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Abstract: With an attempt to improve the thermoelectric properties of type I clathrates in the Ba-Ga-Si
system, we introduce Cu into the framework of the crystal structure. Single crystals are prepared
in Ga-flux and characterized by X-ray diffraction techniques and transport measurements for the
structural and thermoelectric properties. Our composition analyses show that only a small amount
of Cu is determined in the clathrates. The single crystal X-ray diffraction data refinements confirm
that Ga atoms prefer the 6c and 24k sites and avoid the 16i sites in the crystal structure. The small
amount of Cu affects the crystal structure by compressing the tetrakaidecahedral cage along the
direction perpendicular to the six-atom-ring plane. This could be the reason for the high charge
carrier concentration, and low electrical resistivity and Seebeck coefficient. We analyze the principal
mechanism for our observation and conclude that the Cu substitution can adjust some subtle details
of the structure, maintaining the Zintl rule in the type I clathrates.

Keywords: thermoelectric materials; type I clathrate; single crystal growth; single crystal X-ray diffraction

1. Introduction

As thermoelectric (TE) materials directly convert thermal energy to electric energy or vice versa,
they are promising for applications in refrigeration and energy recovery devices [1,2]. The currently
low energy conversion efficiency, however, restricts the application ranges. Efforts to improve the
conversion efficiency have never stopped. The conversion efficiency of TE devices increases with
ZT, the dimensionless figure of merit, which is defined as ZT = S2T/ρ(κe + κph) [1,3], where S is the
Seebeck coefficient (or thermal power), ρ the electrical resistivity, T the absolute temperature, κe and
κph the electronic and phonon contributions to the total thermal conductivity κ, respectively. To pursue
high ZT, new technologies, new materials, new theories, and new concepts have been applied and
discovered in materials research in the past decades which doubled or tripled ZT values reached in
conventional material systems. One of the famous concepts is the so-called “phonon glass, electron
single crystal” (PGEC), initiated by Slack [4], which suggested that compounds with amorphous-like
thermal conductivity and crystal-like electrical conductivity should be promising as TE materials.
This concept has orientated the research towards materials with large atomic thermal displacement
parameters of heavy atoms in some crystallographic positions, especially cage-like compounds.

Materials 2019, 12, 237; doi:10.3390/ma12020237 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-3825-6936
https://orcid.org/0000-0002-2239-048X
https://orcid.org/0000-0002-3796-0713
http://www.mdpi.com/1996-1944/12/2/237?type=check_update&version=1
http://dx.doi.org/10.3390/ma12020237
http://www.mdpi.com/journal/materials


Materials 2019, 12, 237 2 of 13

Type I inorganic clathrates are one of the cage compounds that have been extensively studied
for their crystal structure and TE properties. Type I clathrates, which are considered as particularly
interesting PGEC candidates [5], have a guest–framework structure, where the framework is formed
by IVA elements (Si, Ge, Sn) and the guest atoms come from alkaline metal, alkaline–earth metal,
halogen, or rare earth elements. The framework consists of two different cages, one containing 20 atoms
(small dodecahedra), and the other 24 atoms (tetrakaidecahedra) (Figure 1). The crystal structure is
formed by face sharing polyhedra: two dodecahedra and six tetrakaidecahedra and inserting guest
atoms into these cages, altogether 54 atoms per unit cell yielding a formula A8X46 (A is the guest atom
and X is the framework atom). Type I clathrates typically have low thermal conductivity [6,7] due
to (1) guest atom rattling because of its weak bonds to the framework atoms, which adds resonant
scattering for phonons, and (2) low phonon speed because of a flat phonon dispersion associated with
the framework topology. On the other hand, type I clathrates fulfill valence balances based on the
Zintl concept [8], which tells that the framework atoms accept electrons donated by the guest atoms,
forming the necessary electronic configurations for atomic bonds. The valence balanced compounds
are of semiconducting character and thus have a large Seebeck coefficient, which is a prerequisite for
materials of high TE performance.

Materials 2019, 12, x FOR PEER REVIEW  2 of 13 

 

This concept has orientated the research towards materials with large atomic thermal displacement 
parameters of heavy atoms in some crystallographic positions, especially cage-like compounds.  

