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Kurzfassung
In dieser Arbeit werden Ergebnisse von der Untersuchung verschiedener Tieftemperaturphäno-
mene mittels Ferninfrarotspektroskopie präsentiert. Die meisten Experimente wurden mit
einem Mach-Zehnder-Interferometer im Bereich von 40–1200 GHz durchgeführt. Zusätz-
lich zu der klassischen Messung der Absorption wurde besondere Aufmerksamkeit auf die
Untersuchung der Drehung der Polarisationsebene gelegt. Zu den untersuchten Systemen
gehören zweidimensionale Elektronengase (HgTe/CdHgTe-Quantenwells mit kritischer Dicke
und GaAs/AlGaAs-Heteroübergänge) sowie multiferroisches Dysprosium-Manganit.

Die elektronische Bandstruktur in HgTe/CdHgTe-Quantenwells wird durch eine starke Spin-
Bahn-Wechselwirkung in Quecksilbertellurid beeinflusst. Nach theoretischen Berechnungen
nimmt die Bandstruktur bei einer kritischen Dicke (6.6 nm) der HgTe-Schicht eine Form ähn-
lich einem Dirac-Kegel an. Diese Vorhersage wurde durch Messungen der Zyklotronresonanz
experimentell bestätigt. Die beobachtete Abhängigkeit der Masse als Funktion der Quadrat-
wurzel der Dichte ist eine direkte Bestätigung der linearen Dispersionsrelation der Elektronen.
In den Proben, dessen Fermienergie in der unteren Hälfte des Dirac-Kegels liegt, ermöglichten
Messungen der Rotation der Polarisationsebene bei 320–340 GHz eine Beobachtung des dy-
namischen Quanten-Hall-Effekts. In starken magnetischen Feldern wurde ein quantisiertes
Verhalten von dem Rotationswinkel des Faraday-Effekts beobachtet, welches dem Wert der
Feinstrukturkonstante (1/137) entsprochen hat. Da der Faraday-Winkel in direktem Zusam-
menhang mit der dynamischen Hall-Leitfähigkeit steht, ist diese ebenfalls quantisiert und
zeigt den fundamentalen Wert e2/h.

Der dynamische ganzzahlige Quanten-Hall-Effekt wurde außerdem in GaAs/AlGaAs-He-
teroübergängen untersucht. Unter 100 GHz wurde eine Quantisierung der Hall-Leitfähigkeit
gemessen. Über dieser Frequenz verwischen die Quantenplateaus und werden durch kleine
Quantenoszillationen im Realteil der Leitfähigkeit ersetzt. Ähnliche Oszillationen wurden
auch im Imaginärteil beobachtet. Dieser Effekt tritt jedoch nicht bei der Nullfrequenz auf, da
der Imaginärteil im statischen Fall verschwindet. Die Amplitude der Oszillationen verringert
sich mit steigender Frequenz und ab 1 THz zeigt die Hall-Leitfähigkeit kein Merkmal mehr,
das mit dem Füllen von Landau-Niveaus verbunden werden könnte. Das Bild, das aus diesen
Experimenten entsteht, stimmt teilweise mit analytischen Berechnungen für den Grenzfall, in
dem die Störstellen als Deltafunktionen angenommen werden, und dem Grenzfall mit einem
glatten Potential überein. Es steht jedoch im Widerspruch zu Ergebnissen von numerischen
Berechnungen, die einen Fall zwischen diesen beiden Limits annehmen.

Eine weitere interessante Erscheinungsform der Spin-Bahn-Kopplung wurde im klassis-
chen multiferroischen Manganit DyMnO3 nachgewiesen. In diesem Material führt die mik-
roskopische Spin-Bahn-Wechselwirkung zu einer Kopplung zwischen antiferromagnetischer
und ferroelektrischer Ordnung. Aufgrund der intrinsischen magnetoelektrischen Kopplung an
Elektromagnonen, rotiert linear polarisierte Terahertzstrahlung bei der Propagation durch die
Probe. Amplitude und Richtung der Polarisationsdrehung sind durch die Orientierungen der
ferroelektrischen Domänen definiert und können mit einer statischen Spannung verändert wer-
den. Diese Experimente erlauben die elektrische Kontrolle der Terahertz-Polarisation durch
die Nutzung des dynamischen magnetoelektrischen Effekts.
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Abstract
This thesis presents results of far-infrared spectroscopic studies of several low-temperature
phenomena. Most of the experiments have been carried out in 40–1200 GHz range using a
Mach-Zehnder interferometer. In addition to classical measurements of absorption, much at-
tention has been put to the study of rotation of the polarization plane. Among investigated
systems are two-dimensional electron gases (HgTe/CdHgTe quantum wells of critical thick-
ness and GaAs/AlGaAs heterojunctions) and multiferroic dysprosium manganite.

The electron band structure in HgTe/CdHgTe quantum wells is affected by a strong spin-
orbit interaction in mercury telluride. According to theoretical calculations, the band structure
takes a form close to a Dirac cone for a critical thickness (6.6 nm) of the HgTe layer. This
prediction was experimentally confirmed by measurements of the cyclotron resonance. In ex-
ternal magnetic field the cyclotron resonance is seen as a dip in a transmission coefficient.
Its position is determined by the cyclotron mass and its amplitude is connected to the charge
density. The observed square-root dependence of the mass as a function of density provides
a direct confirmation of the linear electron dispersion. Measurements of rotation of the po-
larization plane at 320–340 GHz allowed to observe the dynamic quantum Hall effect in the
samples, in which the Fermi level is in the lower part of the Dirac cone. In high magnetic fields
the Faraday rotation angle was found to demonstrate a quantized behavior, taking a value of
the fine-structure constant (1/137). The Faraday angle is directly connected to the dynamic
Hall conductivity, which is thus also quantized, showing the universal value e2/h.

The dynamic integer quantum Hall effect has been also studied in GaAs/AlGaAs hetero-
junctions. Quantization of the Hall conductivity has been detected below 100 GHz. Above
this frequency the quantum plateaus are smeared out and replaced by small quantum oscilla-
tions in the real part of the conductivity. Similar oscillations were observed in the imaginary
part as well. This effect has no analog at zero frequency, since the imaginary part is zero in
the static case. The amplitude of the oscillations decreases with increasing frequency, and
at 1 THz the Hall conductivity does not demonstrate any features related to the filling of
Landau levels. This experimental picture is in partial agreement with analytical calculations
for a delta-impurity limit and for a limit of a smooth potential, but in a disagreement with the
results of numerical calculations for an intermediate case.

Another interesting manifestation of the spin-orbit coupling has been demonstrated in a
classical multiferroic manganite DyMnO3. In this material the microscopic spin-orbit inter-
action leads to a coupling between antiferromagnetic and ferroelectric orders. Because of
intrinsic magnetoelectric coupling with electromagnons a linearly polarized terahertz light ro-
tates upon passing through the sample. The amplitude and the direction of the polarization
rotation are defined by the orientation of ferroelectric domains and can be changed by static
voltage. These experiments allow the terahertz polarization to be electrically tuned using the
dynamic magnetoelectric effect.
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1 Introduction
Most part of information coming to the human brain results from analysis of visible light,
reflected from surrounding objects. Systematic experimental study of interaction of light with
matter was started in XVII century [1]. Since that time, the experimentally accessible fre-
quency range has broadened tremendously, and nowadays it spreads from zero to higher than
1018 Hz. Spectroscopy has become one of the most powerful research tools in modern phys-
ics. Although radiation of any frequency satisfies the same laws, experimental techniques
vary for different ranges. It is challenging to realize the same experimental setup, but 1018

times smaller (larger). Interaction of radiation with matter is qualitatively different for radio
waves and X-rays. Probing solids with radiation of various wavelengths allows to study their
structure on any scale. For example, one can determine energy levels of nuclei using gamma
rays and investigate the motion of domain walls by using capacitance spectroscopy at several
Hertz.

This work is mostly devoted to the spectral range 40–1100 GHz, which is quite specific [2].
It makes a bridge between two well-recognized ranges. The upper limit of ≈ 1 THz can
be treated as a lower border of infrared (IR) light and frequencies below 40 GHz can be
assigned to the microwave range. In IR spectroscopic experiments the wavelength of radi-
ation is usually much smaller, than typical dimensions of optical elements and samples. The
opposite limit is reached at microwaves and an intermediate case takes place in the range 40–
1100 GHz. We will call this range “THz”, or “submillimeter”, or “far-IR”, although neither
of the terms seems to be absolutely correct. There are several techniques that cover the THz
range at least partially. Most of experiments in this work have been carried out using con-
tinuous wave transmission spectroscopy. Coherent THz radiation is generated by a backward
wave oscillator (BWO). The frequency of radiation can be continuously tuned in a certain
range. An interferometric arrangement is used to measure both the amplitude and the phase
of transmission coefficients. Chapter 2 describes a general matrix formalism that allows to
connect experimentally measured quantities with properties of investigated materials. Second
part of chapter 2 contains a basic introduction into the experimental BWO spectroscopy and a
consideration of some specific aspects of this method.

Recent extensive studies of HgTe/CdHgTe quantum wells are driven by both fundamental
and practical interest. Because of the large atomic number of Hg, electron properties of HgTe
are strongly affected by the spin-orbit interaction [3]. In some configurations this interaction
leads to the locking between the electron momentum and the electron spin. This locking opens
possibilities to use the spin degree of freedom for effective storage and transfer of data. In-
terest from fundamental science is caused by the possibility to realize Majorana quasiparticles.
In 1937 E. Majorana described theoretically a hypothetical elementary particle: a fermion that
is its own antiparticle. Thus far no elementary particles with such properties have been found,
but quasiparticles in heterostructures, combined of HgTe and a superconductor, do resemble
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1 Introduction

Majorana fermions [4]. Chapter 4 is devoted to the spectroscopic study of HgTe/CdHgTe
quantum wells with a critical thickness of the HgTe layer. In these systems the spin-orbit
interaction leads to a nearly linear dispersion of the charge carriers [3, 5]. Thus another kind
of relativistic-like quasiparticles is realized in these quantum wells: Dirac fermions. Recent
achievements in the growth technology of HgTe/CdHgTe heterostructures allowed to produce
ultra-pure samples [6]. The high mobility of the charge carriers allows to probe the band struc-
ture via the cyclotron resonance. Another outcome of the increased quality of the samples is
an observation of quantized Faraday rotation in sub-THz range. This effect is closely related
to the dynamic quantum Hall effect.

Many solid state physicists consider the quantum Hall effect (QHE) to be the most amaz-
ing phenomenon in solid state physics [7], discovered in XX century (maybe competing with
superconductivity). The perfect quantization of the Hall conductivity is used for resistance
calibrations. The QHE has been studied extensively at low frequencies. As frequencies in-
crease to the microwave range, standard transport techniques become inapplicable. In this
case the high-frequency Hall conductivity can be measured using a crossed waveguide setup.
In preceding experiments the quantum plateaus have been shown to exist up to the upper
limit of the microwave range (30–50 GHz) [8, 9], and behavior at even higher frequencies
remained unknown thus far. Different theoretical considerations provide opposite predictions
for the THz range [10–13]. In order to fill the gap in knowledge, the dynamic Hall effect
has been experimentally studied in the range 70–1100 GHz. The spectroscopic experiments
were accompanied by simultaneous transport measurements in the van der Pauw geometry, in
order to compare static and dynamic Hall conductivities directly. The results of this study are
presented in chapter 5.

Another manifestation of the spin-orbit interaction has been demonstrated in dysprosium
manganite. At low temperatures this material is a multiferroic: it is ordered antiferromagnet-
ically and ferroelectrically, and these orders are coupled. Intensive study of such multiferroics
is driven by the idea to control magnetic properties by electric field and vice versa. Realiza-
tion of this idea can be used to improve efficiency of memory cells [14]. THz spectroscopy is
useful for studying excitations in magnetically ordered materials, since typical frequencies of
magnons are in the far-IR range. Because of the coupling between the electric and magnetic
orders in dysprosium manganite, some magnons become electrically active (electromagnons).
Chapter 6 presents results of experiments, in which such electromagnon was used to control
polarization of THz radiation by applying static electric voltage to the sample.
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2 Experimental technique and data
treatment

2.1 Generalization of Fresnel equations for stratified
samples

In this section we establish connections between quantities, that can be measured in spectro-
scopic experiments, such as transmission and reflection, with material properties (dielectric
permittivity, magnetic permeability, conductivity). We will treat a 4×4 matrix formalism, de-
veloped by Teitler and Henvis [15] and Berreman [16] in order to analyze transmission and
reflection of samples with anisotropic properties. This approach provides an accurate solution
of Maxwell’s equations in a medium with an arbitrary linear local material relations between
electromagnetic fields E, D, B, H. A sample is assumed to be an infinite plane-parallel
slab, perpendicular to z-direction. Optionally, the sample can consist of several layers with
different properties.

2.1.1 Plane wave in a linear medium

Consider a plane monochromatic electromagnetic wave with angular frequency ω, traveling
through medium, which can be described by the linear material equations:

Dx

Dy

Dz

Bx

By

Bz

 = Mε


Ex

Ey

Ez

Hx

Hy

Hz

 ; Mε =

(
ε̂ χ̂em

χ̂me µ̂

)
, (2.1)

where Mε is a 6×6 matrix, ε̂, µ̂, χ̂em and χ̂me are 3×3 submatrices, that represent tensors
of dielectric permittivity, magnetic permeability, electromagnetic and magnetoelectric per-
mittivity respectively in the chosen coordinate system. In ordinary materials magnetic and
magnetoelectric effects are negligible, in this case µ̂ is an identity matrix, χ̂me and χ̂em are
zero matrices.

For each electromagnetic vector E, D, B, H we find solution of Maxwell equations in the
form of a plane wave:

A(r, t) = A0e
ı(qr−ωt)
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2 Experimental technique and data treatment

Taking derivatives of such a vector function gives especially simple results:

∇A = ıqA; ∇×A = ıq×A;
∂A

∂t
= −ıωA.

After a substitution in Maxwell equations, containing curls, one obtains

ıq×H = −ı
ω

c
D;

ıq× E = ı
ω

c
B.

(2.2)

A cross product of two vectors can be written in a matrix form as a product of a skew-
symmetric matrix, consisting of the components of the first vector, and the second vector.
After a substitution of material equations (2.1), we obtain the system of six linear equations:

0 0 0 0 −qz qy
0 0 0 qz 0 −qx
0 0 0 −qy qx 0
0 qz −qy 0 0 0

−qz 0 qx 0 0 0
qy −qx 0 0 0 0




Ex

Ey

Ez

Hx

Hy

Hz

 = −ω

c
Mε


Ex

Ey

Ez

Hx

Hy

Hz

 (2.3)

To have a non-trivial solution for the electromagnetic fields, the system should be degenerate
and its determinant must be zero. For a given angular frequency ω one can expect an infinite
number of solutions, which correspond to different directions of the wave vector q. If we fix
the direction of propagation, for example, by assuming qx = qy = 0, then zero determinant
can be achieved at four values of qz only. It follows from the fact, that qz appears in four
equations, so the determinant of the system is a polynomial of power four with respect to qz.

By removing the field components Ez and Hz, using lines 3 and 6 in the system (2.3), the
problem can be formulated as an eigenvalue problem:

qz


Ex

Ey

Hx

Hy

 = M4×4


Ex

Ey

Hx

Hy

 . (2.4)

The coefficients of the matrix M4×4 can be directly expressed through the material proper-
ties (2.1) and the fixed components qx, qy of the wave vector. Four solutions of this problem
correspond to two pair of eigenmodes, traveling in the opposite directions. For example, in a
trivial case of vacuum, this method gives two double-degenerate solutions qz = ±ω/c for the
wave vector.

Let us define a column X = (Ex Ey Hx Hy)
T and k = qz. At the given angular fre-

quency ω and for fixed components qx, qy any field configuration can be represented by a linear
combination of eigenvectors of matrix M4×4 with corresponding exponential multipliers:

X(z) =
4∑

i=1

αiXie
ıkiz =

(
X1 X2 X3 X4

)
eık1z 0 0 0
0 eık2z 0 0
0 0 eık3z 0
0 0 0 eık4z



α1

α2

α3

α4

 .
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2.1 Generalization of Fresnel equations for stratified samples

Here time and x, y dependence, given by a multiplier eı(qxx+qyy−ωt), is omitted. The matrix of
the expansion coefficients αi can be expressed through the field at some point z0 and removed
from the expression:

K
def
=
(
X1 X2 X3 X4

)
;

M(z)
def
=K


eık1z 0 0 0
0 eık2z 0 0
0 0 eık3z 0
0 0 0 eık4z

K−1;

X(z) = M(z − z0)X(z0). (2.5)

Equation (2.5) connects electromagnetic field at two planes by the transfer matrix M . In order
to calculate this matrix, one has to solve an eigenproblem for the matrix M4×4. In some simple
cases, treated below, this procedure can be done analytically. If the matrix Mε of permittivity
has a lot of non-zero elements, then the analytical expressions become too cumbersome and
it is more convenient to find the transfer matrix with the use of numerical algorithms.

2.1.2 Transmission through isotropic dielectric slab and thin metallic
film

In case of an isotropic dielectric with the complex dielectric permittivity ε the transfer matrix
has the next form:

D(z) =


cos(kz) 0 0

ı√
ε
sin(kz)

0 cos(kz) − ı√
ε
sin(kz) 0

0 −ı
√
ε sin(kz) cos(kz) 0

ı
√
ε sin(kz) 0 0 cos(kz)

 , (2.6)

where k =
√
εω/c. Consider an infinite dielectric slab, placed in vacuum between planes z =

0 and z = d, perpendicular to z-axis (Fig. 2.1). Assume an incident plane wave with a complex
amplitude equal to 1 is created by an external source of radiation. The angular frequency of
the wave is assumed to be ω, the polarization is linear with E∥Ox and the incidence is normal.
The electromagnetic field of the incident wave is given by

Ex

Ey

Hx

Hy

 =


1
0
0
1

 eı(k0z−ωt),

where k0 = ω/c. The reflected and transmitted waves can be represented as a sum of two
linearly polarized waves. The wave with the same polarization E∥Ox as the incident one is
called “parallel” and corresponding amplitudes are assigned with a subscript ∥. The wave with
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2 Experimental technique and data treatment

E
k

rII

tII

1

t I

rI

z0 d

x

Hy

x

H H-

j

E

+0 -0

y zy

x

(a) (b)

Figure 2.1: a) An infinite dielectric slab of thickness d is perpendicular to z-axis. A radiation source creates a
linearly polarized plane incident wave with a wave vector (0, 0, k) and amplitude 1. The reflected and transmitted
radiation can be represented by a sum of two linearly polarized waves with amplitudes r∥, r⊥ and t∥, t⊥ respect-
ively. b) Relation between electromagnetic fields on sides of a thin conducting film. If the film is thin enough,
then the tangential components of the electric field are equal on both sides, while the tangential components of
the magnetic field differ by 4π

c j, where j = |σ̂Ed| is a linear current density, created by the electric field. The
difference between the magnetic fields is perpendicular to the direction of the current density.

the perpendicular polarization E∥Oy is called “crossed” and its amplitudes are marked by ⊥.
The fields on the sides of the slab are related by the transfer matrix (2.6):

X(0) = 1


1
0
0
1

 eı(k0×0) + r∥


1
0
0
−1

 eı(−k0×0) + r⊥


0
1
1
0

 eı(−k0×0),

X(d) = t∥


1
0
0
1

 eık0d + t⊥


0
1
−1
0

 eık0d,

X(d) = D(d)X(0). (2.7)

Relation (2.7) is a system of four linear equations with respect to four complex amplitudes
of reflection and transmission r∥, r⊥, t∥, t⊥. By solving the linear system, one can obtain a
well-known expression for the transmission through the dielectric slab:

t∥ =
exp(−ıω

c
d)

cos(
√
εω
c
d)− ı

2
(
√
ε+ 1√

ε
) sin(

√
εω
c
d)
. (2.8)

Note that the same coordinate system for incident and transmitted waves is used in this work.
As a result, a layer of vacuum of thickness d produces no phase shift and has t∥ = 1.

At a given frequency ω a metallic medium with the tensor of complex conductivity σ̂ is
mathematically equivalent to a dielectric medium with the dielectric permittivity

ε̂ = I +
4πı

ω
σ̂,
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2.1 Generalization of Fresnel equations for stratified samples

where I is an identity matrix. Assume that the thickness d is small enough and the following
conditions are satisfied:

ω

c
d ≪ 1; d ≪ c√

2πσω
.

The first condition means that the film thickness should be much smaller than the wavelength
of the radiation in vacuum. The second condition requires that the film thickness is also much
smaller than the skin-depth in the metallic medium, so the field can be treated as approxim-
ately uniform inside the film. Suppose the tensor of conductivity in the chosen coordinate
system is given by

σ̂ =

σxx σxy 0
σyx σyy 0
0 0 σzz

 .

Then, following the procedure, described above, one can obtain a transfer matrix for the thin
conducting film:

F =


1 0 0 0

0 1 0 0

4π
c
σyxd

4π
c
σyyd 1 0

−4π
c
σxxd −4π

c
σxyd 0 1

 . (2.9)

In a less strict way, the transfer matrix F can be obtained by a simple physical reasoning,
using Fig. 2.1(b). If the film is thin enough, then the tangential components of the electric
field are equal on both sides of the film. Therefore in the case of the normal incidence the
electric field can be treated as uniform across the film thickness. The electric field creates a
current density j = σ̂E, which leads to a jump in the tangential magnetic field, equal to 4π

c
jd

and perpendicular to the direction of the current. Writing down these relations in a matrix
form, one obtains the transfer matrix (2.9).

Some of the samples, studied in this work, were grown in a form of a thin conducting film
on top of an insulating dielectric slab. In order to find the transmission coefficients through
such a sample, one has to solve a system of linear equations, similar to (2.7):

X(a) = D(a)FX(0), (2.10)

where a is the thickness of the dielectric substrate. In an external magnetic field, perpendicular
to the film (Faraday geometry), the components of the conductivity tensor are connected as
σxx = σyy, σxy = −σyx. In this case the solution for the system (2.10) is:

t∥ =
2axxe

−ıω
c
a

a2xx + a2xy
; t⊥ =

2axye
−ıω

c
a

a2xx + a2xy
, (2.11)

where
β =

√
ε
ω

c
a;

axx = (1 +
4π

c
σxxd)(cos β − ı√

ε
sin β) + cos β − ı

√
ε sin β; (2.12)

7



2 Experimental technique and data treatment

axy =
4π

c
σxyd(cos β − ı√

ε
sin β). (2.13)

In spectroscopic experiments the quantities t∥ and t⊥ are obtained as complex numbers. Equa-
tions (2.11) can be inverted to produce the explicit expressions for the diagonal and off-
diagonal complex conductivities:

σxx =
c
√
εe−ıω

c
at∥

2πd(t2∥ + t2⊥)(
√
ε cos β − ı sin β)

− c
2
√
ε cos β − ı(1 + ε) sin β

4πd(
√
ε cos β − ı sin β)

; (2.14)

σxy =
c
√
εe−ıω

c
at⊥

2πd(t2∥ + t2⊥)(
√
ε cos β − ı sin β)

, (2.15)

where a is the substrate thickness, ε is the dielectric permittivity of the substrate, d is the film
thickness, ω = 2πf is the angular frequency of the radiation, β =

√
εω
c
a.

2.2 Continuous wave sub-THz spectroscopy
The most part of experimental data in this work has been obtained with the use of the far-
infrared spectroscopy. This frequency range lies between the microwaves and the mid-IR ra-
diation. From the experimental point of view, the mid-IR radiation is very similar to the visible
light, from which it differs by its wavelength only. At microwave frequencies the wavelength
in vacuum is comparable to the size of elements of an experimental setup (≈5 mm and larger),
so the radiation cannot be effectively controlled by means of lenses and mirrors. Experimental
techniques at microwaves widely use waveguides for continuous frequency measurements and
resonators for discrete frequencies. Spectroscopic experiments in the far-IR (terahertz, sub-
millimeter) range can be conducted in a way that is similar to the optical techniques. Collim-
ated beams of the radiation travel in open space and can be controlled by lenses and mirrors.
Due to the comparatively large wavelength, the far-IR beams diverge much faster, than the
optical ones. The border, where the quasi-optical technique becomes inapplicable, depends
on the size of investigated samples and on the requirements for the experimental setup. In
case of the samples, that can be grown arbitrary large (more than 1 cm2 in cross-section), such
measurements can be extended down to 1 cm−1 in open space. Measurements in a magnet
with optical windows on samples of a smaller size (several mm2) can give unreliable results
already below 4 cm−1.

2.2.1 Mach-Zehnder interferometer
Backward wave oscillators (BWOs) generate monochromatic radiation, which frequency can
be adjusted by changing an applied voltage. Principle of operation of a BWO is based on
an electron beam, traveling along a periodic grid that plays a role of a slow-wave structure.
Interaction of the electrons with the periodic electric field of the grid leads to the generation
of radiation, which frequency is determined by the speed of the electrons and the period of
the grid. The speed of the electrons is controlled by the accelerating voltage, which allows
to sweep the generated frequency continuously in a certain range. Several lamps cover the
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Figure 2.2: Quasi-optical Mach-Zehnder spectrometer. (a) Scheme of spectrometer. 1 – radiation source (BWO);
2 – source focusing lens; 3 – mechanical interrupting chopper; 4 – grid polarizer; 5 – beam splitter; 6,6’,7,7’ –
focusing lenses; 10 – movable mirror; 11,12 – grid polarizers, 13 – detector focusing lens; 14 – detector; 15 –
modulating mirror. (b) Working frequency ranges of the backward wave oscillators. (c) Illustration for the
phase measurement algorithm. The sample and reference beams of the spectrometer are merged together by
polarizer 11 and interfere after polarizer 12. The intensity of the resulting signal depends on the phase difference
∆φ between the beams as shown by the black curve. Modulating mirror 15 causes oscillations of the intensity
around a point, set by the position of motorized mirror 10. When the beams are in balance (∆φ = 0), then the
period of the intensity oscillations becomes twice smaller (blue curve) compared to the off-balance case (red
curve).

band 38 GHz–1.1 THz, as shown in Fig. 2.2(b). Maximal radiation power of 25 mW can
be achieved in low-frequency BWOs, while for high-frequency BWOs the typical generated
power is below 1 mW.

At frequencies below 1 THz the radiation beams can be easily modified using dielectric
lenses with spherical surfaces. In order to minimize signal losses and avoid undesirable re-
flections, the lens material must have low absorption and a low refracting index. The optimal
combination of these properties is achieved in lenses made of teflon or polyethylene.

