f) and 5.4(d) show a softening of the lowest fre-
quency phonon mode (ν̄0). This can be seen as an indicator for an additional lattice
instability, not concerning the antiferroelectric transition. At the base temperature
of the experiments (10 K) a value of ν̄0 ∼ 38 cm−1 can be observed, this temperature
correlates with its maximum in intensity. In fact, this frequency lies close to an anti-
ferromagnetic spin wave excitation (at ∼ 33 cm−1), reported in [75]. The close lying
nature of the two modes and the increase in spectral weight below TN could be a hint
for a possible spin-lattice coupling.

A further hint can be observed in the static permittivity (Figure 5.4(f)). As al-
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5 Soft-mode lattice dynamics in francisite

ready mentioned, ε(0) decreases monotonically with temperature. But a weak step
can indeed be observed between 30 K and 40 K. This effect is close to TN = 25 K,
maybe because of the coupling to the magnetic mode. Furthermore, the effects of
potential spin and lattice interactions should be considered in relation to explaining
the anomalous exchange interactions as reported in [132].

5.4 Summary

Magnetically frustrated francisite (Cu3Bi(SeO3)2O2Cl) was studied using FTIR and
sub-THz spectroscopy. The reflectance and dielectric function were presented and the
phonons were fitted with Lorentzian oscillators. An overview on the lattice dynamics
is presented, with focus given to the lowest frequency modes.

The lowest mode for E‖â polarisation softens from both sides towards TS, the
temperature of a structural transition. This soft mode, ν̄F , resembles Cochran’s
description of a displacive ferroelectric phase transition. Together with its dynamics
in the AFE state, this mode fits a model describing a displacive antiferroelectric
phase. An energy gap of ∼ 5 meV is observed.

The dynamics of the ν̄F and ν̄AF modes may reveal information about a sublattice
polarisation, a further requirement of an AFE state. The difference of the squares of
these two modes, ν̄2

F − ν̄2
AF , can indeed providing signature of the order parameter

of the AFE transition.
Hints for a possible spin lattice coupling could be observed for E‖b̂ phonons. The

spin lattice interaction can induce the anomalous anisotropic magnetic coupling.
Thus, these excitations could have a magnetic and AFE origin and make CBSCl
to a new type of multiferroic.
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6
Phonon splitting in vibronic

spin-liquid candidate Tb2Ti2O7

This chapter covers the study of materials of the pyrochlore supergroup (A2B2O7).
Rare-earth pyrochlore single crystals of Tb2Ti2O7 and Ho2Ti2O7 are investigated with
infrared spectroscopy and their results are compared. The aim is to gain a better
understanding of the lattice environment that hosts the frustrated spin network, and
which is responsible for a likely vibronic spin-liquid phase in Tb2Ti2O7. These results
are then also compared with a powder pellet sample of Tb2Sn2O7 pyrochlore.
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6.1 Introduction

6.1 Introduction

6.1.1 The pyrochlore group and its structure

The pyrochlore supergroup covers minerals of the chemical formula A2−mB2X 6−nZ 1−w
where the parameters m,n,w are used to describe impurities [173]. In my thesis this
is mainly limited to materials of the type A2B2O7. Minerals with B=Nb in the chem-
ical formula above are members of the pyrochlore group, one of five subgroups of the
pyrochlore supergroup [174]. The term pyrochlore was also used for minerals15 with
a chemical formula (Ca,Na)2(Nb,Ta)2O6(O,OH,F) [175], the first one - NaCaNb2O6F
- was discovered by Wöhler almost 200 years ago [176]. This material burns with
a yellow/green flame on ignition, thus the word pyrochlore represents a merger of
the Greek expressions πυ̃ρ (fire) and χλωρóς (green) [176, 177]. Nowadays, the term
should not be used for these minerals anymore [173]. The right nomenclature of these
and many other materials within the pyrochlore supergroup is covered in [173, 178].
In the following, I will use the term pyrochlore for the materials of A2B2O7 type.

Most of the pyrochlores crystallise in the cubic Fd3̄m space group [179, 180], this
structure is depicted in Figure 6.1(a). In A2B2O7 pyrochlores, different oxidation
states of the cations are possible, such as A3+

2 B4+
2 O7 and A2+

2 B5+
2 O7 [181]. The

A sites are eight-coordinated and surrounded by six X and two Z ions (forming a
scalenohedra − a distorted cube). There is a shorter distance between the A and Z
ions [181]. The A cations form tetrahedra, with the Z anion located in the center [181].
This network of corner-sharing tetrahedra, sometimes referred as the “pyrochlore
structure”, is depicted in Figure 6.1(b). The B cations are located between six equally
distanced X anions forming a network of corner-sharing BX 6 polyhedra [182]. The
arrangement of the B sites is tetrahedral and identical to the corner-sharing network
of the A sites [183]. This network of corner-sharing tetrahedra is indeed the prototype
of a three dimensional frustrated lattice [7].

The ferroelectric behaviour of Cd2Nb2O7 and other pyrochlores was an early inter-
est of modern research [184, 185]. Due to their strongly frustrated lattice, rare-earth
pyrochlores exhibit a large variety of exotic physical states, such as spin glass (typ-
ically A2Mo2O7) [186–190], while Tb2Ti2O7 and other rare-earth pyrochlores show
signatures of spin liquid behaviour16 [192–196]. The specific low temperature phase
of Tb2Ti2O7 will be discussed in Section 6.1.3. One of the most well known phases,
the spin ice (first discovered in Ho2Ti2O7 [197]), is discussed in more detail in Sec-
tion 6.1.2.

6.1.2 Spin-ice states in pyrochlores

The term spin ice identifies magnetic materials with highly degenerate ground states
dictated by local organising principles in analogy to how water ice freezes at low tem-

15Different authors use different definitions. I took the most common.
16In a spin liquid the spins are highly correlated, but still fluctuating (either classically or quantised)

at zero temperature [6]. This state was first predicted by Anderson [191].
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A-‐sites	  

B-‐sites	  

(a)	   (b)	  

Figure 6.1: The pyrochlore lattice: (a) crystalline structure, (b) tetrahedra
network of A-sites. Plotted using the Vesta software [108] and crystalline in-
formation from reference [179] for the example of Ca2Nb2O7. Note that the
corners of the polyhedra are occupied by O2− ions in (a) and with A-site ions
in (b).

