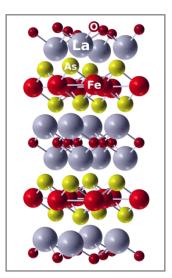
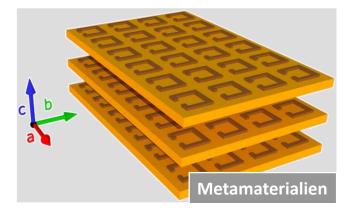

Sommersemester 2021


VORBESPRECHUNG DER WAHLFÄCHER - INSTITUT FÜR FESTKÖRPERPHYSIK

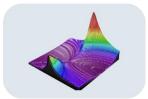
- neue Materialien und deren Eigenschaften
- bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen
- im Makro-, Mikro- und Nano-Bereich

Sommersemester 2021

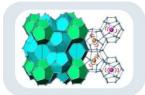

VORBESPRECHUNG DER WAHLFÄCHER - INSTITUT FÜR FESTKÖRPERPHYSIK

... für High-Tech-Anwendungen von heute und morgen

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

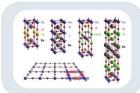

http://www.ifp.tuwien.ac.at

Solid State Spectroscopy


Quantum Materials

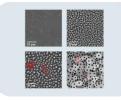
Functional and Magnetic Materials

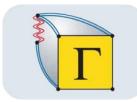
Correlations: Theory and Experiments Computational Materials
Science

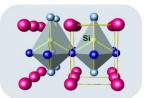

Solid State Spectroscopy (Pimenov)

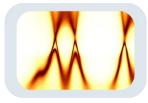
Quantum Materials (Bühler-Paschen)

Electron Microscopy and Materials (Stöger-Pollach)


Novel Electronic Materials and Concepts (Barišić)


Computational Materials Science (Held)

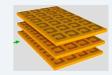

Vienna Microkelvin Laboratory (Bühler-Paschen)


Functional Materials (Eisenmenger-Sittner)

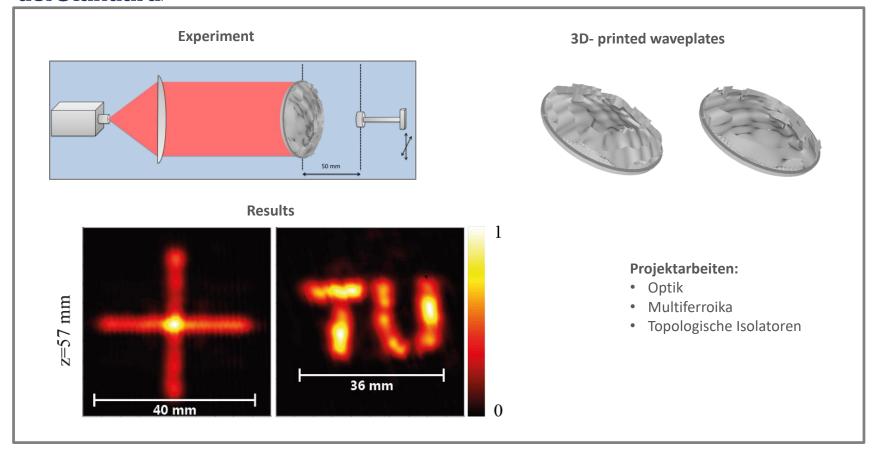
Quantum Many-Body Physics (Toschi)

Magnetism and Superconductivity (Michor)

Theory of Electronic Correlations and Collective Phenomena (Kuneš)



neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

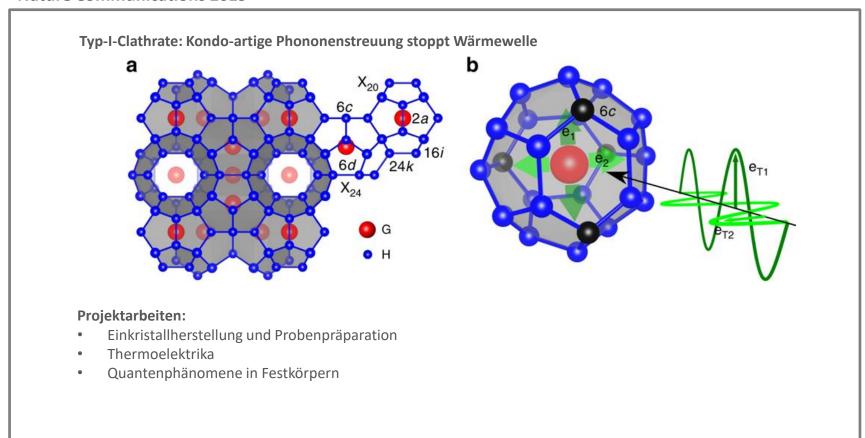


3D-printed phase waveplates for THz beam shaping

Pimenov et al.