Figure 2.2(a) shows a scheme of a Mach-Zehnder interferometer, in which BWO (1) is used
as a source of radiation. A focusing lens (2) converts a diverging wave into a quasi-parallel
beam. A grid polarizer (5), acting as a beam splitter, splits the light into two beams with
orthogonal linear polarizations. In transmission mode only the sample beam, depicted by the
red color, is used. The reference beam is interrupted by a non-reflecting opaque flap and the
motorized mirror (10) is fixed. In this mode a mechanical chopper (3) is used to modulate the
radiation, coming from BWO, to discriminate it from the heat background, caused by nearby
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2 Experimental technique and data treatment

room-temperature objects. The chopper is supplied with a photo-sensor that generates electric
pulses on each interruption by the blades. Lenses (6) and (7) focus the beam on a sample
and restore a parallel beam. The intensity of the beam, passed through the sample stage, is
measured by a sensitive He-cooled bolometer (14), which converts the intensity into a voltage.
The amplitude of the voltage modulation is measured by a custom lock-in amplifier, which
uses the pulses from the photo-sensor on the chopper as a reference signal. Measurements
of the transmission amplitude |t| consist of two steps. The intensity of the passing light is
measured with a sample (9) and without the sample. The ratio of the intensities gives a squared
absolute value |t|2 of the complex transmission amplitude.

In a phase measurement mode both beams are open and the chopper is removed. The initial
wave is split by the grid polarizer (5). The component, which electric field is parallel to
the grid wires, is reflected into the reference beam, while the component with electric field
perpendicular to the wires passes through and form the sample beam. Since the waves in the
two beams have orthogonal linear polarizations, they add without interference after the grid
(11) and form an elliptically polarized wave. The grid (12) lets pass a linear wave, allowing the
corresponding components from the sample and reference beams to interfere. The intensity,
measured by the detector can be calculated as

I = |Esame
ıφsam − Erefe

ıφref|2 = |Esam|2 + |Eref|2 − 2EsamEref cos(φsam − φref). (2.16)

Here Eeıφ is a complex amplitude of the linearly polarized wave, passed through the sample
or the reference beam and the final polarizer (12). By rotating the polarizer to an adjacent
quadrant, one can add π to φsam or φref and choose between addition and subtraction of the
complex amplitudes. In order to minimize the intensity, measured by the detector when the
two optical paths are equal, the final polarizer must be adjusted to subtraction of the beams,
therefore the “-” sign is assumed in Eq. (2.16).

The motorized mirror (10) allows to change the optical length of the sample beam and adjust
the phase φsam to make it equal to φref. According to Eq. (2.16), if ∆φ = φsam − φref = 2πm,
where m is an integer number, then the intensity I reaches its minimum. Therefore, the phases
can be made equal up to 2πm by finding such a position of the motorized mirror, at which
a minimum in intensity I is achieved. As it will be explained below, the order m of the
minimum does not affect the value of the obtained complex transmission.

From technical point of view, finding the position, at which ∆φ = 2πm and the intensity
is minimal, is performed in the following way, see Fig. 2.2(c). The modulating mirror (15)
oscillates at the frequency Ω ≈ 28 Hz, introducing an oscillating term in the phase difference:

I(t) = const− 2EsamEref cos(∆φ+ δ sinΩt) =

= const− 2EsamEref cos (∆φ) cos (δ sinΩt) + (2.17)
+2EsamEref sin (∆φ) sin (δ sinΩt).

Here δ < π/2 is an amplitude of the phase modulation, connected to the amplitude a of the
mechanical motion of the mirror through

δ =
ωa

c
.
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2.2 Continuous wave sub-THz spectroscopy

The first time-dependent term in Eq. (2.17) is proportional to cos∆φ. It has a twice smaller
period, than the oscillating mirror, as it follows from

cos (δ sinΩ(t+
2π

2Ω
)) = cos (δ sinΩt).

Therefore, in the Fourier representation this term produces only even harmonics with the fre-
quencies 2Ω, 4Ω, 6Ω, etc. The first harmonic at frequency 1Ω is only produced by the second
time-dependent term, which is proportional to sin∆φ. A digital acquisition unit (DAU) meas-
ures the signal from the detector as a function of time and calculates the amplitude of the first
harmonic. Depending on a sign of the amplitude, the motorized mirror is shifted in the ap-
propriate direction to achieve zero amplitude of the first harmonic and satisfy ∆φ = 0. The
mirror position is measured with a sample (lsam) and without it (l0). The complex phase of the
transmission coefficient t = |t| eıφ is calculated as

φ = ω
lsam − l0

c
. (2.18)

When the motorized mirror satisfies the condition ∆φ = 0, the amplitude of the second
harmonic 2Ω is determined by the amplitudes Esam, Eref and the modulation amplitude δ, as
it can be seen from Eq. (2.17). Since Eref and δ remain constant, the amplitude of the second
harmonic can be used to obtain the absolute value |t| of the complex transmission amplitude.
Using this technique allows to obtain both the absolute value and the complex phase in one
measurement (with a sample and a calibration without it), with no need in conducting two
separate experiments. There is no mathematical requirements for the oscillating phase amp-
litude δ to be small. Since the amplitude of the second harmonic is proportional to δ2, the
amplitude of the oscillating mirror should be set as large as possible, as long as the algorithm
is stable. The optimal value for the phase modulation is assumed to be around δ = π/3, which
corresponds to the mirror amplitude a = λ/6, one sixth of the radiation wavelength.

As it can be seen from Eq. (2.18), an addition of mλ to the mirror position leads to the
change in the measured phase difference by 2πm. In this consideration we neglected those
effects that are connected with a spreading of the beams and other imperfections. In this
approximation, the same complex transmission value is obtained, regardless which order m
is used. However, in dielectric measurements it is useful to find the zero-order position, at
which the optical paths in the sample and the reference beams are exactly equal. Mathemat-
ically, different values of the complex dielectric permittivity ε can lead to the same complex
transmission. For example, as it can be seen from Eq. (2.8), at frequency ω = 2πc/d any
material with a dielectric constant ε = n2, where n is an integer, will cause no effect on the
incident wave (t∥ = 1). In this case one needs additional information for choosing the right
value. Determination of the zero-order position with a sample and without it allows to calcu-
late the optical path difference, caused by the sample, and to estimate the value of permittivity
from the approximate relation:

(
√

Re(ε)− 1)d = lsam − l0.

With no sample in the beam, the position of the zeroth order can be easily determined, as it
does not depend on the radiation frequency ω. The same is valid for a sample in the beam, if
the dispersion of the dielectric permittivity is small.
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2 Experimental technique and data treatment

2.2.2 Field distribution between focusing lenses

Experimental data, obtained by means of the quasi-optical submillimeter spectroscopy, are
used to calculate such important material properties as complex permittivity, magnetic per-
meability, magnetoelectric permittivity, high-frequency conductivity. It is a common practice
to use equations, analogous to (2.8, 2.15), that were derived for the case of an infinite slab and
the normal incidence of a plane wave. In fact, in real spectroscopic experiments electromag-
netic radiation with a typical wavelength of 1 mm is collimated into ≈ 5 cm diameter beams.
High quality samples are extremely difficult to grow, and for this reason their cross-section
usually does not exceed several square millimeters. In order to measure transmission through
such a small sample, the beam is focused with the aid of convex lenses. The distribution of the
electromagnetic fields between the lenses can be, in principle, explored with a use of a mov-
able scanning detector. Alternatively, the field pattern can be numerically calculated, using the
finite element or finite difference methods. In the treated frequency range the wavelengths are
comparable with the dimensions of the optical elements, which allows to solve the Maxwell
equations explicitly, using a reasonable amount of nodes (106).

Figure 2.3 shows the distribution of intensity of the high-frequency electric field between
the focusing lenses, calculated with the use of the finite element method. All quantities in the
calculation do not depend on y-direction, which corresponds to infinitely long cylindric lenses,
an infinitely long diaphragm, etc. In other words, a two-dimensional problem has been solved
instead of a three-dimensional, in order to decrease the number of nodes by several orders
and speed up the calculation. The symmetry of the model allows to reduce the calculations
to one half, since the field is symmetric with respect to the optical axis. The model setup
includes two lenses with the dielectric constant εlens = 2.25. One of the surfaces is flat and
the second is cylindric with the curvature radius rlens = 50 mm. Each lens is placed into an
absorbing diaphragm with material parameters εabs = µabs = 1 + 50ı. Such equality of the
permittivity and magnetic permeability leads to zero reflection at normal incidence, while the
large imaginary parts cause a fast attenuation of electromagnetic waves in this medium. The
dimensions of the model are 100×300 mm2. A border condition on the edges, represented
by green color in Fig. 2.3(a) was set to simulate an incident plane wave with the wave vector
directed along z-axis. The polarization of this wave is linear with the electric field parallel
to y-axis. Due to the symmetry with respect to the optical axis, shown by red dashed line,
z-component of the magnetic field is zero on the optical axis. Therefore, a corresponding
border condition was set for the nodes on this edge. Finally, a border condition simulating
radiation with the absence of reflection was set on the borders, shown by magenta color.
An additional absorbing diaphragm collimates the incident plane wave into a 66 mm wide
beam. Figures 2.3(b, d) show the distribution of the electric field magnitude at frequencies
120 and 30 GHz respectively. The absolute value of the electric field is coded by color, as
shown on the right scale. The amplitude of the incident wave is taken to be 1. While the
distribution at 120 GHz is qualitatively similar to the picture that can be expected from the
laws of geometric optics, the distribution at 30 GHz demonstrates significant deviations. The
plots show that this case is hard to be treated rigorously analytically, since the field intensity
changes fast in x-direction and the paraxial approximation is not valid. Nevertheless, even in
these conditions the simulated transmission through a dielectric slab, see Fig. 2.3(c), is well
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Figure 2.3: Two-dimensional finite element simulation of the distribution of the electric field between the fo-
cusing lenses. a) Scheme of the simulation. b) The distribution of the electric field at frequency 120 GHz. The
absolute value of the high-frequency electric field is coded by colors as shown on the right. The amplitude of
the incident plane wave is taken to be 1. c) Same as (b) with addition of an dielectric slab with ε = 10 as a
sample. d) Distribution of the electric field at frequency 30 GHz. e) Transmission, obtained from the simulation
(squares), in comparison with the theoretical calculation (solid line).
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described by Eq. (2.8). The high-frequency quasi-periodic deviations (standing waves), which
can be observed in the spectrum plot, are caused by reflections between the optical elements.
Their origin is treated below in details. In experiment, if the investigated material is available
in the form of large slabs, then it is possible to measure the transmission with the lenses and
without them. Both methods give the same results for the transmission coefficient. This fact
justifies, to some extent, the usage of the theory, developed for the plane waves and infinite
samples.

2.2.3 Standing waves in spectra

The simulated spectrum in Fig. 2.3(e) demonstrates quasi-periodic deviations from the theor-
etical curve. Such deviations usually present in experimentally obtained spectra as well. They
are caused by re-reflections between the sample and other elements of the experimental setup
(lenses, mylar windows, etc). The theoretical expressions, derived for a sample in free space,
do not allow for these reflections. Using matrix formalism, presented in section 2.1, it is not
difficult to reproduce these parasitic oscillations analytically. The real experimental setup can
be represented by the matrix

Msetup = M1M2...Mn,

where matrices Mi correspond to the elements of the setup, Mn being the closest element
to the source and M1 being the closest element to the detector. The coefficients of complex
transmission and reflection of this system can be found by solving the linear system

Msetup


1 + r∥
r⊥
r⊥

1− r∥

 = eı
ω
c
zsetup


t∥
t⊥
−t⊥
t∥

 , (2.19)

where ω is the angular frequency of radiation, zsetup is the distance between the initial and final
surfaces of the setup. Optical windows, having a form of a dielectric slab with a thickness d
and dielectric constant ε, can be represented by the matrix

Mdiel(ε, d) =


cosα 0 0 ı√

ε
sinα

0 cosα − ı√
ε
sinα 0

0 −ı
√
ε sinα cosα 0

ı
√
ε sinα 0 0 cosα

 , (2.20)

where α =
√
εω
c
d. Elements, separated by a distance d, should be connected by the corres-

ponding matrix
Mair(d) = Mdiel(1, d).

In a very rough approximation, the focusing lenses can be approximated by a dielectric slab
with some effective thickness and permittivity. More generally, an arbitrary element with
given complex amplitudes r∥ = r, t∥ = t, r⊥ = t⊥ = 0 can be represented by the transfer
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matrix

Mcustom(t, r) =
1

2t


t2 + 1− r2 0 0 t2 − (1 + r)2

0 t2 + 1− r2 −t2 + (1 + r)2 0
0 −t2 + (1− r)2 t2 + 1− r2 0

t2 − (1− r)2 0 0 t2 + 1− r2

 .

(2.21)
The matrix (2.21) describes an isotropic optical element with zero thickness, which reflection
and transmission do not depend on the polarization and the direction of the beam. The matrix
can be obtained by applying this conditions to Eq. (2.19) and a complementary one for the
opposite direction of light. The parameters r and t can be functions of frequency. By ana-
logy, one can derive matrices for anisotropic elements, polarization rotators, etc. However,
one should be careful while using such matrices for modeling, as an arbitrary set of chosen
parameters can give unexpected results. For example, the matrix (2.21) with t = −r = 1/

√
2

seems to describe a nonabsorbing element that reflects half the radiation power and transmits
the other half. A Fabry-Pérot interferometer, consisting of two such elements separated by a
distance d, is described by the transfer matrix

Msetup = Mcustom(
1√
2
,− 1√

2
)Mair(d)Mcustom(

1√
2
,− 1√

2
)

By solving Eq. (2.19), one obtains the reflection of such interferometer |rF-P|2 = 2 at fre-
quencies ω = πnc/d, where n is an integer number. The “nonabsorbing element” proves to
generate energy, if placed near the same element, the generation power being dependent on
the distance between the elements. The necessary restrictions on r and t for a realistic nonab-
sorbing element can be established by a treatment of the energy balance. Assume waves with
amplitudes a and b come to the element from the opposite sides. Then the balance between
the energies that come and leave the element requires

|a|2 + |b|2 = |ra+ tb|2 + |ta+ rb|2 = (|r|2 + |t|2)(|a|2 + |b|2) + (t∗r + r∗t)(a∗b+ b∗a).

This equality should be valid for arbitrary a and b, which leads to

|t|2 + |r|2 = 1; r∗t+ t∗r = 0, (2.22)

or equivalently
|t|2 + |r|2 = 1; arg t− arg r = ±π

2
.

The last expression shows that in the lossless case not only the absolute values of the amp-
litudes are connected, but also their complex phases. Another restriction comes from the
continuity of tangential components of the electric field:

1 + r = t. (2.23)

The equality is valid for an infinitely thin optical element. By combining (2.22) and (2.23),
we conclude that any thin nonabsorbing optical element is determined by a single free para-
meter φ:

t =
1 + eıφ

2
; r =

−1 + eıφ

2
. (2.24)
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Figure 2.4: Frequency-dependent transmission, calculated in terms of the matrix formalism. (a) Infinite dielec-
tric sample in free space (black curve). (b) The same sample between two dielectric slabs (red curve). Although
their reflection is small, the slabs cause significant deviation from the spectrum (a). (c) Addition of non-reflecting
attenuators reduces the deviation from the initial spectrum (blue curve).

Standing waves can cause significant experimental problems, as they affect both measured
transmission amplitude and phase. A simple model setup, reproducing the emergence of the
standing waves, is represented by the transfer matrix

M1 = Mdiel(εw, dw)Mair(d)MsampleMair(d)Mdiel(εw, dw).

Here Mdiel(εw, dw) stands for a dielectric slab with dw = 0.5 cm, εw = 1.5, separated by
distance d = 10 cm from a sample. In a very rough approximation these slabs simulate the
focusing lenses in Fig. 2.3. The sample in the form of a dielectric slab with ds = 1.0 cm, εs =
10 is represented by the corresponding matrix Msample = Mdiel(10, 1). In order to simulate a
real experiment, results of the measurement with the sample in the beam should be determined
from equation (2.19) with Msetup = M1, zsetup = 2dw + 2d + ds. The reference measurement
is obtained from (2.19) with the transfer matrix

Msetup = Mdiel(εw, dw)Mair(d)Mair(dsample)Mair(d)Mdiel(εw, dw),

where the transfer matrix of the sample is replaced by a matrix for the layer of vacuum of
the same thickness. In order to decrease the standing waves, the real lenses are made of
materials with the dielectric constant as close to 1 as possible. In our model setup the slabs
with εw = 1.5 reflect up to 4% of the incident energy. This small reflection results in the
periodic deviations, see Fig. 2.4. The black curve shows the transmission, calculated by using
Eq. (2.8) for a sample in free space. The same result is obtained by setting εw = 1 in the
calculation. The period of the oscillations is close to c/(2πd), where d is the distance between
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2.2 Continuous wave sub-THz spectroscopy

the sample and the lenses, but this is an approximate expression. In this case the estimation is
accurate up to 10%. Note that the periods of the standing waves are very close in Figs. 2.3(e)
and 2.4.

The standing waves can be suppressed by putting absorbing non-reflecting elements between
the sample and the focusing lenses. An important requirement here is the absence of reflec-
tions. Practically, it can be achieved by using a tilted sheet of some absorber. Due to the
tilt, the reflected wave leaves the optical path, which is equal to the absence of any reflection.
The blue curve in Fig. 2.4 shows the measured transmission, if the introduced elements are
described by Mcustom(r, t) with r = 0 and t = 1/2. In this case the amplitude of the standing
waves decreases approximately in 1/ |t|2 = 4 times. Thus, if the radiation source is powerful
enough, the effect of the standing waves can be minimized. However this method is difficult
to realize in experiments with the optical magnet. In the optical magnet the main contribution
to the amplitude of the standing waves is supposed to come from the inner optical windows,
separated by a distance of ≈ 20 mm from the sample. In order to suppress the reflections,
the tilted absorbers should be introduced between the sample and the windows. The sample
volume is small and its surfaces are made of metal. For this reason, the wave reflected by the
absorber partially returns to the initial optical path, making the procedure less effective.

2.2.4 Standing waves in magnetic field scans

When the transmission coefficient is measured as a function of frequency, the standing waves
reveal as the distinct oscillations. The period of the oscillations is determined by the distance
between the optical elements. If the setup consists of several elements, separated by different
distances, the periodic patterns add to form a noise-like picture. However, the measurements
are reproducible, so the “noise” is not a random error.

In opposite to this, measurements of the transmission as a function of the external mag-
netic field at a fixed frequency produce curves that are free of such oscillations. The same
is usually valid for any swept parameter, other than the frequency, like temperature or gate
voltage. The effect of the standing waves in this case can be treated in the framework of the
matrix formalism, just like it was done in the previous subsection. While the previous con-
sideration was devoted to the setup, suitable for the finite-element calculation, here we will
treat a setup, modeling more realistic experimental conditions. We consider a model sample
that corresponds to the GaAs/AlGaAs heterojunction C0456, see chapter 5. In terms of the
model it is a dielectric slab with the dielectric constant ε = 11.65 and thickness d = 0.66 mm.
One of the surfaces of the slab is covered by an infinitely thin conducting film with the Drude
conductivity tensor:

σxx = σyy = σ0
1− ıωτ

(1− ıωτ)2 + (Ωcτ)2
;

σxy = −σyx = σ0
Ωcτ

(1− ıωτ)2 + (Ωcτ)2
;

Ωc =
eB

mc
,

17
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where m = 0.07m0 is an effective electron mass, τ = 4 ps is an electron relaxation time
and σ0 = ne2τ/m = 1.3 × c/(4π) is a static Drude conductivity that is proportional to the
electron density n. This thin film represents the two-dimensional electron gas, formed in the
heterojunction. The corresponding matrix is given by

Mfilm =


1 0 0 0
0 1 0 0

−4π
c
σxy

4π
c
σxx 1 0

−4π
c
σxx −4π

c
σxy 0 1

 .

In order to model the Mylar optical windows, we put two additional slabs with ε = 2 and
d = 50 µm, separated from the sample by L = 25 mm. The actual dielectric constant of
Mylar is close to 3, but this value results in too high reflection. The value, used in the cal-
culations, was reduced to 2, because the windows are not plane parallel and only a part of
the reflected wave returns into the beam. Upper panels in Fig. 2.5 show the calculated trans-
mission coefficient through a single window with these parameters. The left panel shows the
full range 0–1200 GHz and the right panel shows a more narrow range 400–450 GHz. The
reflection coefficient of the single window is equal to (1− |t|2) and for the frequency range of
the right panels it is close to 4%.

We can find the “experimental” transmission coefficients texp
∥ (ω,B) and texp

⊥ (ω,B) for this
setup by solving Eq. (2.19) with

Msetup = Mdiel(2, 5 · 10−3)Mair(2.5)Mdiel(11.65, 0.066)MfilmMair(2.5)Mdiel(2, 5 · 10−3);

zsetup = 2× (5 · 10−3 + 2.5) + 0.066 = 5.076.

In order to simulate a typical experimental field scan at a fixed frequency ω, we calculate
texp
∥ (ω,Bk) and texp

⊥ (ω,Bk) for 201 equidistant points Bk in the range 0–4 T. Then we fit these
data by minimizing the residual

200∑
k=0

(∣∣∣texp
∥ (ω,Bk)− a∥t

th
∥ (ω,Bk)

∣∣∣2 + ∣∣texp
⊥ (ω,Bk)− a⊥t

th
⊥(ω,Bk)

∣∣2) . (2.25)

The “theoretical” coefficients tth are calculated using Eq. (2.11) for the sample in free space
(adapted for the 2D case by removing the film thickness). Two complex coefficients a∥,⊥ can
be varied along with the Drude parameters (σ0, τ,m) to minimize the residual (2.25). The
results of the simulation in the frequency range 0–1200 GHz are shown in Fig. 2.5.

Figures 2.5(b, b’) show the parallel spectrum in zero magnetic field. The red curve is
the transmission through the sample in free space. As the reflection coefficient of the Mylar
windows increases with the frequency, the amplitude of the standing waves also increases. The
period of the oscillations is close to 5 GHz, which is close to their period in the experimental
spectra, see Figs. (4.4(e), 5.6). However the amplitude of the standing waves does not grow
with the frequency in experiments. The real optical windows have an irregular shape, and
probably for this reason the frequency dependence of the amplitude differs from our model.

Figures 2.5(c, c’) show the residual fitting error as a function of frequency. The error
periodically crosses zero, which means that the fitting curve perfectly matches the simulated
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Figure 2.5: Effect of Mylar optical windows on the transmission measurements of a GaAs/AlGaAs heterojunc-
tion, calculated using the matrix formalism. Left panels show the full frequency range 0–1200 GHz and right
panels show the range 400–450 GHz. (a, a’) Parallel transmission through a single Mylar window. (b, b’) Par-
allel transmission through the sample in free space (red) and through the sample between two optical windows
(black). (c, c’) Residual error (2.25) as a function of the frequency. (d, d’–f, f’) Drude parameters obtained from
the fit of magnetic scans at fixed frequencies (black). Red lines show the values, used in the simulation.
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2 Experimental technique and data treatment

data at these points. When the fit is perfect, the Drude parameters τ and m are equal to the
“true” relaxation time and the mass. However parameter σ0 at these points is never correct, see
Figs. 2.5(c’–f’). In the fitting procedure we assume implicitly, that the effect of the standing
waves can be described by a simple multiplication by the complex coefficients a. The analysis
of this model show that the amplitude of the cyclotron peak in magnetic scans is distorted
differently from the off-resonance transmission level. The distortion cannot be “corrected” by
the simple multiplication. Instead, the Drude parameter σ0 deviates from its correct value to
change the resonance amplitude and to decrease the residual error. Parameter σ0 turns out to
be the most sensitive to the standing waves. The 4% reflection of the window can cause 40%
error in the estimation of σ0, while the error for m and τ in this case is about 10%.

To conclude, the effect of the standing waves on magnetic scans has been considered in the
framework of the simple matrix model. Although the parasitic reflections do not reveal as os-
cillations in the magnetic scans, they do affect the experimental transmission. This distortion
can cause significant errors in the estimated model parameters. If the accurate measurement
of this parameters is the goal of the study, then the effect of the standing waves must be either
suppressed, either be taken into account during the data treatment.

2.2.5 Signal stability at fixed frequency
At fixed frequency, transmission coefficients are measured as a function of some external
parameter applied to a sample: temperature, magnetic or electric field, gate voltage, lighting
etc. Experimental accuracy of such scans strongly depends on stability of the signal. Ideally,
any change in the transmission should be only caused by some change in properties of the
sample. In fact, even measurements without any sample usually demonstrate signal depend-
ence on the swept parameter, and taking into account these deviations can be a challenging
task. The main reasons of this unwanted phenomenon are mechanical instability of the optical
elements and instability of the radiation source. In this chapter we will treat solutions that
were implemented to compensate changes in generated radiation power of backward-wave
oscillators.

Operation of BWO is based on an electron beam, passing near a periodic slow-wave struc-
ture. While the frequency of radiation, generated by BWO, smoothly depends on the acceler-
ating voltage, the dependence of the power has numerous points of discontinuity and a large
oscillating derivative. A strong magnet in BWO serves as a focusing device for the electron
beam. During magnetic measurements BWO is placed in proximity of another strong su-
perconducting optical magnet on a distance of ≈1.5 m. The magnetic field, induced by the
superconducting coil on a large distance from it can be approximated by the field of a mag-
netic dipole. The field magnitude decreases as 1/r3 and reaches several Gauss at the position
of BWO. Although the enclosure of BWO has magnetic screening properties, sweeping of the
external magnetic field leads to a change in the generated power. Increase of the magnetic field
from 0 to 7 T can cause up to 30% change in the signal, the change being dependent on the
generation frequency. High frequency BWOs typically show a more pronounced dependence
on the external magnetic field.

A natural solution of this problem would be a movement of the source to a large distance
from the magnet. However the optical table has only limited dimensions. Moreover, increas-
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2.2 Continuous wave sub-THz spectroscopy
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Figure 2.6: Measurement of the BWO generation power simultaneously with the transmission through the
sample. a) Using an additional detector to measure radiation intensity right at the BWO’s output. The second
polarizer redirects a part of initial beam into the additional detector, while the first polarizer in necessary for
the split beams to have proportional intensities. b) Same as (a), but with a mechanical chopper instead of the
grid polarizer for the redirection, in order to suppress effects of sample reflection on the additional detector. c)
Measurement of intensities of two beams, using one detector. The beams are modulated by mechanical choppers
with different frequencies, allowing to extract corresponding harmonic amplitudes during the signal processing.
In opposite to the setup in Fig. 2.2(a), the final grid analyzer is removed, since the beams must not interfere.

ing of the optical path leads to signal spread losses, which can be critical while using low-
power high frequency sources. Another way is to cancel the external magnetic field by using
a passive magnetic screening or an active compensating coil. However BWO’s enclosure it-
self has magnetic screening properties and the simple addition of another screening box would
be not efficient. The active compensation requires an adjustment of the proportional coeffi-
cient between the magnetic fields of the optical magnet and the current in the compensating
coil. Because of a field inhomogeneity, this coefficient might be dependent on the generated
frequency. None of the three methods corrects the changes in the generated power, that are
not connected with the external magnetic field. They can occur due to various reasons like a
change of environment temperature, a change of a cooling water flow, etc.