peratures [5]. Linus Pauling reported in 1935, how the H2O molecules arrange in such
a way that each oxygen atom is surrounded by four hydrogen atoms like the corners
of a tetrahedron [198]. Since two of the H-O bonds are always (randomly) shorter
than the other two (two-near/two-far rule, see ice-rule [199], also Figure 6.2(a)), a
degeneracy of possible ground states can be observed even at absolute zero tempera-
ture [198]. This so-called zero-point or residual entropy of water was experimentally
confirmed via measurements of the heat capacity [200, 201]. In a theoretical approach
one can use Boltzmann’s expression of the connection between entropy S and Ω, the
number of microstates, given by [202]

S = kB ln(Ω), (6.1)

with kB being the Boltzmann constant. Now, there are six possible arrangements of
the protons around the oxygen atom in the tetrahedron in agreement with the two-
near/two-far rule. This can be estimated by plotting17 all possibilities (Figure 6.3).
Now, the four possible orientations of the tetrahedra have to be taken into account,
such that [198]

Ω = (6/4)n, (6.2)

with n the number of tetrahedra. Now, I define N = 2n, the number of H2O molecules

17Another way is to use combinatorics. The number of permutations to fill four spots with two
objects of type A and two objects of type B is(

4

2

)
=

4!

(4− 2)!2!
=

4!

2!2!
=

24

4
= 6.
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O2-‐	  

(a)	  water	  ice	   (b)	  spin	  ice	  

H+	  	  

Figure 6.2: Visualisation of a tetrahedron in water ice (a) and spin ice (b) as
a result of the 2-in/2-out local organising principle.

in the macroscopic crystal, and the entropy becomes, according to Pauling [198],

S = kBN/2 ln(3/2). (6.3)

One important connection between water ice and a spin ice is that this zero-point
entropy can be measured in both systems [203]. In a spin ice the magnetic moments
of a frustrated structure come into play, which is described in the example of the
tetrahedral structure of pyrochlores. While in water ice the two possibilities of the
hydrogen ions are ‘near’ and ‘far’, spins can order pointing towards ‘in’ or away
‘out’ from the center of a tetrahedron. Now in analogy to the two-near/two-far rule
of water ice, a two-in/two-out arrangement of the spins can be seen in a spin ice
(Figure 6.2(b)) and the same six arrangements are possible (see Figure 6.3). Spin ice
only occurs for pyrochlores with local 〈111〉 Ising axes that are a result of the crystal
field anisotropy [180, 204].

P.W. Anderson first reported a model of antiferromagnetic ordering in pyrochlores
as having a magnetic analogy to Pauling’s model of water ice [205]. However, this
model leads to a situation with all spins pointing ‘in’ or ‘out’ [206]. Further, this Ising
‘up/down’ based model by Anderson does not fit with the symmetry of the pyrochlore
lattice [207]. A two-in/two-out ordering of the spins along the required local 〈111〉
directions of the tetrahedra can only be achieved by reversing the sign of the nearest
neighbour interaction, such that it occurs only for ferromagnetic interactions [208].

In the classical pyrochlore spin ice, only the rare-earth elements, which are located
on the corners of the tetrahedra, have magnetic moments [6]. Historically in 1997,
Ho2Ti2O7 was found to be the first material to exhibit spin-ice properties [197]. In
the following years spin-ice behaviour was found and intensively studied in other
compounds of the rare-earth pyrochlore family, such as Ho2Sn2O7 [209, 210] and
Dy2Ti2O7 [203, 211]. Spin ice was further seen in artificial materials, e.g. kagome
nano structures [212] and single-domain ferromagnetic islands [213, 214].
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Figure 6.3: Visualisation of six possible arrangements of four spins on the
corners of a tetrahedron in a spin ice, following the 2-in/2-out ordering. For
water ice imagine to replace the arrows by H+ ions, always located on the arrow’s
head and situate the O2− ions in the tetrahedron’s center.

6.1.3 The pyrochlore Tb2Ti2O7

The exact nature of the ground state of Tb2Ti2O7 is still debated [22, 215–222]. A
brief overview is given in this section. First, I want to recapitulate the influence
of the exchange energy J . Let us assume, the spins Si are fixed along the local
〈111〉 directions of the tetrahedra such that their Hamiltonian, H, (limited to nearest
neighbour interactions) can be expressed as

H = −J
∑
〈i,j〉

Si · Sj. (6.4)

Dipolar interactions can be included by modifying the Ising exchange Hamiltonian,
Eq. (6.4), to give the spin-ice Hamiltonian [223]:

H = −J
∑
〈i,j〉

Si · Sj︸ ︷︷ ︸
Hexchange

+Dr3
∑
i>j

Si · Sj − 3(r̂ij · Si)(r̂ij · Sj)
r3
ij︸ ︷︷ ︸

Hdipolar

, (6.5)

with the dipolar interaction constant D and, rij, the displacement vector between the
spins i and j. For ferromagnetic interaction, J and D have the same sign. Commonly,
the dipolar term in Eq. (6.5) can be buried in the Ising exchange interaction,

H = −Jzz
∑
〈i,j〉

S
(z)
i · S

(z)
j , (6.6)

with z labelling the local Ising axis. Now Jzz can be interpreted as some kind of
effective coupling. Again Jzz < 0 represents antiferromagnetic interaction (all-in/all-
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out ordering) and Jzz > 0 the ferromagnetic case (two-in/two-out ordering). A
visualisation is plotted in Figure 6.4.

As written above, Ho2Ti2O7 is known to be the first experimentally verified spin
ice. Here Jzz is positive. In examples with a long-range all-in/all-out ordering, such
as Sm2Ti2O7 [224] or Nd2Zr2O7 [225], Jzz is negative. In the case of Tb2Ti2O7,
the classification is more difficult, as Jzz is relatively close to 0 (in comparison to
Ho2Ti2O7).

all-‐in/all-‐out	   2-‐in/2-‐out	  

Jzz<0	  	  
an0ferromagne0c	  

Jzz>0	  	  
ferromagne0c	  

T	  

T=0	  

JHo	  JSm	   JTb	  

Figure 6.4: Magnetic arrangement at 0 K as a function of the effective exchange
energy Jzz.

The most general nearest neighbour Hamiltonian in a pyrochlore lattice can be
achieved by symmetry considerations [226]:

H = −
∑
〈i,j〉

{Jzz S
(z)
i S

(z)
j − J±(S+

i S−j + S−i S+
j ) + J±±(γijS

+
i S+

j + γ∗ijS
−
i S−j )

+Jz±[Szi (ζijS
+
j + ζ+

ijS
−
j )] + i↔ j}.