Type I inorganic clathrates are one of the cage compounds that have been extensively studied 
for their crystal structure and TE properties. Type I clathrates, which are considered as particularly 
interesting PGEC candidates [5], have a guest–framework structure, where the framework is formed 
by IVA elements (Si, Ge, Sn) and the guest atoms come from alkaline metal, alkaline–earth metal, 
halogen, or rare earth elements. The framework consists of two different cages, one containing 20 
atoms (small dodecahedra), and the other 24 atoms (tetrakaidecahedra) (Figure 1). The crystal 
structure is formed by face sharing polyhedra: two dodecahedra and six tetrakaidecahedra and 
inserting guest atoms into these cages, altogether 54 atoms per unit cell yielding a formula A8X46 (A 
is the guest atom and X is the framework atom). Type I clathrates typically have low thermal 
conductivity [6,7] due to (1) guest atom rattling because of its weak bonds to the framework atoms, 
which adds resonant scattering for phonons, and (2) low phonon speed because of a flat phonon 
dispersion associated with the framework topology. On the other hand, type I clathrates fulfill 
valence balances based on the Zintl concept [8], which tells that the framework atoms accept electrons 
donated by the guest atoms, forming the necessary electronic configurations for atomic bonds. The 
valence balanced compounds are of semiconducting character and thus have a large Seebeck 
coefficient, which is a prerequisite for materials of high TE performance. 

 
Figure 1. Crystal structure of type-I clathrate (a) and atomic environment (tetrahedral bonds) in 
different sites (b) 6c; (c) 16i; and (d) 24k. 

Guided by the Zintl concept, substitution with transition metal (TM) elements and/or IIIA 
elements for IVA elements in the framework is usually effective to optimize the charge carrier 
concentration [8–10]. A series of compounds have been investigated [11–29] and a high value of ZT = 
1.35 has been achieved at 900 K for Ba8Ga16Ge30 [30], which inspired more enthusiasm to pursue 
higher ZT in similar clathrates. The iso-structural Ba8Ga16Si30 clathrate has also attracted interest and 
has been studied by several researchers [31–47]. Eisenman et al. was first to provide the structure 
details for this clathrate [31]. Bentien et al. reported the Ga site preferences in the host structure 
[41,42]. Semiconducting behavior due to the vacancies in the framework sites was reported by Nataraj 
et al. [37–39]. A maximum ZT value of 0.75 at 1000 K was reached with a high Ga content 17.13 at./f.u. 
(atom per formula unit) in the work of Deng et al. [43]. Anno et al. [44–46] studied the solid solubility 
of Ga in Ba8GaxSi46-x and found the maximum value x = 14.8. The largest ZT value of 0.8 at 900 K can 
be reached with a carrier concentration of about 2 × 1020 cm−3. These studies indicate that it is very 
difficult to reach the Zintl composition, where the Ga content should be exactly 16 at./f.u.. Deviation 
from the Zintl composition usually results in vacancies in the crystal structure, which increases the 
difficulty for the prediction of the charge carrier concentration by the Zintl rule for the optimized 
charge carrier concentration. Introducing lower valence elements could be one of the solutions, by 
taking advantage of the valence difference between these elements (such as TM elements) and Ga. 
Attempts have been pursued with the substitution of Zn and Cu elements for the framework atoms 
[48–50]. 

Figure 1. Crystal structure of type-I clathrate (a) and atomic environment (tetrahedral bonds) in
different sites (b) 6c; (c) 16i; and (d) 24k.