A separate measurement of the BWO signal without a sample as a function of magnetic
field can be used to remove the dependence of generated power. This procedure doubles the
time, required for experiments and the consumption of cryogenic liquids. Just as the methods,
described above, it does not correct the irreproducible jumps of the power. Measurement of the
BWO signal simultaneously with the transmission through the sample solves both problems.
If an additional far-IR detector is available, this can be done simply by a redirection of a part
of the initial beam into the second controlling detector, see Fig. 2.6(a, b). In this case the first
polarizer plays a very important role, since the linear orthogonal components of the generated
elliptical wave can have different dependencies on time or magnetic field. The factory digital
acquisition unit (DAU) has two separate ports to connect IR bolometer and Golay cell as
detectors. Unfortunately, only one of the detectors can be used at once. The signal from
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2 Experimental technique and data treatment

the second detector must be measured using an additional lock-in amplifier. An alternative
method, described below in details, requires only one detector to obtain the intensities of two
beams.

Just like in the phase measurement mode, the initial beam is split into two beams with
orthogonal linear polarizations, see Fig. 2.6(c). In opposite to the setup in Fig. 2.2(a), two
separate mechanical interrupting choppers are placed into the beams. The choppers have sig-
nificantly different frequencies. In the realized setup one chopper was hardware stabilized at
the frequency 22.7 Hz, while the second one had the frequency around 98 Hz with no act-
ive stabilization. Joined together by the second beamsplitter, the beams come to the detector
almost with no interference, since the polarizer, that makes them interfere in the phase meas-
urement mode, is removed. The IR detector converts the radiation intensity into a voltage
and the output of the detector is connected to the DAU input port. Here the DAU is used as
an amplifier and a low-pass filter. The voltage from the DAU analog output is digitized by a
National Instruments NI-6351 board at a 50 kHz sample rate with a 16-bit resolution. In very
early preliminary experiments a PC AC’97 was used for this purpose. The amplitudes of the
harmonics are extracted numerically, as described in the next section.

2.2.6 Measuring two signals with one detector
Calculation of a harmonic amplitude is mathematically straightforward for a function f(t)
defined on the whole real axis. If f(t) is “good enough”, it can be represented as

ft(t) =

+∞∫
−∞

fω(ω)
e−ıωt

√
2π

dω, (2.26)

where

fω(ω) =

+∞∫
−∞

ft(t)
eıωt√
2π

dt. (2.27)

Function f can be treated as a vector, which is represented by ft in a time “basis” and by fω
in a frequency basis. Formulas 2.26,2.27, commonly recognized as inverse and direct Fourier
transform, have a form of a scalar product of a vector f with basis vectors. Base vectors of
the frequency basis have a form of exponential functions in the time basis and vice versa. Any
exponential function ϕ has a property

ϕ(x+ y) = ϕ(x)ϕ(y),

which leads to a very important consequence, known as a convolution theorem. Suppose a
vector is represented by a product of two functions ft(t)gt(t) in the time basis. Then in the
frequency basis the vector will have a form

+∞∫
−∞

ft(t)gt(t)
eıωt√
2π

dt =
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2.2 Continuous wave sub-THz spectroscopy

=

+∞∫
−∞

ft(t)
eıωt√
2π

+∞∫
−∞

gω(ξ)
e−ıξt

√
2π

dξdt =
1√
2π

+∞∫
−∞

ft(t)
eı(ω−ξ)t

√
2π

+∞∫
−∞

gω(ξ)dξdt =

=
1√
2π

+∞∫
−∞

fω(ω − ξ)gω(ξ)dξ.

The last expression is a convolution of representations fw and gw in the frequency basis (or,
equivalent, Fourier transforms of ft and gt). Thus, multiplication in the time basis corresponds
to convolution in the frequency basis. In the same way one can show that multiplication in the
frequency basis corresponds to convolution in the time basis.

Operation of convolution h = f ∗ g, mathematically defined by an integral or a sum ex-
pression, allows a simple intuitive interpretation. One of the functions, say f , can be treated
as “initial”, and the convolution results in a new function h. A value of h at a given point is
equal to a sum of (generally, all) values of f with weight coefficients, defined by the function
g. If g(t) is negligibly small for large |t|, then the value of h at a given point is defined only
by values of f in the adjacent points, and if g is positive, h(t) can be viewed as a weighted
average of neighbour values f . In this case operation of convolution can be imagined as a
smoothing or a blur. In fact, the blur effect in raster image processing is realized by a con-
volution with some function (for example, two-dimensional Gaussian). Another example is
a smoothing of a sampled function by taking a simple average of several neighbour values,
which is equivalent to a convolution with a rectangular function.

In the experimental setup, depicted in Fig. 2.6(c), the initial nonmodulated beam from the
BWO source is split into two beams by a grid polarizer. Each of the beams is modulated by a
separate mechanical chopper. The beams are joined by another grid without interference, so
that the detected intensity is a simple sum of two signals to be measured. Fig. 2.7(c) shows a
model signal

f(t) = sin(2πf1t) + sin(2πf2t), (2.28)

consisting of two pure sine harmonics with frequencies f1 = 22.75 and f2 = 97 Hz. If we
treat the signal on the infinite interval −∞ < t < +∞, then its spectrum is a sum of four
delta functions:

fω(ω) = ı

√
π

2
[−δ(ω1 + ω) + δ(ω1 − ω)− δ(ω2 + ω) + δ(ω2 − ω)], (2.29)

where ωi = 2πfi. In the real experimental setup the choppers do not produce a sine harmonic.
Instead, they create a periodic signal, containing all corresponding multiple frequencies f ,
2f , 3f , etc. In addition, if a chopper consists of several blades, that are not perfectly equal,
it will also create subharmonics. In a real experiment one has to adjust frequencies to avoid
overlapping of a chopper frequency with (sub)harmonics of the other chopper. For illustrative
purposes, the model signal has only two harmonics.

The time interval τ = 0.74 s in Fig. 2.7(c) is close to a typical measurement time. Meas-
uring the signal ft(t) within a finite period of time τ is mathematically equivalent to a multi-
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Figure 2.7: Extraction of aplitudes of harmonics at two different frequencies. Boxcar and Gaussian window
functions are shown in the time representation (a) and in the frequency representation (b). (c) - model noiseless
signal, consisting of two sine harmonics at 22.75 and 97 Hz with amplitude 1 each. (d) - spectrum of initial
signal (gray) and the signal, multiplied by the Gaussian window (blue). (e,f) - zoom in on the peaks at 22.75
and 97 Hz. Peak positions and aplitudes, shown in brackets, demonstrate an increase of accuracy, caused by the
windowing.
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2.2 Continuous wave sub-THz spectroscopy

plication by a boxcar window function, shown in Fig. 2.7(a):

gt(t) =

{
1 if |t| ≤ τ/2;
0 if |t| > τ/2.

The spectrum of the boxcar function

gω(ω) =
τ√
2π

sin (ωτ/2)

ωτ/2
=

τ√
2π

sinc(ωτ/2).

is a well-known in signal processing sinc function. A normalized plot of the sinc function is
shown in Fig. 2.7(b) on a logarithmic scale. Due to the points of discontinuity at t = ±τ/2,
the spectrum decreases very slowly with frequency as 1/ω. According to the convolution
theorem, the spectrum fω of the signal (2.29) is convolved with the spectrum gω of the window
function. A convolution of a smooth function g(ω) with a delta function δ(ω0 − ω)

+∞∫
−∞

g(ω − ξ)δ(ω0 − ξ)dξ = g(ω − ω0) (2.30)

results in the function g, shifted to ω0. Since the spectrum (2.29) of the infinite signal consists
of four delta functions, the spectrum of the confined signal is a sum of four sinc functions,
centered at ±f1,2, as shown in Fig. 2.7(d) by a gray curve. Because of the slow decreasing
of the sinc function, the peak amplitude at any fi is affected by the tails of the peaks at other
frequencies. Figures 2.7(e, f) show the spectrum of the confined signal near the frequencies
f1,2. The absolute value is normalized to give a unit amplitude for a single harmonic. The
deviation from |fω(ω1,2)| = 1, as expected for the model signal (2.28), is caused by the tails
of other peaks. The relative error in the amplitude is comparable with resonance absorption
of some samples with a low electron density. Therefore, the straightforward calculation of a
Fourier amplitude on a finite interval does not provide the necessary accuracy.

The problem can be solved by using an appropriate window function g(t). Instead of f(t)
we will analyse a windowed signal h(t) = f(t)g(t). By definition, the window function is
taken to be zero outside the interval −τ/2 ≤ t ≤ τ/2, so the values of f(t) outside the interval
are not needed for the calculation. According to the convolution theorem and (2.30), every
harmonic eıω0t in the infinite signal f(t) produces a peak in the spectrum hω(ω). This peak
is centered at ω0 and its shape is given by the absolute value of the window spectrum gω(ω).
We want the value of hω(ω0) to be solely proportional to fω(ω0) and not affected by other
harmonics. For this purpose, the absolute value |gω| must be negligibly small for |ω| ≥ ∆ω,
where ∆ω is the minimal difference between adjacent harmonics in f(t). According to the
uncertainty principle, since g(t) is zero outside the interval |t| ≤ τ/2, its spectral width δω
cannot be smaller, than ∼ τ−1. Generally, the uncertainty principle holds for any function g:

δt2δω2 =

+∞∫
−∞

t2 |gt(t)|2 dt×
+∞∫

−∞

ω2 |gω(ω)|2 dω ≥ 1

4
. (2.31)
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The strict equality here is attained if g is a Gaussian function:

g(t) = exp(− t2

2σ2
).

Its Fourier transform

gω(ω) = σ exp(−σ2ω2

2
)

is again a Gaussian. Since the spectrum decreases extremely fast, let us construct a window
on this base. For this purpose, we replace the values by zeros outside the finite interval:

gt(t) =

{
exp(− t2

2σ2 ) if |t| ≤ τ/2;
0 if |t| > τ/2.

(2.32)

Figures 2.7(a, b) show the window function (2.32) in the time and frequency representations
with the parameter σ = τ/(5

√
2) ≈ τ/7. In the low-frequency domain |gω| is close to a Gaus-

sian. On the logarithmic scale in Fig. 2.7(b) this asymptotic behavior is shown by a red dashed
parabola. The truncation leads to the discontinuous steps at ±τ/2 of height ≈ 2× 10−3. Due
to the steps the high-frequency tail rolls off as ∝ ω−1, as shown by a green curve in Fig. 2.7(b).
However the proportional coefficient is significantly reduced in comparison with the boxcar
window. Figures 2.7(e, f) show the peaks in hω for the boxcar (gray) and the Gaussian (blue)
windows. The use of the Gaussian window allows to improve the measurement accuracy of
the peak amplitudes and frequencies. By adjusting the parameter σ one can trade off between
the level of the high-frequency lobes and the width of the central peak in |gω|. In contrast
to the model signal (2.28) with a discrete spectrum, the bolometer signal contains a random
noise δf(t) with a broadband spectrum δfω(ω). In some approximation, the noise simply adds
to the useful signal f(t). The error in the amplitude, caused by this noise, is given by

δhω =

+∞∫
−∞

δf(t)g(t)
eıωt√
2π

dt =
1√
2π

+∞∫
−∞

δfω(ω − ξ)gω(ξ)dξ.

In the continuous case δfω is a very abstract object. In the numerical calculations all the
integrals are replaced by corresponding sums, so let us replace the integration by a sum over
discrete frequencies ξk = k∆ξ, where ∆ξ is small:

δhω =
1√
2π

+∞∑
k=−∞

δfω(ω − ξk)gω(ξk)∆ξ.

If we assume that the noise is white, then δfω(ω − ξk) are random complex variables. Their
real and imaginary parts are normally distributed with a zero mean value. If σ ≪ τ , then the
window function gω effectively limits the summation by the interval ξ . σ−1. Therefore, δhω

is a sum of N ∝ 1/σ random variables with the same distributions, and we can write:

|δhω|2 ∝ 1/σ. (2.33)
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2.2 Continuous wave sub-THz spectroscopy

A small value of σ produces a window that is narrow in the time representation. According to
(2.33), this case is characterized by an increase of the error, caused by the random broadband
noise. At the same time, the level of the high-frequency lobes in gω decreases, which is
favorable for the separation of strong discrete harmonics in f(t). In the opposite limit of large
σ we obtain the boxcar window. The boxcar window is optimal for filtering out the broadband
noise, but it is unsuitable for the separation of strong discrete harmonics. The intermediate
value of σ = 5

√
2 was found to be optimal in the experiments.

As mentioned above, the low-frequency part of log |gω(ω)| is very close to a parabola. This
feature of the Gaussian window can be useful for a real-time processing algorithm. If the
approximate position of the peak is known, one can numerically calculate hω at three close
frequencies. For instance, the values can be obtained directly from a fast discrete Fourier
transform. The three pairs (f, log |hω|) define a parabola, which maximum determines a new
approximation of the peak frequency. Then one of the initial pair is replaced by the new one
to make an iterative algorithm. If the initial triplet lies within the peak width, the method
converges after one or two iterations. The presented approach has been used in measurements
of the cyclotron resonance in HgTe/CdHgTe quantum wells, see section 4.3.

27





3 Two-dimensional electron gas in
magnetic field

3.1 One-electron Drude model
In this chapter we treat electron properties of a two-dimensional system in an external mag-
netic field. A detailed consideration of three-dimensional systems can be found in Refs. [17,
18]. We will calculate the conductivity tensor in two ways that are based on the same as-
sumption about relaxation processes. First, we adopt a totally phenomenological classical
approach, based on Newtonian mechanics. After that we will treat a slightly more rigorous
statistical consideration, involving the Boltzmann equation and the semi-classical band the-
ory. The second method allows to establish connections between the band structure and the
phenomenological quantities of the first approach.

The first approach was first suggested by Drude [19, 20] soon after Thomson’s discovery of
the electron. We apply this method to a two-dimensional electron gas in an external uniform
magnetic field. Each electron is treated as a classical particle with the mass m and the charge e.
The mechanical motion is confined by some external forces in the plane z = 0. The external
uniform magnetic field is directed along z-axis, perpendicular to the xy-plane. We assume that
a linearly polarized monochromatic electromagnetic wave of angular frequency ω is incident
on the gas. The wave has the wave vector directed along z-axis. Thus the harmonically
oscillating electric field Eexte

−ıωt of this wave is the same in each point of the xy-plane. The
equation of motion for an electron with the position vector r(t) takes the form:

mr̈ = e(Eexte
−ıωt + Eself +

1

c
ṙ×B)− m

τ
ṙ. (3.1)

The first term on the right side is the Lorentz force. It includes the constant field B and the
harmonic electric field Eexte

−ıωt. The term Eself is the electric field, induced by all other
electrons. We neglect the interaction of the electron with the non-static magnetic field, since

B

E
vv

v||

Figure 3.1: Two-dimensional electron gas in external magnetic field.
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3 Two-dimensional electron gas in magnetic field

it is by orders of magnitude weaker, than other forces. The term −mṙ/τ introduces a viscous
friction force to allow for the scattering. In the absence of any fields (Eext = Eself = B = 0)
the motion would exponentially decay as ṙ0e−t/τ .

Differential equation (3.1) describes the motion of the electron for any initial conditions at
t = 0. Its solution can be represented as r(t) = rp(t) + rh(t), where rp(t) is a particular
solution for Eq. (3.1) and rh(t) is a solution for the homogeneous equation with no driving
force:

mr̈ = e(Eself +
1

c
ṙ×B)− m

τ
ṙ. (3.2)

Homogeneous equation (3.2) describes a transient motion of the electron. Because of the
dissipation, the transient processes decay and at t ≫ τ the motion of electrons is described
by the particular solution: r(t) = rp(t). We try to find the particular solution in the form
ṙ = ve−ıωt, where v is a constant complex vector. Then the electric field Eself , induced
by other electrons, also oscillates harmonically and for the total electric field we can write
Eexte

−ıωt + Eself = Ee−ıωt, where E is a constant vector. By substituting ṙ = ve−ıωt in
Eq. (3.1) we obtain:

(−ıω +
1

τ
)v − e

mc
v ×B =

e

m
E. (3.3)

The vector v can be expressed as a linear combination of vectors e∥ ∥ E and e⊥ ⊥ E:

v = v∥ + v⊥ = v∥e∥ + v⊥e⊥. (3.4)

By substituting (3.4) in Eq. (3.3) we obtain the system of linear equations:
(
1

τ
− ıω)v∥ + Ωv⊥ =

eE

m
;

(
1

τ
− ıω)v⊥ − Ωv∥ = 0,

(3.5)

where Ω = eB/(mc) is a cyclotron frequency. The coefficients v∥, v⊥ and the vector v can be
obtained directly from Eq. (3.5). We are interested in the two-dimensional current density j.
It is connected to the velocity as j = env, where n is a two-dimensional density of electrons.
Using the values for v∥, v⊥, we obtain the linear relation between the vectors of the electric
field and the current density:

j∥ = σxxE; σxx = σ0
1− ıωτ

(1− ıωτ)2 + (Ωτ)2
;

j⊥ = σxyE; σxy = σ0
Ωτ

(1− ıωτ)2 + (Ωτ)2
,

(3.6)

where σ0 = ne2τ/m is the static conductivity at B = 0. The choice of the indexes comes
from the form of the relation j = σ̂E in an arbitrary coordinate system in the xy-plane:

j = j∥ + j⊥ = σxx

(
1 0
0 1

)(
Ex

Ey

)
+ σxy

(
0 1
−1 0

)(
Ex

Ey

)
=

(
σxx σxy

−σxy σxx

)(
Ex

Ey

)
.
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3.2 Boltzmann equation. Cyclotron mass

Although Eqs. (3.6) are obtained in terms of the very simple one-particle model, they keep
their form in a more strict consideration, which is discussed in the next section.

3.2 Boltzmann equation. Cyclotron mass
In section 3.1 the electrons were treated as classical particles with a parabolic energy spectrum
ε(k) = ~2k2/(2m). This approach can be modified in order to describe electronic properties
of metals and semiconductors. Electrons are viewed as semi-classical quasiparticles that can
be characterized by its position vector r and its wave vector k simultaneously [21]. The wave
vector plays a role of an effective momentum of the electron in the crystal:

~k̇ = e(Ee−ıωt +
1

c
v ×B). (3.7)

The effect of the crystal on the dynamic properties of the electron is contained in the energy
spectrum ε(k) that is no longer given by the simple parabolic dependence. The velocity v = ṙ
in Eq. (3.7) is connected to the spectrum as

v =
1

~
∂ε(k)

∂k
. (3.8)

Later in this section we will assume that the energy ε depends on the absolute value of the
wave vector k = |k| =

√
k2
x + k2

y only:

ε = ε(k). (3.9)

In this case the band structure is represented by a surface of revolution in (kx, ky, ε) space and
the velocity takes the form

v =
1

~
ε′
k

k
. (3.10)

Using the statistical approach, we will describe the state of the system by means of a distribu-
tion function f . Due to the symmetry of the problem, all quantities, including f , are expected
to be independent on the (x, y) position. The distribution function f is determined by the
number of electrons in a small momentum volume dk = dkxdky per unit area:

n(k, t) =
∆N

∆S
= f(k, t)

dk

2π2
. (3.11)

In the absence of external fields, f is given by the equilibrium Fermi-Dirac distribution

f0(ε) =
1

1 + exp( ε−µ
kBT

)
. (3.12)

The knowledge of the distribution function allows to calculate any property of the system. In
particular, the current density is given by the integral

j = e

∫
dk

2π2
fv. (3.13)
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3 Two-dimensional electron gas in magnetic field

In order to determine the response of the system to the applied fields, one has to solve the
Boltzmann equation [22, 23]:

∂f

∂t
+ v · ∂f

∂r
+ e(Ee−ıωt +

1

c
v ×B) · 1

~
∂f

∂k
= (

∂f

∂t
)collision. (3.14)

The collision integral (∂f
∂t
)collision describes the change of f , caused by the scattering on im-

purities, phonons, etc. In general case, the expression for (∂f
∂t
)collision contains an integration of

scattering probabilities Wk,k′ over momentum space, Wk,k′ being dependent on f . We will re-
strict to the so-called relaxation time approximation. We assume that the scattering processes
can be taken into account by the simple collision integral

(
∂f

∂t
)collision =

f − f0
τ(k)

. (3.15)

In the absence of external fields, f0 satisfies Eq. (3.14) with the collision integral (3.15). We
try the solution of Eq. (3.14) in the form

f(k, t) = f0(ε(k)) + g(k)e−ıωt. (3.16)

Since f0 is time-independent, the partial time derivative takes the form ∂f/∂t = −ıωge−ıωt.
The space derivative ∂f/∂r = 0, since f does not depend on the position in xy-plane. In the
linear approximation we neglect the terms, proportional to E2 and higher. Thus we assume
g ∝ E and use the approximate transformation:

E · ∂

∂k
(f0 + ge−ıωt) ≈ E · ∂f0

∂k
= E · ∂f0

∂ε

∂ε

∂k
= ~E · v∂f0

∂ε
. (3.17)

We have thus the intermediate equation for the unknown function g:

(
1

τ
− ıω)g + eE · v∂f0

∂ε
+

e

c~
(v ×B) · ∂g

∂k
= 0. (3.18)

The next substitution
g = y

∂f0
∂ε

(3.19)

allows to rewrite the equation in a slightly more compact form. The derivative over k trans-
forms as

∂

∂k
(y
∂f0
∂ε

) =
∂y

∂k

∂f0
∂ε

+ y
∂2f0
∂ε2

~v. (3.20)

After a substitution into Eq. (3.18) the second term, proportional to v, gives zero and the
equation for y is

(
1

τ
− ıω)y + eE · v +

e

c~
(v ×B) · ∂y

∂k
= 0. (3.21)

Thus far, the circular symmetry, expressed by Eqs. (3.9–3.10) was not used. Let us choose a
coordinate system, in which the electric field E is directed along x-axis (Fig. 3.2). We use the
expression (3.10) for v and try a solution in the form

y(k) = α(k)kx + β(k)ky = α(k)k cos(φ) + β(k)k sin(φ). (3.22)
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After some straightforward calculations, one obtains a linear system for α and β, which solu-
tion is given by

mc(k) =
~2k
ε′(k)

; (3.23)

Ω(k) =
eB

mcc
; (3.24)

α(k) = −eE~τ(k)
mc(k)

1− ıωτ(k)

(1− ıωτ(k))2 + (Ω(k)τ(k))2
; (3.25)

β(k) =
eE~τ(k)
mc(k)

Ω(k)τ(k)

(1− ıωτ(k))2 + (Ω(k)τ(k))2
. (3.26)

The current density can be calculated now with the use of Eq. (3.13). Since j = 0 in equilib-
rium, f0 can be omitted in the integral:

j = e−ıωt

∫
e

2π2
gvdk = e−ıωt e

2π2

+∞∫
0

kdk

2π∫
0

dφ
ε′

~
∂f0
∂ε

k

(
cosφ
sinφ

)
(α cosφ+ β sinφ) =

= e−ıωt e

2π~

+∞∫
0

k2ε′
∂f0
∂ε

(
α
β

)
dk.

(3.27)
In the limit of low temperatures the distribution function f0 tends to the Heaviside step func-
tion and its derivative tends to the delta function:

f0(ε) =

{
1, if ε < µ;
0, if ε > µ;

∂f0
∂ε

= −δ(ε− µ). (3.28)

In this case the two-dimensional electron density is connected to the Fermi wave vector kF ,
defined by ε(kF ) = µ, as follows:

n =

+∞∫
0

f0(ε(k))

2π2
2πkdk =

k2
F

2π
. (3.29)

After changing to integration over the energy in (3.27) and using Eqs. (3.28–3.29), the current
density takes the form

j = −ne

~

(
α
β

)
e−ıωt. (3.30)
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3 Two-dimensional electron gas in magnetic field

The conductivity tensor, corresponding to relation (3.30), coincides with the tensor (3.6) from
the Drude model. The phenomenological Drude parameters are in the following correspond-
ence with the parameters of the statistical treatment: n is the two-dimensional electron dens-
ity (3.29), τ = τ(kF ) is the relaxation time at the Fermi level, and the effective cyclotron
mass m = mc(kF ) is determined by the band structure (3.23). Equation (3.23) for the ef-
fective mass is in agreement with the customary definition of mc through the k-space area A
enclosed by the electron orbit [18]:

mc =
~2

2π

∂A

∂ε
=

~2

2π

∂(πk2)

∂k

∂k

∂ε
=

~2k
ε′

.

In the case of a parabolic dispersion ϵ = ~2k2/(2m) the cyclotron mass does not depend on
the electron density: mc = m. In the case of a linear dispersion ε = ~vk the cyclotron mass
changes with the density, as it follows from Eqs. (3.23, 3.29):

mc =
~kF
v

=
~
√
2πn

v
.

Thus in the case of the strongly degenerate Fermi gas the conductivity can be treated correctly
in terms of the one-particle model. This model will be used again in section 3.3 in order to
analyze an effect of a superradiant decay.

3.3 Superradiant decay and Drude relaxation time
In section 3.1 we treated the motion of electrons, driven by an external electromagnetic wave.
Now we will consider a process of relaxation in the absence of external harmonic fields (a
static magnetic field B is still applied). The motion of an electron in this case is described by
Eq. (3.2). The field Eself is determined by all other electrons. Therefore the relaxation process
of the electron can depend on the state of the whole gas. We assume that in the moment t = 0
all electrons have the same velocity and they are uniformly distributed in the plane. Such
a state can be created by a fast switching off the driving field or by applying a δ-pulse to
the gas at rest. While the electrons accelerate, the gas radiates electromagnetic waves. The
radiation causes an additional loss of the kinetic energy, therefore the electrons would slow
down even in the absence of scattering (1/τ = 0). Taking into account the symmetry of the
problem, we can expect the radiation of two plane waves with wave vectors k and −k that are
perpendicular to the plane, see Fig. (3.3). The amplitude of the magnetic field H near the plane
can be determined by applying the integral form of Maxwell’s equation to the contour C:∮

C

H · dl = 4π

c
I,

where I is the current that the contour encloses. The term with ∂E/∂t can be omitted since we
take the contour C of a vanishing area. Thus H is connected to the two-dimensional current
density as H = 2πj/c. Since E = H in a plane harmonic wave, the electric field is given by

Eself = −2π

c
j = −2π

c
env. (3.31)
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Figure 3.3: Radiation of a two-dimensional electron gas.