derStandard, 11.07.2018

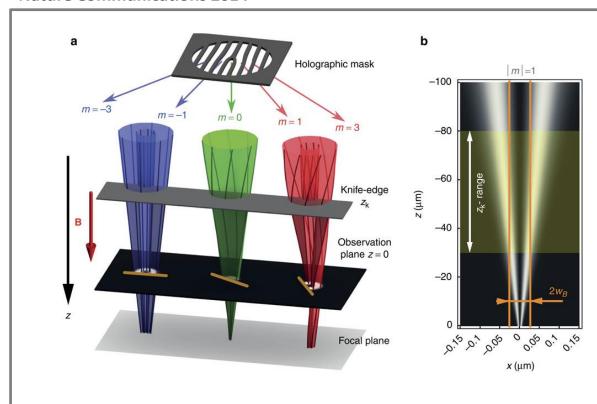
neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at



Verbesserte thermoelektrische Eigenschaften durch Korrelationen

Bühler-Paschen, Prokofiev et al.

Nature Communications 2019

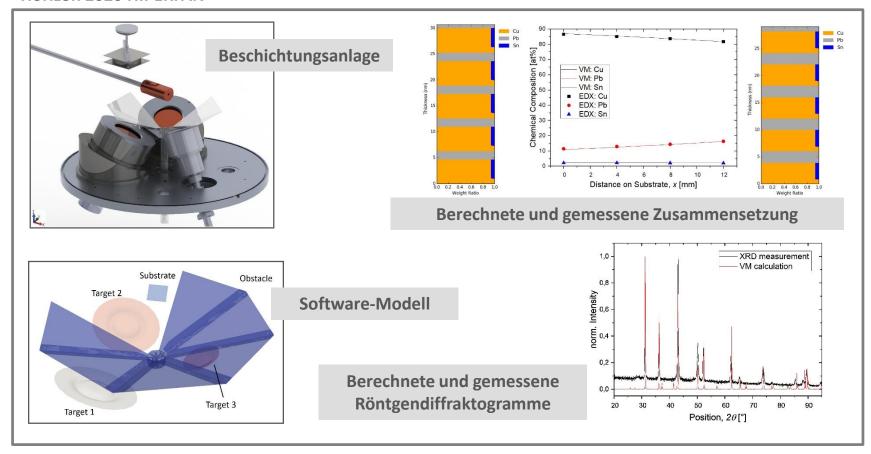

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

Beobachtung der Dynamik freier Landau-Zustände im Elektronenmikroskop

Schattschneider, Stöger-Pollach et al.

Nature Communications 2014

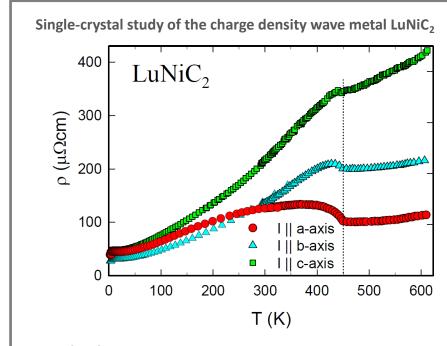
Richtung des Drehimpulses des Elektronenstrahls verdoppelt die Elektronenrotation aufgrund der Lorentzkraft oder hebt diese auf.



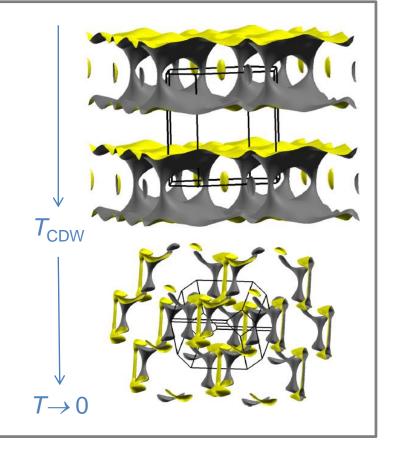
Design von Hochleistungs-Materialien in Flugzeugtriebwerken

Eisenmenger-Sittner et al.