Guided by the Zintl concept, substitution with transition metal (TM) elements and/or IIIA
elements for IVA elements in the framework is usually effective to optimize the charge carrier
concentration [8–10]. A series of compounds have been investigated [11–29] and a high value of
ZT = 1.35 has been achieved at 900 K for Ba8Ga16Ge30 [30], which inspired more enthusiasm to
pursue higher ZT in similar clathrates. The iso-structural Ba8Ga16Si30 clathrate has also attracted
interest and has been studied by several researchers [31–47]. Eisenman et al. was first to provide
the structure details for this clathrate [31]. Bentien et al. reported the Ga site preferences in the host
structure [41,42]. Semiconducting behavior due to the vacancies in the framework sites was reported
by Nataraj et al. [37–39]. A maximum ZT value of 0.75 at 1000 K was reached with a high Ga content
17.13 at./f.u. (atom per formula unit) in the work of Deng et al. [43]. Anno et al. [44–46] studied the
solid solubility of Ga in Ba8GaxSi46−x and found the maximum value x = 14.8. The largest ZT value
of 0.8 at 900 K can be reached with a carrier concentration of about 2 × 1020 cm−3. These studies
indicate that it is very difficult to reach the Zintl composition, where the Ga content should be exactly
16 at./f.u.. Deviation from the Zintl composition usually results in vacancies in the crystal structure,
which increases the difficulty for the prediction of the charge carrier concentration by the Zintl rule
for the optimized charge carrier concentration. Introducing lower valence elements could be one
of the solutions, by taking advantage of the valence difference between these elements (such as TM
elements) and Ga. Attempts have been pursued with the substitution of Zn and Cu elements for the
framework atoms [48–50].
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Stimulated by such ideas, in the present work, we attempted to study the influence of Cu
substitution for the framework atoms on the structural and thermoelectric properties. To omit grain
boundary effects on the composition and the intrinsic transport property evaluation, we grew single
crystals with Ga self-flux. We found that the Cu content in the crystals is very small. However,
structural analyses showed that even a small amount of Cu affects the crystal structure and TE
properties. We further compared our results with the literature data, mainly focusing on Cu-free
compounds where the Si content is similar [31,35,38,39,42,46,50].

2. Materials and Methods

Aiming at preparing crystals with composition of Ba8Cu2Si30Ga14, pure elements (total 1.5 g)
were weighted in a stoichiometric ratio. With additional Ga (with a flux to sample volume ratio of
5:95), the elements were put into an Al2O3 crucible which was sealed in a quartz tube in vacuum of
10−5 Pa to avoid possible oxidation at high temperatures. The tube was heated from room temperature
to 1100 ◦C within 6 hours in a temperature-controlled furnace. After 3 h, the tube was cooled down to
800 ◦C with a cooling rate of 3 ◦C/h and kept at this temperature for 2 days. The remaining Ga was
then decanted, and the crystals were separated by centrifugation.

The quality of as-grown single crystals was checked by Laue measurements (COS, Micro
Photonics Inc., Allentown, PA, USA), X-ray powder diffraction (XRD, X’Pert PRO, PANalytical B.V.,
Almelo, The Netherlands), and polarization microscopy (Eclipse LV100 POL, Nikon Instruments Inc.,
Melville, NY, USA). The composition of each single crystal was determined by energy dispersive x-ray
spectroscopy (EDX, probe size: 1 µm) with a scanning electron microscope (SEM, Zeiss Supra 55VP,
Carl Zeiss AG, Oberkochen, Germany) operated at 20 kV. For two selected single crystals, several
points from different parts were measured and an average composition was obtained.

For crystal structure investigation, small single crystals (50~80 µm) were extracted from mechanically
crushed large crystals. Inspection on an AXS-GADDS texture goniometer (Bruker AXS GmbH,
Karlsruhe, Germany) assured high crystal quality, and provided unit cell dimensions and Laue symmetry
of the specimens prior to an X-ray intensity data collection on a four-circle Nonius Kappa diffractometer
(Enraf-Nonius B.V., Rotterdam, The Netherlands) equipped with a CCD area detector employing graphite
monochromated Mo-Ka radiation (λ = 0.071069 nm) at 300 K. The orientation matrix and unit cell parameters
were derived using the program DENZO [51]. No absorption corrections were necessary because of the
rather regular crystal shapes and the small dimensions of the investigated specimens. The structures were
solved by direct methods and refined with the Oscail program. A quantitative analysis of the structural
details was carried out with the program SHELXS-97 [52].

A large piece was cut from the largest crystal (the L sample, see below) for the electrical
resistivity and Seebeck coefficient measurements with a ZEM-3 (ULVAC-Riko, Kanagawa, Japan)
in the temperature range between room temperature and 850 K, within 2% measurement uncertainties.
For these measurements we cut a cuboid of ~7 × 1 × 1 mm3 from the original sample.

3. Results and Discussion

3.1. Chemical Properties

Several polyhedral crystals were obtained. The largest one has a size of 7.7 × 6.0 × 5.5 mm3

(Figure 2). The crystals are very brittle and inclusions of pure Ga can be found in some crystals.
Consequently, it is difficult to cut a big enough sample without inclusion for thermal conductivity
measurements (the required size: cylinders with 6 mm in diameter and 1 mm in thickness).
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Figure 4. Rietveld refinement of the X-ray powder diffraction (XRD) data for the large crystal L, based 
on the structure model given in Table 1 (RF = 4,4%, RB = 4.6%). 