The electric field, induced by the gas, is antiparallel to the current density, as it is expected for
the relaxation motion. Equation (3.2) transforms thus to

r̈+ (
1

τ
+

2πe2n

mc
)ṙ− e

mc
ṙ×B = 0. (3.32)

We try the solution in the form of ṙ = v0e
−ıωt, where ω is a complex unknown and v0 is a

constant complex vector. By substituting it in Eq. (3.32) we obtain the linear system: (Γ− ıω)v0x − Ωv0y = 0;

Ωv0x + (Γ− ıω)v0y = 0,
(3.33)

where Ω = eB/(mc) is again the cyclotron frequency and Γ = 1/τ + 2πe2n/(mc). In order
to have a non-trivial solution v0 ̸= 0, the determinant must be equal to zero. This condition
is satisfied for ω = ±Ω − ıΓ. The components of the corresponding solutions are connected
as v0x = ±ıv0y. If we choose the coordinate system, in which at t = 0 the gas moves in
x-direction, then the solution is

ṙ(t) = v

(
cos (Ωt)
− sin (Ωt)

)
e−Γt. (3.34)

In the absence of scattering (1/τ = 0) and other electrons (n = 0) the electron would move
along a circle with the angular frequency Ω. The scattering causes the exponential decrease
of the speed and the presence of other electrons leads to the same effect. The loss of kinetic
energy of the gas per unit of area

dE

dt
= nv · d(mv)

dt
= −nv2me−Γt

τ
− 2πe2n2v2e−Γt

c

consists of two terms. The first term, proportional to the electron density n, stands for the
losses due to the viscous friction force. The second term, proportional to the squared electron
density n2, is equal to the radiation power. It is due to n2 dependency the effect was named
“superradiance”: in the case of the coherent motion the radiation loses increase faster than
linearly with the number of emitters [24].

Equations (3.31, 3.34) result in the expression for the electric field of the radiated wave:
E(t) ∝ e−Γt. The relaxation coefficient can be represented as Γ = (1/τ + 1/τSR)

−1. One can
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3 Two-dimensional electron gas in magnetic field

obtain the value of Γ experimentally by measuring the exponentially decreasing response to
a delta-like pulse [25]. Such experiments can be conducted with the use of the time-domain
spectroscopy. If the charge density n and Drude relaxation time τ are so large that (τSR ≪ τ),
then Γ is mostly determined by the radiation losses. Because of uncertainties in the experi-
mental values of Γ, n and mass m, the estimation of τ may become impossible. It happens if
the relative error exceeds the effect of τ on the rate Γ.

Continuous wave measurements also have this limitation. A direct connection between
these two methods can be shown with the use of the Fourier transform. In continuous wave
experiments an incident harmonic wave e−ıω(t−z/c) transmits through the gas with the coeffi-
cient

t∥ =
1 + 2π

c
σxx

(1 + 2π
c
σxx)2 + (2π

c
σxy)2

. (3.35)

The expression is obtained using Eq. (2.11) for the electron gas without a substrate (β = 0).
A substitution of (3.6) results in the explicit function of frequency ω:

t∥(ω) = 1− 2πσ0

cτ

(ω + ıΓ)ı

(ω + ıΓ)2 − Ω2
. (3.36)

An incident delta pulse Einc(t − z/c) = δ(t − z/c) can be treated as a linear combination of
all harmonics with a constant amplitude:

δ(t) =

+∞∫
−∞

e−ıωt

2π
dω.

As the harmonics transmit through the gas, each of them attenuates by the factor t∥(ω). Thus
in order to find the full transmitted wave one needs to calculate the inverse Fourier transform
of t∥(ω):

Etr(t− z/c) =

+∞∫
−∞

t∥(ω)
e−ıω(t−z/c)

2π
dω.

The unity term in (3.36) results in a transmitted δ-pulse and the second term is a spectrum of
a harmonically decaying function. After a formal integration one obtains Etr(t− z/c) = 0, if
t− z/c < 0 and

Etr(t− z/c) = δ(t− z/c)− 2πσ0

cτ
e−Γ(t−z/c) cos(Ω(t− z/c)), (3.37)

if t− z/c ≥ 0. Equation (3.37) reproduces the result (3.34), demonstrating that the radiation
losses are taken into account in Eqs. (2.11).

In order to estimate the Drude parameters, one can fit a magnetic field dependence of the
transmission coefficients at some fixed frequency with Eqs. (2.11). If the frequency is high
enough (ω ≫ Γ), then the dependence t∥(B) has a dip around Bc = ωmc/e, and t⊥(B)
has a peak at this point, see Fig. (3.4). The shape of the peaks in the first approximation
can be characterized by their position, amplitude and width. Intuitively, one might expect
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Figure 3.4: The shape of the cyclotron resonance in the case when radiative losses prevail over losses, caused by
the scattering. The distortion of the shape (open circles) due to standing waves makes it impossible to determine
the value of the Drude scattering time τ (compare red and blue solid curves).

a direct connection between these quantities and the Drude parameters m, σ0 and τ . Such
connection is valid only if the peak amplitude is small:

∣∣∆t∥,⊥
∣∣ ≪ 1. Formally, the value of

the Drude parameters has no constraints, while the amplitude of the peak cannot exceed 1.
The incident linear wave can be viewed as a superposition of two circular components. In
resonance, only one of the circular components is blocked, while the other one passes through
with no absorption. Thus, the amplitude of the peaks is limited by the value of ≈ 1/2, which
can be modified due to the presence of a substrate. If t∥,⊥(Bc) ≈ 1/2, then an increase of
τ results in a negligibly small change of the resonance shape, as shown in Fig. (3.4). Red
curves in Fig. (3.4) show the calculated dependencies t∥,⊥(B) for the next set of parameters:
n = 8 × 1011 cm−2, m = 0.07m0, τ = 20 × 10−12 s, f = 356 GHz, substrate permittivity
ε = 12 and substrate thickness a = 367 µm. The Drude parameters has been obtained
in experiments on an illuminated GaAs/AlGaAs heterojunction K035x5 (see chapter 5). At
356 GHz the transfer-matrix of the substrate is close to an identity matrix, therefore the shape
of the resonance is close to the one of a free-standing gas (Eq. (3.35) can be also obtained for
β = πz, where z is an integer). Around Bc = 0.89 T both transmission coefficients are close
to 1/2. The value of τSR = mc/(2πe2n) = 1.6 × 10−12 s is much smaller than Drude τ in
this case. Therefore Γ is mostly determined by the radiation losses. Blue curves in Fig. (3.4)
are calculated for τ = ∞, other parameters remained unchanged. In addition, open circles in
Fig. (3.4) show the calculated transmission through the same sample (τ = 20×10−12 s), placed
between two Mylar optical windows that reflect about 4% of radiation (see section 2.2.3).
Due to the standing waves, the shape of the resonance becomes distorted. As a result, the
solid curves fit the open circles similarly good (bad). The fitting procedure in these conditions
becomes unstable, since a slight change in the frequency leads to a totally different value of
τ , that gives the smallest residual error.

Thus the situation in continuous wave measurements is similar to the problem in the time-
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3 Two-dimensional electron gas in magnetic field

domain spectrometry. In the case of the coherent motion, if the charge density is high and
the Drude relaxation time is long, then the losses are mostly determined by the radiation.
Since the response time (TDS) and the width of the resonance (CW) can be estimated with
a finite accuracy, the Drude relaxation time becomes impossible to determine without any
additional measurements. At the same time, the charge density and the effective mass can
be still determined from the spectroscopic experiments. If τ is assumed to be frequency-
independent, then a combination of transport measurements at zero frequency (or, practically,
several Hz) with the spectroscopic data solves the problem.
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4 Mercury telluride films with critical
thickness

4.1 Introduction into physics of HgTe quantum wells

Physical properties of relativistic Dirac states [26, 27] have attracted much interest recently,
as they exhibit a number of unusual and nontrivial electrodynamic properties. These effects
arise from linear dispersion of the charge carries known as Dirac cone. Within a Dirac cone the
cyclotron effective mass of the charge carriers strongly depends upon the position of the Fermi
level (as controlled by the charge density) and vanishes at the center of the cone. Unusual
electrodynamics at the interface between classical and quantum physics is expected as, e.g., a
universal Faraday effect or an anomalous Kerr rotation [28–31].

Among various materials the system HgTe is outstanding as it provides a universal tool to
investigate several complementary effects within the same composition. The bulk HgTe is
characterized by an inverted band structure, see Fig. 4.1. This means that the Γ6 band (which
in conventional semiconductors is a conduction band) lays below the Γ8 bands (which are
normally the light- and heavy-holes bands). In such a case the Γ6 band is a completely filled
valence band, the heavy-holes subband of Γ8 is a valence band and the light-holes subband
of Γ8 is a conduction band. As the light- and heavy-holes bands are degenerate at the center
of the Brillouin zone, HgTe is a zero-gap semiconductor. In HgTe/CdHgTe quantum wells a
thin layer of HgTe is placed between thick layers of Cd0.7Hg0.3Te. As the thickness of HgTe
is decreased, the Γ6 band in the thin layer rises in the energy and at the critical thickness of
6.3 nm passes over the Γ8 bands. At smaller thicknesses, Γ6 band is located above the Γ8

bands and the HgTe layer becomes a ”conventional” semiconductor with the non-zero gap.
This behavior can be understood, taking into account the influence of the Cd0.7Hg0.3Te layers,
characterized by the conventional order of the bands, see the right panel in Fig. 4.1. If the
thickness of HgTe layer is equal to critical (6.3 nm), the gap between the Γ6 and the light
holes from the Γ8 bands disappears and a two-dimensional (2D) electron gas is formed with a
Dirac cone dispersion [3, 33].

Magneto-optical experiments in semiconductor films provide a well-established tool to in-
vestigate the charge dynamics in external magnetic fields [17]. Earlier this technique was suc-
cessfully applied to investigate the complicated band structure in HgTe single crystals. More
recently, the magneto-optics especially in the terahertz range have been utilized to study the
two- and three-dimensional conducting states in graphene, Bi2Se3 and HgTe [34–36]. Com-
pared to transport methods, optical measurements have the advantages of being contact-free
and of directly accessing the effective mass via the cyclotron resonance. Both the presence
of contacts and the patterning could lead to substantial changes of carrier concentration and
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4 Mercury telluride films with critical thickness

Figure 4.1: Band structures of HgTe and Cd0.68Hg0.32Te, as calculated within Kane model. The figure is taken
from Refs. [5, 32].

of the position of the Fermi level. In the case of HgTe/CdHgTe quantum wells these are very
crucial parameters as the most interesting phenomena are expected in the vicinity of the Dirac
point. The ability to observe the cyclotron resonance is another advantage of the magneto-
optical technique. The cyclotron mass of the charge carriers mc can be determined from the
resonance frequency and it is directly connected to the band structure near the Fermi level.

In experiments on the electrodynamics of two-dimensional electron gases, the control of
the charge density is very important. Such parameter is necessary to shift the Fermi level
between electron- and hole-conduction within the Dirac cone. A classical tool to achieve this
goal is to use a transparent gate electrode to change the charge concentration. Terahertz ex-
periments using this approach are described in section 4.4. An alternative route to modify the
charge density is to use the phenomenon of persistent photoconductivity. This method is well
established in HgTe semiconductors with both parabolic and linear dispersions [37–40]. At
low temperatures the channel of recombination of the light-induced electrons is forbidden by
the momentum conservation. The results obtained with the use of this approach are presented
in section 4.3.

4.2 HgTe/CdHgTe samples
The HgTe/CdHgTe quantum wells (QW) have been grown using the molecular beam epitaxy
method. A typical detailed structure [6, 39] of QW is shown in Fig. 4.2(a). An undoped GaAs
with the surface orientation (013) was used as a substrate with a thickness ≈ 0.5 mm. The
substrate material is characterized by the scalar dielectric constant εGaAs ≈ 12 with a negligible
imaginary part in the whole range of the Mach-Zehnder spectrometer (40–1100 GHz).

During the growth the evaporated tellurium reaches the surface in a form of diatomic mo-
lecules Te2. Analysis in terms of thermodynamics shows that at the surface the molecules
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Figure 4.2: (a) – Detailed structure of HgTe/CdHgTe quantum wells. (b) – Control of the charge density using
the phenomenon of persistent photoconductivity.

can form CdHgTe or pure Te phases [6]. The (013) surface of GaAs is less favorable for the
formation of the polycrystalline tellurium [41]. Thus the usage of the (013) surface allows to
reduce the density of defects and improve the quality of the heterostructures. In comparison
to the samples grown on a CdTe substrate, the heterostructures on GaAs demonstrate a strong
effect of persistent photoconductivity. We have used this effect to tune the charge density and
the Fermi level, as described in the next section.

Control of the Fermi level by illumination was utilized in experiments with two samples
that will be denoted as #1 and #2 throughout section 4.3. Sample #2 was also used in later
experiments with Mylar gates, see section 4.4. The thickness d of the HgTe layer in both
samples was 6.3 nm, which is close to the critical value. Mercury telluride (HgTe) films with
the critical thickness are characterized by a 2D band structure with a Dirac cone in the vicinity
of the Fermi energy [3, 33, 42]. Compared to the closely similar case of graphene [43], in
which the Dirac cones are fourfold degenerate due to spin and valley degeneracy, in HgTe,
the cone is only twofold degenerate. Another important fact is that, contrary to graphene, the
Dirac cone in the 2D HgTe is predicted to be asymmetric with respect to electron and hole
sides [27]. This is one more argument why information about the actual band structure is
important.

4.3 Samples without a gate

4.3.1 Control of the Fermi level by illumination

An important feature of the HgTe samples on GaAs substrates is the possibility to tune the
density of charge carriers in the HgTe layer utilizing the phenomenon of persistent photocon-
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Figure 4.3: Demonstration of the charge control by light illumination in HgTe. The minimum in the parallel
transmission around ≈ 0.3 T corresponds to the cyclotron resonance of the Dirac-like carriers. The deepening of
the minimum under illumination reflects the increase of the charge density. The shift in position of the minimum
indicates the change in effective mass according to the expression mc = eB/ωc.

ductivity [44]. In order to use this method, we cool a sample down to 1.8 K in the darkness,
see Fig. 4.2(b). At 1.8 K the charge density and the Fermi level take some values, affected
by defects in the heterostructure. The values are not exactly reproducible after heating to the
room temperature. At low temperatures illumination by visible light within several seconds
causes the charge density to change. If the initial Fermi level was in the valence band, then the
density of holes decreases, and if the Fermi level was in the conduction band, then the density
of electrons increases. After the light is turned off, the charge density relaxes to some value,
which is still different from the initial one. If the sample is kept in the darkness, this new value
of the density persists for a long time period (of the orders of weeks), giving a possibility to
conduct spectroscopic experiments at the fixed density. The charge density has a property to
saturate at some value after a long illumination. In order to relax the electrons back to electron
traps and obtain the initial conditions (approximately), the sample must be heated to 300 K
and cooled down again.

In our setup the samples were illuminated by means of a green light LED mounted behind
the nontransparent windows made of black paper (which is quite transparent for the tera-
hertz radiation and opaque for IR and visible light). The amount of additional charge carriers
brought into the HgTe layer is controlled by the illumination time.

4.3.2 Cyclotron resonance of Dirac-like carriers

Spectroscopic experiments in the terahertz frequency range (3 cm−1 < ν < 30 cm−1) have
been carried out in a Mach-Zehnder interferometer arrangement (section 2.2.1) which allows
measurements of the amplitude and the phase shift in a geometry with controlled polarization
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4.3 Samples without a gate

of radiation. Theoretical transmittance curves for various geometries were calculated from the
susceptibilities using the matrix formalism (section 2.1).

The main results were obtained in the constant-frequency measurement mode. In such
case the frequency of the terahertz radiation is fixed and both the transmission amplitude
and the phase shift of the radiation passing through the sample are measured as a function
of the magnetic field. With respect to the polarization of the radiation there are two main
geometries which were used in our work. (In both cases a wire-grid polarizer was placed in
front of the sample producing linearly polarized incidence wave.) In one case another wire-
grid polarizer placed behind the sample was oriented parallel to the incident polarization. We
denote this arrangement as parallel polarizers geometry. In the other case the second polarizer
was oriented at 90◦ with respect to the first one. This layout is called crossed polarizers
geometry. Measuring the amplitude and the phase shift of the transmitted radiation in two
geometries corresponds to full determination of the transmission matrix of the sample [45].
It should be noted that for the case of trivial sample, like isotropic dielectric, only signal in
the parallel geometry is expected. Nonzero signal in the crossed geometry is indicative of
some sort of polarization rotation or appearance of nonzero ellipticity after passing through
the sample.

Typical measured data of HgTe films in parallel and crossed geometries are shown in
Fig. 4.4. The transmission amplitude in the parallel geometry is shown in the lower left
panel (b). Two distinct symmetrical minima are clearly seen at low fields. They correspond
to the cyclotron resonance on free charge carriers in the HgTe film. The minima at 21 cm−1

are located at higher fields than the minima at 11.5 cm−1, which is in accordance with the
linear dependence of the cyclotron resonance upon the magnetic field: Ωc ∝ B. For the case
of charge carriers with Dirac-like dispersion a nontrivial dependence of the cyclotron reson-
ance could be expected: Ωc ∝

√
B (see section 4.3.6). However this case is realized only

at high magnetic fields, when only few Landau levels are filled and the transitions between
the Landau levels are observed separately. In the present case several transitions between
the Landau levels are overlapping, which leads to a recovery of the classical behavior with
Ωc ∝ B.

The lower right panel of Fig. 4.4 demonstrates the transmission amplitude in the crossed
polarizers geometry. The signal is zero without magnetic field, rises rapidly in low fields
reaching a maximum value and decreases upon the further increase of the magnetic field.
The emergence of the nonzero crossed signal is the manifestation of the dynamic Hall effect.
Detailed analysis of the data including the phase shift shows that both the rotation of the
polarization and the nonzero ellipticity of the radiation after passing through the sample are
present in HgTe. For a rather clean sample, where the relaxation rate of the charge carriers
is lower than the cyclotron frequency (1/τ < Ωc), the maximum in the crossed transmission
signal also correspond to the position of the cyclotron resonance.

Upper panels in Fig. 4.4 show magnetic field dependence of the phase shift of the radi-
ation after passing though the sample. The upper left panel (a) corresponds to the parallel
polarizers geometry and the upper right panel (c) is for the crossed polarizers geometry. The
phase shift is represented as a geometrical shift of the mirror of the spectrometer needed to
compensate for the phase shift caused by the sample. This value corresponds to the change
in the optical thickness of the sample. The phase shift in radians is then ∆φ = 2π∆l/λ,
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Figure 4.4: Magnetic field dependence of the transmission through 6.3 nm thin HgTe sample #1 after 45 seconds
illumination time in the parallel polarizers geometry (a), (b) and in the crossed polarizers geometry (c), (d).
The upper panels (a) and (c) show the phase shift measured as the displacement of the movable mirror of the
spectrometer, the lower panels (b) and (d) show the transmission amplitude through the sample. The panel (e)
demonstrates the frequency dependence of the transmission in zero external magnetic field. Green open circles
are experimental data at 11.5 cm−1, orange open squares – at 21 cm−1, solid lines are fits using the Drude model
as described in the text.
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4.3 Samples without a gate

where λ is the wavelength of the radiation. Whereas the experimental data in the parallel
geometry in the panel (a) show only relatively small changes, the data in the panel (c) for the
crossed geometry reveal an abrupt jump at zero magnetic field. This is due to the fact that
the crossed signal is changing sign when the magnetic field sweeps from positive to negative
values, which corresponds to the change in the phase of exactly π, or the half wavelength λ/2
as in Fig. 4.4(c).

Figure 4.4(e) demonstrates a typical spectrum in the parallel polarizers geometry in zero
magnetic field. The deep oscillations are caused by a Fabry-Pérot-like multiple reflections
within the transparent substrate, which in the particular case was 0.387 mm thick undoped
GaAs. The values of the maxima in transmission are close to unity, demonstrating high trans-
parency of the HgTe film. The decrease of their amplitude towards low frequencies is in
accordance with the Drude-like behavior of the charge carriers, when their relaxation rate is
located in the experimental frequency range.

4.3.3 Fitting the transmission using the Drude model
In order to analyze the magneto-optical data, the Drude model (sections 3.1–3.2) has been
proved to provide an adequate description [29, 31, 36]. Within this model the sample of mer-
cury telluride is modeled by an infinitely thin film with a two-dimensional conductivity σ2D.
In the case of nonzero magnetic field normal to the film (along the z-axis) the conductivity is
a (2×2) tensor with all components different from zero, see Eq. (3.6). The complex transmis-
sion coefficients for a two-dimensional conducting film on an isotropic dielectric substrate can
be obtained analytically with the use of Eq. (2.11–2.13). From now on we will omit the thick-
ness d of the conducting film and treat the conductivities and densities as two-dimensional
quantities. Equations (2.12, 2.13) are given in the CGS system of units. In order to rewrite
them in SI, one has to replace the impedance of vacuum 4π/c by the corresponding SI value
Z0 = 1/(ε0c) ≈ 377 Ω:

t∥ =
2axxe

−ıω
c
a

a2xx + a2xy
; t⊥ =

2axye
−ıω

c
a

a2xx + a2xy
, (4.1)

axx = (1 + σxxZ0)(cos β − ı√
ε
sin β) + cos β − ı

√
ε sin β; (4.2)

axy = σxyZ0(cos β − ı√
ε
sin β). (4.3)

where a is the substrate thickness, ε is the dielectric constant of the substrate, ω = 2πf is the
angular frequency of the radiation, β =

√
εaω/c.

The transmission coefficients can be measured as functions of the frequency and the mag-
netic field: t∥,⊥ = t∥,⊥(f,B). Normally, one variable is fixed during the measurements and the
other is swept. We will call the measured set of data “(magnetic) scan”, if the frequency f was
fixed and “spectrum (in field B)”, if the magnetic field was fixed at the value of B. Formally,
a transmission coefficient is determined as a ratio of two complex amplitudes: t = Esmp/Ecal,
where Esmp is measured with the sample in the beam and Ecal is measured without the sample.
The sample is placed between the optical windows inside the magnet. The standing waves,
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4 Mercury telluride films with critical thickness

reflected from the windows, cause the measured coefficient t to deviate from the coefficient
tfree that would be obtained in free space. For this reason the transmission coefficient, meas-
ured at a single point (f0, B0) according to the definition, cannot be directly analyzed using
equations for the case of free space.

In order to overcome this problem, the next idea can be used. The deviation, caused by the
standing waves oscillates around zero as a function of the frequency, see Fig. 4.4(e). One can
measure the spectrum t(f, 0) at B = 0 and fit it using the model for free space. The value
of the fitting function tfit(f0, 0) is supposed to be a good approximation for tfree(f0, 0). The
transmission values in the field scan t(f0, B) at f0 should be divided by the complex number
a = t(f0, 0)/t

fit(f0, 0). After this “correction” the dependence t(f0, B)/a is assumed to be
a good approximation for tfree(f0, B), since they are matched at least at B = 0. In other
words, the ratio t(f0, B)/tfree(f0, B) is assumed to be independent on the magnetic field B
and tfree(f0, 0) is estimated from the fit of the spectrum t(f, 0). Instead of the matching at a
single point (f0, 0), one can choose a that minimizes the norm

||t(f0, B)− atfit(f0, B)||2 =
∑
Bk

(∣∣t(f0, Bk)− atfit(f0, Bk)
∣∣2) .

The idea can be realized numerically as follows. Suppose the transmission coefficients
texp
∥,⊥ have been measured as a spectrum in zero field and a scan at a fixed frequency f0. Let

us denote as tth
∥,⊥ the theoretical values, calculated using Eqs. (2.11–2.13) for some Drude

parameters (σ, τ,m). Then we minimize the expression for the residual error

r(σ, τ,m, ε, a∥, a⊥) = β0

∑
fk

(∣∣∣texp
∥ (fk, 0)− tth

∥ (fk, 0)
∣∣∣2)+

+ β∥
∑
Bk

(∣∣∣texp
∥ (f0, Bk)− a∥t

th
∥ (f0, Bk)

∣∣∣2)+ β⊥
∑
Bk

(∣∣texp
⊥ (f0, Bk)− a⊥t

th
⊥(f0, Bk)

∣∣2)
(4.4)

by varying the Drude parameters (σ, τ,m), the substrate dielectric constant ε and two complex
scaling coefficients a∥,⊥. The coefficients β0,∥,⊥ allow to adjust the weight of the spectrum and
the scans in the residual r. Note that the spectrum must be measured according to the defini-
tion t = Esmp/Ecal, while in the scans the calibration measurement of Ecal is not required (if
the signal of BWO does not depend on the magnetic field). One can include scans, measured
at several frequencies, and spectra, measured at different magnetic fields, by adding corres-
ponding terms in Eq. (4.4).

It is possible to minimize the residual (4.4) even if the complex phases arg(texp) have not
been measured. In the samples with a high mobility the cyclotron resonance reveals as the
distinct peaks and dips in the absolute values of the transmission coefficients, see Fig. 4.4.
Any peak can be characterized by its position, amplitude and width. The Drude parameters
(σ, τ,m) are determined by the shape of the cyclotron resonance (see section 3.3 for details).
The dielectric constant of the substrate ε is well defined by the oscillations in the zero-field
spectrum. Thus the fitting procedure remains stable, if we use the absolute values |t| instead
of the complex ones. However the knowledge of the complex phase can help to correct the
transmission coefficient before the fitting.
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Figure 4.5: Crossed transmission t⊥(B) through the sample #1 at 11.5 cm−1 on a complex plane as a parametric
plot with the magnetic field as a parameter. (a) – The complex data is reconstructed from the experimental amp-
litude and the phase shift. The inner eight-shaped curve corresponds to the dark sample and the outer one corres-
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circles) and corresponding fits within the Drude model (solid lines).
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4 Mercury telluride films with critical thickness

The linear polarization of electromagnetic radiation is strictly defined in case of an infin-
ite plane wave only. In the ideal case the complex coefficient t∥(B) is an even function of
the magnetic field, and t⊥(B) is an odd function. In the real experimental setup the beam
is restricted by the size of the optical elements and by the superconducting magnet. These
factors, along with imperfections of polarizers, lead to the depolarization of the optical beam,
revealed as a deviation from the perfect symmetry in the experimental data. To reduce these
external contributions, we take a symmetric part of the experimental complex coefficient t∥ as
[t∥(B) + t∥(−B)]/2 and an antisymmetric part of t⊥ as [t⊥(B) − t⊥(−B)]/2. Normally, the
procedure results in a negligibly small correction for the parallel transmission coefficient.

On the contrary, the antisymmetrization of the crossed coefficient typically leads to a sub-
stantial correction of t⊥. Open symbols in Fig. 4.5(a) show the raw complex t⊥ = |t⊥| eık∆l⊥

as a parametric plot with the magnetic field as a hidden parameter (coded by color). Since the
data has not been divided by a calibration measurement, the shape is arbitrarily scaled with
respect to the origin (0, 0) and is rotated around it by some unknown angle. The eight-like
shape of the curves can be described within the Drude model. An example of curves, calcu-
lated within the Drude model, is shown in Fig. 4.5(b) by solid lines. In zero field the crossed
transmission is expected to turn into zero. However the raw experimental value |t⊥(0)| is com-
parable to the amplitude at the resonant field |t⊥(Bc)|. The problem is caused by the small
absolute value of |t⊥| that does not exceed ≈ 0.05 even in the resonance. A single polarizer
suppresses the crossed component of the radiation to a comparable value. The incident wave
passes several polarizers before transmitting through the sample. However the linear polariz-
ation becomes distorted on passing through the optical windows and the restricted volume of
the magnet. We have no practical solution that would allow to suppress the depolarization and
to obtain a perfectly antisymmetric crossed signal experimentally. Thus the only possibility
to analyze the data is to use some sort of correction.