(6.7)

Again S
(z)
i is the spin on the position i aligned to the local Ising axis z, S+

i and S−i
represent transverse components of the spin moments perpendicular to the Ising axes.
The properties γij and ζij are matrices characterising the rotations between the local
axes [226]. For the classical spin ice,

Jzz >> J±, J±±, Jz±, (6.8)

thus, we neglect those terms and arrive back at Eq. (6.6).
Neutron scattering techniques can also be used to characterise the type of magnetic

ordering. In examples of long-range ordering, like Sm2Ti2O7, the resulting diffraction
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pattern shows clear magnetic Bragg peaks [224], see Figure 6.5(a). Measurements on
Ho2Ti2O7 spin ice, on the other hand, result in scattering patterns with characteristic
pinch points [227], see Figure 6.5(b). Pinch points represent a type of singularity in
the scattering pattern of dipolar systems (a consequence of the spin-ice description)
and are characteristic for these systems [228]. Neutron scattering experiments on
Tb2Ti2O7 do indeed show pinch points. However, they also include butterfly-shaped
patterns, such that the total diffraction pattern is not in agreement with a typical
spin ice [229, 230], see Figure 6.5(c). The location of these butterfly-shaped patterns
on the scattering map indicates a strong contribution of the transverse terms in the
Hamiltonian. Thus, one must use the full Hamiltonian (Eq. (6.7)) and not the spin ice
form of Eq. (6.5) to correctly understand this system. This is a hint that Tb2Ti2O7

is not a typical spin ice.

(c)	  Tb2Ti2O7	  (a)	  Sm2Ti2O7	   (b)	  Ho2Ti2O7	  

Figure 6.5: Comparison of neutron scattering patterns of (a) Sm2Ti2O7 (image
taken from [224]), (b) Ho2Ti2O7 (image taken from [227]) and (c) Tb2Ti2O7

(image taken from [230]).

The system differs also in the energy of the first excited crystal electric field level
(CEF). For spin-ice compounds including Ho or Dy energies of ∼ 200 cm−1 are re-
ported [5]. This is a factor ∼ 15 larger than the CEF level of Tb which appears
at ∼ 12 cm−1 [215, 231, 232]. Tb is a non-Kramers ion, thus the degeneracy of any
doublet state is not protected by symmetry [222]. These non-Kramers doublets are
susceptible to splitting from lattice distortions. The close lying states of a split dou-
blet are susceptible for quantum fluctuations between them and mixing of the states,
which could explain the exotic magnetism observed in Tb2Ti2O7. However, in this
case the symmetry of the ground state doublet in Tb2Ti2O7 is such that magnetic
fluctuations (at the dipole limit) are forbidden. Therefore such mixing requires an ad-
dition of higher order multipole states which can be induced by the vibronic coupling
to phonons and CEF levels.

The aim of this chapter is to probe the phonon spectra of Tb2Ti2O7 and compare
them with the classical spin ice Ho2Ti2O7 and the Tb spin ice Tb2Sn2O7 to look for
evidence of spin lattice coupling that could help to describe the peculiar magnetic
ground state in this system.
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6.2 Analysis

Single crystals of Ho2Ti2O7 (HTO) and Tb2Ti2O7 (TTO) were measured at low
temperatures using the FTIR spectrometer. The spectra were obtained at 15 tem-
peratures between 10 K and 300 K. In this setup, the data can be used in a range
from ∼ 40 cm−1 up to ∼ 680 cm−1. In pyrochlores, the lowest frequency phonon is
typically at ∼ 100 cm−1. Thus, the low frequency fit of the reflectance was performed
with a linear approximation. The value at 45 cm−1 was taken and used as a constant
to fill the missing values down to 0 cm−1. The high frequency approximation is a
room temperature scan in the MIR setting, which is used above 680 cm−1. Here, a
rather temperature-independent reflectance is expected in this spectral regime [233],
thus the room temperature reflectance could be added without any scaling. A con-
stant was used as an approximation above 6000 cm−1. The spectra are saved up to
15000 cm−1. The Kramers-Kronig analysis of the spectra was performed, such that
the permittivity spectra are available from 0 cm−1 to 3000 cm−1. The integration
limit was chosen to be 15000 cm−1. RefFIT software [121] was then used to fit the ε2

spectra.

The lowest frequency phonon can be difficult to fit due to a low intensity, as there is
some background at high temperatures. At temperatures below ∼ 150 K the phonon
becomes stronger and is thus more easy to fit. While the fit gives reasonable results
for TTO samples, the lowest frequency phonon of HTO can not be fit above ∼ 150 K.

The polycrystalline Tb2Sn2O7 is studied in the same way. A compensation of the
Tb2Sn2O7 reflectance is necessary to deal with the influence of polyethylene used in
the pelletisation process. This process is described in Section 6.3.3.

A factor group analysis was performed using the Bilbao crystallographic server [124].
The calculation gives 7 infrared-active modes for the Fd-3m space group.

6.3 Results

6.3.1 Ho2Ti2O7 (HTO)

Two single crystals of Ho2Ti2O7 were studied with k‖[111] and k‖[100], respectively.
The property k represents the wave vector of light travelling through the crystal.
Thus, k is perpendicular to the illuminated sample surface. A low signal-to-noise
ratio below ∼ 70 cm−1 makes the data unreliable, thus the lower cut-off frequency
was set on this value for k‖[111]. The typical reflectance spectra of HTO are plotted
in Figure 6.6. There is a trend towards higher reflectance for k‖[100].

Figure 6.7 summarises the imaginary dielectric function, ε2, for the same set of
temperatures. In both crystals, the phonons are situated at similar frequencies.
However, the phonons of the k‖[100] sample are much stronger and much narrower
compared to the k‖[111] crystal. The clear and sharp phonons indicate the samples to
be high quality single crystals. In general, the two spectra are comparable, although
there are differences in the width of the peaks and a broadband background in the
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k‖[111] ε2 results. These tributed to the uncertainties of the measurements and
Kramers-Kronig analysis.
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Figure 6.6: Reflectance of HTO pyrochlore plotted between 40 cm−1 and
1400 cm−1 as a function of temperature. The plots show the raw spectra ob-
tained with the FTIR spectrometer for k‖[111] (a) and k‖[100] (b).