Figure 2. The morphological image of the largest crystal.

Figure 3 shows the Laue X-ray image of the largest crystal. The calculated pattern (red points
in Figure 3) based on the space group Pm-3n and the lattice parameter a = 1.05324(1) nm can fit well
the observed pattern, indicating the high quality of the single crystal. No twin pattern can be seen
from different measuring points of the single crystal. The high quality was also confirmed by narrow
peaks from X-ray powder diffraction (Figure 4), and by very similar compositions measured by EDX
for different parts.
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The composition measurements by EDX were focused on two crystals: the one mentioned above with
the largest size (denoted by L), and another one with a relatively small size (S) which is used to confirm
the similarity of the chemical and physical properties in these crystals. Figure 5 shows the SEM images
for these two crystals. We can see cracks (created by polishing because of the brittleness) and inclusions
in the L sample, and pure Si and inclusions (mainly Ga) in the S sample. The measured compositions
are Ba14.4(3)Cu0.4(1)Si59.3(5)Ga25.9(5) (Ba8Cu0.2Si32Ga13.8) for the L sample and Ba14.3(4)Cu0.6(1)Si59.5(5)Ga25.6(9)
(Ba8Cu0.3Si32Ga13.7) for the S sample, respectively (the compositions in the brackets are normalized by
assuming no vacancies in the structure). Both crystals are chemically identical.
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Figure 5. Scanning electron microscope (SEM) images for samples (a) L (left) and (b) S (right). The main
phase (grey color) in both samples is clathrate; the light grey phase in the S sample (right) is Ga
(inclusion) and the black phase is Si.

Obviously, the Cu content in both compositions is very small, which is unexpected. The Ga
content is around 13.8 at./f.u., which is less than 16 at./f.u. expected from the Zintl rule, also less than
15 at./f.u. in the spark plasma sintered sample [46]. The low Cu content in the crystals implies that
the Ga flux would prevent Cu from entering the framework. Cu prefers to form other more stable
phases (crystals) with Ga (unfortunately, we did not analyze the phase types of very small crystals,
which could be Cu-Ga containing phases). Using other elements such as Sn or Bi as flux might increase
the Cu content.

3.2. Structural Analysis of Single Crystals

To figure out the Ga preferences in the crystal structure of Ga-substituted IVA clathrates, Si-based
clathrates are more suitable for such a purpose than Ge-based ones since the electron difference is
larger between Si and Ga than that between Ge and Ga. We selected several single crystals from both L
and S samples and collected intensity data for two good crystals. Cu will not influence the analysis of
Ga site preferences during the Rietveld refinements of the single crystals X-ray diffraction data since
(1) Cu has an X-ray scattering factor similar to Ga, and (2) the amount is very small. Consequently,
in our analysis, we excluded the Cu element at the beginning for the occupation study.

The analysis of X-ray data gave the expected crystal structure of type I clathrate (space group:
Pm-3n) with the heavier Ba atoms located at the 2a and 6d sites and the other elements forming the
framework 6c, 16i, and 24k sites. To analyze the distributions of Ga and Si (as mentioned, we ignored
Cu in the first stage) in the framework, we applied criteria as (1) the thermal parameters at each site
should be physically reasonable under defined occupations; (2) the refined composition should be
similar to the one measured by EDX; and (3) obtaining “real” low residual values (R values) from the
refinements. Based on these criteria the refinements delivered the structural parameters as shown
in Table 1: Ga and Si atoms share all framework sites in different ratios, consistent with the results
in the literature for Si- and Ge-based Ga containing type I clathrates [31,35,38,39,42,46]. The refined
compositions Ba8Si32.1Ga14.2(2) for the L sample and Ba8Si32.1Ga14.2(2) for the S sample are very close
to the EDX compositions Ba8Cu0.2Si32Ga13.8 and Ba8Cu0.3Si32Ga13.7, respectively. The R values are
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convincingly small and the residual electron densities (the highest peak and deepest hole are 0.61 and
−0.82 e−/Å3 for L, and 0.81 and −0.94 e−/Å3 for S) are also very sparse, indicating the adequacy
of the structure models. From Table 1, we note that the structural parameters, especially the atom
occupations of the two crystals, are practically identical, indicating a very good reproducibility of the
crystal structures of our crystals.