The value of |t⊥(0)| characterizes how large is the distortion of the crossed signal. Fig-
ure 4.5(a) shows an example of the crossed data, in which the relative distortion is large (es-
pecially for the dark sample). Even in this case the shape of the curve on the complex plane
seems to be preserved. In zeroth approximation we assume that the depolarization leads to a
shift of the whole curve without changing its shape. The simplest correction of this distortion
is the complex subtraction of the value in zero field:

tcorr
⊥ (B) = t⊥(B)− t⊥(0). (4.5)

After this transformation the corrected coefficient tcorr
⊥ (B) remains slightly non-antisymmetric,

as the lobes of the experimental eight-shaped curve are not perfectly equal. This smaller dis-
tortion can be a consequence of an admixture of the parallel component, which is symmetric
in the magnetic field. Usually the polarizers in the crossed geometry are oriented to minimize
|t⊥(0)| in zero magnetic field. Generally, it does not guarantee that the parallel component,
passing through the sample, is completely suppressed, since there might be some radiation,
going around the sample. Both parasitic contributions can be removed by taking the antisym-
metric part of the experimental crossed coefficient:

tcorr
⊥ (B) =

t⊥(B)− t⊥(−B)

2
. (4.6)
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4.3 Samples without a gate

The symmetric part of the experimental crossed coefficient

terr
⊥ (B) =

t⊥(B) + t⊥(−B)

2
(4.7)

can be analyzed to justify the validity of the assumptions. It is expected to be a linear com-
bination of a constant signal and the parallel coefficient t∥(B):

terr
⊥ (B) = α1 + α2t∥(B), (4.8)

where α1,2 are constant complex coefficients. The first term is due to the radiation, going
around the sample, and the second term is due to the radiation, passing through the sample.
Thus the symmetric part terr

⊥ (B) must be constant far from the resonance, at B ≫ Bc.
The residual error (4.4) contains the parallel spectrum texp

∥ (f, 0) in “absolute units”, calib-
rated by a measurement without the sample. Due to the depolarization effects, measuring a
calibrated crossed spectrum texp

⊥ (f,B0) is a big experimental challenge, especially in the case
of a weak resonance. If the conductivity tensor is determined by the Drude model, then the
connection between t∥ and t⊥ can be better demonstrated in the basis of circular polarizations.
Let us define two circular polarization vectors S± = (Ex, Ey, Hx, Hy)

T
± = (1,±ı,∓ı, 1)T .

The designation tS1S2 will denote the complex amplitude of the component S2 in the trans-
mitted wave, if the incident wave contains only the component S1 with the amplitude 1. For
the Drude model one can show the following connection between the circular and the linear
transmission coefficients:

t++ = t∥ − ıt⊥; t−− = t∥ + ıt⊥; t+− = t−+ = 0. (4.9)

In the basis of linear polarizations, a single incident component results in a transmitted wave,
in which both components are non-zero. Equation 4.9 shows that if a circular component is
absent in the incident wave, then it is also absent in the transmitted wave. In order to write an
explicit equation for the circular transmissions, we define the “circular” conductivities

σ± = σxx ± ıσxy =
σ0

1− ıτ(ω ± Ω)
. (4.10)

Note that while both σxx(B) and σxy(B) have resonances at ±Bc, the conductivities σ±(B)
have a resonance either in the positive, or in the negative magnetic field. We define the quant-
ities, analogous to (4.2–4.3):

a± = axx ± ıaxy = (1 + σ±Z0)(cos β − ı√
ε
sin β) + cos β − ı

√
ε sin β. (4.11)

Then the circular transmission coefficients are given by

t++ =
2e−ıω

c
a

a+
; t−− =

2e−ıω
c
a

a−
. (4.12)

The equation for t++(B) contains only σ+(B) and t−−(B) is determined by σ−(B). Thus for
the Drude carriers the cyclotron resonance in a circular polarization can be observed only for
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4 Mercury telluride films with critical thickness

one direction of the external magnetic field. If this condition is satisfied in experiments with
the circular polarizations, then the uncalibrated crossed coefficient texp

⊥ (B) can be rescaled
into absolute units by minimizing the residual error (4.4).

In the absence of the standing waves, there would be no need in minimizing the resid-
ual (4.4). We would directly recalculate the experimental transmission coefficients into the
conductivity tensor, using Eqs. (2.14–2.15). The fitting procedure contains an implicit as-
sumption, that the effect of the standing waves can be reduced to a multiplication by a com-
plex coefficient. The analysis within the framework of the matrix formalism, presented in
section 2.2.3, shows that this assumption is wrong. The distortion of the shape of the cyclo-
tron resonance leads to errors in determination of the Drude parameters. The errors increase
with the amplitude of the parasitic oscillations in the zero-field spectrum. The conductivity σ0

and the density n turn out to be the most sensitive to the standing waves. A possible solution
of the problem can be achieved by a combination of the spectroscopic experiments with trans-
port measurements. The measurements of DC conductivity can be used for an independent
determination of the charge density and the static σ0.

4.3.4 Drude parameters
In the scans shown in Figs. 4.3–4.4 only a single cyclotron resonance is observed. It is there-
fore reasonable to use only one type of charge carriers in the description. Besides, from the
sign of the phase shifts it may be derived directly that the dominating carriers are negatively
charged, i.e. they are electrons. The solid lines in Fig. 4.4 are model calculations according to
Eqs. (2.11–2.13) superimposed with the data for 45 seconds illumination time. Good quality
of these simultaneous fits of four data sets supports the validity of the approximation. How-
ever, as will be seen below, in several cases the data suggests the presence of a second type of
carriers which in few cases may even dominate the scans.

The parameters of the electrons in HgTe as obtained from the fits are shown in Fig. 4.6.
The upper left panel (a) demonstrates the dependence of the charge carriers density n against
illumination time in the logarithmic scale. In order to accommodate the dark sample with
the illumination time 0, it is formally denoted by the time of 0.1 seconds in the figure. The
green circles are parameters for the sample #1 at 11.5 cm−1, the orange diamonds are for the
same sample at 21 cm−1 and the black squares are parameters of the sample #2 at 28 cm−1.
The change of the concentration of at least one order of magnitude is clearly achievable in
the present experiment. As the illumination time is a parameter which is very specific for
the particular setup and generally has limited meaning, in the following the charge carriers
density n will be used in the plots as a tuning parameter.

The charge carrier relaxation rate 1/2πτ is shown in the upper right panel (b) of Fig. 4.6 as a
function of the charge carrier density n. The fit values for the same sample #1 at two different
frequencies of 11.5 cm−1 (green circles) and 21 cm−1 (orange diamonds) coincide rather well
within the experimental accuracy (shown by error bars). An increase of the relaxation rate
toward low carrier densities is well known in semiconductor physics and is may be explained
by the decreasing screening of the random potential by the charge carriers. At low carrier
densities the effective cyclotron mass becomes very small and the cyclotron resonances are
not resolved anymore. In this case the determination of the parameters of the carriers becomes
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Figure 4.6: Fit parameters obtained from the complex transmission data in HgTe films. Black squares are
parameters of the sample #2 measured at 28 cm−1, green circles denote sample #1 measured at 11.5 cm−1

and orange diamonds are for the sample #1 at 21 cm−1. Panel (a) shows the dependence of the charge carrier
concentration (electrons) upon the illumination time. The data for the dark sample with no illumination is shown
at 0.1 s in order to fit into the logarithmic scale. Solid line corresponds to a linear fit. Panel (b) demonstrates the
relaxation rate 1/2πτ as a function of the carriers concentration n. Solid lines demonstrate the 1/2πτ ∼ 1/

√
n

behavior. The dimensionless 2D conductivity σZ0 vs. concentration is presented in the inset (c). Here, Z0 ≈
377 Ohm is impedance of vacuum. The lower panel (d) demonstrate the dependence of the electron effective
mass upon their concentration. The lines are square root fits of the experimental parameters.
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unstable and results in large error bars. The black squares show the fit results for the sample
#2 at 28 cm−1. Here a systematic shift of the relaxation rate towards higher values compared
to the sample #1 can be attributed to uncontrolled changes during the sample preparation.

The inset (c) in the upper right panel of Fig. 4.6 demonstrates almost linear dependence of
the static conductivity σ0 on the charge carriers density n. The linear character of the curves
and the fact that they closely coincide for both samples indicate that the mobility µ of the
charge carriers is constant across the samples and the density ranges. This is evident from the
formula for the conductivity σ = neµ.

The concentration dependence of the effective electron mass in the HgTe films is shown
in the panel (d) of Fig. 4.6. For both samples this dependence follow the square root law
mc ∼

√
n. Especially for the sample #1 (green circles and orange diamonds) the square root

behavior can be observed in an extremely broad range of densities. The absolute values of the
effective electron mass deviates only slightly for two frequencies, 11.5 cm−1 and 21 cm−1.
This may be an indication that that the magnetic field dependence of the cyclotron frequency
starts to deviate from the linear low-field regime and an influence of the high-field Ωc ∝

√
B

regime is visible.
The square root behavior mc ∝ √

n2D is characteristic for the carriers with the Dirac-
like dispersion relations E = ~υF |k| as observed in graphene [46]. Here υF = const is
the Fermi velocity. From the expressions for the two-dimensional density n2D = k2

F/(4π)
and quantum mechanical and classical definitions of the the cyclotron frequency [18, 35]
ωc = eBυF/(~kF ) and ωc = eB/mc, respectively, one gets mc = ~

√
4πn2D/υF . These

estimates clearly support the behavior observed in Fig. 4.6(d) and they correlate well with the
results at higher frequencies [38–40, 47, 48].

4.3.5 Hole contribution
The results presented above are clearly dominated by a single electron contribution. There-
fore, the description using only one type of carriers has led to a reasonable interpretation of the
data. As mentioned previously, in case where the electron contribution was small, additional
details in the spectra could be detected. This can be interpreted as a contribution of a second
type of carriers.

In few experiments with samples in the dark even the dominating character of the hole
contribution could be observed. An example of such scans is presented in Fig. 4.5. In this
figure only the transmission in crossed polarizers is shown as it is mostly sensitive to fine
details of the carrier contributions. The data are given in the complex plane plot such as Im(t⊥)
is plotted as a function of Re(t⊥) including the phase information (which should be compared
to conventional presentation in Fig. 4.4). The panel (a) shows the raw complex coefficient
texp
⊥ = |t⊥| eık∆l⊥ in arbitrary units, and the panel (b) shows the result of the fitting in the

absolute units. In such a plot the magneto-optical response of the charge carriers demonstrates
a characteristic figure: an eight-shaped curve. Importantly, the sign of the charge carriers is
directly obtained as the orientation of the curve in the complex plane.

As a typical example, the black curve and yellow circles in Fig. 4.5(a) mark the position of
t⊥ on the complex plane at Blight = −0.14 T. It is clear, that the curve of the magneto-optical
response in this case is inverted between the dark and the illuminated sample. In the dark
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Figure 4.7: Panel (a) shows magnetic field dependence of transmission in crossed polarizers geometry for the
sample #1 at 11.5 cm−1. The data are the same as in Fig. 4.4, but represented in the polar plot form. Symbols are
experimental results, lines are fits within the Drude model using two types of charge carriers. Strong deviations
from the single carriers Drude model at low illumination times are clearly seen. The dimensionless conductivity
σZ0 and the carrier concentrations n as functions of illumination time obtained from the fits are shown in panels
(b) and (c), respectively. Blue solid circles denote electrons, red open circles denote holes. The green and orange
squares are fit parameters for electrons and holes as obtained from the data in Fig. 4.5. The inset in (b) shows
the mobilities of holes and electrons.
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4 Mercury telluride films with critical thickness

case the sample shows a clear orientation of the hole contribution. After switching on the
light illumination the amplitude t⊥(Blight) passes near the center of the eight-like shape and
then shifts to the opposite lobe of the curve that corresponds to the illuminated sample. This
behavior demonstrates the inversion from the hole to the electron contribution.

Solid lines in Fig. 4.5(b) demonstrate the results of the fitting to the measured data at fixed
illumination time. The response on the electron side is well fitted by the simple model. On the
hole side, only a qualitative fit may be obtained. In addition, the experimental curve shows
some fine structure. This is an indication of the fact that further corrections to the hole re-
sponse may be needed, e.g. inclusion of further charge carriers. However, possible additional
contributions are weak and their parameters cannot be reliably extracted from the fits. There-
fore, in the present discussion only two contributions to the magneto-optical response will be
considered: electrons giving a main response and holes as a smaller correction.

The HgTe samples investigated in this work showed distinct memory effects. This resulted
in the fact that the ”dark” state of the sample could not be exactly reproduced. Possible reason
for these observation is the existence of charge traps with hysteresis effects. Normally, in the
dark state as obtained after cooling from room temperature and without light illumination, the
contributions of holes and electrons were comparable. In this sense, clear visual separation
as exemplified in Fig. 4.5 could be obtained only in the beginning of the experimental series.
Another example of the spectra in the dark state is shown in Fig. 4.7(a) by black symbols.
Here a more complicates picture compared to Fig. 4.5 is seen. Fortunately, the overall be-
havior of the experimental data could be reasonably described taking only two sorts of the
charge carriers into account. The results of such fits are shown in Fig. 4.7(a) as solid lines
demonstrating that even a complicated behavior may be qualitatively understood as a mixture
of hole and electron contributions. The attempts to include more charge carriers into consider-
ation did not led to stable fits. As the response of the holes is weak, only few parameters like
conductivity, density, and mobility could be determined unambiguously. The effective mass
and the scattering rate of holes contribute to the mobility simultaneously as µ = eτ/meff and
they could not be separated by the fitting procedure.

The static conductivity and the density of electrons and holes in HgTe in the approximation
of two types of charge carriers are shown in Fig. 4.7(b, c). As expected, the parameters of
the electrons in the two-carriers fits remain basically the same as in Fig. 4.6 (electrons only).
Within the experimental accuracy the density of the holes remains independent of illumination
indicating that mobile hole states are not affected by light.

An ideal Dirac cone is symmetric with respect to positive and negative directions in energy.
If the Fermi level is above the Dirac point, the charge carriers are electron-like. If the Fermi
level in below the Dirac point, the charge carriers will have the hole-like character. The Fermi
level for the samples in the dark state is mostly determined by the preparation conditions and
partly by the temperature/doping history of the sample. The samples have been fabricated
with a goal to obtain the Fermi level very close to the Dirac point. After cooling in darkness,
the terahertz response of the samples was usually dominated by electrons. The dispersion of
the upper part of the cone was proven to be close to linear. The inability to investigate the
lower part of the cone have led to the idea of making an ex-situ semitransparent gate to control
the Fermi level (section 4.4).
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4.3 Samples without a gate

4.3.6 Landau level FTIR spectroscopy
The terahertz analysis described above has been extended to the infrared frequency range [49,
50] (Fig. 4.8). These experiments have been performed on sample #3 with d = 6.6 nm at
T = 10 K. The optical windows of the magnet were transparent for the visible light and the
sample was constantly illuminated. The carrier density was estimated from the transmission
intensity as n2D = 7 × 1010 cm−2. For magnetic fields B < 1 T the cyclotron frequency is
linear in field. In high magnetic fields B > 1 T, the classical cyclotron resonance mode is split
into transitions between single Landau levels. In addition, for magnetic fields above B ≈ 4 T,
two modes with close-by frequencies are observed, which indicates that the initial twofold
degeneracy of the Dirac cones is lifted in the high magnetic fields [51].

Characteristic gap in the data close to 270 cm−1 is due to the phonon absorption in GaAs
substrate [52]. Close to 150 cm−1 the phonon absorption in the HgTe film [53, 54] and in the
CdHgTe buffer layers [6] are seen. As the phonons in the layers with different Cd-doping are
at close frequencies [53], they cannot be separated. In addition, because the HgTe film and the
CdHgTe layers are close to each other, the electron gas interacts with CdHgTe phonons around
150 cm−1. This interaction is seen as an effect of avoided crossing of cyclotron resonance
frequency close to 125 cm−1 and 170 cm−1.

For a simple qualitative explanation of the transitions between the Landau levels we will
use the Bohr-Sommerfeld approximation. A more rigorous approach, based on a relativistic
Hamiltonian, can be found in Ref. [51]. Here we will neglect the electron spin and treat
one band with the energy dependence ε = ε(k). Assume an external magnetic field B is
applied in the direction, perpendicular to the film. Then the cyclotron motion of any electron
is represented as a circular orbit both in r- and k-spaces. According to the Bohr-Sommerfeld
approximation, the orbit in r-space must satisfy∮

p dr =

∮
(~k− e

c
A) dr = 2π~(n+ γ), (4.13)

where p = ~k − eA/c is a canonical momentum; A is a vector-potential, satisfying B =
∇×A; n ≥ 0 is an integer number; γ is a constant that can be determined using an accurate
approach. The contour integral is taken along the closed orbit of the electron in r-space.
Equation (4.13) determines allowed energy levels for the electrons in the applied magnetic
field. The cyclotron motion is characterized by the frequency Ω that relates electron’s position
r and momentum ~k with their derivatives:

v = Ω× r; Ω× ~k =
e

c
v ×B.

These equations allow to determine the cyclotron frequency and connect the cyclotron radius
with the absolute value of the wave vector k:

Ω =
eBv

c~k
; r =

c~k
eB

. (4.14)

Since the energy depends on the absolute value of the wave vector only, the group velocity
v = ∂ε(|k|)

∂(~k) is parallel to the wave vector k. Thus the integral (4.13) can be calculated as∮
(~k− e

c
A) dr = 2πr~k − e

c
Bπr2. (4.15)
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Figure 4.8: Far-infrared magneto-optical transmission spectra on the sample #3, obtained at 10 K. Black symbols
– experimental absorption frequencies in the infrared transmission experiment. Solid gray lines show the energy
difference εn+1(B) − εn(B), n = 0, 1, .., 10 between the Landau levels. Red solid lines – calculated positions
of the absorption frequencies as described in the text. The inset shows examples of the transmission spectra,
normalized by the transmission in zero magnetic field. The curves are shifted for clarity.
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Here the Stokes’ theorem was used to obtain the second term. By combining Eqs. (4.13, 4.14,
4.15) one obtains the explicit expression for kn:

k2
n =

2eB

c~
(n+ γ). (4.16)

At low temperatures the Fermi-Dirac distribution degenerates into the Heaviside step-function.
In zero magnetic field electrons occupy the states with the wave vectors lying inside the circle
k < kF . The electron density n2D in this case is given by

n2D = D
k2
F

4π
, (4.17)

where D = 1, if the spin is completely neglected, and D = 2, if we assume the spin degener-
acy. When the magnetic field B is applied, the allowed electron levels are given by Eq. 4.16.
Each new state |kn⟩ can be approximately treated as a superposition of zero-field states |k⟩
with the wave vectors |k| ≈ kn. Since k2

n ∝ n, the area of a ring between the levels n and
n + 1 is constant for any n. This reasoning illustrates, why the degeneracy of the Landau
levels |kn⟩ is independent on the number n. Formally, one can find the last occupied Landau
level by resolving kn = kF that leads to

n =
2πc~
DeB

n2D − γ. (4.18)

Since n must be integer, the resulting real number should be rounded to the next greater
integer. If the level |n⟩ is partially filled, the electrons can transit from the level |n− 1⟩ or to
the level |n + 1⟩. The Bohr-Sommerfeld approximation is asymptotically accurate for large
n ≫ 1. According to Eq. 4.18, this limit is achieved in low magnetic fields. In this case a
small change in B is enough to change the number of the last occupied Landau level. Thus
the resonant energy can be approximately calculated as

εn+1 − εn ≈ ∂ε

∂n
=

∂ε

∂k

∂kn
∂n

=
eBε′

c~kF
. (4.19)

Equation 4.19 reproduces the results (3.23–3.24), obtained using the Boltzmann equation and
the semi-classical equations of motion. In low magnetic fields the resonating levels switch
in such a way, that the cyclotron frequency linearly increases with B, and the effective mass
is determined by ε′(kF ). In higher fields a small change in B does not necessarily change
the number of the last level. If the energy dispersion is parabolic, then the Landau levels are
equidistant and they are separated by the cyclotron energy ~eB/(mc). Then even in the high
fields the cyclotron frequency linearly increases with B.

In the case of the HgTe film with the critical thickness we expect the linear relation between
the energy and the wave vector:

ε = ~vFk. (4.20)

According to Eq. 4.16, the energy of the Landau level n in this case takes the form

εn = vF

√
2e~B
c

(n+ γ). (4.21)
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In Ref. [55] the energy levels induced by the magnetic field were calculated by the method
of Luttinger and Kohn (LK) [56], taking into account the large effects of band-to-band trans-
itions, which are not included in the present consideration. The resulting expression for εn in
LK method coincide with εn, calculated using Eq. 4.21 with γ = 0.

The linear dependence (4.19) is changed by separate transitions between the Landau levels
in high magnetic fields. In figure 4.8 the low field behavior can be observed below 1 T, and the
separate transitions reveal above 1 T. The gray curves show the frequencies, corresponding to
transitions between the levels εn and εn+1, where n = 0, 1, .., 10 and the energy is determined
by Eq. 4.21 with n2D = 8.5× 1010 cm−2, vF = 1.2× 108 cm/s, γ = 1/2. The red curves mark
the transitions from the level n− 1 and to the level n+ 1, where n is determined by Eq. 4.18
with D = 1. The chosen set of parameters allows to achieve a semi-quantitative agreement
between the experimental points and the red curves. However we cannot directly attribute
these values to the properties of the band structure. The Bohr-Sommerfeld approximation is
accurate only in small magnetic fields, when the number of the last occupied Landau level
is large: n ≫ 1. In high magnetic fields, when only a few Landau levels are occupied by
electrons, the small gap in the band structure and Zeeman’s splitting affect the positions of
the resonances [51]. Thus the Bohr-Sommerfeld approximation serves as only a qualitative
explanation for the high-field behavior.

If we stay within the model, defined by the linear dispersion (4.20), we can still determine
the parameters of the band structure from the low-field data. The slope ∂Ω/∂B allows to
determine the cyclotron mass as mc = 0.01m0. The electron density can be estimated by
fitting the shape of the cyclotron resonance within the Drude model (section 4.3.3), which
gives the value n2D = 7 × 1010 cm−2. Taking into account the spin degeneracy (D = 2), we
obtain the Fermi velocity as

vF =
~
mc

√
4πn2D

D
= 7.7× 107 cm/s. (4.22)

This value of the Fermi velocity is in a good agreement with the results of analogous ex-
periments (vF = 7.2 × 107 cm/s) [37, 39] and of capacitance spectroscopy experiments
(vF = 8.2× 107 cm/s) [57].

4.3.7 Conclusion

Terahertz properties of the mercury telluride thin films with critical thickness are investigated.
Using optical doping by visible light illumination, the charge carrier concentration could be
modified by more than one order of magnitude. In some cases, using light as a parameter may
switch the qualitative electrodynamic response from hole-like to the electron-like. Especially
towards low electron density the cyclotron mass shows a square root dependence upon the
charge concentration. This can be interpreted as a clear proof of a linear dispersion relations,
i.e. Dirac type carriers.
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4.4 Samples with Mylar gates

4.4.1 Preparation of gates

Figure 4.9: HgTe sample #1 (left image) with film thickness d = 6.6 nm and sample #2 (right image) with
d = 6.3 nm. The green hatched area marks the semitransparent gate. Sample #1 has 18.9 mm2 gate area,
sample #2 – 24.8 mm2.

Mercury telluride quantum wells have been grown on (013) oriented GaAs substrates by
molecular beam epitaxy as described in section 4.2. The results on two samples with thickness
close to critical are presented: sample #1 with d = 6.3 nm and sample #2 with d = 6.6 nm.
The gate on both samples has been prepared ex-situ using a mylar film with d = 6 µm as
an insulating barrier and a semi-transparent metalized film as a gate (Ti, R = 600 Ω/�).
In the experiment the gate conductivity is seen as magnetic field independent and frequency
independent contribution to σxx. No measurable effect of the gate on the Hall conductivity
has been observed, which agrees well with the low mobility of the gate carriers.

Figure 4.9 shows the images of the samples. The semitransparent gates are made ex-situ
as follows. First, a 6 µm thin Mylar foil is glued on the sample using “BF” glue (a phenol
formaldehyde polyvinyl vinylite-based compound). Then, a Ti-coated Mylar foil is glued on
the top of the isolating layer with the metalized side towards the sample. The sheet resistance
of the metalized foil is around 600 Ω/�. Two contacts are made to both HgTe film and the
gate to increase the reliability. The area of the gated region is measured on the images of the
sample and is shown as a green hatched polygon in Fig. 4.9. The capacity between the gate
and the HgTe film is measured using a high precision electrometer at effective frequencies
between 1 and 10 Hz. The sample #2, which was prepared first, has A = 24.8 mm2 area
and C = 35.4 pF capacitance. The parameters of the sample #1 are A = 18.9 mm2 area and
C = 59.5 pF capacitance.

Knowledge of the capacitance allows to estimate the surface density of induced charge
carriers n per unit of the applied gate voltage U . From Q = CU we have Q/(eAU) =
n/U = C/(eA). Here, e = 1.6 × 10−19 C is electron’s charge. For the sample #1 we have
n/U ≃ 2 × 109 cm−2·V−1, and n/U ≃ 9 × 108 cm−2·V−1 for sample #2. These values are
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4 Mercury telluride films with critical thickness

Figure 4.10: Schematic view of the magneto-optical experiment to measure the Faraday rotation θ and ellipti-
city η. The definitions of both angles are depicted in the output polarization ellipse, assuming a linear incident
polarization. The external magnetic field is applied in the Faraday geometry, i.e. B∥k. Complex transmission
in parallel (t∥) and in crossed (t⊥) polarizers are measured which provide a full description of the transmission
matrix.

close to the ideal expectation n/U = C/(eA) = εε0/(ed) = 3 × 109 cm−2·V−1, obtained
in the plane capacitor approximation and neglecting the thicknesses of the glue layers. Here
ε = 3.25 is the static dielectric constant of Mylar and d = 6 µm is the thickness of the
insulating foil. Taking Umax = 500 V as a maximal gate voltage, available in our setup, we
get n = 10× 1011 cm−2 for the sample #1 and n = 4.5× 1011 cm−2 for the sample #2 as an
upper limit of the change of the charge carrier density.

4.4.2 Drude parameters

Drude parameters has been obtained from analysis of transmission coefficients, measured with
the Mach-Zehnder interferometer. The main measurement mode was to fix the frequency of
the generated radiation and to measure both the transmission amplitude and the phase dif-
ference of the transmitted signal as a function of the applied magnetic field and the gate
voltage. Throughout section 4.4 transmission data are presented in the form of Faraday rota-
tion angles θ and η, see Fig. 4.10. These quantities allow a simple geometric interpretation
in the case of the elliptical polarization and they are not as specific as the raw transmission
coefficients. In order to determine both Faraday rotation angle θ and ellipticity angle η two
measurements are performed: one with the analyzer setting the same as the incident polariza-
tion (parallel polarizers geometry) and one with the analyzer rotated by 90◦ (crossed polarizers
geometry). The Faraday angles are then calculated as

θ =
1

2
arctan

(
2|t⊥| |t∥| cos(φ∥ − φ⊥)

|t⊥|2 − |t∥|2

)
; (4.23)
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Figure 4.11: Faraday rotation angle θ as a function of the applied magnetic field B and the gate voltage U for
the sample #2. The left panel shows the data for increasing gate voltages, the right panel – for decreasing gate
voltages.