Horizon 2020 HIPERFAN



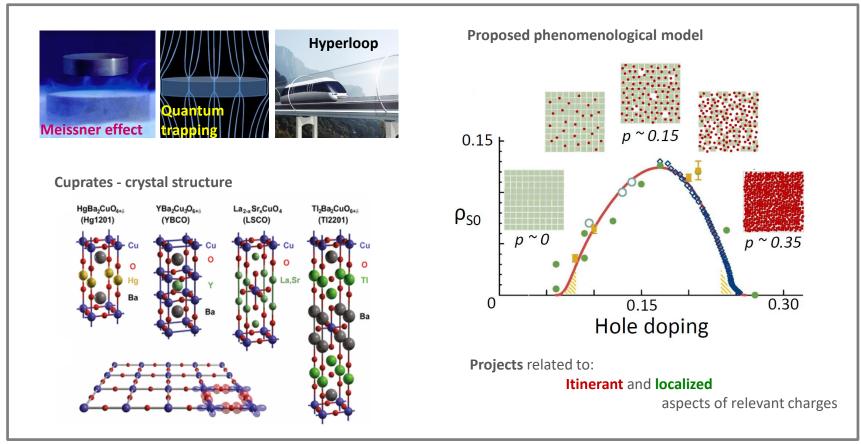
Ladungsdichtewelle – Strukturmodulation durch elektronische Peierls-Instabilität in einem Metall mit quasi-eindimensionalen elektronischen Eigenschaften


H. Michor, E. Bauer, B. Stöger et al.

Phys. Rev. B 97, 205115, 2018)

Projektarbeiten:

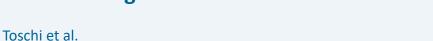
- Neue supraleitende / magnetische Materialien
- Thermoelektritika, Präparation von Einkristallen
- digitale Messwerterfassung / Steuerung von Experimenten



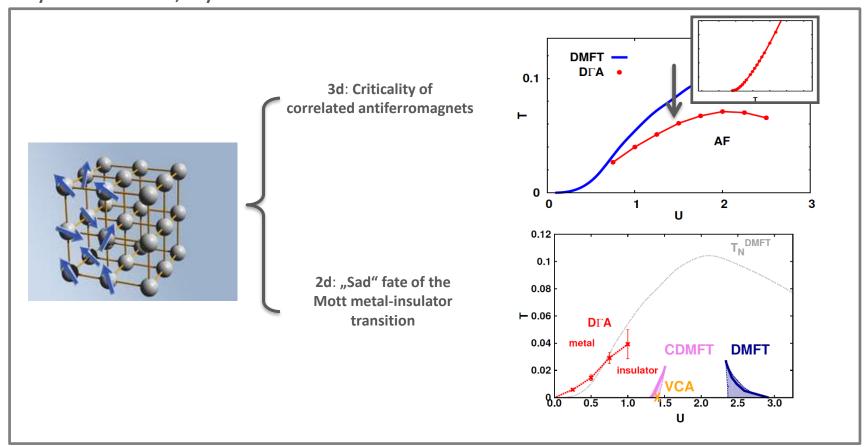
Hochtemperatur-Supraleiter

Barišić et al.

Science Advances 2019, Nature Communications 2019

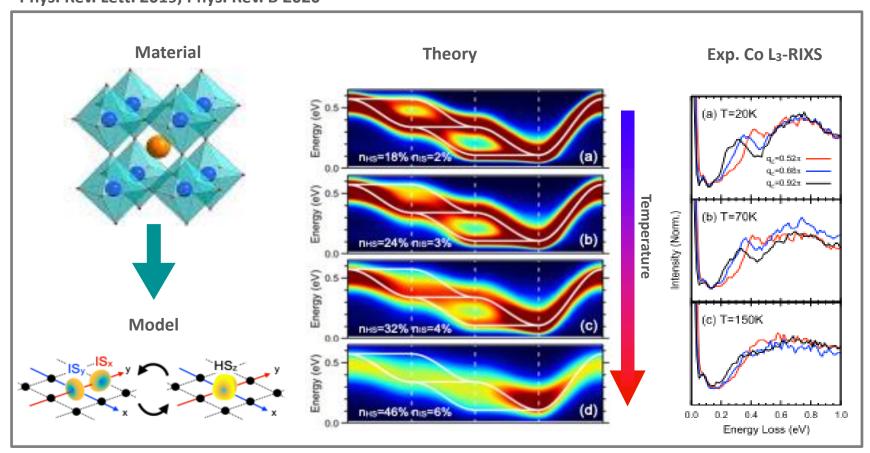


neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at



Kritisches/quantenkritisches Verhalten korrelierter Antiferromagneten

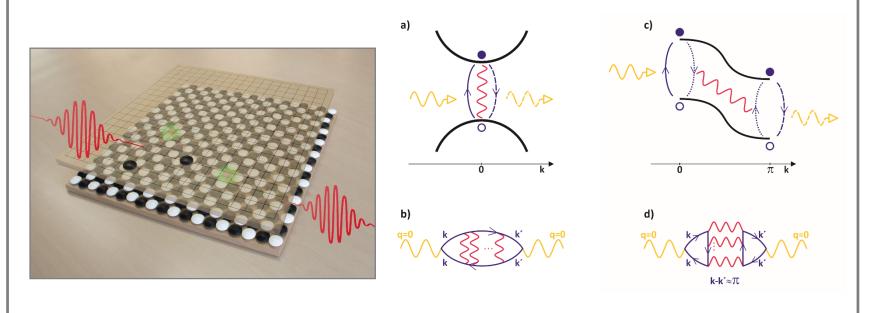
Phys. Rev. Lett. 2011, Phys. Rev. B 2015



Excitonischer Magnetismus

Kuneš et al.