Table 1. Structural data for the two single crystals (L and S) with approximate compositions
Ba8Si32.1Ga14.2(2) and Ba8Si32.1Ga14.2(2) derived from X-ray single crystal refinements. Data collection:
2 ≤ 2θ ≤ 72.5; 75 s/frame; Total number of frames: 210 frames in 5 sets; Mosaicity: <0.43; Derived
space group (SG): Pm-3n.

Parameters/Notes L S

Formula from refinement Ba8Si32.1Ga14.2(2) Ba8Si32.1Ga14.2(2)
Composition (EDX, at/u.c.) Ba8Cu0.2Si32Ga13.8 Ba8Cu0.3Si32Ga13.7
a (nm) 1.05332(20) 1.05317(20)
µabs (mm−1) 16.32 15.25
Reflections in refinement 513(Fo) ≥ 4σ (Fo) 497 (Fo) ≥ 4σ(Fo)
Number of variables 22 22
RF

2 = ∑|Fo
2 − Fc

2|/∑Fo
2 0.0097 0.0132

Rint 0.0351 0.0473
wR2 0.0244 0.0270
GOF 1.618 1.338
Extinction coefficient 0.0078(2) 0.0056(2)
Re (highest peak; deepest hole) (e−/Å3) 0.61; −0.82 0.81; −0.94
Ba at 2a (0,0,0) Ueq 102 (nm2) 0.00948(6) 0.00975(7)
Uii, i = 1; 2; 3 0.00948(6) 0.00975(7)
Ba at 6d (1/4, 1/2, 0) Ueq 0.02670(6) 0.02690(7)
U11; Uii, i = 2; 3 0.01385(8); 0.03312(8) 0.01407(10); 0.03331(9)
M1 at 6c (1/4, 0, 1/2), Occ. 3.7(0)Ga+2.3(1)Si 3.7(0)Ga+2.3(1)Si
Ueq 0.00861(10) 0.00863(12)
U11; Uii, i = 2; 3 0.00946(15); 0.00819(11) 0.00935(19); 0.00827(14)
M2 at 16i (x, x, x), Occ. 1.2(1)Ga+14.8(2)Si 1.3(1)Ga+14.7(2)Si
Ueq 0.00836(10) 0.00839(12)
x 0.18540(2) 0.18540(2)
Uii, i = 1;2;3; U23 = U13 = U12 0.00836(10); −0.00097(7) 0.00839(12); −0.00087(8)
M3 at 24k (0, y, z), Occ. 9.3(1)Ga+15.0(3)Si 9.2(1)Ga+15.1(4)Si
Ueq 0.00822(6) 0.00840(7)
y, z 0.30621(2); 0.11932(2) 0.30626(2); 0.11925(2)
U11; U22 0.00843(10); 0.00758(10) 0.00862(12); 0.00777(12)
U33; U23 0.00865(10); −0.00033(6) 0.00882(12); −0.00033(8)

We also refined the powder diffraction data with the model in which Ba atoms occupy the 2a and
6d sites and Ga and Si atoms share all framework sites. The refined X-ray pattern is shown in Figure 4.
Similar structural parameters have been derived from the Rietveld refinements (not shown here).

Next, we compared our structural parameters with the literature data and revisited the arguments
for the site preferences of the Ga atoms in the crystal structure. The comparisons were mainly focused
on Ga occupations at different sites, lattice parameters, as well as interatomic distances between
relevant atoms (Figure 1). The results are illustrated in Figures 6 and 7.

We were interested in the Ga site preferences in the crystal structure because this has significant
influence on both the structural stability and the thermoelectric properties [34]. As predicted from
theoretical calculations [34], Ga atoms preferably occupy the 6c and 24k sites and try to avoid the 16i
site because it is energetically unfavorable to form bonds between Ga atoms in the framework [35].
An alternative explanation can be that atoms at the 6c and 24k sites bond together to build distorted
tetrahedra, i.e., bond angles deviating from 109.47◦ for the diamond structure [39], which leads to less
energy consumption when Ga locates in these sites than in the 16i site [34]. Generally, all the literature
data show that the occupation percentages of Ga are around 60.5%, 8.5%, and 37.5% at the 6c, 16i, and
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24k sites, respectively, which are almost independent on the composition except for that at the 24k site,
where a slight increase with increasing Si content can be seen (Figure 6a–c). Christensen et al. [53]
even predicted the highest solid solubility of Ga in the Si-based clathrate by the Ga site preference
rule, which can be less than 15 at./f.u. This value can be roughly confirmed by the change of lattice
parameters with Si content, as shown in Figure 6d. The increase of the lattice parameter with Ga
content is due to the replacement of the smaller Si atoms by the Ga atoms. The Ga occupations from
our work follow well the literature data.
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Figure 6. Occupations of Ga at different sites vs the Ga content x in the type I clathrates Ba8GaxSi46-x: 
(a) at the 6c site; (b) at the 16i site; and (c) at the 24k site. (d) Lattice parameter vs. x. The data from the 
present work are denoted by black circles. 