η =
1

2
arcsin

(
2|t⊥| |t∥| sin(φ∥ − φ⊥)

|t⊥|2 + |t∥|2

)
. (4.24)

Figure 4.11 shows the overview of the Faraday angle θ measured on the sample #2. The left
panel presents the results for increasing gate voltages, the right panel – for decreasing gate
voltages. The presence of the gate voltage hysteresis complicates the analysis of the data, and
it is hard to avoid for the Mylar gates. One possible solution is to use some intrinsic parameter,
for example the charge carrier density instead of the gate voltage. Such analysis is presented
below, where the charge density is determined from the experimental data by the fits within
the Drude model.

The main features in Fig. 4.11 are the cyclotron resonances, seen as peaks in the Faraday
angle θ at low magnetic fields < 0.5 T. The resonances in θ(B) are antisymmetric with respect
to the field. The fact that the positive and negative peaks interchange with each other as the
gate voltage is swept shows the change of the sign of the dominant charge carriers in the
sample. At the intermediate gate voltages a double peak structure can be seen, with both
positive and negative small peaks on one side from zero magnetic field. This feature points
towards the presence of both hole-like and electron-like charge carriers at the same time. Such
a semi-metallic behavior could be not only due to the intrinsic features of the band structure
of the HgTe films, but also due to the inhomogeneity of the ex-situ gate. In the data analysis
within the Drude model we have used two charge carriers with opposite signs to fit the region
of the intermediate gate voltages.

Figure 4.12 shows the examples of Drude fits for the sample #1. The data is presented in
the form of the Faraday rotation angle θ and the ellipticity angle η and is plotted in the θη-
plane. The external magnetic field is the hidden parameter of the curves. The experimental
data is shown by black solid symbols, joined by the solid lines, and the theoretical Drude
curves are shown by red dashed lines. The cyclotron resonance is seen as the lobes of the
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Figure 4.12: Faraday rotation θ and ellipticity η plotted in the θη-plane as a function of the external magnetic
field −2 T ≤ B ≤ +2 T for the sample #1. A continuous transition from the hole-like charge carriers (panel (a),
-140 V gate voltage) to the electron-like carriers (panel (h), 200 V) is seen as an inversion of the eight-shaped
curve. Black symbols with solid lines are experimental data, red dashed lines are fits within two carriers Drude
model.
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curve with both angles approaching zero as the magnetic field goes to zero or to infinity. The
magnetic field is positive for one lobe and is negative for the other. In the hole-like region of
gate voltages the curve has a distinct eight-like shape, see Fig. 4.12(a). As the gate voltage
increases, the curve shrinks (panel (b)). At some gate voltage, another eight-like shaped curve
emerges, superimposed with the first curve (panel (c)). In the narrow range of gate voltages
both the hole-like and electron-like responses coexist with the hole-like response shrinking
and the electron-like growing (panels (d)–(e)). At even higher gate voltages the electron-like
curve dominates, but the hole-like response is still visible as a kink around zero magnetic field
(panels (f)-(g)). Finally, only a single eight-like shaped curve is present in the electron region
of the gate voltages (panel (h)). The polarity of the magnetic field in panel (h) is reversed with
respect to the hole-like curve in panel (a).

The parameters of the charge carriers, resulted from the analysis of the data within the
Drude model, are shown in Fig. 4.13. The left panels show the data for the sample #1, the
right panels – for the sample #2. The upper panels (a) and (b) show the charge densities of
holes p (open triangles) and of electrons n (solid triangles) as a function of the film voltage.
The up and down triangles correspond to the increasing and decreasing voltage, respectively.
The gate voltage hysteresis is clearly visible. In order to workaround this complication, the
density of the charge carriers (n or p) was chosen as an independent parameter with all other
parameters being the function of it. It is desirable to obtain the properties of electrons and
holes independently, therefore all other parameters of charge carriers are plotted as functions
of respective charge densities: p for the properties of the holes and n for the properties of elec-
trons. It should be noted that for the integral properties like the Faraday angles the total charge
density (p−n) is more appropriate, as it characterizes the sample as a whole. Such total charge
densities are shown in Fig. 4.13 as solid black lines for the increasing voltages and as dashed
gray lines for the decreasing voltages. The panels (c) and (d) show the density dependence of
the dimensionless two-dimensional static conductivity σZ0, where Z0 = 1/(ε0c) ≈ 377 Ohm
is the impedance of free space and σ = ne2τ/m. First, it is noticeable that the data for increas-
ing and decreasing gate voltages coincide almost perfectly, justifying the choice of the density
as the independent variable. The curves are almost linear, indicating that the mobility of the
carriers µ = σ/(en) = eτ/m is roughly constant across the investigated density range. The
experimentally determined mobility is shown in panels (e) and (f). It is indeed approximately
constant with some increase towards low carrier densities. This increase of µ is mostly not
due to the increase of the relaxation time τ , but due to the decrease of the cyclotron mass m,
which is shown in panels (g) and (h). The cyclotron mass data is more noisy than other para-
meters, especially at low charge densities. The cyclotron mass is mostly responsible for the
position Bc of the cyclotron resonance peak. At low densities these cyclotron peaks become
quite weak and they are hard to separate in positive and negative magnetic fields. Contrary to
the conductivity and mobility data, the cyclotron mass still shows some discrepancy between
the increasing and decreasing gate voltages. While the difference for the sample #1 is al-
most within the experimental uncertainty level, the difference for the sample #2 grows up to
30–40 % at low densities. These complications lead to the increasing experimental error in
the low-density range. On the other hand, the direct determination of the cyclotron mass is
quite valuable. The transport measurement are only able to determine the mass indirectly,
for example from the temperature dependence of the amplitude of the Shubnikov-de-Haas
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Figure 4.13: Drude fit parameters of the charge carriers for the sample #1 (left panels (a), (c), (e) and (g)) and the
sample #2 (right panels (b), (d), (f) and (h)). Blue solid up triangles are for the electron properties in increasing
film voltage, red open up triangles denote the holes properties in increasing voltage, green down triangles show
the properties of the electrons in decreasing voltage and the orange open down triangles stand for the properties
of the holes in decreasing voltage. The upper panels (a) and (b) show the film voltage dependence of the holes p
and electrons n density (the film voltage is connected to the gate voltage as V = −U ). The black solid and
dashed gray lines show the total charge density (p−n) for increasing and decreasing film voltages, respectively.
The panels (c) and (d) demonstrate the dimensionless 2D-conductivity σZ0 as a function of the respective charge
density p or n. The dependence of the mobility µ on the density is shown in panels (e) and (f). The panels (g) and
(h) represent the charge density dependence of the cyclotron mass m normalized to the free electron mass m0.
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oscillations.

4.4.3 Band structure reconstruction
The cyclotron mass data in Fig. 4.13(g, h) shows a qualitative difference between the samples
#1 and #2. Namely, while the mass of electrons for the sample #1 is decreasing towards zero
at low densities, the electron mass in the sample #2 is only slightly decreasing towards some
finite value. These features allow to suggest that the electron band dispersion in the sample #1
is mostly linear whereas the dispersion in the sample #2 is dominated by the quadratic term.
With all the data at hand it is possible to reconstruct at least a part of the band structure of
the investigated samples under the assumption of the isotropic band dispersion E = E(|k|).
Indeed, the charge carrier density in the isotropic two-dimensional case is n = πk2D/(2π)2,
where k is the Fermi wave vector and D is the degeneracy of the states. We are assuming
spin degenerate nature of charge carriers in our samples, so D = 2. This allows us to obtain
the Fermi wave vector k directly from the experimental density n: k =

√
2πn. From the

definition of the cyclotron mass (Eq. 3.23) we obtain

∂E

∂k
=

~2k
m

. (4.25)

Figure 4.14 shows the consecutive steps, needed to obtain the experimental band structure.
The left panels show the data for the sample #1 and the right panels show the data for the
sample #2. The upper panels (a) and (b) show the inverse cyclotron mass normalized to the
free electron mass as a function of Fermi wave vector k. The middle panels (c) and (d) demon-
strate the derivative ∂E

∂k
. The band structure dispersion E(k) can be obtained by a numerical

integration of the experimental curves in (c) and (d). The result of the integration is shown in
the lower panels (e) and (f). The dispersions of holes in both samples are linear in k. They
were fitted with linear functions, shown in panels (e) and (f) by solid red and orange lines
for increasing and decreasing film voltages, respectively. The dispersion of the electron-like
charge carriers in the sample #1 is also close to linear with some small non-monotonic devi-
ations, see Fig. 4.14(e). The blue and green solid lines are purely linear fits of the experimental
dispersions, showing a rather good agreement. On the contrary, the sample #2 demonstrates
a monotonic positive curvature of the electron-like dispersion curves. For this reason, the fits
(blue and green lines in panel (f)) include both linear and quadratic terms. Here, for increasing
film voltages (blue solid up triangles and blue line in panel (f)) the quadratic term is dominant
in the dispersion curve, whereas for decreasing film voltages (green solid down triangles and
green line in panel (f)) both linear and quadratic terms contribute roughly equal to the total
dispersion relation. Such a difference between two samples might be understood taking the
different HgTe film thicknesses into account. The mercury telluride film in the sample #1 has
a thickness of 6.6 nm, which is assumed to be closer to the critical film thickness dc, at which
the gap is zero and a pure linear dispersion is realized. The film in the sample #2 is thin-
ner (6.3 nm) and the gap is assumed to be positive, revealing the quadratic dispersion of the
electrons. This picture lacks an explanation for the linear dispersion of holes in the sample #2.

The integration procedure leaves an arbitrary additive constant in the dispersion relation.
Here the constants are chosen in such a way that all linear fits in the panel (e) and both the
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Figure 4.14: Experimental determination of the band structure of thin HgTe films. The left panels (a), (c) and
(e) show the data for the sample #1, the right panels (b), (d) and (f) are for the sample #2. The upper panels (a)
and (b) show the inverse cyclotron mass, normalized by the free electron mass, as a function of the Fermi wave
vector k. The middle panels (c) and (d) show the derivative ∂E

∂k , derived from the cyclotron mass data. The
lower panels (e) and (f) show the reconstructed band dispersions. The solid blue up triangles are for the electrons
in increasing film voltages, the solid green down triangles show the properties of the electrons in decreasing
film voltages. The open red up triangles denote the holes in increasing film voltages and the open orange down
triangles demonstrate the properties of the holes in decreasing film voltages. The solid lines in panel (e) are
linear fits of the experimental dispersion. The red and orange lines in panel (f) are linear fits of the dispersion of
the holes and blue and green lines in panel (f) are fits of the electronic part of the band structure, containing both
linear and quadratic terms.
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4.4 Samples with Mylar gates

linear and quadratic fits in the panel (f) cross at zero energy and zero wave vector. Such a
crossing is expected for the linear dispersion, which is probably the case for sample #1, see
panel (e). As for the sample #2 (panel (f)) with the noticeable quadratic term in the electronic
part of the band diagram, one can expect the presence of a nonzero gap. In this case further
experiments, for example involving elevated temperatures, are needed to establish a reliable
experimental value of the gap.

4.4.4 Universal Faraday rotation
Thus far we have analyzed the spectroscopic data within the semi-classical picture. In this sec-
tion we focus on a phenomenon that directly demonstrates the quantum nature of the charge
carriers. In the dynamical regime the unusual character of the quantum Hall effect in systems
with Dirac cones can be shown [28, 30, 31, 58] to lead to a universal values of the Faraday and
Kerr rotation with θF = α ≈ 1/137 and θK = π/2, respectively. Such predictions have been
recently confirmed experimentally in graphene [59], where the Faraday angle is additionally
doubled as two Dirac cones exist in the Brillouin zone. Very recently [60, 61], several groups
announced the observation of the quantized Faraday and Kerr rotation from the surface states
of bismuth compounds. Compared to thick strained films with three-dimensional (3D) carri-
ers, in HgTe wells with critical thickness a two-dimensional electron gas is realized. In this
case the quantized Faraday rotation is directly connected to the quantization of the dynamic
Hall conductivity [62].

Explicit equations to calculate the conductivity tensor from the measured transmission are
given by Eq. 2.15. In these calculations the effect of GaAs substrate and of Ti gate are taken
into account exactly, i.e. pure two-dimensional conductivity of the layer “HgTe+gate” is ob-
tained. The measured Faraday rotation and ellipticity are still partly influenced by the prop-
erties of the substrate and the gate. Where appropriate, specific values of these angles will
be given. The frequency of the THz radiation in the transmission experiments is chosen to
minimize the influence of the substrate.

The most important result is demonstrated in Fig. 4.15. Here, the experimental Faraday
rotation θ (lower panel) and ellipticity η (upper panel) are shown for the sample #1. The
peaks in the data at around B ≈ 0.5 T are the cyclotron resonances in the two-dimensional
electron system. The sign change of the Faraday angle and ellipticity between negative and
positive gate voltages corresponds to the transition from the hole-like to the electron-like
carriers, respectively. In high magnetic fields far above the cyclotron resonance [64], classical
Faraday rotation and ellipticity are expected to fade out as θ ∝ 1/B, η ∝ 1/B2. Remarkably,
in Fig. 4.15 the experimental value of the Faraday rotation for zero and negative gate voltages
saturates at fields above 1 T and stays constant within the experimental accuracy up to the
highest experimental field (7 T). Similar broad steps in the quantum Hall resistivity have been
recently observed in HgTe wells and attributed to heavy holes valleys reservoir effects [65].
The step in Faraday rotation reveals a universal value close to the fine structure constant α =
Z0

2
e2

h
, indicated in Fig. 4.15 by dashed lines. Dash-dotted line gives the value which takes

into account the properties of the substrate and gate exactly [63], and assuming σxy = e2/h,
σxx = 0. The difference between both values of Faraday rotation and the experimental data
are within the uncertainties of the experiment.
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Figure 4.15: Magnetic field dependence of the Faraday rotation θ (lower panel) and ellipticity η (upper panel)
for the sample #1 for three characteristic gate voltages. Experimental data are shown by solid symbols and the
lines are fits within the Drude model [29, 31]. Dashed line shows a “pure” universal value of Faraday rotation
α ≈ 1/137 rad. Dash-dotted line gives the real value of the rotation αcorr taking into account the influence of
the substrate and gate, and assuming σxy = e2/h. The inset shows the off-diagonal conductivity σxy as directly
obtained from the spectra using exact expressions for magneto-optical transmission [63].
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4.4 Samples with Mylar gates

Table 4.1: Drude parameters of the charge carriers in HgTe sample #1 as obtained from the fits of magneto-
optical conductivity: density n2D, effective mass m/m0, and mobility µ. The gate voltage −500 V corresponds
to hole carriers, and +500 V to electrons, respectively. m0 is the free electron mass.

Gate (V) n2D(cm−2) m/m0 µ (cm2/(V·s))

-500 V (3.3± 0.5)× 1010 (7.5± 1)× 10−3 (6.6± 1.0)× 104

+500 V (1.4± 0.3)× 1011 (9.2± 1)× 10−3 (2.0± 0.2)× 104

In order to demonstrate the discrepancy between the experimental data and classical cyclo-
tron resonance, the fits within Drude model are shown as solid lines in Fig. 4.15. The Faraday
rotation θ and the Faraday ellipticity η of the electron-like carriers at positive gate voltage are
well fitted within the classical response (red lines and symbols). The ellipticity at zero and
negative gate voltages also follows the classical Drude model quite well. Remarkably, the ex-
perimental Faraday rotation in this region of the gate voltages behaves very distinctly from the
predictions of the model. The model curves tend towards zero rather quickly at fields above
1 T (blue and black lines). Contrary, the experimental data shows abrupt deviation from the
classical calculations at these fields, saturating at approximately constant level.

From the transmission spectra in zero magnetic field and at zero gate voltage the exact
value of the refractive index of the substrate (optical thickness) is determined experiment-
ally [45]. With this parameter the transmission in both parallel and crossed geometries can be
recalculated into the complex magneto-optical conductivity of mercury telluride [63] without
additional assumptions. The diagonal conductivity σxx is mostly responsible for the parallel
transmission in our experiments and for the dissipation in DC transport measurements. The
off-diagonal conductivity σxy is related to the transmission in the crossed geometry and for the
quantum Hall plateaus in the DC experiments. σxy is especially relevant for the emergence of
the universal Faraday rotation α and it is plotted in the inset of Fig. 4.15. The data are shown
in a dimensionless form by multiplying the conductivity σ with the impedance of vacuum
Z0 ≈ 377 Ohm.

The upper inset in Fig. 4.15 shows the imaginary part of σxy, which appears at nonzero
frequencies only. The real part of σxy is shown in the lower inset. It also demonstrates the de-
viation from the classical Drude behavior and saturates at the level slightly above the universal
value of Z0

e2

h
= 2α. We attribute this deviation to the uncertainties of the experiment.

From the Drude fits of the dynamic conductivity of the sample #1 in the vicinity of cyclotron
resonance the parameters of the charge carriers could be calculated which are given in Tab. 4.1.
Much lower mobility of the electrons (+500 V) compared to holes (−500 V) is probably
the reason that no quantized Faraday effect could be observed for positive voltages. High
Dirac-hole mobility in HgTe wells can be explained by screening of their scattering by heavy
holes [66].

At a fixed frequency of the incident radiation f = 320 GHz and at T = 1.8 K there are two
external parameters which can be tuned: magnetic field and gate voltage. A good overview
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Figure 4.16: Faraday rotation θ of the HgTe quantum well #1 as function of gate voltage and magnetic field. The
values of θ are colour-coded for clarity. The data are given for the increasing gate voltage from -500 V to +500 V
as applied to the gate electrode. The maximum and minimum of θ at low magnetic fields are the manifestations
of the cyclotron resonance. The inversion from maximum to minimum reflects the transition from the hole-like
charge carriers at negative gate voltages to the electron-like charge carriers at positive voltages.
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4.4 Samples with Mylar gates

of the experimental data set obtained by changing both parameters is provided by Fig. 4.16.
Here, the color coded height represents the Faraday rotation θ as a function of magnetic field
−2 T < B < 2 T and of gate voltage −500 V < U < 500 V in the direction of increasing
voltage. The data shown in Fig. 4.15 are cuts of the parametric surface in Fig. 4.16 at fixed gate
voltages. The cyclotron resonance peaks in Fig. 4.15 are also seen in Fig. 4.16. However, now
it is possible to see the continuous evolution of the cyclotron resonances with the gate voltage.
The positive peak at positive magnetic fields and gate voltage of −500 V gradually disappears
and transforms into a negative peak at +500 V. This is a manifestation of the transition from
the hole-like carriers at negative gate voltages to the electron-like carriers at the positive gates.

The plateau in Faraday rotation close to the universal value θ = α, was reproduced in the
measurements on the sample #2. Eight contacts have been prepared around the edges of the
sample #2, which allowed to measure DC longitudinal and transverse resistivities Rxx and
Rxy. These data are shown in the upper inset of Fig. 4.17. The black curve is the longitudinal
resistivity Rxx, the red curve represents the transverse resistivity Rxy. The pronounced plateau
at fields between 0.75 and 1.5 T is clearly seen in the Rxy data. The value of the transverse
resistivity at the plateau is around 25.8 kΩ. The DC data correspond well to the universal
value of the Faraday rotation θ = α. Indeed, in the limit of small absorption by thin film [64]
we may write: θ ∼ t⊥/t∥ ∼ t⊥ ∼ Z0/2Rxy, which leads to θ = α for Rxy = h/e2. Direct cor-
respondence between the quantum Hall effect and quantized Faraday rotation is well known
in ordinary 2D electron gases [62].

The magneto-optical conductivity of the sample #2 is shown in Fig. 4.17. The imagin-
ary part in the upper panel reveals no plateau neither at the positive nor at the negative gate
voltages. The real part of the conductivity, shown in the lower panel, demonstrates a clear
plateau at fields above 1 T at zero and negative gate voltages. The value of this plateau equals
to σxyZ0 = 2α = Z0e

2/h and it corresponds well to the DC data shown by green line. In
the electron-like doping regime at the positive gate voltages no such plateau is observed in
magnetic fields below 2 T.

In conclusion, using polarization- and phase-sensitive terahertz transmission spectroscopy,
HgTe quantum wells with critical thickness have been investigated. In external magnetic
fields a universal value of the Faraday rotation close to the fine structure constant θF = α ≈
1/137 is observed for hole-like carriers. Dynamic Hall conductivity is directly calculated
from the experiment and it reveals a universal value σxy = e2/h. The universal steps in the
dynamical conductivity and Faraday angle remain robust in a broad range of external magnetic
fields and gate voltages. On the electronic side of the gate voltages a classical magneto-
optical behavior is observed. It can be attributed to much lower mobility of the negatively
charged carriers. The observation of the quantization at frequencies above 300 GHz in the
HgTe/CdHgTe quantum wells makes these systems a very promising object for the study of
the dynamic quantum Hall effect. As we will see in section 5, the QHE is suppressed at lower
frequencies in GaAs/AlGaAs heterojunctions. Further experiments are needed to understand
these properties of the dynamic Hall conductivity in two-dimensional systems.
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5 Dynamic QHE in GaAs/AlGaAs
heterojunctions

5.1 Introduction to the dynamic quantum Hall effect

The discovery of the integer quantum Hall effect (IQHE) [67] has attracted much interest in
scientific community. A vast majority of experimental and theoretical investigations is de-
voted to the study of the QHE at frequencies below 100 Hz, and in this range the phenomenon
of Hall quantization has been studied very extensively. Only a few experimental attempts
have been made in determining the highest frequency, at which the quantum plateaus are still
observable. As the frequency increases up to GHz range, standard contact techniques become
inapplicable. In this case, the high-frequency Hall conductivity can be studied by means of
interaction of electromagnetic waves with a two-dimensional electron gas (2DEG). Kuchar et
al. [8] used a crossed waveguide setup to observe Hall quantization at 33 GHz, Galchenkov
et al. [9] used a circular waveguide to study evolution of the Hall plateaus in 24–70 GHz
range. Further frequency increase can be achieved in quasi-optical spectrometers, suitable for
measurements in the range 100–1000 GHz. In the case of a thin conducting film the Hall
conductivity is directly connected to the Faraday rotation angle [62]. Recent experimental
works [59, 61, 68, 69] on observation of the quantized Faraday rotation in novel materials
have inspired a development of theories of a non-linear Hall response [70, 71]. On the other
hand, a linear high-frequency Hall response is far from being completely understood for the
systems with parabolic electron bands (AlGaAs, Si, Ge). Experimentally, the Hall effect in
THz range was observed in GaAs/AlGaAs heterojunctions [72, 73] and Ge quantum wells
[74]. The high-frequency data in Refs. [72–74] do not demonstrate quantum plateaus that
would be comparable with corresponding DC data. In Ref. [73] the experiment was conduc-
ted at two frequencies (2.52 and 3.14 THz), using an optically pumped molecular gas laser.
In Refs. [72, 74] the Hall conductivity was measured with a use of time-domain spectroscopy
(TDS). Although in principle, TDS allows to obtain the Hall conductivity at fixed frequencies,
the authors present the data, averaged over a wide spectral range. Due to this averaging, in-
formation about the frequency dependence of the Hall conductivity is lost. Thus, the question,
how the static QHE transforms into dynamic one, remained unresolved.

In order to study the evolution of quantum Hall plateaus with frequency, we carried out a
series of experiments on MBE-grown GaAs/AlGaAs heterojunctions, one of the most suitable
system to investigate the DC QHE. We were able to reproduce the results of the crossed-
waveguide method [8, 9] and to observe a plateau at 69 GHz. Above 100 GHz the plateaus are
replaced by oscillations in the Hall conductivity, which disappear completely as the frequency
is approaching 1 THz.
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Table 5.1: Parameters of GaAs/AlGaAs heterostructures at T = 1.9 K. n2D: density, µ: mobility, τ : relaxation
time, m: cyclotron mass, size: dimensions of the substrate. The superscripts DC and THz denote the quantities,
independently obtained in contact and spectroscopic experiments respectively.

Sample #1 Sample #2

nDC
2D (cm−2) (2.3± 0.2)× 1011 (3.6± 0.3)× 1011

nTHz
2D (cm−2) (2.4± 0.2)× 1011 (3.9± 0.8)× 1011

µDC (cm2/(V·s)) (1.0± 0.1)× 105 (3.2± 0.5)× 105

µTHz (cm2/(V·s)) (1.1± 0.1)× 105 (2.5± 0.5)× 105

τ (ps) 4.5± 0.5 10± 2

m/m0 0.070± 0.001 0.070± 0.002

Size (mm3) 10×10×0.660 5×5×0.367

5.2 Samples

The presented experimental data have been obtained on two GaAs/AlGaAs heterojunctions,
grown by molecular beam epitaxy, see Fig. 5.1(a). Characteristic parameters of the samples,
obtained in DC and spectroscopic experiments at 1.9 K, are given in Tab. 5.1. The sample #1
(marked as C0456) has a reduced silicon delta doping level in comparison with the sample #2
(marked as K035), which led to a lower electron density and a shorter relaxation time. Larger
dimensions of the sample #1 allowed to extend spectroscopic measurements below 100 GHz.
Insulating GaAs, used as a substrate, is transparent for the radiation in the full range of the
spectrometer. The substrate is characterized by a dielectric constant ε = 12 with a negligible
frequency dependence. Indium electrical contacts, placed in corners and centers of sides,
were prepared on each sample by baking at 400 ◦C in a reducing atmosphere (Ar+4%H). All
spectroscopic experiments were accompanied by simultaneous measurements of resistances
Rxx and Rxy using lock-in techniques, see Fig. 5.1(b). Typical values of the applied current
were I ≈ 1 µA. During the experiments the sample was placed into a superconducting magnet
with optical windows, made of 50 µm Mylar films. The windows were covered by black paper
in order to block visible light and avoid photoconductivity effects; cooling down from the
room temperature was also performed in the darkness. The sample volume was filled with
liquid helium and pumped to maintain the temperature of the sample at 1.9 K.