Phys. Rev. Lett. 2019, Phys. Rev. B 2020



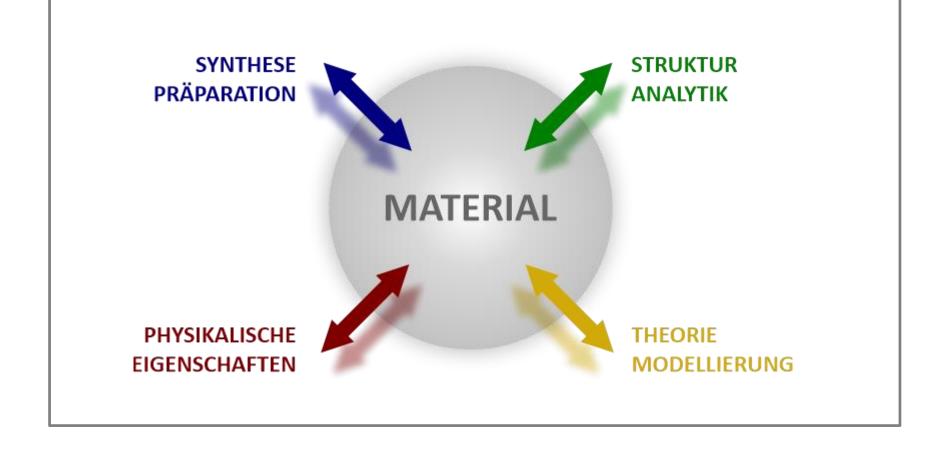
Neues Quasiteilchen im Festkörper: π -tons

Held et al.

Phys. Rev. Lett. 2020, Standard.at 04.02.2020

Das π -ton besteht aus zwei Elektronen und zwei Löchern, die durch Photonen angeregt werden und durch antiferromagnetische oder Ladungsdichte-Fluktuationen zusammengehalten werden.

Feynman-Diagramme für Exziton (links) und π -ton (rechts).


Projektarbeiten: π -tons, machine learning, solar cells

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

LEHRVERANSTALTUNGEN aus 4 Bereichen

SYNTHESE & PRÄPARATION

SCHWERPUNKTE

- Polykristalle
- Einkristalle
- Nanostrukturierte Materialien
- Einfrieren von metastabilen Zuständen
- Dünne Schichten
- Mikro- und Nanodrähte
- MBE-Filme (Zusammenarbeit mit ZMNS)
- Intermetallische Verbindungen
- Legierungen
- Oxide
- Entwicklung neuer Syntheseverfahren

LEHRVERANSTALTUNGEN

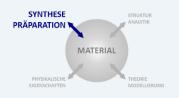
138.032 VO Physik dünner Schichten

138.035 UE Physik dünner Schichten

138.065 VO Crystal Growth: Theory and Practice

4-Spiegelofen

Induktionsschmelzofen



neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

SYNTHESE & PRÄPARATION

Lehrveranstaltungen

C. Eisenmenger-Sittner

chistoph.eisenmenger@tuwien.ac.at

PHYSIK DÜNNER SCHICHTEN

LV-Nr.: 138.032, 138.035

Typ: VO, UE

Distance Learning

→ TISS 138.032→ TISS 138.035

Beginn: Donnerstag, 11. März, 09:00 Uhr

via: ZOOM-Meeting

Beschichtungsverfahren, Charakterisierung von Oberflächen und Schichtsystemen, Anwendungen dünner Schichten

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

SYNTHESE & PRÄPARATION

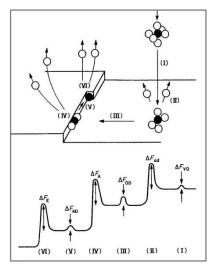
Lehrveranstaltungen

A. Prokofiev, C. Eisenmenger-Sittner, M. Taupin

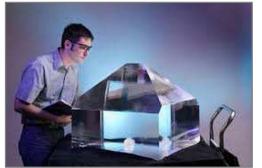
andrey.prokofiev@tuwien.ac.at

CRYSTAL GROWTH: THEORY AND PRACTICE

LV-Nr.: 138.065


Typ: VO

Distance Learning


→ TISS 138.065

Beginn: Mittwoch, 10. März, 13:00 Uhr

via: TUWEL/ZOOM-Meeting

Fundamentals of crystal growth (nucleation, growth mechanisms, transport processes, morphology). Single crystal, thin film and nanostructure technology.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