Interestingly, the Ga content in our single crystals is only around 14 at./f.u., lower than the value 
15 at./f.u. predicted earlier. It is likely that the small amount of Cu in the framework reduces the Ga 
content in order to fulfill the Zintl concept. According to this concept, Cu atoms consume 3 electrons 
and Ga only 1 electron to form the same electronic configuration as a Si atom in the three-dimensional 
net structure (diamond-like structure). Based on this picture, 0.3 at./f.u. Cu (in the S sample) equals 
0.9 at./f.u. Ga in the ability of accepting electrons. Therefore, from the Zintl concept point of view, the 
composition of the S sample is analogous to Ba8Si32Ga(13.7+0.9), in which the Ga content approaches the 
predicted 15 at./f.u. [53]. 

Although the Cu content is very small, it causes subtle changes in the crystal structure, which is 
observed by comparing the interatomic distances with those of Cu-free compounds in which the Si 
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Interestingly, the Ga content in our single crystals is only around 14 at./f.u., lower than the value
15 at./f.u. predicted earlier. It is likely that the small amount of Cu in the framework reduces the Ga
content in order to fulfill the Zintl concept. According to this concept, Cu atoms consume 3 electrons
and Ga only 1 electron to form the same electronic configuration as a Si atom in the three-dimensional
net structure (diamond-like structure). Based on this picture, 0.3 at./f.u. Cu (in the S sample) equals
0.9 at./f.u. Ga in the ability of accepting electrons. Therefore, from the Zintl concept point of view,
the composition of the S sample is analogous to Ba8Si32Ga(13.7+0.9), in which the Ga content approaches
the predicted 15 at./f.u. [53].

Although the Cu content is very small, it causes subtle changes in the crystal structure, which is
observed by comparing the interatomic distances with those of Cu-free compounds in which the Si
content is similar (~32 at./f.u.). These subtle changes can be used to explain the observed transport
properties in our crystals (see below). We compared our data with those from Ref. [46] and the
results are shown in Table 2 and Figure 7. The interatomic distances in the samples from Ref. [46]
were calculated based on their provided structural data. We can see a shorter interatomic distance
between M1(6c) and M3(24k) and longer ones between M2(16i) and M3(24k), as well as M3(24k) and
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M3(24k) in our crystals than the Cu-free samples, reflected by the negative values for the former and
positive values for the latter ones in P1 and P2 in Figure 7. The relatively higher absolute values of
Pi (i = 1, 2) for M1(6c)-M3(24k) than the other two are due to more Si occupying the 6c site caused by
Cu substitution for Ga. This may also be an indication that Cu locates at the 6c site, as normally seen
from transition elements in other type I clathrates [11–26]. As a consequence of these distance changes,
the shape of the two cages has also changed, which is reflected by positive values for Ba(2a)-M3(24k)
and negative values for Ba(6d)-M3(24k), as well as minor values for the other interatomic distances
(e.g., Ba(6d)-M2(16i)) in Pi (i = 1, 2) in Figure 7. The atomic bonds in the six-atom-ring of the large cage
are shortened and, simultaneously the cage is compressed along the direction perpendicular to the
six-atom-ring plane (Figure 7c), which could lead to a high efficiency on the electron transfer from Ba
atoms to the framework atoms [35,54–57]. This is evident from a higher electron concentration in our
crystals than in the Cu-free samples as shown below.

Table 2. Selected refined interatomic distances (Å) for L and S and for the samples from Ref. [46] (A1
and A2). For comparison, we calculated the change percentages (Pi (%)) based on the Cu-free sample
A1: P1 = (dL − dA1)/dA1; P2 = (dS − dA1)/dA1. The interatomic distances of A1 and A2 were calculated
by Bond Str with structural data. We show here A2 for comparison with the Cu-free samples.