The spectra, plotted in Figure 6.7, were fit with RefFIT and the resonance fre-
quencies of the model Lorentzian profiles summarised in Figure 6.8. Here one can see
almost identical frequencies for all the modes. Noticeable discrepancies are observ-
able only for the lowest mode. Here the k‖[100] frequency is systematically ∼ 5 cm−1

larger. In agreement with the group theoretical analysis, 7 modes can be observed in
these pyrochlore samples. The fitted frequencies are summarised in Appendix A.3.
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Figure 6.7: Imaginary part of the dielectric function of HTO pyrochlore plotted
between 40 cm−1 and 600 cm−1 as a function of temperature. The plots show
the raw spectra obtained with the FTIR spectrometer after KK analysis for
k‖[111] (a) and k‖[100] (b).
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Figure 6.8: Frequencies of the 7 phonons in HTO plotted as a function of
temperature. The figure compares the results of k‖[111] and k‖[100].
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6.3.2 Tb2Ti2O7 (TTO)

The raw reflectance of TTO is plotted in Figure 6.9. Here, the shape of the spectra
looks similar for both investigated samples (k‖[111] and k‖[100]) of this material.
In general, higher reflectance can be observed for the k‖[100] crystal. This is in
agreement with the trends observed in HTO.
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Figure 6.9: Reflectance of TTO pyrochlore plotted between 40 cm−1 and
1400 cm−1 as a function of temperature. The plots show the raw spectra ob-
tained with the FTIR spectrometer for k‖[111] (a) and k‖[100] (b).

Figure 6.10 contains the imaginary part of the dielectric function. A rough view
suggests a result similar to HTO. However, a closer look verifies that four modes are
split for the k‖[111] example. Here, the strong modes at ∼ 200 cm−1 and ∼ 380 cm−1

are clearly split, while the splitting of the phonons at ∼ 130 cm−1 and ∼ 450 cm−1 is
weaker. Nevertheless, zooming into these modes resolves a clear splitting. For k‖[100]
the splitting can be observed only for the ∼ 130 cm−1 mode. The frequencies in both
samples are in close agreement.

Spectra of ε2 have been fit at all temperatures as measured and the resulting
frequencies are plotted in Figure 6.11(a). This figure shows that all modes keep
constant in terms of frequency, and that when a k‖[111] mode is split, the k‖[100]
mode sits exactly in between them. This plot further defines the split modes as
P2, P3, P5 and P6. The non degenerate phonons are perfectly matching, as we saw
already in the HTO case. Figure 6.11(b) gives one more view on the frequencies of the
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k‖[111] sample, highlighting the energy gap ∆, being constant over the investigated
temperature range. The P6 mode of k‖[111], the one with the smallest ∆, can
be accurately fitted with two oscillators only below ∼ 150 K. Here, the peak in ε2

decreases such that a clear second phonon can not be verified. An identical behaviour
can be seen for the P2 mode of k‖[100].

In the k‖[100] orientation, the P3 mode has a weak shoulder below temperatures
∼ 100 K (see the inset of Figure 6.10(b)). At these temperatures fitting with two
phonons gives reasonable results. In general this shoulder was not taken into account
and the mode was fit with a single phonon only.
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Figure 6.10: Imaginary part of the dielectric function of the TTO pyrochlore,
plotted between 40 cm−1 and 600 cm−1 as a function of temperature. The plots
show the raw spectra obtained with the FTIR spectrometer after the KK anal-
ysis for k‖[111] (a) and k‖[100] (b). The insets zoom into the area of the second
and third phonon to highlight the splitting.

The splitting for k‖[111] is somehow symmetric, i.e. the gap of the outer two modes,
P2 and P6 is ∼ 5 cm−1 and that of the inner two modes, P3 and P5, is ∼ 12 cm−1, see
Figure 6.11(b). Fascinatingly, this is in close agreement to the energy of the first CEF
level and the splitting energy of the doublet states, see Section 6.1.3. Nevertheless
there is no evidence for a connection of these properties. The average values of the
splitting are summarised in Table 6.1. The splitting depends on the orientation of
the crystal.
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Figure 6.11: Fitted phonon frequencies of TTO pyrochlore plotted as a func-
tion of temperature. (a) The data of k‖[111] and k‖[100] is compared. The
labels P2, P3, P5 and P6 highlight the modes split for k‖[111]. (b) Energy
splitting of the k‖[111] modes.

k‖[111] k‖[100]
peak ∆ (cm−1) ∆ (cm−1)
P2 5.3 ± 0.7 4.4 ± 0.7
P3 12.9 ± 1.4 (7.0 ± 1.4)
P5 11.5 ± 1.0 —
P6 4.0 ± 0.2 —

Table 6.1: Frequency splitting ∆ of the TTO phonons in cm−1. For TTO
k‖[100], only the P2 phonon shows a clear splitting. For P3 the splitting was
calculated by fitting the shoulder with a second phonon.
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6.3.3 Tb2Sn2O7 (TSO)

Finally, a powder pellet sample of Tb2Sn2O7 is studied in the FTIR spectrometer.
The goal was to check the influence of the Ti → Sn substitution. TSO is known to
be a spin ice that orders in a certain way as described in reference [234]. The radius
of a Sn ion is much larger than the one of a Ti ion. Thus, a comparison of the TSO
and TTO data gives information about the influence of the B -site ion.

Unfortunately, single crystals of TSO are difficult to grow, so we were required to
use a powder pellet. This sample was made by pressing powders into a pellet (with
a diameter ∼ 3.5 mm). The TSO sample was produced by adding polyethylene (PE)
in a 1:9 ratio of PE:TSO. A direction of polarisation is not given since this type of
sample is polycrystalline.

The TSO reflectance corresponds with an abnormally shaped ε2 function. Most of
the highly asymmetric peaks cannot be fit well with a Lorentzian profile. The reason
is likely due to the PE added to the pellet. Therefore the reflectance of a pure PE
pellet of same diameter was measured in additional. It shows a decreasing trend, as
plotted in Figure 6.12(a). This curve was fitted with a function

f(x) = a0 + A0 exp(τ/x), (6.9)

with temperature dependent fitting parameters a0, A0 and τ . The raw reflectance was
then divided by the fitting function. Finally, this reflectance has to be multiplied with
a constant factor ∼ 2.5, to compensate for these effects and produce physical results
for ε2 without negative values. It is acknowledged that this procedure is not highly
accurate, but the main aim of the pellet studies is to check the phonon modes against
splitting, which is not affected by this procedure. The data of MIR and NIR room
temperature measurements remain unchanged. The effects of PE are not considered
in these spectral regions.