STRUKTUR & ANALYTIK

SCHWERPUNKTE

- Chemische Zusammensetzung
- Struktur
- Gitterfehler
- Korngrößen/Gefüge
- Entwicklung neuer Analysenmethoden

Rasterelektronenmikroskop

LEHRVERANSTALTUNGEN

133.043 VO Physik der Silizium-Halbleiter-Materialien

133.293 VO Grundlagen der Elektronenmikroskopie

138.049 PR Elektronenmikroskopie

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

STRUKTUR & ANALYTIK Lehrveranstaltungen

H. Cerva

hans.cerva@tuwien.ac.at

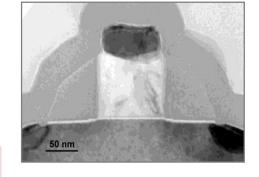
PHYSIK DER SILIZIUM-HALBLEITER-MATERIALIEN

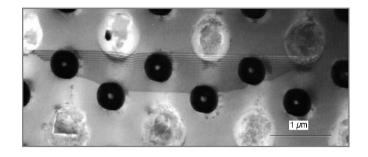
LV-Nr.: 133.043

VO Typ:

Beginn:

via:


Distance Learning


→ TISS 133.043

Interessenten bitte bei Vortragendem melden:

hans.cerva@yahoo.de, hans.cerva@tuwien.ac.at

Grundzüge zur Funktion von SI - Bauelementen, Silizium-Grundmaterial, Dotierung, Implantationsschäden, Kristallgitterdefekte, Oxidation, Dielektrika, Metallisierungen (poly-Si, Al, W, Ti, TiN, Cu)

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

STRUKTUR & ANALYTIK Lehrveranstaltungen

M. Stöger-Pollach

michael.stoeger-pollach@tuwien.ac.at

GRUNDLAGEN DER ELEKTRONENMIKROSKOPIE

LV-Nr.: 133.293

Typ: VO

Distance Learning

→ TISS 133.293

Beginn: Montag, 8. März, ab 14:00 Uhr

via: TUWEL

This lecture introduces various electron microscopic techniques, such as SEM, TEM, STEM, FIB, LVEM, etc.

The principles and fundamentals will be explained by means of examples.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

STRUKTUR & ANALYTIK 1

Lehrveranstaltungen

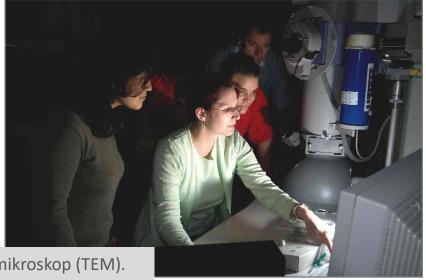
S. Löffler, J. Bernardi, M. Stöger-Pollach

michael.stoeger-pollach@tuwien.ac.at

ELEKTRONENMIKROSKOPIE

ACHTUNG! Begrenzte Teilnehmerzahl!

LV-Nr.: 138.049


Typ: PR

Präsenz LV

→ TISS 138.049

Beginn: Montag, 1. März

via: TUWEL

Einführungslabor am Transmissions-elektronenmikroskop (TEM). Voraussetzung für Projekt- und Diplomarbeiten am TEM.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PHYSIKALISCHE EIGENSCHAFTEN

SCHWERPUNKTE

- Korrelationen in Elektronensystemen
- Thermoelektrizität
- Optische Eigenschaften
- Elektrische und thermische Transporteigenschaften
- Magnetische und thermodynamische Eigenschaften
- Nutzung von Großforschungseinrichtungen
 - (Neutronen, Röntgenstrahlen, Myonen, hohe Felder)

Magnetismus

- Supraleitung
- Mechanische Eigenschaften
- Extreme Bedingungen: T, f, p, B
- Entwicklung neuer Messmethoden