Notes and References L S Anno (A1) Anno (A2) P1 P2

Formula from refinement Ba8Si32.1(6)Ga14.2(2) Ba8Si32.1(7)Ga14.2(2) Ba8Si31.1Ga14.9 Ba8Si30.9Ga15.1
Composition (at/u.c.) Ba8Cu0.2Si32Ga13.8 Ba8Cu0.3Si32Ga13.7 Ba7.71Si32.24Ga14.04 Ba8Si31.84Ga14.51
Ba(2a) −8M2(16i) 3.3824(2) 3.3819(1) 3.3813(1) 3.3883(1) 0.033 0.018

−12M3(24k) 3.4616(1) 3.4613(1) 3.4489(3) 3.4594(3) 0.369 0.360
Ba(6d) −4M1(6c) 3.7240(2) 3.7235(4) 3.7236(3) 3.7280(2) 0.011 −0.002

−8M3(24k) 3.5610(2) 3.5599(3) 3.5665(2) 3.5680(2) −0.155 −0.186
−8M2(16i) 3.9062(3) 3.9057(2) 3.9058(2) 3.9096(3) 0.009 −0.003
−4M3(24k) 4.0533(4) 4.0535(3) 4.0537(4) 4.0575(4) −0.010 −0.005

M1(6c) −4M3(24k) 2.4619(2) 2.4617(2) 2.4732(2) 2.4700(1) −0.459 −0.467
M2(16i) −1M2(16i) 2.3572(1) 2.3570(1) 2.3583(1) 2.3553(1) −0.047 −0.055
M3(24k) −2M2(16i) 2.4326(0) 2.4326(1) 2.4265(1) 2.4330(1) 0.251 0.251

−1M3(24k) 2.5136(2) 2.5118(2) 2.5079(1) 2.5149(2) 0.229 0.157
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Figure 7. Interatomic distance changes (percentages Pi, definition see Table 2) caused by Cu substitution
(a) P1, (b) P2, and (c) a sketch shows the changes in the large cage.
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The changes in interatomic distance caused by Cu substitution is not directly from the size
difference between Cu and Ga atoms (actually, in covalent state, the atomic radii of Cu and Ga are
similar), but from the substitution reducing the Ga content and simultaneously increasing the Si
content, which decreases the involved bonds discussed above. Meanwhile, the electronic balance is
maintained according to the Zintl rule.

3.3. Thermoelectric Properties

Temperature dependent electrical resistivity ρ(T), Seebeck coefficient S(T), and power factor
PF(T) are shown in Figure 8. The literature data for samples of a similar Si content are included
for comparison. For all compounds, the electrical resistivity exhibits metallic-like behavior, and the
Seebeck coefficient is negative, which indicates that electrons are the dominating charge carriers, well
in coincidence with the Zintl prediction.
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Figure 8. Temperature dependent (a) electrical resistivity ρ, (b) Seebeck coefficient S, and (c) power 
factor PF for the L sample. Comparisons are made with the data from different sources: open red 
squares represent Ba7.65Ga14.51Si31.84 from Ref. [46]; open blue triangles represent Ba7.60Ga14.78Si31.63 from 
Ref. [46]; open green inverted triangles represent Ba7.79Ga14.81Si31.40 from Ref. [46]; purple stars 
represent Ba7.5Cu0.8Si30.7Ga14.4 from Ref. [50]. 
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corresponding atom can provide or accept. Here we fixed the Ba content xBa as 8 at./f.u. (both cages 
are assumed to be fully filled) though the EDX content could be less in some samples. The results are 
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factor PF for the L sample. Comparisons are made with the data from different sources: open red
squares represent Ba7.65Ga14.51Si31.84 from Ref. [46]; open blue triangles represent Ba7.60Ga14.78Si31.63

from Ref. [46]; open green inverted triangles represent Ba7.79Ga14.81Si31.40 from Ref. [46]; purple stars
represent Ba7.5Cu0.8Si30.7Ga14.4 from Ref. [50].