The adjusted reflectance is presented in Figure 6.12(b), the imaginary dielectric
function is shown in Figure 6.12(c). These results show that the expected 7 modes
are clearly visible. The peaks appear clean although a lot of data processing was
necessary. There is clear evidence that TSO phonons do not show any splitting.
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Figure 6.12: Spectra of TSO. (a) The reflectance of TSO at 10 K before (R
raw) and after adjustment (R 10 K) including their ratio. The reflectance of
polyethylene (PE) is plotted as well as the fit. The adjusted reflectance of four
temperatures is plotted in (b), the corresponding ε2 in (c).
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6.4 Discussion and Summary

The main result is a unique clear splitting of phonons in TTO single crystals, that can
not be seen in any other pyrochlore studied in my thesis. This splitting seems to be
intrinsic as it is visible at high temperatures (even 300 K) far to high for spin lattice
processes (spin coupling processes take place usually at temperatures of some tenth
of kelvin). The energy gap ∆ of the splitting of these modes is in close agreement
with the energy of the first CEF level and the splitting of the ground state (and the
CEF level), respectively. Nevertheless there is no clear hint for a connection of these
properties.

The splitting depends on the orientation of the single crystal. Thus, there is a
relation to some structural anisotropy in the TTO lattice.

Since this splitting can nether be observed in HTO nor in TSO, a combination of
the Tb and Ti sublattices is necessary for producing this effect. The Ti ions are much
smaller than Sn ions. Thus, the Tb sublattice is more susceptible to displacement.

The conclusion is that TTO features likely intrinsic distortions that may be dy-
namic at time scales of some picoseconds. Thus, they can influence the spins through
vibronic processes.

This system is highly sensitive to deviations from the perfect stoichiometry as
samples of Tb2+xTi2−xO7 [221], with x being the stuffing factor. For x > −0.0025 an
additional peak (at T ∼ 0.5 K) in measurements of the specific heat, CP , highlights a
signature of a second-order phase transition [221]. Thus, a long-range ordering (with
unknown order parameter) can be seen in TTO, if this stuffing factor x is above a
critical value xc, otherwise a spin-liquid state can be seen [221]. In this thesis a k‖[111]
sample characterised with x∼ 0.003 was investigated. Thus, in this sample, we expect
the ground state to support long-range ordering. A second sample characterised with
k‖[100] was also studied. This crystal has a stuffing factor, x ∼−0.003, such that
long-range ordering is not expected. However, follow up measurements have been
performed with a k‖[111] sample with a stuffing factor, x ∼−0.003. Even in this
case splitting is observed. This verifies that the anisotropy of the TTO lattice plays
an important role.
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7
Conclusions and Outlook

This chapter summarises the main achievements of my thesis and combines the most
important results of the different materials. Ideas for future experiments to continue
my studies are presented.
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Magnetic frustration is a large topic covering a broad variety of materials. A lot of
work is necessary to really understand the dynamic lattice environment that supports
these frustrated spin states. In my thesis, I have only scratched the surface of this
topic. Fascinatingly, we can learn about magnetic frustration without performing
experiments under magnetic field.

In langasite La3Ga5SiO14 and rare-earth substituted compounds, low-frequency
phonons were studied. The aim was to characterise the dynamics of an anomalous
low- frequency phonon arising for E‖c polarised light. A softening of this mode can be
observed with decreasing temperature. The same effect can be induced by replacing
the La3+ ions with heavier ions. Here, the trend is linear with respect to the ion’s
atomic number. All these effects lead to the conclusion that the langasite lattice is
close to a structural instability. For full softening of the anomalous low- frequency
phonon, a transition from the P321 space group to the close laying polar P3 phase is
expected.

Infrared investigations on langasites covered the spectra obtained at zero magnetic
field. A first set of field dependent (up to 7 T) scans of HoLGS was performed using
the THz spectrometer [85, 126]. Since these measurements provide information not
only about the magnetic signatures of the low-frequency mode, but also about crystal
electric field levels, a systematic study could be useful. Our samples are pretty thick
for transmission measurements, thus we plan to do these scans for all four crystals
in a reflectance time-domain spectrometer. Another idea is to perform one set of
measurements (using the FTIR spectrometer and the cryostat) on a frustrated Fe-
langasite. This could give information whether the low-frequency phonon is a global
property of the langasite lattice or not. Time-domain measurements are actually
performed on Nd3Ga5SiO14 to check this material for magnetic modes, predicted by
our coworkers from General Physics Institute Moscow.

The multiferroic francisite, Cu3Bi(SeO3)2O2Cl, has a kagome lattice similar to the
langasites. Again, the dynamics of a soft mode was the main goal of the investigations.
Here, we observe the softening of a phonon reaching its minimum in frequency at
TS = 115 K, the critical temperature of a structural phase transition. While recent
publications highlight this mode driving a fully displacive antiferroelectric transition,
my work using infrared spectroscopy gives information on a close lying ferroelectric
phase. The dynamics of this mode in both phases gives information about a possible
sublattice polarisation. This is a signature of an antiferroelectric state.

In francisite, we observed a weak excitation (ν̄ ∼ 10 cm−1), only visible at 10 K.
Probably this mode is magnetic, thus experiments could be planned using the THz
spectrometer and the magnet to study its behaviour in more details. A second aim
is to establish the theoretical model describing my results.

Further on, the studies on pyrochlores deal with the observations of splitting of
phonons in Tb2Ti2O7 (TTO) pyrochlore (despite the other investigated groups of
materials only a weak softening of some mode is seen here). This splitting can
not be observed for other materials of the pyrochlore family, such as Ho2Ti2O7 and
Tb2Sn2O7. TTO features intrinsic distortions that contribute to the vibronic coupling
and to quantum fluctuations that drive the spin-liquid behaviour. Future ideas on
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Tb2Ti2O7 focus on the influence of the Tb/Ti ratio. The investigated sample of
Tb2+xTi2−xO7 has a stuffing value, x, in the range where a spin liquid state is not
expected according to reference [221]. A second crystal with x ∼−0.003, supporting a
spin-liquid state, is currently investigated. Here, the aim is to study and compare the
splitting of the TTO k‖[111] crystals. Further samples with x = 0.01 and x = −0.01,
are available for further projects.

Finally, my thesis presents new details of the lattice dynamics of the three in-
vestigated magnetically frustrated materials. My work highlights several individual
mechanisms driving the lattice dynamics.
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A
Supplementary data

This Appendix shows supplementary data of the investigated materials.
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A.1 Langasites

A.1 Langasites

Various compounds of the langasite family were studied in the frame of this thesis
and the results were presented in Chapter 4. In this Appendix, additionally the list
of phonon frequencies at room temperature will be shown. Further, the reflectance
and the dielectric function of all investigated a-cut crystals are shown as a function of
the sample’s temperature. This is done for both polarisations and four temperatures
(10 K, 100 K, 200 K, 300 K).

A.1.1 Phonon data

The following tables summarise the fitting parameters (frequency ν̄0 and dielectric
contribution ∆ε) of the langasite models, obtained with the RefFIT software. Addi-
tionally the value of the high frequency permittivity, ε∞, is given. The data is given
for room temperature measurements.