LEHRVERANSTALTUNGEN

131.047 VO Strongly Correlated Electron Systems

138.056 VO Functional Materials

138.033 VO Magnetismus

138.000 VO Magnetische Relaxationsprozesse

138.043 VO Einführung in die Tieftemperaturphysik

138.048 VO Kernmagnetische Meßmethoden

³He/ ⁴He-Mischkühler mit Kernentmagnetisierungsstufe

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PHYSIKALISCHE EIGENSCHAFTEN

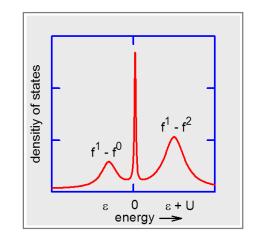
Lehrveranstaltungen

E. Bauer, S. Bühler-Paschen, A. Pustogow

ernst.bauer@tuwien.ac.at

STRONGLY CORRELATED ELECTRON SYSTEMS

LV-Nr.: 131.047


Typ: VO

Distance Learning

→ TISS 131.047

Beginn: Dienstag, 9. März, 12:00 Uhr

via: ZOOM-Meeting

https://tuwien.zoom.us/j/93357384578?pwd=SUI1RHpDdG00d2FzRndsbXByL2dIUT09

This lecture deals with extraordinary low temperature properties of solids that host both localized and itinerant electrons.

Experimental features and theoretical models will be discussed.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PHYSIKALISCHE EIGENSCHAFTEN

Lehrveranstaltungen

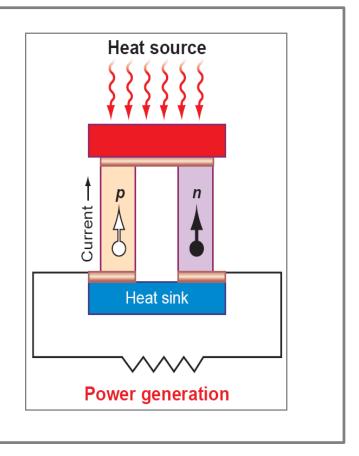
S. Bühler-Paschen, E. Benes, A. Pimenov, N. Barisic

silke.buehler-paschen@tuwien.ac.at

FUNCTIONAL MATERIALS

LV-Nr.: 138.056

Typ: VO


Distance Learning

→ TISS 138.056

Beginn: Montag, 1. März, 15:00 - 16:30 Uhr

via: TUWEL

Physics of functional materials: Thermoelectric materials, piezoelectric materials, magnetoelectric materials, superconductors.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PHYSIKALISCHE EIGENSCHAFTEN

Lehrveranstaltungen

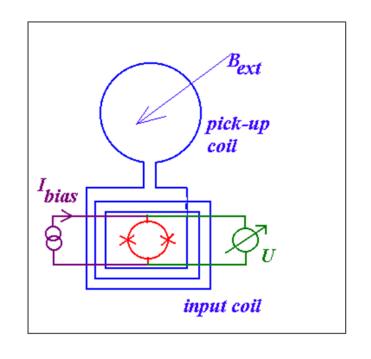
H. Michor, S. Khmelevskyi

michor@ifp.tuwien.ac.at

MAGNETISMUS

LV-Nr.: 138.033

Typ: VO


Distance Learning

→ TISS 138.033

Beginn: Donnerstag, 11. März, ab 14:00 Uhr

via: GoTo-Meeting

Grundlegendes Verständnis magnetischer Eigenschaften. Mit dem vermittelten Wissen sollte eine Analyse und Interpretation magnetischer Messungen möglich sein.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PHYSIKALISCHE EIGENSCHAFTEN

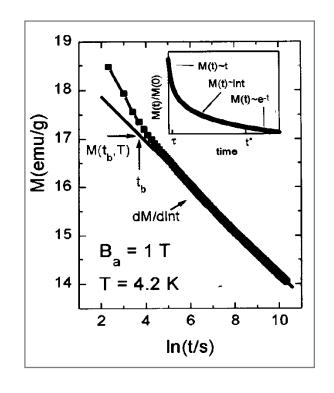
Lehrveranstaltungen

M. Reissner

michael.reissner@tuwien.ac.at

MAGNETISCHE RELAXATIONSPROZESSE

LV-Nr.: 133.000


Typ: VO

Distance Learning

→ TISS 133.000

Beginn: Dienstag, 2. März, 16:00 – 18:00 Uhr

Einführung in die Untersuchung von thermischer Aktivierung und Quantentunneln in Ferromagnetika, Spingläsern und Supraleitern.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PHYSIKALISCHE EIGENSCHAFTEN

Lehrveranstaltungen

M. Reissner

michael.reissner@tuwien.ac.at

EINFÜHRUNG IN DIE TIEFTEMPERATURPHYSIK UND -TECHNOLOGIE

LV-Nr.: 138.043

Typ: VO

Distance Learning

→ TISS 138.043

Beginn: Freitag, 5. März, 9:00 – 11:00 Uhr

Thermodynamische Grundlagen, Kühlmedien, Gasverflüssigung, Kälteanlagen, Kryostatenbau, Thermometer, ausgewählte Beispiele aus Tieftemperaturphysik, technische Anwendungen