According to the Zintl counting scheme, we estimated the charge carrier concentrations for all
selected compounds by n1 = 2xBa − 3yCu − 1zGa, where xBa, yCu, and zGa are the content for Ba,
Cu, and Ga in at./f.u., respectively. The prefactor is the electron number (valence electrons) that the
corresponding atom can provide or accept. Here we fixed the Ba content xBa as 8 at./f.u. (both cages
are assumed to be fully filled) though the EDX content could be less in some samples. The results are
given in Table 3. We also estimated the charge carrier concentration by the temperature dependent
Seebeck coefficient S(T) using the equation:

S =
2π2k2

Bme

e}2(3nπ2)2/3 T, (1)
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where n is the charge carrier concentration, me the free electron mass, e the charge, and the others have
the general meaning. Since the Debye temperature is higher than 300 K in this type of clathrates [46],
the estimate of n with the linear relationship at the high temperature range (300–~800 K) is justified.
The charge carrier concentration derived from Equation (1) was labeled n2 in Table 3. The difference
between n1 and n2 can be from the underestimated effective charge carrier mass, or the inaccuracies of
the EDX compositions.

Table 3. Ga and Cu contents (yGa, zCu) in samples for comparisons, which are used for estimation of
the charge carrier concentration n1 by the Zintl rule; n2 is derived from Equation (1) (see text).

Sample Code yGa zCu a n1 n2
at./f.u. at./f.u. nm 1/f.u. 1/f.u.

L 13.8 0.2 1.05332(20) 1.6 1.10
A1 14.04 - 1.053189 1.96 0.69
A2 14.51 - 1.054450 1.49 0.60
A3 14.81 - 1.054540 1.19 0.51
Liu 14.7(6) 0.7(9) 1.05294(1) −0.8 1 1.10

1 The negative value indicates that the carrier type is hole-like, which is in contrast to n2 and the S sign. We thus
eliminated this sample for the comparison in the text.

By comparing the charge carrier concentration in our crystal with the Cu-free compounds,
we noticed that although the predicted n1 in the L sample is very close to the A1 and A2 samples, n2 in
the former sample is larger than in the latter ones. This explains that the Seebeck coefficient (absolute
value) is lower in the L sample than in the A1 and A2 samples (Figure 8b), and also partially explains
the lower electrical resistivity in Figure 8a (another reason can be the lack of the grain boundary
scattering for electrons in the single crystal sample). The higher n2 might arise from the changes of
the crystal structure caused by Cu substitution, i.e., the compression in the direction perpendicular
to the six-atom-ring plane of the large cage (Figure 7c) increases the electron transfer efficiency, as it
enhances the wave function overlap between the guest and framework atoms [58].

Combining the electrical resistivity and Seebeck coefficient, we show the power factor PF in
Figure 8c. At relatively low temperatures, the PF from our work is lower than for the Cu-free samples,
which is due to the high charge carrier concentration. At higher temperatures, the PF of the single
crystal with Cu substitution is comparable to the Cu-free polycrystalline samples. In our crystal,
the highest PF value reached is 0.83 mW/mK2 at 832 K.

4. Conclusions

In summary, we have synthesized single crystals of type I clathrate by a self-flux method in the
Ba-Cu-Si-Ga quaternary system. The crystals have been characterized by X-ray powder diffraction,
Laue measurements, X-ray single crystal diffraction, EDX measurements, and transport property
measurements. We proved that we can obtain quaternary type I clathrates in this system, but the Cu
content is very small. Even so, the small amount of Cu affects the crystal structure and the transport
properties. Structural investigation showed that the site preferences of Ga generally follow the rule
of sharing the 6c and 24k sites with the IVA elements and avoiding the 16i site to prevent Ga-Ga
direct bonds. By analyzing the bonds (interatomic distances), we found that the Cu substitution
compressed the large cage along the direction perpendicular to the six-atom-ring plane, which could
enhance the capability/efficiency of electron transfer from the Ba atoms enlarging the wave function
overlap between the guest and framework atoms. A higher charge carrier concentration has been
observed in the Cu-containing single crystal, which reduces both the electrical resistivity and Seebeck
coefficient. We attributed the structural and electronic changes to the Cu substitution (1) increasing the
Si/Ga ratio by electron balance in this Zintl compound and (2) shortening bonds in certain directions
because of the Ga site preferences, rather than a simply direct size effect of Cu replacing Ga. We thus
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expect that this could be a strategy for Zintl compounds for tuning electronic parameters to reach high
thermoelectric performance.
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