5.3 DC measurements

When the DC QHE is the subject of a study, the experiments are normally carried out on
samples in a form of the Hall bar or the Corbino disk [7]. These shapes are designed to min-

74



5.3 DC measurements

(a) (b)

I

I

φ1

φ2

φ3

GaAs (5 nm)

superlattice

8 × AlGaAs/AlAs/AlGaAs

(2.05/0.9/2.05 nm)

Si delta doping

AlGaAs (20 nm)

2DEG

GaAs buffer (1000 nm)

superlattice

30 × AlAs/GaAs (2/2 nm)

GaAs buffer (50 nm)

GaAs substrate

Figure 5.1: (a) – Detailed structure of GaAs/AlGaAs heterojunctions. The aluminum fraction in AlxGa1−xAs
is x = 31.35%. The samples #1 and #2 differ by the amount of silicon in the doping layer. (b) – scheme of
DC measurements. The longitudinal resistance is calculated as Rxx = (φ1 − φ2)/I and the Hall resistance is
calculated as Rxy = (φ1 − φ3)/I .

imize the geometric errors in the estimation of components of the resistivity (conductivity)
tensor. In our case the main goal of the study is the determination of the high-frequency
conductivity, and the accuracy of the DC measurements is less important. In order to com-
pare THz and DC data, obtained in exactly the same conditions, transmission coefficients
were measured simultaneously with the resistances Rxx and Rxy. The scheme of electric
contacts is shown in Fig. 5.1(b). This configuration allows to measure the voltages Vxx and
Vxy simultaneously, with no need to redirect the driving current I . The resistances serve as
a good indicator of the state of the sample, they allow to control the charge density that can
change slightly after a heating-cooling cycle. Knowledge of Rxx in zero magnetic field al-
lows to estimate the electron mobility µDC. For this purpose it must be recalculated into the
two-dimensional resistivity ρxx. We will treat a numerical solution to find the coefficient that
relates these two quantities. At the same time we will obtain the distribution of the electric
potential in zero field and estimate the error, caused by the finite size of the contacts.

The Maxwell’s equations

rotH =
4π

c
j+

1

c

∂D

∂t
; divD = 4πρ,

combined together, result in the continuity equation for the electric current density:

div j+
∂ρ

∂t
= 0. (5.1)

In a linear medium with a constant isotropic conductivity σ the current density and the electric
field are parallel. In a static case all time derivatives turn into zero. For the electric potential
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Figure 5.2: The calculated distribution of the electric potential φ inside a 1×1 cm2 square sample. A potential
difference of 1 V is applied to the semicircular contacts of radius 0.1 cm. The value of the potential at the corner
in denoted as α.

φ, determined by ∇φ = −E, we obtain Laplace’s equation:

∆φ = 0. (5.2)

Thus the electric potential is a harmonic function inside the area of a sample. We treat a square
sample [0, 1]× [0, 1] in the xy-plane. The solution of Laplace’s equation (5.2) is determined
by the boundary conditions. In the absence of an external magnetic field the off-diagonal
conductivity σxy vanishes and the corresponding boundary condition is given by

∂φ

∂ν
= 0,

where ν is a vector, normal to the boundary. On a square [0, 1] × [0, 1] the problem can
be solved analytically for the case of point contacts [75]. We will use the numerical finite
difference method to analyze the case of contacts of a finite size. We define a discrete function
φi,j = φ(hi, hj), where h is the size of the discrete mesh. Laplace’s equation (5.2) transforms
into the system of linear equations for the discrete case:

4φi,j − φi,j+1 − φi,j−1 − φi+1,j − φi−1,j = 0 (5.3)

Electric contacts of an arbitrary shape can be modeled by applying the conditions

φi,j = φcontact; φi,j = φneighbor
i′,j′

at the boundary nodes of the current and voltage contacts, respectively. The results of the
calculation on a 200×200 mesh are presented in Fig. 5.2. Eight contacts, having the shape of
a semicircle (or a quadrant) with the radius 0.1, are placed in the centers of the opposite sides
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Figure 5.3: The calculated correction coefficient in Eq. 5.4 as a function of the contact radius for different
configurations (a–d). Black dashed line shows the analytical value for point contacts.

and in the corners of the square. The total current through the sample can be calculated as an
integral along any line that is not passing through a contact (red line in Fig. 5.2):

I =

∫
jx dl =

1∫
0

σxx
∂φ(x0, y)

∂x
dy.

Since the numerical mesh has equal steps in x and y-directions, the integral can be rewritten
as a sum:

I =
1

ρxx

n∑
j=1

(φn0+1,j − φn0,j) =
β

ρxx
.

Here n is the number of mesh points along one dimension. In the DC experiments the voltage
was measured between the points (0, 0) and (1/2, 0). Thus the resistance obtained experi-
mentally is equal to

Rexp =
Uexp

I
=

α

β/ρxx
, (5.4)

where α = φ(0, 0). Therefore, the two-dimensional resistivity should be calculated as

ρxx =
β

α
Rexp =

n∑
j=1

(φi0+1,j − φi0,j)

φ0,0

Rexp.

The correction coefficient β/α is shown in Fig. 5.3 as a function of the contact radius for
different configurations of the contacts. Black solid circles in schemes (a–d) depict contacts
with the finite radius. For r < 0.01 the results of the numerical calculation are close to
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Figure 5.4: Transmission spectroscopy of a two-dimensional electron gas. The linearly polarized incident wave
becomes elliptically polarized, upon passing through the electron gas in magnetic field. Using a polarizer (not
shown), we measure the transmission amplitudes of the linear components along the initial (t∥) and perpendicular
(t⊥) directions. A second reference beam, schematically shown by the red dashed line, is used to determine
the phase shift ∆l, produced by the sample. The knowledge of two complex transmission coefficients t∥ =∣∣t∥∣∣ eık∆l∥ and t⊥ = |t⊥| eık∆l⊥ is sufficient to calculate the high-frequency complex Hall conductivity without
additional model assumptions.

the analytical value β/α = 3.5644 for point contacts [75]. In the absence of two middle
voltage contacts (a, d) the coefficient β/α is practically independent on the contact radius.
Therefore configuration (d) is preferable, as it allows a simultaneous measurement of Vxx and
Vxy. In experiments presented below the samples have been prepared with eight contacts (c)
to increase reliability. The numerical method treated in this section can be used to analyze DC
data, obtained on samples with a gate that covers only a part of the surface.

5.4 THz experiments

The high-frequency Hall conductivity of the two-dimensional electron gas was measured in
the range 69–1100 GHz using the two-beam Mach-Zehnder interferometer (section 2.2.1).
Upon passing through the sample, the linearly polarized wave becomes elliptically polarized,
see Fig. 5.4. First, a linear component with the same polarization as in the incident wave
is filtered by a wire-grid polarizer. The intensity of this component with the sample in the
beam, divided by the intensity without the sample, gives the absolute value of a complex
parallel transmission

∣∣t∥∣∣2. The phase shift ∆l∥ is measured with the aid of a reference beam
to obtain the complex parallel coefficient as t∥ =

∣∣t∥∣∣ eık∆l∥ , where k = ω/c is the wave vector.
After that, the polarizer is rotated by 90◦ and the procedure is repeated to obtain a complex
crossed transmission coefficient t⊥ = |t⊥| eık∆l⊥ . In order to obtain the Hall conductivity as
a function of magnetic field, the transmission coefficients are measured at fixed frequencies
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Figure 5.5: Field dependence of the transmission coefficients for the sample #1 at 332 GHz. Cyclotron resonance
is observed at ±0.83 T as a dip in the parallel amplitude (a) and a peak in the crossed amplitude (b). The sign
change of the external magnetic field does not affect the parallel transmission (t∥(B) = t∥(−B)), while the
complex crossed coefficient changes sign (t⊥(B) = −t⊥(−B)). As a result, the parallel phase shift, generated
by the sample, is an even function of magnetic field (c), and the values of the crossed phase shift differ by half a
wavelength (d). The panel (e) shows |t⊥| near a wide plateau in DC Hall conductance.

(Fig. 5.5). The frequency, generated by a BWO, is controlled by an accelerating voltage
V and can be set to any value in a certain range. The dependency of a generating power
on V is strongly oscillatory. In order to achieve a better signal-to-noise ratio, we used the
frequencies, at which the generating power reaches a local maximum. Another aspect, which
affects the choice of the frequency, is the thickness of the substrate. Acting as a Fabry-Pérot
resonator, a dielectric slab produces regular oscillations in the transmission spectra (see the
upper inset in Fig. 5.6). The frequencies fz, at which transmission is maximal, are determined
by the relation

√
εka = πz, where z is an integer. In the framework of the matrix formalism

(section 2.1), the substrate is described by a transfer matrix M that connects electromagnetic
(EM) fields at the opposite surfaces. At frequencies fz the transfer matrix of a nonabsorbing
dielectric slab degenerates into an identity matrix: M = (−1)zI . At these frequencies the
substrate “disappears”, as it simply replicates the EM field at its surfaces. In the transmission
coefficients the substrate causes only a phase shift that is equal to the thickness and a sign
change, if z is odd. For the sample #1 (ε = 12, a = 0.66 mm) the frequencies fz are
multiples of 67 GHz. Measuring at one of the transmission maxima allows to obtain a higher
useful signal, other things being equal. For this reason, most of the measurements at fixed
frequencies f were carried out at f ≈ fz.

5.5 Data processing
Knowing the two complex coefficients t∥ and t⊥, one can calculate the complex Hall conduct-
ivity at frequency ω as (see sections 2.1.2, 4.3.3)

σxy =
2
√
εe−ıkat⊥

Z0(t2∥ + t2⊥)(
√
ε cos β − ı sin β)

, (5.5)
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Figure 5.6: Symmetrized transmission coefficients for the sample #1 at frequencies 134 (red), 401 (green) and
730 GHz (blue) as a function of external magnetic field. Parallel transmission in zero field is shown as a function
of frequency in the insets. Black solid lines represent the classical Drude fits.

where a is the substrate thickness, ε is a dielectric constant of the substrate, β =
√
εka,

Z0 ≈ 377 Ω is the impedance of free space. Before using Eq. (5.5) directly, let us analyze the
case, when ω is close to one of the transmission maxima and magnetic field B is much higher
than the cyclotron resonance (CR) field Bc. The vicinity of a maximum corresponds to the
value of β = πz, where z is an integer. If the condition B ≫ Bc is satisfied, then the crossed
signal is small and the absorption in 2DEG is negligible: |t⊥| ≪

∣∣t∥∣∣ ≃ 1, see Fig. 5.5(a, b).
In this case we can simplify Eq. (5.5) to

|σxy| =
2

Z0

|t⊥| .

Therefore, far from the cyclotron resonance the plot of directly measured quantity |t⊥(B)|
represents the absolute value of the Hall conductivity |σxy|, measured in units of 2/Z0. Fig-
ure 5.5(e) shows the curve |t⊥(B)|, measured at 332 GHz, together with the DC Hall conduct-
ance. The y-scales in Fig. 5.5(e) are intentionally mismatched, in order to avoid overlapping
data and to clearly demonstrate the absence of any sign of a quantum plateau in the high-
frequency Hall conductivity. As mentioned above, the DC and THz curves were obtained
simultaneously in the same experiment, to exclude heating of 2DEG by the THz wave as a
possible explanation of the disappearance of quantization [69].

Figure 5.6 shows an example of (anti)symmetrized transmission data together with the clas-
sical Drude fitting curves (see section 4.3.3). The fitting procedure allows to estimate the ef-
fective cyclotron mass m, the relaxation time τ , and the electron density nTHz

2D in 2DEG. We
define the quantity µTHz = eτ/m that can be compared with the mobility µDC, obtained from
the DC measurements of Rxx. The electron density is another parameter that is obtained in
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Figure 5.7: Evolution of the Hall conductivity with increasing frequency for the sample #1. DC conductivity,
shown by the black solid line, exhibits plateaus near the even filling factors ν. High-frequency curves are shifted
by e2/h for clarity. At 69 GHz (red) the real part of σxy has a narrow plateau only around ν = 2. Further
increasing of the frequency leads to the smearing of the plateau and to the suppression of quantum deviations
from classical Drude behavior, shown by thin black curves.

DC and THz experiments independently. Both the density and the mobility are found to be in
a good agreement, as it can be seen in Tab 5.1.

5.6 Real part of the high-frequency Hall conductivity

In order to trace the evolution of quantum plateaus with increasing frequency, we plot the
real part of the Hall conductivity in the sample #1 as a function of inverse magnetic field
in Fig. 5.7. The DC conductance, shown by the black curve, demonstrates wide plateaus at
even filling factors ν. In a separate experiment, the DC measurement was extended up to
14 T. It was found, that the plateau at ν = 1 is also resolved. The overall behavior of the
high-frequency data is well described by the classical Drude theory [17], shown by thin black
curves. At frequencies below 250 GHz the cyclotron resonance is located in low magnetic
fields, thus the fitting curves in Fig. 5.7 are close to a straight line Reσxy ∝ B−1 ∝ ν. At
69 GHz (red symbols) a plateau at ν = 2 can be detected in the experimental conductivity.
The width of this plateau is about 30% of that in the DC data. There is no interval with
constant Reσxy(B) at 134 GHz (green symbols), even the slope ∂σxy/∂ν does not tend to
zero at ν = 2. At 134 GHz the filling of the second Landau level reveals as a slight quantum
deviation from the classical curve ReσDrude(B). At higher frequencies the amplitude of the
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Figure 5.8: The upper panel shows the Hall conductivity for the sample #2 at different frequencies as a function
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quantum deviation decreases. At 401 GHz (magenta symbols) no signs of the initial plateau
can be detected visually on the plot. The position of the quantum feature in Reσxy(B) can
be determined by tracking the minimum of the slope that shifts to lower magnetic fields with
increasing frequency. Plateaus at higher filling factors are smeared out already at 69 GHz and
disappear in a similar way.

In comparison with the sample #1, the sample #2 has a higher electron mobility and an
electron density (see Tab. 5.1). Evolution of the real part of σxy for the sample #2 is shown
in Fig. 5.8. Similarly to the sample #1, the cyclotron resonance in high-frequency Hall con-
ductivity can be approximated by classical Drude fits (upper panel in Fig. 5.8). Quantum
oscillations, corresponding to the filling of Landau levels, can be detected in the high-field re-
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gion as well. While the oscillations attenuate with increasing filling factor ν in the sample #1,
a maximal amplitude of the quantum deviations in the sample #2 is achieved at filling factors
ν > 10. It can be best seen in the lower panel of Fig. 5.8, where the difference between the
experimental conductivity and the classical Drude fit is plotted. The large discrepancy close to
the resonance field B ≈ Bc is due to the large value of the optical conductivity (approaching
100 e2/h) along with the steep slope ∂σxy/∂ν. Although no flat plateaus can be detected in the
high-frequency σxy, the quantum deviations at 236 GHz near ν = 14 are comparable with the
quantum deviations in the DC conductance. According to the relation Ωc ∝ B ∝ 1/νc, the
cyclotron resonance shifts to lower ν as the radiation frequency increases. The lower panel in
Fig. 5.8 demonstrates that the quantum oscillations become attenuated to the right of the CR
(ν > νc), where the radiation frequency exceeds the cyclotron gap (ω > Ωc).

5.7 Imaginary part of the high-frequency Hall conductivity
While the Hall conductivity is a real number in the static case, it becomes a complex number
with a nonzero imaginary part at finite frequencies. Figure 5.9 shows the experimentally
obtained σxy(ν) (symbols) at 134 and 202 GHz together with Drude fits (solid curves) for the
sample #1. Figures 5.9(a, c) show σxy on a complex plane as a parametric plot with the filling
factor ν as a parameter. The sweep of magnetic field from 7 to 0 T corresponds to the change
of ν from 1.32 to ∞. In this representation the classical theory produces a circle-like curve,
depicted in the insets by black solid lines. The higher the frequency, the closer the shape to a
perfect circle, centered on the imaginary axis and passing through the origin of coordinates.
The resonance behavior of experimental conductivity is well described by the classical Drude
theory. However, when only a few Landau levels are occupied, σxy demonstrates substantial
deviations from the classical curve, see Fig. 5.9(a, c). Due to experimental limitations, the
complex argument of σxy(ν) is determined up to an unknown constant value, which can be
estimated by comparison with the Drude fit. In figure 5.9 this value is chosen to match the
theoretical and experimental curves near ν = 10, where the quantum deviations are faded
out. In this case the imaginary part of the quantum correction appears to be positive nearly
everywhere and the imaginary part of σxy tends to preserve its original sign. As discussed
above, in the real part of σxy the deviations can be regarded as remnants of the DC Hall
plateaus. Figures 5.9(b, d) show the real part of the difference σxy − σDrude, depicted by green
symbols on the same scale as the imaginary part. These plots demonstrate, that the quantum
oscillations have similar amplitudes in the real and imaginary parts and that their phases are
shifted by ≈ π/2. The broken periodicity below ν = 2 is probably due to the presence of
the quantum plateau at ν = 1, which is the only odd plateau that is resolved in this sample
(Fig. 5.7).

5.8 Review of theoretical models
The most striking feature of the QHE at zero frequency is the exact quantization of the Hall
resistance Rxy, which is a macroscopic property of a whole sample, directly obtained in DC
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Figure 5.9: The complex Hall conductivity σxy in the sample #1 at 134 GHz (a, b) and at 202 GHz (c, d). The
main panels show the high field part and the insets show the full range 0–7 T of the applied magnetic field. The
panels (a, c) show σxy on a complex plane as a parametric plot with the filling factor ν as a parameter. The integer
values of ν are indicated by red symbols. The overall resonance behavior, shown in the insets, is well described
by the Drude model (black solid lines). In the low-ν limit, where QHE is observed in DC, the imaginary part of
σxy demonstrates substantial periodic deviations from the classical curve (b, d). This deviations are comparable
to the deviations in the real part, shown by green symbols on the same scale.

experiments. This fact alone does not prove that σxy is also exactly quantized [76], because
local inhomogeneities of the two-dimensional gas are always present in a real sample. Un-
like the contact techniques, the spectroscopic experiments test σxy directly. Experiments at
30 GHz [76] demonstrated that plateaus of non-zero width are also present in σxy. As shown
above, the plateaus in σxy disappear at higher frequencies. For our samples the critical fre-
quency lies near 100 GHz. Above this frequency the two-dimensional electron gas loses its
QHE features and the Hall conductivity follows the classical Drude behavior.

Although the IQHE has been extensively studied theoretically, only a few works addressed
the Hall conductivity in the high-frequency regime [10]. When calculating Hall conductivity
in a linear approximation, a common approach is to apply a linear perturbation theory (Kubo
formalism) to a model system.
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5.8 Review of theoretical models

The theoretical models of the IQHE consider non-interacting fermions in a strong magnetic
field, placed in some model potential, which simulates presence of impurities and constraints
of a sample. Depending on the chosen potential, the analysis of such models can be done
analytically or numerically.

In Refs. [10, 11] the high-frequency Hall conductivity was calculated using numerical
method of exact diagonalization. In order to model the disorder, the authors treated randomly
distributed Gaussian scatterers with the potential

V (r) = ± u

2πd2
exp (−|r−R|2

2d2
),

where the parameter d is comparable to the magnetic length
√

~/eB. As calculated within
this model, σxy(ω) was found to retain the Hall plateaus in the THz range. In Ref. [72] these
model results were referred to justify the procedure of averaging σxy(ω, ν) over a range of
frequencies from 0.5 to 1.2 THz. The resulting averaged σ̃xy(ν) has a plateau-like feature of
vanishing width in comparison with a wide plateau in DC. This experimental fact, reported
in Ref. [72], indicates that the plateaus actually smear out below 1.2 THz. Therefore, the
procedure of averaging appears to be inappropriate, since it only masks the disappearance of
the Hall plateaus.

In earlier works the high-frequency Hall conductivity was treated analytically in two oppos-
ite limits: for scatterers with δ-potential [13] and for a slowly varying potential of impurities
[12]. In Ref. [13] the Hall conductivity was obtained within the δ-impurity model [77] as a
function of electron density n. At finite frequencies the dependence Reσxy(n) is predicted to
have a single-dip or a double-dip structure instead of a flat plateau at DC. A monotonic de-
pendence Reσxy(n) is achieved only if both negative and positive δ-impurities are present in
the calculation and the Landau level broadening exceeds the cyclotron energy. The last condi-
tion is probably not fulfilled in our samples, while the experimental high-frequency Reσxy(B)
is monotonic in the vicinity of the DC plateaus. Unfortunately, the imaginary part of σxy was
not treated in Ref. [13] and no explicit estimation was given for the critical frequency, at which
the plateaus are destroyed. However the consideration can be extended to cover these ques-
tions. In particular, the critical frequency f0 turns out to be close to the half-width Γ/(4π~)
of the corresponding broadened Landau level [78]. If we assume that the level broadening is
caused by the scattering on short-range ionized impurities, then the width can be estimated as
[79]:

Γ = ~
√

2Ωc

πτ
. (5.6)

Since the cyclotron frequency Ωc = eB/m increases with magnetic field, the plateaus at small
filling factors are expected to retain at higher radiation frequencies. Using the parameters in
Tab. 5.1 for the sample #1, we obtain the critical frequency as f0 = 47

√
B GHz. For the

plateaus at ν = 2 and ν = 4 the estimated critical frequencies are 102 and 72 GHz respect-
ively. In agreement with this estimation, we have experimentally observed the plateau ν = 2
at 69 GHz. The plateau at ν = 4 is not resolved, as the corresponding critical frequency
of 72 GHz is close to the radiation frequency. The plateaus at ν > 4 are already absent at
f ≥ 69 GHz, since they occur at even lower magnetic fields in Rxy. Due to the longer relax-
ation time in sample #2 (Tab. 5.1) the estimated Landau level width is smaller and the critical
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frequency is lower, than in sample #1. For this reason no plateaus in the high-frequency con-
ductivity could be observed in sample #2. If we try to apply Eq. (5.6) to the case of CdHgTe
films [80] and to the graphene [59], we obtain the critical frequencies 1 THz and ≈3 THz
respectively. These higher values are formally achieved due to the smaller effective masses
and the shorter relaxation times in the CdHgTe wells and in the graphene. The direct applic-
ation of Eq. (5.6) to the systems with the strongly non-parabolic dispersion is questionable.
However it is possible that the observation of the quantized Faraday rotation in these materials
at higher frequencies is indeed connected to the larger width of Landau levels.

In Ref. [12] the Hall conductivity was calculated using the drift approximation [81, 82]. In
the limit of very high frequencies σxy(ν) was found to tend to the classical straight line with a
small quantum correction:

σxy(ν) = νe2/h+ δσxy(ν).

As calculated within this model, the term δσxy has zero imaginary part, while our experi-
mental δσxy has both real and imaginary parts of a similar amplitude. The calculation for
intermediate frequencies results in σxy with a non-zero imaginary part. However in this case
the dependency Reσxy(ν) is not monotonic. Thus the shape of smeared quantum plateaus is
not described by this approach even qualitatevly. The critical frequency calculated in the drift
approximation is connected to the level broadening, similarly to the case of δ-potential treated
above.

To conclude, none of the three theoretical models provides a satisfactory description for
the shape of plateaus in the high-frequency Hall conductivity. The numerical method of exact
diagonalization predicts persistence of the plateaus in the THz range. Within this model,
a decrease in the disorder leads to a decreasing width Γ of Landau levels and to a more
distinct quantization in σxy. In opposite to this, the analytical methods predict a destruction
of the plateaus at frequencies f > Γ/h. Within these models a stronger disorder allows to
observe the quantum plateaus at higher frequencies. The experimental data presented here
and in Refs. [59, 73, 76, 80] seem to support the result of the analytical methods. An ultimate
understanding requires further systematic experimental studies on samples with significantly
different electron mobilities and cyclotron masses.

5.9 Summary
The dynamic IQHE was studied using the CW THz spectroscopy in the range 69–1100 GHz.
A clear frequency dependence of the quantum deviations from the classical Drude model was
observed. The disappearance of the QHE plateaus takes place around 100 GHz. Only small
quantum corrections are observed above this frequency. Some theoretical models describe this
phenomenon qualitatively, whereas some other models even predict persistence of the plateaus
in the high-frequency range. The results of this work present an important cornerstone on the
way towards complete understanding of the IQHE.
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6 Dzyaloshinskii-Moriya electromagnon
in dysprosium manganite

Thus far we have dealt with two-dimensional electron systems in an external magnetic field.
In this chapter we are going to treat a bulk insulator DyMnO3. Although it might be treated
as an example of a completely different system from a separate area of research (physics of
magnets and multiferroics), one can find direct analogies between these systems. In both
cases the considered phenomena take place at low temperatures, where the stochastic motion
in matter is suppressed and even weak microscopic interactions can determine macroscopic
properties of a sample. Just as in HgTe/CdHgTe quantum wells, the spin-orbit coupling plays
an important role in DyMnO3: because of this interaction DyMnO3 acquires ferroelectric
properties. Like in the experiments on the dynamic Hall effect, the most interesting results
have been obtained by measuring rotation of the polarization plane. In this chapter we will
have an opportunity to use the rather cumbersome 4×4 matrix formalism in all its strength: in
the case of a tilted cut of an anisotropic crystal with non-zero magnetoelectric susceptibility
tensors, the formalism provides a rather elegant and concise solution.

6.1 Introduction to electromagnons
Electric and magnetic field control of the propagation and the polarization state of terahertz
radiation is one of the prerequisites for continuous progress of modern electronics. A number
of recent developments in this direction have been achieved using multiferroics, i.e. mater-
ials simultaneously revealing electric and magnetic ordering [83–87]. Several multiferroics
provide not only a direct coupling between static electric and magnetic properties but also
give a possibility to modify dynamic susceptibilities by external fields. Application of a static
magnetic field to the multiferroic materials leads to dichroism in the terahertz range [88, 89]
or even to more complex effects like controlled chirality [90] or directional dichroism [91–
93]. Electric control of terahertz radiation is more difficult to realize and it has been recently
demonstrated in Raman scattering experiments [94].

Dynamical properties of several multiferroic materials in the terahertz range are governed
by novel magnetoelectric modes called electromagnons [95–98]. Electromagnons may be
defined as collective excitations of the magnetic structure which are coupled to the electric di-
pole moment.They may be regarded as a mixture of magnons and phonons. In orthorhombic
rare earth manganites RMnO3 one generally observes several electromagnons in the terahertz
and subterahertz range. A strong high frequency mode around 2–3 THz is well understood on
the basis of a symmetric Heisenberg exchange (HE) coupling [99, 100] as a zone edge magnon
which can be excited by electric component of the electromagnetic radiation. A second intens-
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ive mode existing at 0.5–1 THz has been explained using the same mechanism but including
a Brillouin zone folding due to modulation of the magnetic cycloid [100, 101]. In the sub-
terahertz frequency range a series of weaker modes is observed in optical [96, 102] and neut-
ron scattering experiments [103]. These modes are explained as the magnetic eigenmodes
of the spin cycloid in RMnO3. Some of these modes may get an electrical dipole activity
due to the relativistic Dzyaloshinskii-Moriya (DM) mechanism. Dynamic contributions due
to this mechanism have been investigated both experimentally and theoretically [102, 104–
107]. In spite of its weakness, the DM interaction is a promising mechanism especially in
application to spiral magnets as it connects static spontaneous polarization and magnetic struc-
ture [104, 108]. This mechanism is responsible for the switching of ferroelectric polarization
by magnetic field and for the control of magnetic structure by electric voltage in spiral mag-
nets [87]. It may be expected that in the frequency range where the dynamics is governed by
the DM mechanism, the terahertz light will be controlled by electric field as well. In present
experiments this idea is utilized for two purposes: to obtain a direct evidence of dynamical
magnetoelectric coupling within the DM electromagnon and to demonstrate a possibility to
control the polarization of terahertz light by applying static electric fields.