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PHYSIKALISCHE EIGENSCHAFTEN

Lehrveranstaltungen

M. Reissner, W. Steiner

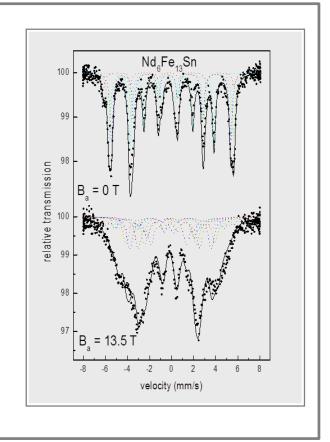
michael.reissner@tuwien.ac.at

KERNMAGNETISCHE MESSMETHODEN

LV-Nr.: 138.048

Typ: VO

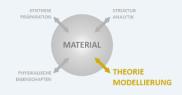
Distance Learning


→ TISS 138.048

Beginn:

Interessenten bitte bei Vortragenden melden!

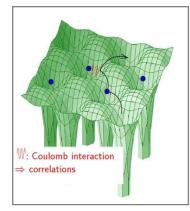
via:


Einführung in die Theorie und in die praktische Anwendung des Mössbauereffektes.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

THEORIE & MODELLIERUNG

SCHWERPUNKTE


- Elektronisch hochkorrelierte Systeme
- Magnetismus
- Thermoelektrizität
- Modellrechnungen
- Numerische Methoden

LEHRVERANSTALTUNGEN

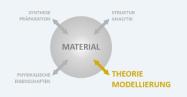
138.062 VO Quantenfeldtheorie für Vielteilchensysteme

138.088 UE Quantenfeldtheorie für Vielteilchensysteme

138.128 VO Machine Learning in Physics

Solid state Hamiltonian

Vienna Scientific Computer



neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

THEORIE & MODELLIERUNG

Lehrveranstaltungen

A. Toschi, K. Held, A. Kauch, J. Tomczak

alessandro.toschi@tuwien.ac.at

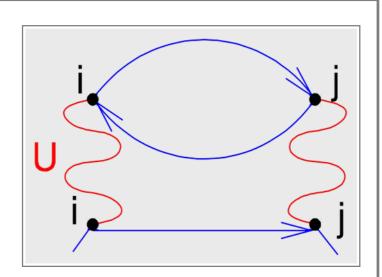
QUANTENFELDTHEORIE FÜR VIELTEILCHENSYSTEME

LV-Nr.: 138.062, 138.088

VO, UE Typ:

Distance Learning

→ TISS 138.062 → TISS 138.088


Beginn:

via: **GoTo-Meeting**

Mittwoch, 3. März, 17:15 – 18:00 Uhr

https://global.gotomeeting.com/join/741767621

Einführung in die quantenfeldtheoretischen Methoden, wie sie in der modernen Festkörpertheorie angewandt werden, um Vielteilchenphysik zu beschreiben.

SPEZIELLE FACHGEBIETE, SEMINARE, ... Lehrveranstaltungen

K. Held, M. Wallerberger

karsten.held@tuwien.ac.at

MACHINE LEARNING IN PHYSICS

LV-Nr.: 138.128

VU Typ:


Distance Learning

→ TISS 138.128

Beginn: Mittwoch, 3. März, ab 15.00 Uhr

via: **ZOOM-Meeting**

https://tuwien.zoom.us/j/98628921032

Im Rahmen der VU werden Konzepte des Machine Learnings und deren Anwendungen in der Physik erarbeitet und in Computer-Übungen vertieft.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

SPEZIELLE FACHGEBIETE, SEMINARE, ...

LEHRVERANSTALTUNGEN

138.001 SE Seminar aus Festkörperphysik

138.039 PR Einführung in Forschungsgebiete der Fakultät für Physik

138.089 VU Wissenschaftliches Programmieren

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

SPEZIELLE FACHGEBIETE, SEMINARE, ... Lehrveranstaltungen

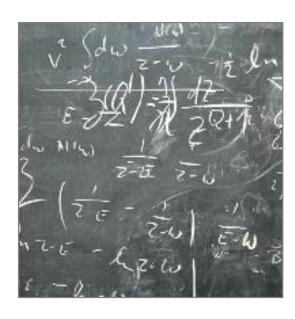
E. Bauer, C. Eisenmenger-Sittner

christoph.eisenmenger@tuwien.ac.at

SEMINAR AUS FESTKÖRPERPHYSIK

LV-Nr.: 138.001

Typ: SE


Distance Learning

→ TISS 138.001

Zeit: Mittwoch, 16:15 - 18:00

Termine unter http://www.ifp.tuwien.ac.at/seminare/

Seminarvorträge informieren über abgeschlossene Diplomarbeiten und Dissertationen sowie über aktuelle Themen der Festkörperphysik