LGS HoLGS NGS PGS

ε∞ = 3.66 ε∞ = 3.5 ε∞ = 3.6 ε∞ = 3.77

ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε
1 44.94 47.76 41.57 51.60 38.39 63.06 40.56 60.72
2 85.96 2.74 88.88 1.32 92.21 2.36 89.91 2.76
3 136.02 0.03 139.18 0.01
4 162.99 0.79 163.08 0.65 161.40 0.90 162.01 0.98
5 210.86 0.34 211.31 0.25 213.73 0.18 213.17 0.29
6 243.60 0.18 241.95 0.12 258.68 0.18 250.43 0.19
7 287.60 0.69 288.74 0.43 296.49 0.54 293.61 0.68
8 308.05 0.58 310.84 0.55 315.00 0.62 313.3 0.62
9 478.00 0.03 479.24 0.01 478.61 0.13 483.16 0.01

10 511.85 0.89 516.66 0.68 520.47 0.98 521.16 1.02
11 577.71 0.10 578.99 0.08 582.94 0.06 581.89 0.11
12 648.46 0.52 652.61 0.38 648.93 0.53 648.70 0.58
13 672.48 0.18 677.34 0.27 682.70 0.13 677.02 0.15
14 733.49 0.01 734.88 0.01 737.09 0.01 735.16 0.01
15 861.92 0.01 861.73 0.01 856.35 0.02 862.24 0.02
16 947.03 0.09 949.77 0.07 942.12 0.11 947.80 0.11
17 966.33 0.05 968.89 0.05 969.08 0.03 967.00 0.05

Table A.1: Oscillator data of the four langasites at room temperature and
E‖c. Phonon 1 represents the low frequency structure, which consists out of
two phonons at lower temperatures. The fit was performed with one oscillator
only.
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LGS HoLGS NGS PGS

ε∞ = 3.7 ε∞ = 3.56 ε∞ = 3.58 ε∞ = 3.95

ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε
1 88.71 6.25 82.51 8.18 87.76 3.56 82.63 5.19
2 103.21 2.94 102.49 2.20 101.84 3.71 102.72 4.31
3 112.86 0.21 112.72 0.08
4 129.78 1.33 129.73 0.98 128.81 1.16 129.43 1.12
5 150.41 2.07 150.52 1.60 151.83 2.35 150.56 2.56
6 193.86 1.18 194.03 0.88 194.01 1.33 193.54 1.41
7 214.40 0.50 214.76 0.41 215.27 0.24 214.64 0.29
8 241.77 0.55 239.98 0.25 239.97 0.74 238.14 0.65
9 257.22 1.16 258.38 1.02 259.37 1.26 259.45 1.49

10 284.09 0.82 285.49 0.72 284.38 0.39 282.96 0.58
11 316.98 0.06 317.68 0.05 318.19 0.23 317.84 0.12
12 341.15 0.58 343.29 0.49 347.47 0.47 343.73 0.65
13 374.16 0.49 375.88 0.45 377.85 0.40 376.32 0.51
14 425.41 0.29 427.40 0.25 431.32 0.30 429.98 0.37
15 448.48 0.23 450.45 0.22 455.79 0.23 453.93 0.24
16 487.19 0.10 489.37 0.13 499.62 0.11 496.60 0.12
17 508.01 0.06 511.80 0.04 517.42 0.04 514.11 0.06
18 631.07 0.31 634.72 0.27 629.81 0.32 633.11 0.31
19 682.60 0.14 683.81 0.12 684.20 0.12 682.71 0.17
20 733.46 0.05 734.85 0.05 737.78 0.05 737.18 0.06
21 883.65 0.05 884.02 0.03 878.88 0.07 882.24 0.04
22 905.09 0.11 908.14 0.11 904.53 0.08 904.51 0.14

Table A.2: Oscillator data of the four langasites at room temperature and
E‖b*.

A.1.2 Spectra

The following spectra show the reflectance and dielectric function of each of the
four investigated langasites. Data of both investigated polarisations is presented and
shown for four temperatures. Reflectance and ε2 is plotted in the range between
0 cm−1 and 600 cm−1, ε1 only between 0 cm−1 and 300 cm−1.
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A.2 Francisite

The section covers additional information about francisite (CBSCl), as presented in
Chapter 5.

A.2.1 Phonon data

The following tables summarise the resonance frequency and dielectric contribution
of the individual Lorentzian oscillators, obtained with the fit. The data is presented
for three temperatures (10 K, 115 K=TS, 300 K) and both polarisations.

10 K 115 K 300 K

ε∞ = 4.22 ε∞ = 4.09 ε∞ = 4.17

ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε
1 52.93 3.00 31.80 18.77 41.29 10.54
2 69.36 1.13
3 88.63 2.42 87.97 1.82 86.33 2.18
4 94.29 0.90 93.13 0.73 90.64 0.83
5 162.72 0.27 162.57 0.22 162.02 0.28
6 172.72 0.13
7 194.01 1.16 192.80 1.10 189.94 1.21
8 202.47 0.34 201.88 0.38 198.96 0.32
9 320.80 0.07 327.10 0.07 323.25 0.08

10 331.98 0.03
11 423.08 0.05 421.07 0.03 418.12 0.01
12 543.34 0.09 546.95 0.01
13 559.19 0.33 554.16 0.39 544.87 0.41
14 686.00 0.48 685.21 0.48 684.55 0.52

Table A.3: Oscillator data of CBSCl for E‖a polarisation. Last fit including
phonon 2 performed at 100 K, phonons 6 and 10 at 115 K and phonon 12 at
120 K.
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10 K 115 K 300 K

ε∞ = 3.78 ε∞ = 3.46 ε∞ = 3.61

ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε ν̄0 (cm−1) ∆ε
1 37.81 15.92 40.27 12.38 51.70 5.05
2 68.02 1.71 68.66 1.60 68.19 2.96
3 98.08 0.10
4 113.97 1.51 114.28 1.35 112.33 1.53
5 128.87 0.06
6 133.35 0.11 133.72 0.11 131.97 0.09
7 185.69 0.51 185.33 0.46 182.90 0.48
8 257.31 0.20 258.19 0.21 255.78 0.23
9 276.45 0.08 274.94 0.01

10 300.79 0.05 300.08 0.05 297.74 0.07
11 314.67 0.02 314.41 0.01 310.62 0.01
12 457.64 0.31 456.77 0.33 452.08 0.36
13 486.25 0.11 487.86 0.01
14 508.90 0.35 504.64 0.36 496.31 0.38
15 542.71 0.06 542.49 0.06 539.77 0.05
16 572.88 0.04 568.75 0.03 559.18 0.03
17 715.15 0.53 712.06 0.52 712.48 0.50
18 809.42 0.01 810.75 0.01 804.83 0.00
19 825.43 0.04 824.05 0.03 822.02 0.05

Table A.4: Oscillator data of CBSCl for E‖b polarisation. Last fit including
phonons 3 and 5 performed at 100 K and phonons 9 and 13 at 115 K. Phonon
18 becomes almost invisible at temperatures larger than 115 K, but there is no
clear cut.