6.2 Dzyaloshinskii-Moriya electromagnon in dysprosium
manganite

DyMnO3 is a multiferroic manganite with orthorhombic structure. The high-temperature para-
magnetic state in this material transfers into an incommensurate antiferromagnetic structure
below TN ≈ 39 K. At lower temperatures a second phase transition into a ferroelectric phase
takes place at Tc ≈ 19 K. By analogy to TbMnO3 this phase is most probably a cycloidal
antiferromagnet [109] with an incommensurate propagation vector. Below the transition to
the cycloidal state DyMnO3 reveals a static electric polarization which is aligned along the
c-axis (Pbnm crystallographic setting is used throughout this chapter). This polarization is
well described by the DM coupling which leads to a simple expression [108]:

P0 ∝ δj→j+1 × (Sj × Sj+1). (6.1)

Here Sj and Sj+1 are the neighbor Mn3+ spins within ab-planes and δj→j+1 is the vector
connecting them, see Fig. 6.1(a). The spin cycloid breaks the space inversion symmetry and
has two possible rotation directions of the spins (	 and �). According to Eq. (6.1), the
sign of the static polarization is opposite in these two cases, see Fig. 6.1(a). Therefore, the
antiferromagnetic domains are simultaneously ferroelectric domains, and the orientation of
the spin cycloid is also affected by an external electric field.

The idea of the present experiment is based on the DM coupling between static and dynamic
properties in DyMnO3. A schematic picture of the cycloidal magnetic structure in DyMnO3

is shown in Fig. 6.1(a). Because of an incommensurate character of the cycloid, the solution
of the dynamic equations for this structure reveals three eigenmodes. For the present exper-
iment only one mode is the most promising. Within this mode magnetization and electric
polarization oscillate along the b and a axes, respectively (DM electromagnon in Fig. 6.1(a)).

88



6.2 Dzyaloshinskii-Moriya electromagnon in dysprosium manganite

Figure 6.1: Experiment to observe electrically controlled dynamic magnetoelectric effect. (a) – schematic rep-
resentation of the magnetic bc-cycloid and the static electric polarization (green arrows) in DyMnO3. Shown are
two possible domains with opposite orientations of the cycloid and the polarization. Bottom diagram indicates
oscillations of electric and magnetic moments for magneto-electrically active mode (DM electromagnon). (b) –
geometry of the DyMnO3 crystal and of the experimental apparatus to separate waves of different polarizations.
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Therefore, this mode can be excited either via electric channel by e∥a and via magnetic chan-
nel by h∥b. Moreover, these two channels are not independent. The electric excitation drives
also the magnetic moment and vice versa. This cross coupling is manifested in the existence
of the nonzero dynamic magnetoelectric susceptibility χme

ab . In the crystallographic coordinate
system abc the susceptibility matrix for DyMnO3 has a simple form:

Da

Db

Dc

Ba

Bb

Bc

 =


εa 0 0 0 ıχab 0
0 εb 0 0 0 0
0 0 εc 0 0 0
0 0 0 µa 0 0

−ıχab 0 0 0 µb 0
0 0 0 0 0 µc




Ea

Eb

Ec

Ha

Hb

Hc

 . (6.2)

The main experimental difficulty to observe the dynamic magnetoelectric effect in DyMnO3

is that it cannot be detected in an experiment with an ab-plane cut crystal. In such geometry
the ac fields of the incident wave are either e∥b and h∥a and do not excite the electromagnon
at all, or they are e∥a and h∥b and, therefore, they both excite the electromagnon at the same
time. The existence of the magnetoelectric effect in such geometry does not lead to an emer-
gence of a wave with the perpendicular polarization but only slightly changes the absorption
of light. In order to overcome this difficulty, the sample with tilted axes has to be used. The
geometry of such an experiment is shown in Fig. 6.1(b). In the following arguments we as-
sume incident wave with electric field component e∥ab-plane of the crystal which excite the
DM electromagnon via electric channel. This geometry is equivalent to e⊥c in Fig. 6.1(b) and
contains both components of the electric field e∥a and e∥b. Because the DM electromagnon
has nonzero magnetoelectric component χme

ab , an ac magnetic field h∥b will be induced by
this excitation. This electromagnetic field corresponds to a wave with polarization perpendic-
ular to the incident wave with h∥c. Thus, an appearance of a signal in crossed polarizers is
a characteristic of a nonzero magnetoelectric susceptibility. These qualitative arguments are
supported by rigorous calculations within the 4×4 matrix formalism. Let us denote as Mabc

6×6

the square matrix in Eq. 6.2 that is combined of 3 × 3 submatrixes, representing the suscept-
ibility tensors in the crystallographic system. Then in the laboratory coordinate system xyz
the tensors are represented by the matrix Mxyz

6×6 = V −1
6×6M

abc
6×6V6×6, where

V6×6 =

(
V3×3 0
0 V3×3

)
; V3×3 =

0 cosα sinα
0 − sinα cosα
1 0 0

 . (6.3)

The matrix V3×3 with α ≈ π/4 describes the rotation of the crystallographic axes with respect
to the laboratory coordinate system. Thus Mxyz

6×6 is the permittivity matrix in Eq. 2.1, which
coefficients are used to calculate the 4×4 matrix in Eq. 2.4. The values of dielectric permittiv-
ities εa,b,c and magnetic permeabilities µa,b,c have been obtained in transmission experiments
with normally cut samples [110]. The matrix equations (2.4–2.5) have been solved numer-
ically to obtain the coefficient χme

ab . In agreement with the qualitative arguments, a non-zero
crossed component emerges only for χme

ab ̸= 0 and in a linear approximation t⊥ ∝ χme
ab .
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6.3 Complex correction of crossed transmission

We note that within the present experiment the existence of DM electromagnon which can
be excited at the center of the Brillouin zone is crucial. As shown in the rigorous solu-
tion [110, 111], the electrically and magnetoelectrically active mode can be represented as
a symmetric superposition of two magnons with wavevectors q = +Q and q = −Q. Here
Q is the modulation vector of the magnetic cycloid [99]. The symmetric mode represents an
electromagnon which have nonzero dynamic polarization along the x axis and, therefore, can
be excited by electromagnetic wave with e∥a.

In case of (although much stronger) Heisenberg electromagnons [99, 100] which are ex-
cited as a zone edge magnons, the present experiment would not work. For the zone edge
electromagnon the neighbor spins oscillate out-of-phase, which cancels the resulting mag-
netic moment. Although this mode reveals a strong electric contribution, the magnetic and
magnetoelectric susceptibilities are zero. As will be shown in more detail below (Fig. 6.4),
the dynamic magnetoelectric effects observed in DyMnO3 are indeed centered around the
weak DM electromagnon at 210 GHz and they are absent around the strong Heisenberg elec-
tromagnon around 550 GHz.

The remaining point is the requirement of an electrical poling of DyMnO3 crystal. Without
poling, two types of domains coexist in the sample, see Fig. 6.1(a). The domains with the
opposite (	 or �) rotation of the spin cycloid reveal the opposite sign of the magnetoelectric
susceptibility, canceling the effect. In order to avoid the signal compensation from different
domains, during a cooling a static electric field E was applied to the sample along the c-axis.
Such poling orients the majority of the domains along one direction.

6.3 Complex correction of crossed transmission

The crossed transmitted component, caused by the sample, has the maximal amplitude near
210 GHz. Even in this case its absolute value is comparable to the parasitic depolarizing
effects of the optical windows, imperfections of polarizers, etc. In order to remove the side
contributions, we have used the method of complex subtraction that was treated in section
4.3.3, Eq. 4.5. Figure 6.2 shows the raw crossed coefficient t⊥ on a complex plane as a
parametric plot with temperature as a hidden parameter. The data is taken at 210 GHz on
cooling down from 40 K to 3 K. Red and blue solid circles correspond to cooling in a static
electric field along c-axis. Gray open and solid circles represent the data in the absence of
the polarizing field. Above Tc = 19 K the crossed amplitude t⊥ is not affected by applied
voltage and all the curves coincide. Below Tc the sample is in a ferroelectric state with two
possible orientations of domains. The domains of the opposite sign are expected to rotate
the polarization plane in the opposite directions. In agreement with this picture, the curves,
corresponding to the sample polarized by ±250 V, separate below Tc. The curves, obtained
in the absence of poling voltage, also demonstrate some discrepancy in the ferroelectric state,
which is about 20% of the difference (t⊥(+250) − t⊥(−250)). This fact can be interpreted
as an indication of memory effects: if a single-domain sample is heated above Tc, then after
cooling in zero field the domains of the same sign will slightly prevail in the ferroelectric state.
We assume that a fully compensated sample with equal amounts of the opposite domains
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Figure 6.2: Raw crossed coefficient t⊥ on a complex plane as a parametric plot with temperature as a hidden
parameter. The data is taken at 210 GHz with the incident linear polarization e ∥ c. Above Tc = 19 K the
coefficient t⊥ is not affected by applied voltage and all the curves coincide. Below Tc the curves separate.
The complex difference t⊥(V ) − t⊥(0) is shown by arrows for temperatures 10, 5 and 3 K. Note the opposite
direction and the equal length of the arrows to positive and negative voltage.

would result in a crossed coefficient equal to

t0⊥ =
t⊥(+0) + t⊥(−0)

2
, (6.4)

where ±0 denotes cooling in zero field after positive and negative voltage, respectively. The
value t0⊥, shown by black symbols in Fig. 6.2, was used as a reference to correct the experi-
mental crossed coefficient as

tcorr
⊥ (T ) = t⊥(T )− t0⊥(T ). (6.5)

Examples of tcorr
⊥ (T ) are shown in Fig. 6.2 for temperatures 10, 5 and 3 K by arrows. The

opposite direction and the equal absolute value for the opposite polarizations is in agreement
with the expected relation χab ∝ P0. From now on t⊥ will denote corrected values of the
crossed amplitude and the index “corr” will be omitted.

6.4 Direct observation of dynamic magnetoelectric
susceptibility

Figure 6.3(a) shows a typical result of the experiment in crossed polarizers geometry. We note
that crossed polarizers separate the incident polarization from the induced one. Immediately
upon the onset of the ferroelectric phase, distinct polarization rotation is observed with the
sign of the signal correlating with the sign of the static field (Fig. 6.3(a)). Here we plot the
clockwise rotation of the polarization as a positive signal and the counterclockwise rotation
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Figure 6.3: Controlling of terahertz light by static electric field in DyMnO3. (a) – transmitted terahertz signal
in DyMnO3 at ν = 210 GHz in crossed polarizers for different polarizations and poling electric fields (field-
cooling). The geometry of the experiment is given in Fig. 6.1(b). The notation e∥ab is equivalent to e⊥c
in Fig. 6.1(b). Positive and negative sign of t⊥ reflects clockwise and counterclockwise polarization rotation,
respectively. Arrow indicates the phase transition to the ferroelectric phase. (b) – electric voltage dependencies
of the transmission in crossed polarizers for various temperatures and for the zero-field cooled (ZFC) sample.
(c) – maximum available signal in crossed polarizers and the remanence signal as a function of temperature in
ZFC case. Symbols – experiment, lines are to guide the eye.
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as a negative signal. Equivalently, the positive and negative sign of t⊥ reflects the 180◦ phase
difference between the experimental signal for different sign of the static electric field. These
results demonstrate the validity of the qualitative arguments given above.

Another important result is shown in Figs. 6.3(b, c). Here, not far from the phase transition
into the ordered state, the ferroelectric domains may be switched by a moderate static field.
Due to the direct coupling of static and dynamic properties, the sign of the magnetoelectric
susceptibility is switched as well. Therefore, in this range we can directly influence the signal
t⊥ and the polarization rotation of the terahertz radiation by the static electric field.

A significant difference between the experiments in Figs. 6.3(a, c) is that a field-cooling
experiment is performed in the fist case and a zero-field-cooled experiment in the second case.
Because in the field-cooled case the sample is cooled starting from the paraelectric state, it is
much easier to align the ferroelectric domains by the static field. In the zero-field-cooled
sample at low temperatures the coercive field is strong and the static electric field cannot
reorient the domains. The reorientation of the domains takes place close to the ferroelectric
transition only, which explains the maxima observed in Figs. 6.3(c). Finally, we note that the
effects in Figs. 6.3(a, b) are due to the same microscopic mechanism, but a direct switching
of polarization in Fig. 6.3(b) is more relevant from the point of view of possible applications.

In order to prove the proposed mechanism of the polarization rotation, a series of spec-
troscopic experiments has been carried out. The terahertz dynamics in our frequency range
is dominated by a strong electromagnon at about 550 GHz (18 cm−1). This electromagnon
is responsible for a relatively low transmission in the geometry with e∥a, seen as blue sym-
bols in Fig. 6.4(a). This excitation most probably originates from the symmetric Heisenberg
exchange mechanism [99, 100, 112] and it does not contribute to the magnetoelectric effects.

In the transmission spectra e∥a another weaker excitation can be seen close to 210 GHz.
This mode is observed both in the geometry e∥a (Fig. 6.4(a), red curve) as well as in the
perpendicular geometry e∥c, Fig. 6.4(c). In the latter geometry the sample is more transparent
as the main absorption mechanism due to the Heisenberg exchange with the component e∥a is
absent. In close analogy to a similar spectral analysis [105] in TbMnO3, the mode at 210 GHz
can be attributed to the zone-center eigenmode of the cycloidal structure. This mode gets
its intensity predominantly due to the Dzyaloshinskii-Moriya mechanism. Because the static
electric polarization is governed by the same mechanism, static and dynamic properties are
strongly correlated for the 210 GHz mode. As discussed above, this connection is the basic
mechanism to produce electrically controlled rotation of the terahertz polarization.

The mode of the cycloidal spin structure at 210 GHz reveals nonzero electric χe
a, magnetic

χm
b , and magnetoelectric χme

ab susceptibilities [110]. This mode can be excited by both, an ac
electric field e∥a and ac magnetic field h∥b and can be therefore called a DM electromagnon.
In agreement with these arguments, the rotation of the polarization is the strongest close to
210 GHz and fades away on both sides of the resonance. This result is shown in Fig. 6.4(a)
with black squares. Green solid line represents the result of calculations of the transmission
in crossed polarizers assuming Lorentz line shape of the DM electromagnon at 210 GHz.
Tiny oscillations in this curve reflect the Fabry-Pérot resonances on the sample surfaces. In
order to obtain the magnetoelectric susceptibility directly from the measured transmission, the
complex transmission matrix has been inverted numerically. The frequency dependence of a
resulting magnetoelectric susceptibility in DyMnO3 is shown in Fig. 6.4(b) by black symbols.
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Figure 6.4: Electromagnons in DyMnO3. (a) – transmission spectra of DyMnO3 in parallel (blue symbols)
and crossed (black symbols) polarizers. The transmission is dominated by the Heisenberg electromagnon at
550 GHz (marked as HE). Much weaker Dzyaloshinskii-Moriya electromagnon (marked as DM) at 210 GHz
is responsible for the observed dynamic magnetoelectric effect and for nonzero signal in crossed polarizers.
Symbols – experiment, lines are fits according to Fresnel optical equations. (b) – magnetoelectric susceptibility
as obtained from the spectra in (a). (c) – transmission in parallel polarizers and in the transparent geometry with
e∥c showing the magnetically excited DM electromagnon.
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In spite of the complexity of the data treatment, a nonzero signal in crossed polarizers is
to a leading term directly proportional to χme

ab . This explains a qualitative similarity of the
frequency dependencies of t⊥(ν) and χme

ab (ν) in Fig. 6.4(a, b).
From the Lorentzian fits in Fig. 6.4 the intensities of the DM electromagnon are obtained

as follows: electric contribution ∆εa = 1.7 ± 0.3, from Fig. 6.4(a); magnetic contribution
∆µb = 0.010 ± 0.002, from Fig. 6.4(c); magnetoelectric contribution: ∆χme

ab = 0.03 ±
0.01, from Fig. 6.4(b). We see that the universality condition is not fulfilled in DyMnO3:√
∆εa∆µb = 0.13 > χme

ab . This disagreement most probably indicates that a large part of
the DM electromagnon spectral weight is provided by the Heisenberg exchange mechanism.
Indeed, a theoretical estimate of the electric contribution [99] gives the value ∆εa ≈ 0.2
substantially smaller than the experimental result.

In orthorhombic rare earth manganites (RMnO3, R = Dy, Tb, Eu:Y) strong zone edge elec-
tromagnons in the terahertz spectra are due to symmetric Heisenberg exchange mechanism.
However, their properties do not correlate with the behavior of the static electric polarization,
because the latter is due to antisymmetric Dzyaloshinskii-Moriya coupling. On the contrary,
in the present experiments the static and dynamic properties are controlled by the same DM
mechanism, which explains the observed voltage control of the terahertz radiation.

Finally, the observed results differ from such well-known effect like electro-optical mod-
ulation [113] (Pockels effect). Several arguments support this statement: i) The frequency
dependence of the observed magnetoelectric signal follows the Lorentzian line shape of the
DM electromagnon. ii) The observed signal qualitatively follows the ferroelectric polariza-
tion (Fig. 6.3(a)) and disappears in the unpoled sample at low temperatures (Fig. 6.3(c)). iii)
Cooling down with applied voltage that is twice smaller results in the same crossed amplitude.
This smaller voltage is still sufficient to pole the sample completely and the effect does not
depend on the magnitude of the static electric field.

6.5 Conclusion
In conclusion, dynamic magnetoelectric effect based on DM electromagnon in DyMnO3 was
investigated. Because of the off-diagonal elements of the magnetoelectric susceptibility a
polarization plane rotation of the transmitted radiation is observed. The amplitude and the
direction of the polarization rotation can be controlled and switched by static electric voltage.
From the spectral analysis a full set of magnetic, electric, and magnetoelectric susceptibilities
of the DM electromagnon in DyMnO3 is obtained.
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This work presents a spectroscopic study of several low-temperature phenomena in the far-
IR range. The most important results have been obtained in those experiments, in which the
interaction of THz radiation with the sample under study leads to rotation of the polariza-
tion plane. Since the typical rotation angles are small (several milliradians), they need to be
separated from side contributions. Two key requirements must be satisfied for this separa-
tion. First, the effect of rotation must be “switchable”: one needs a possibility to suppress
or reverse the rotation, caused by the sample, without any change in the surrounding objects
that can affect the propagation of radiation. In experiments with two-dimensional electron
gases in an external magnetic field the Faraday rotation changes its sign upon reversing the
magnetic field. In experiments with dysprosium manganite the sign of rotation was connec-
ted to the orientation of ferroelectric domains and could be switched by a static electric field.
The second requirement is an ability to measure the complex phase of the transmitted wave.
Analysis of transmission data suggests that the effect of the sample and the side contribution
add up as complex numbers. Thus in order to recover the effect of the sample, both the real
and imaginary parts of the transmission coefficient must be measured (or, equally, both the
amplitude and the phase).

Measurements of rotation of the polarization plane in dysprosium manganite allowed a
direct observation of the dynamic magnetoelectric effect. It has been known that static an-
tiferromagnetic and ferroelectric orders are coupled in this material below 19 K. Theoretical
consideration of excitations showed existence of a mode, in which the net electric moment os-
cillates along the a-axis and the magnetic moment oscillates along the b-axis. In a specially cut
sample, an excitation of this mode leads to the rotation of the polarization plane, the rotation
angle being proportional to the dynamic magnetoelectric susceptibility χab. The sign of χab

is determined by the orientation of the ferroelectric domain (parallel or antiparallel to c-axis).
In the vicinity of the critical temperature the orientation of domains can be switched by a
moderate static electric field. These properties allowed to demonstrate an interesting concept:
a possibility to control the THz radiation by electric voltage using the electromagnon. Much
stronger magnetoelectric effects have been recently demonstrated in similar experiments with
samarium ferroborate [114–116].

Properties of the mercury telluride thin films with critical thickness have been investigated
in the terahertz and far-IR ranges. The control of the charge density proved to be an extremely
useful tool in this study. It allows to shift the Fermi level and to scan the band structure of the
two-dimensional electron systems. The charge density could be controlled in two ways: using
a semitransparent gate and using illumination by visible light. Since the ability to shift the
Fermi level is a great advantage by itself, let us summarize the disadvantages of both methods
that turned out in the experiments. An obvious drawback of illumination is the need to warm
up the sample to restore the initial Fermi level. After a cooling the Fermi level takes some ran-
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dom value. Thus in order to reproduce a measurement, one needs an accompanying transport
experiment for setting the same state of the sample. In remains unclear, how homogeneous
is the charge density in the large (5×5 mm2) samples after illumination, this question needs
further investigations.

A semitransparent gate reduces the transmission coefficients, decreasing the signal to noise
ratio. To obtain the Drude parameters of the system, one has to introduce another unknown
variable σgate, making the fitting procedure less defined. Although the preparation of a gate
may seem a simple and straightforward task, it turns out to be challenging in the case of large
MBE-grown samples and low temperatures. Normally a working MBE-grown gate undergoes
an electrical breakdown after one heating from helium to room temperature. The Mylar gates,
used in the presented experiments, preserve their insulating properties during the thermal
cycling, but they destroy the sample mechanically instead. The Mylar gates are hard to be
made homogeneous and they demonstrate large hysteresis effects, caused by polarization of
the insulator. Further complications with the gated samples occur, when one tries to carry
out accompanying transport measurements. In order to make a contact, one needs a region of
the sample that is not covered by the gate. This uncovered region affects the DC resistances,
limiting the transport measurements by a single zero voltage. Thus a semi-transparent gate
that does not cover the whole sample becomes a disadvantage in the case, when the main goal
is to compare static conductivities with dynamic ones.

In HgTe films with the critical thickness the charge carrier concentration could be modified
by more than one order of magnitude using optical doping by visible light illumination. In
some cases, using light as a parameter may switch the qualitative electrodynamic response
from hole-like to the electron-like. For the electrons, the cyclotron mass shows a square
root dependence upon the charge concentration. This can be interpreted as a clear proof
of a linear dispersion relations, i.e. Dirac type carriers. The use of semitransparent gates
allowed to directly obtain the band structure of a two-dimensional Dirac semi-metal from
the doping dependence of the cyclotron resonance. A linear Dirac-like dispersion on the
hole side of the band structure and detectable quadratic corrections for the electrons have
been observed. This procedure to obtain the band structure is especially useful for thin films
where protective layers impede such standard techniques as angular resolved photoemission
spectroscopy. Finally, the dynamic quantum Hall effect has been demonstrated on holes at
frequencies above 300 GHz. This observation led to the idea to investigate the dynamic QHE
in GaAs/AlGaAs heterojunctions.

The dynamic Hall conductivity of GaAs/AlGaAs heterojunctions has been studied in the
range 70–1100 GHz. The spectroscopic experiments were accompanied by simultaneous
transport measurements of static resistances in the van der Pauw geometry. Such setup al-
lowed the most direct comparison of static and dynamic conductivities, obtained in exactly the
same conditions. Quantization of dynamic Hall conductivity has been observed at frequencies
below ≈ 100 GHz. Above this frequency the Hall conductivity was found to tend to classical
behavior: plateaus are replaced by small oscillations around a nearly straight line σ ∝ B−1.
The amplitude of these oscillations decreases with increasing frequency and at ≈ 1 THz the
Hall conductivity follows the classical Drude model. While in the static case the imaginary
part of σxy is zero, in the range 70–1100 GHz Imσxy was found to demonstrate quantum os-
cillations that are periodic in the inverse magnetic field. The observation of the oscillations
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in Imσxy became possible due to the ability to measure the complex phase of transmission
coefficients, especially of the crossed coefficient t⊥. Recent numerical calculations for a real-
istic intermediate potential, using the method of exact diagonalization, predict persistence of
the plateaus in the THz range. This prediction was not confirmed in the presented experi-
ments. The breakdown of quantization at ≈ 100 GHz is in agreement with two analytical
models, using the opposite limits of the impurity potential: short-range δ-impurities and a
smoothly varying potential. The critical frequency in these models is determined by the width
of the broadened Landau levels. Estimation of the width, based on electron mobility, results
in the correct critical frequency of the observed breakdown. At the same time, the experi-
mental shape of the distorted plateaus is not described by these models. In order to verify,
how universal is the relation of the breakdown frequency with the width of Landau levels,
experimental study on various systems with different mobilities is needed. Such experiments
on GaAs/AlGaAs and HgTe/CdHgTe quantum wells are already planned. Thus we can expect
further progress in understanding of the dynamic QHE in the near future.
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kamp, A. Pimenov. Terahertz quantum Hall effect of Dirac fermions in a topological
insulator. Phys. Rev. B 87, p. 121104 (2013), URL http://link.aps.org/doi/
10.1103/PhysRevB.87.121104

[37] Z. D. Kvon, S. N. Danilov, D. A. Kozlov, C. Zoth, N. N. Mikhailov, S. A. Dvoret-
skii, S. D. Ganichev. Cyclotron resonance of Dirac fermions in HgTe quantum
wells. JETP Letters 94, 11, p. 816 (2012), URL https://doi.org/10.1134/
S002136401123007X

[38] A. V. Ikonnikov, M. S. Zholudev, K. E. Spirin, A. A. Lastovkin, K. V. Maremyanin,
V. Y. Aleshkin, V. I. Gavrilenko, O. Drachenko, M. Helm, J. Wosnitza, M. Goiran,
N. N. Mikhailov, S. A. Dvoretskii, F. Teppe, N. Diakonova, C. Consejo, B. Chenaud,
W. Knap. Cyclotron resonance and interband optical transitions in HgTe/CdTe (013)
quantum well heterostructures. Semicond. Sci. Technol. 26, 12, p. 125011 (2011), URL
http://stacks.iop.org/0268-1242/26/i=12/a=125011

[39] P. Olbrich, C. Zoth, P. Vierling, K.-M. Dantscher, G. V. Budkin, S. A. Tarasenko,
V. V. Bel’kov, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, S. D.
Ganichev. Giant photocurrents in a Dirac fermion system at cyclotron resonance. Phys.
Rev. B 87, p. 235439 (2013), URL https://link.aps.org/doi/10.1103/
PhysRevB.87.235439

[40] C. Zoth, P. Olbrich, P. Vierling, K.-M. Dantscher, V. V. Bel’kov, M. A. Semina, M. M.
Glazov, L. E. Golub, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky,
S. D. Ganichev. Quantum oscillations of photocurrents in HgTe quantum wells with
Dirac and parabolic dispersions. Phys. Rev. B 90, p. 205415 (2014), URL http:
//link.aps.org/doi/10.1103/PhysRevB.90.205415

[41] V. Varavin, S. Dvoretsky, V. Liberman, N. Mikhailov, Y. Sidorov. Molecular beam
epitaxy of high quality Hg1−xCdxTe films with control of the composition distribu-
tion. Journal of Crystal Growth 159, 1, p. 1161 (1996), URL http://www.
sciencedirect.com/science/article/pii/0022024895008454
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