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

SPEZIELLE FACHGEBIETE, SEMINARE, ... Lehrveranstaltungen

C. Eisenmenger-Sittner

christoph.eisenmenger@tuwien.ac.at

EINFÜHRUNG IN FORSCHUNGSGEBIETE DER FAKULTÄT FÜR PHYSIK

LV-Nr.: 138.039

Typ: PR

Anmeldung: 02. März, 16:00 Uhr - 09. März, 16:00 Uhr

über TISS in **Gruppe A** (begrenzte Teilnehmerzahl!)

Distance Learning

→ TISS 138.039

Die Physikinstitute der TU Wien stellen sich bei 4 Online-Terminen vor:

E138: Festkörperphysik

E141: Atominstitut

E134: Angewandte Physik

E136: Theoretische Physik

Fr, 19. März

ab 12:00 Uhr

Fr, 26. März

ab 12:00 Uhr

Fr, 23. April

ab 12:00 Uhr

Fr, 7. Mai

ab 12:00 Uhr

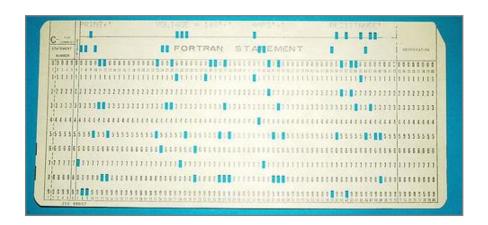
neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

SPEZIELLE FACHGEBIETE, SEMINARE, ... Lehrveranstaltungen

H. Müller, C. Lemell

herbert.mueller@tuwien.ac.at

WISSENSCHAFTLICHES PROGRAMMIEREN


LV-Nr.: 138.089

Typ: VU

Distance Learning

→ TISS 138.089

Beginn: Montag, 1. März, 14:00 Uhr

Eine Erweiterung der Einführung in FORTRAN, um den Einstieg in "Numerische Methoden und Simulation" zu erleichtern.

ERASMUS Austauschprogramm

Dipl - Chem. Anna Pimenov Erasmus - Koordinatorin

anna.pimenov@tuwien.ac.at

Typ: Koordination/ Beratung

Zeit: Hauptanmeldung

1.2. - 15.3.

Anmeldung zur Sprechstunde:

nicolas.weilguny@tuwien.ac.at sekretariat+e138@tuwien.ac.at

- mit Erasmus+ können Studierende einen Teil ihres Studiums an Hochschulen in Programmländern absolvieren.
- die monatliche Fördersumme beträgt zwischen 350 und 400 Euro.

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PROJEKTARBEITEN

133.018	PA	Analytische Elektronenmikroskopie	Bernardi, Fidler
133.021	PA	Angewandte Tieftemperaturphysik	Steiner, Reissner
138.064	PA	Computational Materials Science	Held, Toschi, Tomczak, Kuneš
138.071	PA	Dünnschichttechnologie	Eisenmenger-Sittner
131.024	PA	Einkristallherstellung und Probenpräparation	Prokofiev, Bühler-Paschen
138.085	PA	Elektrodynamik neuartiger optischer Materialien	Pimenov, Szaller, Shuvaev
133.010	PA	Elektronen-Energieverlustspektrometrie	Schattschneider, Bernardi Löffler, Stöger-Pollach
133.027	PA	Elektronenmikroskopie von Halbleitern	Schattschneider, Bernardi, Löffler, Stöger-Pollach

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

PROJEKTARBEITEN

131.061	PA	Experimentelle Festkörperphysik	Bauer, Müller
131.028	PA	Experimenteller Magnetismus	Michor, Fidler
133.055	PA	Festkörperspektroskopie	Reissner, Pongratz
138.063	PA	Festkörpertheorie	Held, Toschi, Tomczak
131.030	PA	Physikalische Messwerterfassung	Müller, Pimenov, Shuvaev
131.060	PA	Quantenphänomene in Festkörpern	Bühler-Paschen, Zocco, Nguyen, Barisic
131.023	PA	Röntgendiffraktometrie	Prokofiev, Taupin
131.025	PA	Supraleitung	Michor, Bauer
131.062	PA	Thermoelektrika	Bühler-Paschen, Eguchi, Taupin

neue Materialien und deren Eigenschaften bei extremen Temperaturen, Drücken, Magnetfeldern, Frequenzen im Makro-, Mikro- und Nano-Bereich www.ifp.tuwien.ac.at

VIEL ERFOLG IM SOMMERSEMESTER 2021!