A.2.2 Spectra

Here, the raw FTIR data is compared with the fits. Further, broadband spectra are
plotted up to 900 cm−1.
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‖â

ca
se

,
ri

gh
t

fo
r

E
‖b̂

.
D

at
a

is
sh

ow
n

fo
r

10
K

an
d

30
0

K
.

114



A Supplementary data

W
av

en
um

be
r (

cm
1 )

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reflectance

E
a

W
av

en
um

be
r (

cm
1 )

402002040

1

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
W

av
en

um
be

r (
cm

1 )

020406080 2

30
0K

12
0K

10
0K

10
K

W
av

en
um

be
r (

cm
1 )

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reflectance

E
b

W
av

en
um

be
r (

cm
1 )

40200204060

1

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
W

av
en

um
be

r (
cm

1 )

0204060 2

30
0K

12
0K

10
0K

10
K

F
ig

u
re

A
.6

:
R

efl
ec

ta
n
ce

sp
ec

tr
a

an
d

d
ie

le
ct

ri
c

fu
n
ct

io
n

(fi
t)

of
fo

u
r

te
m

p
er

-
at

u
re

s
p
lo

tt
ed

b
et

w
ee

n
0

cm
−

1
an

d
90

0
cm
−

1
.

L
ef

t
fo

r
th

e
E
‖â
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A.3 Pyrochlores

A.3 Pyrochlores

The section covers additional information about the pyrochlore samples, as presented
in Chapter 6. The following tables summarise the resonance frequency of the indi-
vidual Lorentzian oscillators, obtained with the fit.

TTO k‖[100] TTO k‖[111]
10 K 300 K 10 K 300 K

ν̄0 (cm−1) ν̄0 (cm−1) ν̄0 (cm−1) ν̄0 (cm−1)
1 89.85 99.12 91.27 93.42
2 122.37 126.84 125.14 127.36
2’ 127.82 130.75 131.31 131.98
3 190.38 205.29 183.72 203.91
3’ 196.62 218.19
4 266.72 271.09 265.71 271.25
5 373.16 376.06 369.56 376.27
5’ 380.84 390.12
6 449.91 439.76 445.37 441.43
6’ 449.19
7 539.49 541.43 540.08 541.48

Table A.5: Phonon frequencies of TTO.

HTO k‖[100] HTO k‖[111] TSO
10 K 300 K 10 K 300 K 10 K 300 K

ν̄0 (cm−1) ν̄0 (cm−1) ν̄0 (cm−1) ν̄0 (cm−1) ν̄0 (cm−1) ν̄0 (cm−1)
1 92.34 73.32 86.85 92.05 106.82 106.15
2 122.20 124.13 124.08 122.17 138.11 136.76
3 186.01 202.17 189.54 195.09 210.05 209.66
4 259.16 257.32 259.13 262.89 313.59 314.85
5 380.54 384.52 379.80 375.82 356.98 355.09
6 449.35 431.35 450.94 438.95 431.84 429.25
7 547.09 548.29 546.70 547.45 621.99 621.07

Table A.6: Phonon frequencies of HTO and TSO.
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[90] J. Stade, L. Bohatỳ, M. Hengst, and R. B. Heimann. Electro-optic,
piezoelectric and dielectric properties of langasite (La3Ga5SiO14), langanite
(La3Ga5.5Nb0.5O14) and langataite (La3Ga5.5Ta0.5O14). Crystal Research and
Technology: Journal of Experimental and Industrial Crystallography 37, 1113
(2002).

[91] J. Bohm, R. B. Heimann, M. Hengst, R. Roewer, and J. Schindler. Czochral-
ski growth and characterization of piezoelectric single crystals with langasite
structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN), and La3Ga5.5Ta0.5O14

(LGT): Part I. Journal of Crystal Growth 204, 128 (1999).
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den Sätzen über das Wärmegleichgewicht. In: Sitzungsberichte der kaiserlichen
Akademie der Wissenschaften zu Wien II, 373 (1877).

[203] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. Shastry. Zero-
point entropy in ‘spin ice’. Nature 399, 333 (1999).

[204] J. G. Rau and M. J. P. Gingras. Magnitude of quantum effects in classical spin
ices. Physical Review B 92, 144417 (2015).

[205] P. W. Anderson. Ordering and antiferromagnetism in ferrites. Physical Review
102, 1008 (1956).

[206] S. T. Bramwell, M. J. P. Gingras, and J. N. Reimers. Order by disorder in an
anisotropic pyrochlore lattice antiferromagnet. Journal of Applied Physics 75,
5523 (1994).

[207] S. T. Bramwell and M. J. Harris. The history of spin ice. Journal of Physics:
Condensed Matter 32, 374010 (2020).

132



Bibliography

[208] S. T. Bramwell and M. J. Harris. Frustration in Ising-type spin models on the
pyrochlore lattice. Journal of Physics: Condensed Matter 10, L215 (1998).

[209] H. Kadowaki, Y. Ishii, K. Matsuhira, and Y. Hinatsu. Neutron scattering study
of dipolar spin ice Ho2Sn2O7: Frustrated pyrochlore magnet. Physical Review
B 65, 144421 (2002).

[210] G. Ehlers, A. Huq, S. O. Diallo, C. Adriano, K. C. Rule, A. L. Cornelius,
P. Fouquet, P. G. Pagliuso, and J. S. Gardner. Low energy spin dynamics
in the spin ice Ho2Sn2O7. Journal of Physics: Condensed Matter 24, 076005
(2012).

[211] K. Matsuhira, Y. Hinatsu, and T. Sakakibara. Novel dynamical magnetic prop-
erties in the spin ice compound Dy2Ti2O7. Journal of Physics: Condensed
Matter 13, L737 (2001).

[212] Y. Qi, T. Brintlinger, and J. Cumings. Direct observation of the ice rule in an
artificial kagome spin ice. Physical Review B 77, 094418 (2008).

[213] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S.
Lund, N. Samarth, C. Leighton, V. H. Crespi, and P. Schiffer. Artificial ‘spin
ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Na-
ture 439, 303 (2006).

[214] S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M. J. Erickson, L. O‘brien,
C. Leighton, P. E. Lammert, V. H. Crespi, and P. Schiffer. Crystallites of
magnetic charges in artificial spin ice. Nature 500, 553 (2013).

[215] M. J. P. Gingras, B. C. Den Hertog, M. Faucher, J. S. Gardner, S. R. Dunsiger,
L. J. Chang, B. D. Gaulin, N. P. Raju, and J. E. Greedan. Thermodynamic
and single-ion properties of Tb3+ within the collective paramagnetic-spin liquid
state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7. Physical Review
B 62, 6496 (2000).

[216] N. Hamaguchi, T. Matsushita, N. Wada, Y. Yasui, and M. Sato. Low-
temperature phases of the pyrochlore compound Tb2Ti2O7. Physical Review
B 69, 132413 (2004).

[217] K. C. Rule, J. P. C. Ruff, B. D. Gaulin, S. R. Dunsiger, J. S. Gardner, J. P.
Clancy, M. J. Lewis, H. A. Dabkowska, I. Mirebeau, P. Manuel, Y. Qiu, and
J. R. D. Copley. Field-induced order and spin waves in the pyrochlore antifer-
romagnet Tb2Ti2O7. Physical Review Letters 96, 177201 (2006).

[218] J. P. C. Ruff, B. D. Gaulin, J. P. Castellan, K. C. Rule, J. P. Clancy, J. Ro-
driguez, and H. A. Dabkowska. Structural fluctuations in the spin-liquid state
of Tb2Ti2O7. Physical Review Letters 99, 237202 (2007).

133



Bibliography

[219] J. P. C. Ruff, Z. Islam, J. P. Clancy, K. A. Ross, H. Nojiri, Y. H. Matsuda,
H. A. Dabkowska, A. D. Dabkowski, and B. D. Gaulin. Magnetoelastics of
a spin liquid: X-ray diffraction studies of Tb2Ti2O7 in pulsed magnetic fields.
Physical Review Letters 105, 077203 (2010).

[220] B. D. Gaulin, J. S. Gardner, P. A. McClarty, and M. J. P. Gingras. Lack
of evidence for a singlet crystal-field ground state in the magnetic pyrochlore
Tb2Ti2O7. Physical Review B 84, 140402 (2011).

[221] T. Taniguchi, H. Kadowaki, H. Takatsu, B. F̊ak, J. Ollivier, T. Yamazaki,
T. J. Sato, H. Yoshizawa, Y. Shimura, T. Sakakibara, T. Hong, K. Goto, L. R.
Yaraskavitch, and J. B. Kycia. Long-range order and spin-liquid states of poly-
crystalline Tb2+xTi2−xO7+y. Physical Review B 87, 060408 (2013).

[222] E. Constable, R. Ballou, J. Robert, C. Decorse, J.-B. Brubach, P. Roy, E. Lho-
tel, L. Del-Rey, V. Simonet, S. Petit, and S. deBrion. Double vibronic process
in the quantum spin ice candidate Tb2Ti2O7 revealed by terahertz spectroscopy.
Physical Review B 95, 020415 (2017).

[223] B. C. den Hertog and M. J. P. Gingras. Dipolar interactions and origin of spin
ice in Ising pyrochlore magnets. Physical Review Letters 84, 3430 (2000).

[224] C. Mauws, A. M. Hallas, G. Sala, A. A. Aczel, P. M. Sarte, J. Gaudet, D. Ziat,
J. A. Quilliam, J. A. Lussier, M. Bieringer, H. D. Zhou, A. Wildes, M. B. Stone,
D. Abernathy, G. M. Luke, B. D. Gaulin, and C. R. Wiebe. Dipolar-octupolar
Ising antiferromagnetism in Sm2Ti2O7: A moment fragmentation candidate.
Physical Review B 98, 100401 (2018).

[225] E. Lhotel, S. Petit, S. Guitteny, O. Florea, M. C. Hatnean, C. Colin,
E. Ressouche, M. R. Lees, and G. Balakrishnan. Fluctuations and All-In–
All-Out Ordering in Dipole-Octupole Nd2Zr2O7. Physical Review Letters 115,
197202 (2015).

[226] O. Benton, O. Sikora, and N. Shannon. Seeing the light: Experimental signa-
tures of emergent electromagnetism in a quantum spin ice. Physical Review B
86, 075154 (2012).

[227] T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T.
Boothroyd, R. J. Aldus, D. F. McMorrow, and S. T. Bramwell. Magnetic
Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415 (2009).

[228] M. Twengström, P. Henelius, and S. T. Bramwell. Screening and the pinch
point paradox in spin ice. Physical Review Research 2, 013305 (2020).

[229] T. Fennell, M. Kenzelmann, B. Roessli, M. K. Haas, and R. J. Cava. Power-law
spin correlations in the pyrochlore antiferromagnet Tb2Ti2O7. Physical Review
Letters 109, 017201 (2012).

134



Bibliography

[230] S. Petit, P. Bonville, J. Robert, C. Decorse, and I. Mirebeau. Spin liquid cor-
relations, anisotropic exchange, and symmetry breaking in Tb2Ti2O7. Physical
Review B 86, 174403 (2012).

[231] T. T. A. Lummen, I. P. Handayani, M. C. Donker, D. Fausti, G. Dhalenne,
P. Berthet, A. Revcolevschi, and P. H. M. Van Loosdrecht. Phonon and crystal
field excitations in geometrically frustrated rare earth titanates. Physical Review
B 77, 214310 (2008).

[232] I. Mirebeau, P. Bonville, and M. Hennion. Magnetic excitations in Tb2Sn2O7

and Tb2Ti2O7 as measured by inelastic neutron scattering. Physical Review B
76, 184436 (2007).

[233] C. Z. Bi, J. Y. Ma, B. R. Zhao, Z. Tang, D. Yin, C. Z. Li, D. Z. Yao, J. Shi, and
X. G. Qiu. Far infrared optical properties of the pyrochlore spin ice compound
Dy2Ti2O7. Journal of Physics: Condensed Matter 17, 5225 (2005).
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im Büro als erstes auf deine (fast) tägliche email geantwortet. Danke, dass ich dir
immer schreiben konnte, wenn ich mal ein Problem hatte oder sonst was nicht gut
lief. Ich hoff unsere email-Freundschaft bleibt weiter bestehen, zur Not muss ich halt
am Weg zur Arbeit schreiben. Das einzige, was sich definitiv ändern wird ist meine
email-Adresse.
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